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size rule.  This paper further analyzes the Zipf exponent. By changing the sample size, the 

truncation point, and the mix of cities in the sample, we found that the exponent is close to one 

only for some selected sub-samples.  Small samples of large cities alone provide higher value of 

the exponent whereas small cities introduce high variance and lower the value of the exponent. 
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Further Analysis of the Zipf's Law: Does the Rank-Size Rule Really Exist? 

 

I. INTRODUCTION: 

 Zipf's law is a common regularity in natural and social sciences (e.g., Shiode and Batty, 

2000; Sinclair, 2001; Li and Yang, 2002; Tachimori and Tahara, 2002). It states that the rank 

associated with some size S is proportional to S to some negative power. If this power is equal to 

one, the Zipf’s law collapses into the commonly named rank-size rule.  This implies that in the 

case of cities, the second largest city is half the size of the first and the third largest city is one 

third the size of the largest and so on. In cases where this power is greater than one, it suggests 

that the second largest city is more than half of the largest city and the third largest city is more 

than a third of the largest city and so on. An exponent less than one suggests that the second 

largest city is smaller than half of the largest city and so on. Linearizing this relationship between 

the rank and size using a log transformation makes it easy to estimate the negative exponent.  

There are two striking observations about the Zipf’s law.  One is its excellent fit.  

Numerous empirical studies have shown that a linear regression of log-rank on log-size generates 

an excellent fit (very high R2-value).   For example, Rosen and Resnick (1980) used data from 44 

countries and found that R2-values were above 0.95 for 36 countries, with only Thailand having 

an R2-value lower than 0.9 (0.83). Mills and Hamilton (1994) found a R2-value of 0.99 using 

1990 data on 366 U.S. urbanized areas. Song and Zhang (2002) found an R2-value of 0.91 for 

665 Chinese cities in 1998. This astonishing regularity led Krugman (1995, p.44) to say that the 

rank-size rule is "a major embarrassment for economic theory: one of the strongest statistical 

phenomenon we know, lacking any clear basis in theory.” Fujita et al. (1999, p. 219) stated “the 
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regularity of the urban size distribution posses a real puzzle, one that neither our approach nor 

the most plausible alternative approach to city sizes seems to answer.” 

The second striking observation is about the Zipf coefficient. In the urban literature, the 

coefficient is very close to 1, thus the rank-size rule holds.  Theoretically, Gabaix (1999a, b) has 

argued that the rank-size rule is natural result of a growth process which is independent of the 

size of the city. Fujita et al. (1999) suggested that the rank-size rule does indeed approximate to 

the long-run spatial distribution of a mature spatial system.  Empirically, for the 44 countries 

studied by Rosen and Resnick (1980), the estimated coefficient ranges from 0.809 for cities in 

Morocco to 1.963 for cities in Australia.  Nitsche (2005) analyzed 515 estimates from 29 studies 

of the rank-size relationship and found that two-third of the estimated coefficients are between 

0.80 and 1.20, with a median estimate of 1.09.  This finding implies that cities are on average 

more evenly distributed than suggested by the rank-size rule. 

 Several explanations have attempted to explain why Zipf's law holds, including economic 

explanation, the Gibrat’s law, and pure statistical phenomenon. The economic explanation of 

Zipf’s law relies on a delicate balance between transportation costs, positive and negative 

externalities, and productivity differences (Gabaix, 1999b; Fujita et al., 1999). However, this 

approach has some inherent problems. For example, it is difficult to see how radically different 

economies such as the U.S., China, and India would hold the same delicate balance of forces 

across time and space.  It is clear that the U.S has different transportation costs, externalities, and 

productivity differences with India and China; therefore, looking at the economies this way does 

not give a good reason why the Zipf’s law should hold.  The second explanation was offered by 

Gabaix (1999a).  Gabaix proved that the Zipf’s law derives from the Gibrat’s law, which states 

that the growth process is independent of size. Following this explanation, Zipf’s law becomes 
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the steady state distribution. “The existence of power law can be thought of as due to a simple 

principle: the scale invariance. Because the growth process is the same at all scales, the final 

distribution process should be scale invariant. This forces it to be a power law” Gabaix (1999a, p. 

744). A more recent and compelling explanation of why the Zipf’s law holds was provided by L. 

Gan et al. (2006). They proved that a high R2-value exists because the dependent variable (rank) 

is generated from the independent variable (size). Using data from China, the U.S., and randomly 

generated data, they concluded that the Zipf’s law does not need a basis in economic theory to 

show a high degree of explanatory power; in other words, Zipf’s law is a statistical phenomenon. 

This explanation is supported by the fact that Zipf's law holds in many other cases such as firm 

size, web server domains, and in fields that range from economics to physics. 

 However, the striking observation of Zipf’s coefficient close to 1 remains a puzzle. Is it 

an economic regularity or a statistical phenomenon?  This paper attempts to solve this puzzle. 

Using the data from Chinese cities (1985 and 1999) and the U.S urbanized areas data (1980, 

1990 and 2000); this research investigates what drives the distribution of the estimated 

coefficient. We chose the US and China for two main reasons.  One is because both countries 

have many cities. More cities allow us to do more rigorous statistical analysis.  The other reason 

is because they have two very different economic systems.  We want to see if the Zipf’s 

coefficient is sensitive to economic systems. 

 A better understanding of the Zipf's exponent is crucial. The validity of rank-size rule 

hinges on this exponent having a value close to one. If the value of this exponent is not really 

close to one this might put the fate of the rule in jeopardy and highlight the explanation offered 

by Gan et al. (2006) that the Zipf’s law is a statistical phenomenon, not an economic regularity. 
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The next section outlines the methodologies used in this analysis, including the rolling 

sample method and the random sampling method with replacement. The third section provides 

the results and cross country comparisons. The final section summarizes the empirical results and 

discusses their economic significance. Succinctly, this paper seeks to find the impact of sample 

size, truncation point and the mix of cities on the estimated exponent of the Zipf’s law. 

 

II. THE MODEL AND METHODOLOGY 

Before setting up the model, it might be helpful to visualize the Zipf's law. Following the 

example from Gabaix (1999), we take a country such as U.S and order the cities with population: 

number 1 New York, number 2 Los Angeles and so on. We then draw a graph; on the y-axis we 

place the log of rank and on the x-axis we place the log of population. We see a straight line as 

shown below with a slope of close to -1. 

 

Figure 1: Log size versus log lank for 140 largest U.S cities in 1990. 

The common way of estimating the slope of the line in the graph above is as follows: 

εβα +−= )log()log( ii SR   [1] 
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where Ri is the rank of the ith city, Si is the city's size and α is a constant term. Here we note that 

equation 1 is simply a log transformation of the regular Zipf's law which is normally expressed 

in the following form:  

β−= ii ASR     [2] 

Several studies have noted that estimating this expression of the Zipf's law yields an OLS 

bias through the standard errors. To correct for this bias, Gabaix and Ibragimov (2006) offered 

the following version that corrects for the bias, giving the standard errors of the exponent the 

form : where  is the corresponding sub-sample size. Instead of equation (1) they 

offer the following: 

^
5.0)/2( βin

−

in
−

εβα +−=− )log()5.0log( ii SR  [3] 

This corrected version has come to be known as the rank minus half rule. Throughout this 

analysis, we will provide results from both versions and comment on the differences that exist 

between them. 

The first method we will use is the rolling sample method. That is, we will estimate the 

exponent coefficient β using OLS, and in addition, we will repeat the estimation process using a 

moving truncation point. The start point of each sub-sample is fixed at the largest city and the 

truncation point moves down by one city every time, thereby increasing the sub-sample size by 

one each time. For example, the full sample size of U.S. urbanized areas for 1990 is 396. These 

urbanized areas will be ordered decreasingly from the largest urbanized area of New York 

(16,044,012 persons) to the smallest urbanized area of Brunswick, GA (50,066 person). The first 

sub-sample size of the regression [1] and [3] is , the 10 largest cities for example; then the 

second sub-sample is , the 11 largest cities, the third sub-sample size is , or 

1

−

n

112 +=
−−

nn 123 +=
−−

nn
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12 largest cities, and so on. We continue this process until the last sub-sample is equal to the full 

sample size of 396. The advantage of this methodology is that it captures the variation pattern of 

the exponent coefficients. Some studies have offered various theoretical explanations for the 

variation pattern of the exponent coefficients. Gabaix (1999a, b) suggested that the variation of 

the estimated power coefficients is due to bigger variance while Eeckhout (2004) thought that it 

is because of the underlying lognormal distribution. The rolling sample method captures the 

variation of the coefficient as both the sample size and truncation point changes. The results are 

explained fully in the next section. 

The second method, random sampling with replacement, set out to separate some of the 

simultaneous effects captured with the rolling sample. The rolling sample does provide the gross 

variation in the estimated coefficient as three factors change simultaneously (sample size, 

truncation point and the variation in city sizes). To untangle these effects, we use our original 

data for each year as a pool to select from; this original data is not ordered in any fashion. We 

then randomly select the first sub-sample , 5 random cities, and then rank them. The first sub-

sample size of the regression [3] is , the first 5 cities randomly selected. The second sub-

sample  is independent of the first sub-sample. However, it contains one more city than the 

first sub-sample, and the third sub-sample is also randomly selected and contains one more city 

than the second sub-sample, and so on. We continue this process until the last sub-sample is the 

same as the full sample size. Since this is a random process, we repeat the same process 100 

times for each sample collecting the estimated coefficient. We average these series to get the 

distribution of the coefficient when we account for the size of the cities and the truncation point, 

the biases we expected under the rolling sample method. 

1

~
n

1

~
n

2

~
n
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The third method is to further test the effect of sample size on the distribution of the 

estimated coefficient.  For this, we randomly generate 1000 numbers from a normal distribution. 

We then apply the random sampling technique and repeat the process we did above. After 100 

iterations we average the series of 's.  Finally, we examine the relationship between the average 

and sample size. 

^
β

 

III. RESULTS 

Table 1 shows the full-sample results of Zipf's law. As expected, all cities in both 

countries for all the years show high R2-value (0.857 to 0.989). It is interesting to note that the 

estimated coefficients ( 's) are slightly higher for the OLS bias corrected model than the 

original uncorrected version. Therefore, we can conclude that the uncorrected Zipf's law has a 

downward bias on the estimated coefficient.  

^
β

Table 1: Regression results on Zipf's law using City Size Data from China and the U.S. 

 

Nation 

 

Year 

 

^
β  

OLS Bias 

Corrected
^
β

R2 

(from unadjusted)

 

Sample Size 

U.S. 1980 0.91 0.925 0.989 366 

U.S. 1990 0.895 0.913 0.989 396 

U.S. 2000 0.875 0.895 0.989 452 

China 1985 0.856 0.875 0.857 324 

China 1999 1.075 1.09 0.927 667 

Data Sources: U.S Bureau of Census and Urban Statistical Yearbook of China (1986, 2000). 
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A. Rolling Sample Results for U.S. Urbanized Areas 

The rolling sample results for samples from both countries show a negative relationship 

between the estimated coefficient and sample size. This implies that small samples of big cities 

yield higher coefficients (β>1) than large samples that also include smaller cities. These results 

are intuitive and hold true for most samples. When rank-size holds, the coefficient is close to 1, 

or the 95% confidence interval includes 1. This implies that the size of the second largest city is 

half the size of the first, the third largest city is one third the size of the first and so on. However, 

the results from the rolling sample size, especially from the small samples of large cities, 

suggests that the second largest city is greater than half of the first largest (Los Angeles has a 

population greater than half that of New York). This is what is implied by β>1. There is a 

truncation point and sample size bias in estimating the exponent. An explanation of this intuitive 

result is that most large cities enjoy the same economies of scale and have almost the same level 

of diversity, and productivity levels, and therefore do not have different population levels. As we 

include more cities into the sub-samples, we increase the variance: an explanation offered by 

Gabaix (1999a, b) for the variation of the estimated exponent. The differences between cities 

become significant as small cities significantly differ from other small cities in terms of the 

economies of scale they enjoy, the diversity they house, and productivity levels they have. This 

large difference between small cities contributes to the low estimated coefficients. 

For U.S urbanized areas, we note that the rank-size rule only holds for certain sub-

samples. For the 1980 cities, rank-size rule holds only for sub-samples between 180 and 205; for 

1990, 140 to 195; and for year 2000, 140 to 205. These are the ranges where the 95% confidence 

interval includes β=1.  This finding suggests that the rank-size rule (i.e., β=1) does not holds 

always hold. 
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Figure 2 

Zipf's Law: U.S Urban Areas 1980
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Figure 3 

Zipf's Law: U.S Urban Areas 1990
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Figure 4 

Zipf's Law: U.S Urban Areas 2000
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Figures 2-4 show that the unadjusted model has a downward bias in terms of the magnitude of 

the estimated exponent. For all the three years shown for U.S. urbanized areas, the estimated 

exponent seems to be following a lognormal distribution when the rolling sample technique is 

used. 

 

B. Rolling Sample Results for Chinese Cities 

The two graphs below show the distribution of Zipf coefficient for the Chinese data using 

the rolling sample approach. Like the U.S. case, we also found a negative relationship between 

the estimated coefficient and the sample size.  For the 1985 cities, the rank-size rule holds only 

for sub-samples between 315 and 320 cities. Therefore, the rank-size rule does not hold for a 

sample of the largest 314 cities in China for 1985. Because of China’s rapid urbanization and 

city reclassification, the number of Chinese cities was more than doubled between 1985 and 

1999, from 324 to 667. For Chinese cities in 1999, the rank-size rule does not hold for any sub-
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sample. All the estimated Zipf exponents using the rolling sample approach are significantly 

greater than one. 

In the graphs below, we show the gap between Gabaix and Ibragimov (2006) adjusted 

results from the original biased model. The unadjusted model has a downward bias on the 

estimated coefficient.   We also notice that the estimated coefficients are generally higher for 

Chinese cities than U.S. urbanized areas. This difference might be attributed to the differences in 

definitions of the 'city or urbanized area’ in the two countries and the economic systems. 

 

Figure 5  

1985 Chinese Cities: Adjusted & Unadjusted betas 
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Figure 6 

1999 Chinese Cities: Adjusted & Unadjusted betas
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C. Results from Random Sampling 

 As we discussed in the methodology section, there is a dilemma with the rolling sample 

technique in our analysis. It captures the truncation point effect, sample size effect, and also the 

assortment of cities in the sample. In the rolling sample method, the assortment is biased since it 

starts with largest cities and increases the sub-sample systematically. Using the random sampling 

with replacement technique while increasing the sub-sample, we captured an assortment of cities 

that can include all sizes from the beginning. This eliminates the upward bias due to large cities 

in the first sub-samples. By randomly sampling each time, the truncation point also randomly 

changes. This eliminates the systematically changing truncation point bias inherent in the rolling 

sample technique. 
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 As shown in the graphs below, sample size alone has a small upward bias mainly for sub-

samples below 100. For sample sizes greater than 100, the effect of sample size disappears as we 

increase the sample size (that is, the estimated coefficient stays almost constant).  

 

 Figure 7 

U.S. UA1990: Random Sampling
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U.S. UA 2000: Random Sampling
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D. Simulation Results Using Random Sampling with Replacement 

To further test the effect of sample size on the distribution of the estimated coefficient, 

we randomly generate 1000 numbers from a normal distribution. We then apply the random 

sampling technique and repeat the process we did above. After 100 iterations we average the 

series of 's and the average is shown in the graph below. Surprisingly, we still capture the 

effect of very small sample sizes below 100. 

^
β
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Figure 8 

Simulations Results: Randomly generated Numbers
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Figure 8 confirms the upward bias of samples less than 100. Therefore, when working 

with sample sizes greater than 100, the sample size does not influence the value of the estimated 

coefficient. This result confirms the conclusion reached by Gabaix (1999a, b). 

Interestingly, the graphs, especially for the U.S samples, suggest a lognormal distribution. 

Therefore, we run a regression to check the relationship between the estimated exponent ( ) and 

the sample size (SS). For this analysis we run the following equation and present the results in 

Table 2. 

^
β

εδαβ +−= )log()log(
^

ii SS     [4] 
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Table 2: The relationship between the log of the estimated Pareto exponent and the log of 

the sample size 

 

Nation 

 

Year 

 

^
δ  

OLS Bias 

Corrected
^
δ

R2 

(from adjusted)

 

Number of 

observations

U.S. 1980 -0.10*** -0.15*** 0.98 355 

U.S. 1990 -0.11*** -0.16*** 0.96 385 

U.S. 2000 -0.13*** -0.17*** 0.97 441 

Random -- -- -0.03*** 0.57 1000 

***: significant at 1% 

The number of observations is the number of estimated exponents ( 's) obtained using 

the rolling sample method. For the United States, the lognormal regression (equation 4) yields a 

very high R

^
β

2-value, 0.96 or higher. In 1980, a one percent increase in the number of urban areas 

led to a 0.15 percent reduction in the value of the estimated exponent (for the adjusted model). 

The unadjusted model shows a smaller percentage decrease in the value of the estimated 

exponent as the sample size increase; this explains why we have the unadjusted model 

converging with the adjusted model in figures 2-4. 

 These results are important. If the value of estimated exponent is greatly impacted by 

sample size, we cannot expect the value of this exponent to be close to one in all cases. Therefore, 

the validity of the rank-size rule largely depends on the sample size used in a study.  In other 

words, the rank-size is not an economic regularity but a statistical phenomenon.  
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IV. CONCLUSIONS 

This paper has examined the validity of the rank-size rule based on estimated Zipf 

exponent. Using the rolling sample technique, we proved that small samples with large cities 

only tend to generate high values of the estimated coefficient compared to samples dominated 

with small cities.  We showed that the rank-size rule holds only for some selected sub-samples.  

For the U.S. samples, the estimated coefficient is close to one between 180 and 205 cities for 

1980 data, between 140 and 195 for 1990 data, and between 140 and 205 for 2000.  For the 

Chinese cities, the estimated coefficient is close to one only for sub-samples that contain 

between 315 and 320 cities for the 1985 data; it is never close to one for the 1999 data. This 

finding raises questions on the general application of the rank-size rule. From the random 

sampling technique we concluded that small samples in general produce higher value of the 

estimated coefficient. 

The double log regression model of estimated exponents and sample size yielded a very 

high R2-value, 0.96 or greater. It also produced an elasticity of the estimated exponent with 

respect to sample size.  If US urbanized areas are used, our results indicated that a one percent 

increase in the sample size led to about 0.15 percent reduction in the value of the estimated 

exponent (for the adjusted model). Therefore, we conclude that the Zipf exponent depends on the 

sample size used in a study and the rank-size rule does not hold in general. In other words, the 

rank-size is not an economic regularity but a statistical phenomenon.   If the rank-size rule could 

be derived from the Gibrat's law, our conclusion implies that the Gibrat's law in the city size 

distribution does not hold either.  Thus, the urban growth process is not independent of city size. 
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