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Introduction 

Two important characteristics of destinations for recreational travel are accessibility and 

the type and quality of on-site amenities.  To assure an adequate provision of these public goods, 

agencies need to maintain access roads and on-site infrastructure.  For sites gaining in popularity, 

investments that enhance the capacity and quality of roads may be required in order to provide 

dependable access, to reduce congestion, or to protect environmentally sensitive areas from 

vehicular encroachment.   

Naturally, from a social efficiency perspective these investments ought to be 

commensurate to the economic gains enjoyed by the users of a given site.  These welfare gains 

are theoretically conceived as monetary equivalents of upward changes in an individual’s utility 

function, and traditionally interpreted as “willingness-to-pay” (WTP) to enjoy a given site visit 

or a series of visits over an entire season.  The knowledge of site-specific welfare effects is also 

important when considering the optimal length and timing of planned road closures, as they may 

be required for maintenance operations and capacity expansions.  While pure traffic volume 

associated with a given destination can be measured by automatic devices such as electronic 

vehicle counters, the assessment of economic benefits requires surveying visitors. 

An important input to the estimation of such welfare effects is information on the total 

number of trips per season made by visitors.  General population surveys of recreation activities 

are difficult to implement, may have poor response rates, and are generally much more costly to 

administer than surveys conducted at a recreational site.  So we consider sampling via direct 

interaction with visitors intercepted at the interview site and possibly other nearby sites that can 

be considered close substitutes.  This raises the issue of the appropriate timing of such on-site 

polling.  Specifically, any sampling before the end of a visitation season or planning year 
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imposes the risk of forecasting errors on part of the respondent when asked to report the 

estimated total number of trips for the current season.  These errors can be especially large for 

sites with pronounced quality changes during a given season.  For example, as is the case for the 

application underlying this study, water levels at reservoir destinations may change dramatically 

even over the span of a few weeks.  This may hamper motorized water sports, but possibly 

enhance beach recreation or fishing access.  Another example would be unexpected weather 

events that may affect site quality or shorten a recreational season, especially at higher 

elevations. 

To avoid forecasting errors the researcher may thus opt for end-of-season sampling.  

However, this carries the risk of sample selection if end-of-season users are systematically 

different from other users in the wider population of visitors.  Intercepting visitors throughout the 

season is likely to generate a more representative sample of the underlying population of 

recreationists.  Therefore, if the researcher has strong concerns regarding the accuracy of 

forward-looking trip reports but at the same time desires to sample visitors throughout the season 

to avoid selection problems and to assure a reasonable sample size within the limits imposed by 

constrained survey budgets, an attractive option might be to ask respondents about visits during 

past seasons in addition to or instead of projected visits for the current or future seasons.1  This 

information on past visits can then form the basis for the assessment of current and future travel 

demand and the estimation of economic welfare gains. 

This study focuses on the appropriate statistical framework to process such data.   

Ultimately the researcher desires to derive welfare estimates that apply to the “prototypical” 

individual in the underlying population of visitors.  It has been empirically shown numerous 

times that on-site collected trip reports for the interview site are generally inflated compared to 
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the number of visits to that site taken by the typical user.  This discrepancy arises because 

intercepted respondents are likely to have a relatively stronger preference for the examined site 

than the prototypical user in the underlying population.  The enhanced avidity of the respondent 

for the site of interception must be explicitly captured in the modeling framework to avoid biased 

trip and welfare estimates (e.g. Englin and Shonkwiler, 1995, Moeltner and Shonkwiler, 2005). 

 It is by now well understood how to implement statistical corrections for on-site trip 

counts associated with the current season (Englin and Shonkwiler, 1995, Moeltner and 

Shonkwiler, 2005, Egan and Herriges, 2006).  The question now arises if this “avidity” 

correction is also necessary for trip reports associated with past seasons.  On the one extreme if 

recreational travelers randomly re-order their preferences for different destinations at the 

beginning of each season, the intensity of past season visits for the current interview site will 

have no systematic bearing for preferences for the same site this season.  At the other extreme, if 

site preferences are perfectly stable over time a full-fledged on-site correction as has traditionally 

been employed for current season counts may be required.  The first scenario of random 

preference-reshuffling appears somewhat unlikely for the prototypical on-site respondent, 

especially in absence of pronounced changes in site quality or availability of substitute sites over 

adjacent seasons.  The second scenario of “complete avidity-carryover” is equally questionable 

as it rules out even subtle changes in user preferences or any kind of variety-seeking behavior 

(e.g. Moeltner, 2004).   

The aim of this study is to derive a flexible statistical estimator for processing on-site 

collected information on past trips that accommodates both of these extremes, but also allows for 

the more likely outcome of “attenuated avidity carryover”.  While our proposed model is 

applicable to any type of recreation destination or activity we focus in this study on jet skiers 
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intercepted at various High Sierra lakes in the Tahoe Region.  For this sample we find that 

avidity carryover is very pronounced, but far from complete.  Using the appropriate econometric 

model has substantial implications for the estimation of travel demand and economic welfare.  

 The remainder of this manuscript is structured as follows:  The next section develops the 

theoretical and econometric framework for a multi-site travel demand model based on past 

season counts.  Section III presents the empirical application, including the description of our 

data, a discussion of estimation results, and the derivation of trip and welfare predictions.  

Concluding remarks are given in Section IV. 

 

II) Model Formulation 

Utility-theoretic Framework 

 We stipulate that person i derives aggregate utility in season t from taking trips to the 

j=1...J-site recreation system collected in vector yit and from consuming a numeraire composite 

commodity b.  Specifically, 

( ,,,, bUUit itit hqy= )

)

 (1) 

where qt denotes site attributes, and hi is a vector of person or household characteristics.  

Assuming seasonal separability of utility2, we apply the Incomplete Demand System (IDS) 

framework described in LaFrance and Hanemann (1989).  Utility maximization subject to an 

(assumed binding) budget constraint yields the Marshallian quasi-demand system 

( im,itiit h,q,pyy =  (2) 

where pi is a vector of prices associated with the destinations included in the system, and mi 

denotes annual income.3  As shown in LaFrance and Hanemann (1989) these demand equations 

display, in theory, all desired utility-theoretic properties.  LaFrance and Hanemann (1994) 
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illustrate how this framework can be empirically implemented for some common functional 

forms of demands.  We follow Shonkwiler (1999) and apply a Log II demand specification 

within a count data framework.  We initially specify trips to follow a Poisson distribution with 

expected site-specific demand given by 

( ),exp m
ijt ijt p j ij iE y p m βλ β⎡ ⎤ = = + ⋅⎣ ⎦ ijta , (3) 

where we have implemented the utility-theoretic IDS restrictions on price coefficients of 

jkikp ≠= ,0,β , and imim ∀= ,, ββ ,4 and simplifying restriction ijpijp ∀= ,, ββ .  Shifting vector 

 comprises all site and respondent characteristics multiplied by their respective coefficients. ijta

 

Unobserved Heterogeneity 

 It is likely that trip demand includes respondent-specific components that are unobserved 

by the researcher.  This individual heterogeneity can be conveniently incorporated into a Poisson 

system by combining expected demand for the Poisson distribution with a multiplicative 

lognormal error term.  Heterogeneity-adjusted conditional expected demand is thus given by 

[ ] ( ) ijtijijtijijtyE λελε ~exp| =⋅=  (4) 

The choice of a normal distribution for ijε lead’s to Aitchison and Ho's (1989) Poisson-

lognormal model.  This specification was first implemented in the recreation demand context by 

Shonkwiler (1995), and recently examined in more detail in the context of on-site sampling by 

Egan and Herriges (2006).  As described in that study the Poisson-lognormal distribution has 

several desirable properties for the estimation of recreation demand to a system of sites.  We will 

thus adopt this density for our application.   
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To keep our model tractable we assume that error terms are individual and site-specific, 

but invariant over time.  An intuitive interpretation of this error specification would be the 

presence of unobserved individual preferences for an equally unobserved (or costly-to-measure) 

site-specific quality (e.g. choice and difficulty of nearby hiking trails, water depth at nearby 

beaches etc.) and an abundance or lack of such quality at site j. 

To link trip reports associated with a given respondent across sites we specify that the 

heterogeneity terms, Jjij L1, =ε , follow a multivariate normal distribution with full variance-

covariance matrix, i.e. 

[ ] ( )1 2
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As indicated in (6), all individuals share a common variance-covariance matrix for the 

heterogeneity error vector.5    

The unconditional density of is thus Poisson-lognormal (PLN, (Aitchison and Ho, 

1989)) with 

ity

( ) ( ) ( )
1

exp

!

ijtyJ
ijt ijt

ijtj

f f d
y

λ λ

=

− ⋅
= ∏∫

i

it i i
ε

y ε ε
% %

, (6) 

where ( )f iε  denotes the multivariate normal density, and the dimensionality of the integral is 

commensurate to the number of elements in .  The desirable properties of this mixture 

distribution in the context of recreation demand systems are discussed in detail in Egan and 

Herriges (2006).  Borrowing from their notation, the first two moments of the unconditional 

marginal distribution can be derived as  

iε
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 (7) 

Correcting for on-site sampling 

 As originally discussed in Patil and Rao, (1978), if the population density of a random 

variable x is given by , the weighted or "size-biased" density for the same variable measured 

on-site takes the form of 

( )xf

( ) [ ]( ) ( )xfxExxf s ⋅= .  The proper statistical approach for addressing 

on-site sampling for the univariate Poisson distribution is shown in Shaw (1988).  Egan and 

Herriges (2006) extend this framework to the Poisson-lognormal distribution and show how the 

density in (6) can be corrected for current season counts that are collected on-site.  Specifically, 

if the interview is conducted at site k, the joint trip density for the current season to the system of 

sites takes the form 

( ) [ ]
( ) ( )

1

exp

!

ijtyJ
ijt ijtk ikt

ikt ijtj

yf f d
E y y

λ λ

=

− ⋅
= ∏∫

i

it i i
ε

y ε ε
% %

 (8) 

where the superscript to f(.) indexes the intercept site.  The term outside the integral is the 

multiplicative weight assigned to the density of . ikty

 This raises the question if past season counts for the current interview site also need to be 

weighted to allow for pronounced avidity for the intercepted respondent with respect to the 

interview destination.  We approach this as an empirical issue and propose what Patil and Rao 

(1978) deem a general weighting function that, in our context, accommodates the extreme cases 

of "zero avidity carryover" and "complete avidity carryover".  Specifically, using subscript t-1 to 

denote the season preceding the sampling season, we specify the size-corrected joint Poisson-

lognormal density as  
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The weighting function w(.) has several desirable properties.  First, it accommodates 

counts of zero and thus a scenario where a respondent intercepted at site k in the current season 

did not visit that site in the preceding year.  Second, as α approaches zero the weight term in (9) 

approaches one.  This would imply that no on-site correction is needed for past counts.  We label 

this outcome as "zero carryover".  Third, as α approaches one the weight term takes the form of 

the weight in (8), indicating that a full on-site correction is needed for past season visits to the 

interview site, i.e. that there is "complete carryover" of avidity for the intercept site.  A value of 

α between zero and one would imply that past season trips to the interview site require a 

different on-site correction than current season counts.  Naturally, a shortcoming of this 

formulation is that w(.) equals zero for the joint outcome of 1=α  and .  In that case, the 

weighting term in (9) is no longer well defined as its denominator goes to zero.  Since there are a 

few individuals in our data that reported zero trips to the interview site for the preceding season, 

we cannot directly implement a restricted version of the specification in (9) with an imposed 

constraint of 

1 0ikty − =

1=α  to formally test for "full carryover".  Instead, as shown in the estimation 

section, we use the empirical confidence interval for α  to examine this hypothesis. 

For this study, we estimate both unweighted model (6) and weighted model (9) using 

counts for the season preceding the sampling year.   The integrals in (6) and (9) are simulated 

using 1000 draws of Halton vectors (e.g. Train, 1999).  The computation of the sampling weight 

in (9) poses somewhat of a challenge as its denominator depends on  and does not have closed 

form.  Specifically, 

iε
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∑ ∑ ∫  (10) 

where  is the marginal Poisson-lognormal density of ( 1iktf y − ) 1ikty − .  The integral in the last term 

in (10) must be simulated apart from the simulation routine used to evaluate the integral in (9).  

In addition, the summation over yik,t-1 in (10) needs to be numerically approximated as well.6  

Our general estimation framework is simulated maximum likelihood (e.g. Train, 2003).  The 

algorithm produces estimates of the slope coefficients in (3), the elements of variance-covariance 

matrix , and, for the past season model, the avidity parameterΣ α .7

 

III) Empirical Application 

Data 

The data for this analysis stem from an on-site survey of jet skiers implemented during 

the summer seasons of 2001 and 2002 at six lakes and reservoirs in the Tahoe region of the 

central Sierra Nevada.  A detailed description of the survey procedures is provided in Moeltner 

and Shonkwiler (2005).  For this study we use information on past season trips to five of the six 

lakes8.  To be specific, visitors interviewed in 2001 provided trip information for the years 2000 

and 2001.  A different set of respondents, captured in the 2002 round of the survey, reported trips 

for 2001 and 2002.  After eliminating individuals who took more than 40 trips to the system of 

sites and / or spent more than one day at the interview location9, we retain 159 completed 

questionnaires yielding a panel of 159x5 = 795 observations for "past year trips" (= trips in 2000 

for the 2001 sample, and trips in 2001 for the 2002 sample).10  

 Table 1 summarizes some basic lake and trip characteristics for this sample.  As can be 

seen from the table visitors reported a total of 1029 trips to the recreation system during the 
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season preceding the interview year.  The largest numbers of seasonal trips are observed for 

Lahontan and Boca reservoirs.  Both destinations offer numerous easy access and launching 

points, generally free of charge.  Distances from visitor origin to destinations are comparable 

across lakes, with means in the 50 to 70 mile range.   

An important feature for some of these lakes is their varying water level within and 

between seasons.  For jet skiers and motorized boaters water levels have important impacts on 

trip quality as some boat ramps become congested or unusable at low levels.  For example, water 

levels at Boca and Stampede Reservoirs can change by 20-30 feet during a given summer.  

Furthermore, these changes can follow seasonal cycles (as has been typical for Boca), or inter-

seasonal trends (as has been typical as for Stampede).  Such pronounced changes in an important 

quality attribute for a given site make it naturally difficult for intercepted visitors to predict 

future trips.  This supports the use of trip reports for past seasons to generate estimates for 

seasonal trip demand and economic benefits that apply to the latent population. 

 A more detailed picture of trip distributions for our sample is given in Table 2.  The table 

depicts the mean over individuals of the number of trips taken to each of the five sites, 

distinguished by on-site versus off-site counts.  For example, the first cell in the table indicates 

that the average number of trips to Boca Reservoir for those interviewed at Boca for the 

preceding season is 5.54.  In contrast, respondents interviewed at other sites only took an average 

of 1.05 trips to Boca (second cell, first row).  The "all" columns show the unweighted average of 

all trip counts for each site, regardless of on-or off-site status.  The pronounced difference in trip 

averages between on- and off-site counts suggests that a correction for size-biased sampling may 

be indicated for past trip counts.  Our estimation results confirm this postulation.  
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Estimation Results 

 We estimate two different models.   Both are based on trip reports for the preceding 

season.  Model 1 does not correct for on-site sampling, i.e. the avidity parameter α  in (9) is 

constrained to zero in this model.  Model 2 implements the avidity correction for past counts 

suggested in (9).  It is important to emphasize that both models are based on the same underlying 

sample of visitors, i.e. the same data set except for the introduction of the transformation 

depending on α in model 2.  A comparison of results generated by models 1 and 2 will illustrate 

the implications of ignoring avidity carryover.   

Both models share the same basic set of explanatory variables, i.e. site and year-specific 

intercept terms to compactly capture site characteristics and potential inter-seasonal quality 

changes at each destination, a separate own-price term for each site11, and the natural logarithm 

of income.  The intercept terms correspond to the shifting vector aijt in (3), although we model 

these site indicators to be shared by all respondents for ease of estimation, i.e. .  The 

models thus include all necessary components to estimate a Log II-type incomplete demand 

system (LaFrance and Hanemann, 1994).

i∀= jtijt aa

12  

Estimation results are given in Table 3.  The main result captured in the table is the 

location of the avidity parameter α near the center of its [0,1] support.  In addition, this 

parameter is estimated with high precision as indicated by its comparatively small standard error.  

Invoking asymptotic normality, the 95% confidence interval for α  is {0.57, 0.72}.  At the same 

time, the value of the log-likelihood function at convergence is much improved by the 

introduction of the avidity parameter as shown in the last row of the table.  A likelihood ratio test 

clearly rejects a null hypothesis of 0=α .13 As mentioned above, the likelihood function is not 

defined at 1=α for some individuals, which preempts the application of standard test procedures 
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to verify this hypothesis.  However, the tight confidence interval for α  shown above suggests 

that it is highly unlikely that this parameter is located in the vicinity of one. We thus conclude 

that, at least for our application, (i) the distribution for past counts needs to be adjusted for on-

site sampling (i.e. 0≠α ), and (ii) that this adjustment is significantly different from the size-

biased weight appropriate for current season counts (i.e. 1≠α ).   

The omission of this adjustment in model 1 translates into different estimates for slope 

coefficients as well as inflated variance terms compared to the corrected model.  The difference 

in slope coefficients is especially pronounced for some of the price terms (Boca, Lahontan, 

Stampede).  This, in turn, translates directly in substantial differences in trip and welfare 

predictions for these two models, as will be shown below.  The price coefficient for Tahoe, 

which, counter-intuitively, emerges as positive in model 1 and insignificant in model 2, needs to 

be interpreted with caution.  Given the large size of this lake and its multiple shoreline 

attractions, many intercepted jet skiers did not travel directly to the interview site, but launched 

their jet ski at a different location.  This introduces measurement errors into the travel cost 

computations for such individuals.14  We will thus exclude this site for trip predictions and 

welfare estimation.  

  

Trip Predictions 

 Table 4 depicts model predictions for the number of seasonal trips to each site for the 

prototypical jet skier in the latent population.  To compute these predictions we used the 

estimated parameters from our models in the expression for expected per-capita visits for the 

underlying population, given by ijtδ  in equation (7).15  Specifically, for each model we take 

10,000 draws from the empirical distribution of slope coefficients and variance terms.  We then 
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compute ijtδ  for each person and parameter draw and average over individuals.  We then examine 

the properties of the resulting simulated distribution of mean trip predictions for each site.  Table 

4 reports the lower (LB) and upper bounds (UB) of the simulated 95% confidence interval for 

these trip means.  In addition, we follow Moeltner (2003), Moeltner and Shonkwiler (2005), and 

Shonkwiler and Hanley (2003) by reporting a statistic that relates the point estimate of the mean 

to the spread of its confidence interval.  This indicator of relative efficiency is denoted as 

“spread-over-mean” (s.o.m) in the table.   

 As can be seen from the table, trip predictions generated by model 1 are substantially 

larger than those produced by model 2.  In fact, these predictions exceed even on-site sample 

counts for all sites, which casts serious doubt onto this model's ability to accurately recover 

latent population demand.  Model 2, in contrast, produces latent trip predictions that lie below 

on-site sample counts for all sites, as one would expect.  These predictions appear of plausible 

magnitude and are characterized by relatively tight confidence intervals and corresponding low 

s.o.m. values.  It thus appears that past-season trip reports, if properly corrected for on-site 

sampling, provide a suitable basis to estimate latent population demand to the recreation system.  

On the other hand, the use of uncorrected past season trips leads to inflated estimates of 

population demand, as visitors with pronounced avidity for a given site are erroneously 

interpreted to behave like a typical user in the underlying population. 

  

Welfare Estimates 

 For the same four sites, seasonal compensating variation (CV), which can be interpreted 

as “seasonal economic benefit” or “seasonal WTP to use the site”, is captured in table 5.  As 
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shown in Shonkwiler (1999) for the Log II IDS seasonal CV for representative individual i and 

site j can be derived as  

( ) (1 2
, )

,

11 exp 0.5m
ij i i m j p j ij j

p j
cv m m pβ

εβ α β
β

−
⎛ ⎞⎛ ⎞
⎜ ⎟= − − − ⋅ ⋅ + + ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

,σ . (11) 

We simulate the distribution of the mean of (11) over individuals for each site in analogous 

fashion to the process described above for mean trip predictions.   

 From table 5 we observe a stark difference in seasonal benefit estimates between the two 

models.  Specifically, welfare estimates generated by model 1 are two to six times higher than 

those produced by model 2.  For example, model 1 predicts a welfare loss of $336 for the typical 

jet skier if Lahontan Reservoir were to be closed or inaccessible for an entire season.  The 

corresponding estimate for model 2 is substantially smaller at $53 per person and season.  

Furthermore, confidence intervals are significantly tighter for the on-site corrected model, as 

indicated by lower s.o.m. statistics compared to model 1.  As for trip predictions we infer that 

model 1 mis-interprets individual and site-specific avidity as a manifestation of “typical 

demand”, which naturally inflates resulting estimates of economic benefits.   

 

IV) Conclusion 

 In this study we examine in more detail the statistical properties of on-site collected trip 

reports to a system of recreation sites for the preceding season.  We find that for our sample of 

jet skiers visitation avidity for the site of intercept carries over across seasons.  This requires a 

proper weighting of past season counts in the joint probability mass function of reported trips to 

avoid model mis-specification and biased estimation results.  This weighting is different from the 

full size-biased weights appropriate for current-season counts. 
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 There are several natural extensions to our model.  First, an important question that 

remains to be examined is how models based on avidity-adjusted past trip counts compare to 

models using adjusted current season counts.  If there are no pronounced changes in quality or 

accessibility across seasons one would expect both approaches to generate comparable 

predictions of trip demand and economic benefit.  We abstain from such a comparison for our 

application, since much of our sampling took place in early- to mid season, and many 

respondents indicated substantial uncertainty when prompted to forecast trips for the remainder 

of the season16.  An assessment of the magnitude and importance of forecasting errors would 

require a follow-up end-of-season polling of intercepted individuals, which was beyond the 

scope of our research project.   

 Second, an interesting future extension would be to examine at what rate avidity 

carryover erodes over time and if there exists individual heterogeneity in this respect.  This 

would again require repeated observations for the same individuals over a longer time horizon, a 

notoriously difficult task in applications of recreation demand.  Nonetheless, a better 

understanding of the dynamic nature of our avidity correction would be essential to generate 

more reliable forecasts for future trip demand based on on-site data. 

Naturally, additional empirical research is needed to examine if and how avidity 

carryover changes over different recreational activities and destinations.  However, based on the 

strong empirical evidence flowing from our application it appears to be prudent policy to ex ante 

allow for avidity corrections in any travel demand model based on past-season travel data 

collected on-site.   
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Notes:

 

m

1 Naturally, asking visitors about past trips raises the issue of recall problems.  We assume for 

this study that recall problems are expected to be considerably smaller than potential forecasting 

errors.  The relative magnitude of these two types of measurement errors remains to be subjected 

to empirical examination. 

2 A richer inter-temporal model of consumer choice would link utilities across seasons, either 

through allowing for state dependence to directly enter seasonal utility (e.g. Adamowicz, 1994, 

Moeltner and Englin, 2004) or through inducing forward-looking rationality in a fully dynamic 

model (e.g. Provencher and Bishop, 1997).  Implementation of the former approach requires 

substantially more choice occasions than were available for this analysis.  The latter modeling 

strategy is computationally involved, especially given the econometric adjustments to site 

demands proposed in this study. In addition, as argued in Swait et al. (2004) consumers' 

recreation behavior is somewhat unlikely to flow from a fully dynamic optimization framework 

as mental processing costs would likely outweigh the gains in utility associated with (correctly) 

anticipating the effect of current decisions on future benefits. 

3 For simplicity, we assume travel costs and annual income to remain constant for the short time 

period (2 years) examined in our application.  

4 While these restrictions explicitly rule out cross-price effects in the uncompensated site-specific 

demand equations, they still allow for substitution between sites through compensated demands. 

Specifically, as shown in Englin et al. (1998) and  Shonkwiler (1999) the Hicksian cross-price 

effects are non-zero as long as β  is positive. 

5 The main intuition for allowing for site-specific variance in heterogeneity effects is that certain 

sites may have an unobserved quality attribute that is highly desirable to some and at the same 
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time perceived as a strong disamenity by others, while other sites may trigger less extreme 

responses in expected trip behavior.  Similarly, the rationale for non-zero off-diagonal elements 

in Σ is that a given pair of sites may be similar or opposing with respect to an unobserved quality 

attribute.  If both sites are relatively well endowed or relatively lacking in the attribute as 

perceived by the prototypical visitor, their covariance term is positive.  If there is a distinct 

imbalance in the attribute across the two sites, their covariance is negative. 

6 We use 800 support points to simulate this sum.  Estimation results stabilized at 600-800 

points.   

7 The models are estimated using Matlab.  The program code is available from the authors upon 

request. 

8 One of the destinations (Lake Topaz) was excluded from this study as very few visitors 

interviewed there took trips to any of the other sites in the system. 

9 The limitation of our sample to day trips is a utility-theoretic requirements, as longer trips 

constitute de facto a different commodity.  Including trips of different length in the same sample 

would raise problems in interpreting aggregate welfare measures. 

10 Restrictions on survey length preempted collecting trip details for visits other than the one 

intercepted on-site.  Our analysis thus rests on the implicit assumption that relevant trip details, 

such as length-of-stay, remain largely unchanged over all (past and future) trips for a given 

respondent. 

11 As in Moeltner and Shonkwiler (2005), we specify access price to incorporate a $0.3 per-mile 

driving cost for jet ski renters, and $0.4 for jet ski owners to allow for a "load penalty", as well as 

an opportunity cost of time-component computed as travel time in hours times 1/3 of the hourly 

wage rate. 
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12 The survey also collected limited information on user characteristics, such as age, gender, and 

education level.  However, none of these attributes emerged as significant in preliminary 

specifications.   

13 Since α  is restricted under the alternative hypothesis, the LR statistic for this test follows a 

mixed χ2 distribution, and standard LR test results may be biased towards not rejecting the null 

hypothesis (Chen and Cosslett, 1998).  However, our LR-values are well above the upper bound 

for the critical χ2 value for such a mixed distribution, and the adjustment procedure proposed by 

Chen and Cosslett (1998) would not affect our test results in this case. 

14 This problem did not become apparent until later in the survey period.  As a result, the 

questionnaire did not capture the possibility of non-identical travel endpoints and interview sites.  

15 It should be noted that these population predictions cannot be directly compared to the sample 

statistics provided in table 2.  Specifically, the “all” column in table 2 depicts a smeared average 

over all on- or off-site trips associated with a given lake.  These sample averages are not 

indicative of latent user demand for the wider population.   

16 This is mainly due to the unpredictable water levels for some of the lakes, as noted earlier in 

the text. 



 20 

References: 

Adamowicz, W. L., Habit formation and variety seeking in a discrete choice model of recreation 
demand, Journal of Agricultural and Resource Economics 19 (1994) 19-31. 

 
Aitchison, J., and C. H. Ho, The multivariate Poisson-lognormal distribution, Biometrika 76 

(1989) 643-653. 
 
Chen, Heng Z., and Stephen R. Cosslett, “Environmental quality preference and benefit 

estimation in Multinomial Probit models: A simulation approach,” American Journal of 
Agricultural Economics, (1998), 512-520. 

 
Egan, K., and J. Herriges, Multivariate count data regression models with individual panel data 

from an on-site sample, Journal of Environmental Economics and Management 52 (2006) 
567-581. 

 
Englin, J., P. Boxall, and D. Watson, Modeling recreation demand in a Poisson system of 

equations: An analysis of the impact of international exchange rates, American Journal of 
Agricultural Economics 80 (1998) 255-263. 

 
Englin, J., D. Lambert, and W. D. Shaw, A structural equations approach to modeling 

consumptive recreation demand, Journal of Environmental Economics and Management 
33 (1997) 33-43. 

 
Englin, J., and J. S. Shonkwiler, Estimating social welfare using count data models: An 

application to the long-run recreation demand under conditions of endogenous 
stratification and truncation, The Review of  Economics and Statistics 77 (1995) 104-12. 

 
LaFrance, J. T., and W. M. Hanemann, On the integration of some common demand systems, 

Staff Papers in Economics 83-10, Montana State University,  (1994). 
 
LaFrance, J. T., and W. M. Hanemann, The dual structure of incomplete demand systems, 

American Journal of Agricultural Economics 71 (1989) 262-274. 
 
Moeltner, K., Addressing aggregation bias in zonal recreation models, Journal of Environmental 

Economics and Management 45 (2003) 128-144. 
 
Moeltner, K., and J. E. Englin, Choice behavior under time-variant quality: State dependence 

versus 'play-it-by-ear' in selecting ski resorts, Journal of Business & Economic Statistics 
22 (2004) 214-224. 

 
Moeltner, K., and J. S. Shonkwiler, Correcting for on-site sampling in random utility models, 

American Journal of Agricultural Economics 87 (2005) 273-535. 
 
Patil, G. P., and C. R. Rao, Weighted distributions and size-biased sampling with applications to 

wildlife populations and human families, Biometrics 34 (1978) 179-189. 



 21 

Provencher, B., and R. C. Bishop, An estimable dynamic model of recreation behavior with an 
application to Great Lakes angling, Journal of Environmental Economics and 
Management 33 (1997) 107-127. 

 
Shaw, D., On-site samples' regression - problems of non-negative integers, truncation, and 

endogenous stratification, Journal of Econometrics 37 (1988) 211-223. 
 
Shonkwiler, J. S., Systems of travel cost models of recreation demand, Paper presented at the 

Western regional research project (W-133) meetings in Pacific Grove, CA, 1995. 
 
Shonkwiler, J. S., Recreation demand systems for multiple site count data travel cost models, in 

J. A. Herriges and C. L. Kling, (Eds.), Valuing recreation and the environment: Revealed 
preference methods in theory and practice, Edward Elgar, Cheltenham, U.K., and 
Northampton MA, 1999. 

 
Shonkwiler, J. S., New estimators for the analysis of univariate and multivariate discrete data, 

Mimeo, Department of Resource Economics, University of Nevada, Reno (2001). 
 
Shonkwiler, J.S., and N. Hanley, A new approach to random utility modeling using the Dirichlet 

Multinomial distribution, Environmental and Resource Economics 26 (2003) 401-416. 
 
Swait, J., W. L. Adamowicz, and M. van Bueren, Choice and temporal welfare impacts: 

Incorporating history into discrete choice models, Journal of Environmental Economics 
and Management 47 (2004) 94-116. 

 
Train, K., Discrete choice methods with simulation, Cambridge University Press, New York, 

2003. 
 
Train, K., Halton sequences for mixed logit, Working Paper, Department of Economics, 

University of California, Berkeley (1999). 



 22 

Table 1: Sample Characteristics 

 
Lake Elevation Surface area Shoreline Distance 

(miles, one way) 
  (feet) (square miles) (miles) mean min max 

On-site 
interviews 

Past 
Season 
Trips

         
Boca 5700 1.5 15 49.1 7.2 221.9 31 308 

Donner 5969 1.5 7.5 53.8 4.4 227.8 51 114 
Lahontan 4150 23.2 69 74.4 1.1 205.6 33 346 
Stampede 5949 5.4 25 56.8 8.7 228.0 26 105 

Tahoe 6230 190.8 75 63.4 7.7 220.0 18 156 
         
Total       159 1029
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Table 2: Trip Statistics  
 
 

  Past season trips (mean) 
Site  on-site off-site all 

     
Boca  5.58 1.05 1.94 

Donner  1.37 0.41 0.72 
Lahontan  8.21 0.60 2.18 
Stampede  1.65 0.47 0.66 

Tahoe  5.28 0.43 0.98 
     

All sites  4.10 0.59 1.29 
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Table 3: Estimation Results 
  Model 1  Model 2 

Variable   Coeff. s.e.     Coeff. s.e.   
         

Boca00  -5.861 (1.137) ***  -5.634 (0.977) ***
Donner00  -8.186 (1.177) ***  -8.028 (0.961) ***

Lahontan00  -2.992 (1.102) ***  -5.936 (0.732) ***
Stampede00  -6.702 (0.965) ***  -7.667 (1.234) ***

Tahoe00  -9.365 (1.101) ***  -8.375 (0.981) ***
         

Boca01  -6.503 (1.041) ***  -8.252 (1.041) ***
Donner01  -7.743 (1.131) ***  -8.363 (0.929) ***

Lahontan01  -3.569 (1.268) ***  -6.711 (0.729) ***
Stampede01  -8.026 (1.015) ***  -8.180 (1.086) ***

Tahoe01  -9.466 (1.032) ***  -8.599 (0.906) ***
         

price Boca  -0.060 (0.014) ***  -0.042 (0.007) ***
price Donner  -0.025 (0.007) ***  -0.021 (0.008) **

price Lahontan  -0.091 (0.020) ***  -0.033 (0.002) ***
price Stampede  -0.042 (0.010) ***  -0.022 (0.007) ***

price Tahoe  0.004 (0.001) ***  0.002 (0.001)  
log(income)  0.580 (0.086) ***  0.494 (0.064) ***

         
log(1/α -1)  - - -  -0.578 (0.165) ***

α(avidity parameter)  - - -  0.641 (0.038) ***
         

Variances / Covariances         
         

Boca  7.862 (1.650) ***  7.664 (1.016) ***
Boca /  Donner  3.247 (0.661) ***  2.606 (0.485) ***

Donner  5.574 (1.034) ***  4.709 (0.910) ***
Boca / Lahontan  4.056 (0.982) ***  3.125 (0.367) ***

Donner / Lahontan  -1.323 (0.610) **  -0.170 (0.319)  
Lahontan  6.849 (2.251) ***  6.577 (0.417) ***

Boca / Stampede  4.617 (0.863) ***  3.314 (0.678) ***
Donner / Stampede  3.634 (0.688) ***  2.299 (0.439) ***

Lahnotan / Stampede  1.592 (1.114)   2.411 (0.673) ***
Stampede  5.969 (1.586) ***  4.873 (1.278) ***

Boca / Tahoe  3.305 (0.535) ***  3.586 (0.574) ***
Donner / Tahoe  3.266 (0.505) ***  2.292 (0.409) ***

Lahnotan / Tahoe  -0.396 (0.313)   -0.206 (0.333)  
Stampede / Tahoe  0.446 (0.315)   0.329 (0.421)  

Tahoe  5.807 (0.681) ***  3.276 (0.573) ***
         

Log-Lhf (abs. value)  829.865    797.485   
                  

White-corrected standard error in parentheses      
*=sign at 10%, ** = sign. at 5%, ***=sign. at 1%      



 25 

 Table 4: Seasonal Trip Predictions 
 

Site   Model 1  Model 2 
      
      

Boca mean  14.91  5.17 
 LB  5.66  3.30 
 UB  36.17  8.29 
 s.o.m.  2.05  0.96 
      

Donner mean  1.77  0.34 
 LB  1.03  0.26 
 UB  3.29  0.45 
 s.o.m.  1.28  0.56 
      

Lahontan mean  28.61  1.74 
 LB  4.61  1.34 
 UB  123.47  2.28 
 s.o.m.  4.15  0.54 
      

Stampede mean  2.25  0.46 
 LB  1.07  0.30 
 UB  5.21  0.76 
 s.o.m.  1.83  0.99 
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Table 5: Seasonal Welfare Estimates 
 

Site   Model 1  Model 2 
      
      

Boca mean  238.37  123.29 
 LB  118.72  76.65 
 UB  498.99  201.61 
 s.o.m.  1.60  1.01 
      

Donner mean  76.79  17.85 
 LB  37.42  9.94 
 UB  162.27  34.85 
  s.o.m.  1.63  1.40 
      

Lahontan mean  336.43  53.26 
 LB  67.90  36.11 
 UB  1335.77  81.10 
 s.o.m.  3.77  0.84 
      

Stampede mean  52.79  29.15 
 LB  32.45  12.36 
 UB  96.36  78.95 
 s.o.m.  1.21  2.28 
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