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I) Introduction 

 Benefit Transfer, i.e. the synthesis of existing resource valuation results and the transfer of these 

findings to a new policy site or context continues to grow in popularity with policy makers and resource 

managing agencies.  For example, in a recent insiders’ assessment of the role of Benefit Transfer (BT) at 

the U.S. Environmental Protection Agency (EPA), Iovanna and Griffiths [1] illustrate how BT has been 

employed in recent years on numerous occasions in the agency’s enforcement of the Clean Water Act.  

The authors further predict that due to the triple constraints of expediency, financial strains, and 

administrative hurdles “original assessment studies will remain a rare exception” in future EPA valuation 

efforts.   

 It is not surprising, therefore, that the concept of BT has stirred increasing interest amongst 

resource economists in the U.S. and abroad, and spurred research efforts on both the theoretical 

underpinnings of BT (e.g. [2, 3]) and its econometric and computational implementation (e.g. [4-6]). This 

study focuses on the latter aspect of BT.  Specifically, we examine the issue of ‘optimal scope’, i.e. the 

optimal size and composition of a meta-dataset when BT estimates are to be produced via a meta-

regression approach. 

 In most situations that call for BT some information on the policy context, such as basic site 

characteristics or aggregate demographics for the underlying population of interest, will be available to 

the analyst.  In that case, empirical findings generally support the use of functional BT over point 

(“value”) transfers or simple aggregation of existing estimates (e.g. [7, 8]).  If there exists a study for 

which the physical and temporal context and the composition of underlying stakeholders are very similar 

to those for the targeted policy application, parameter estimates from this single source can in theory be 

combined with policy site attributes to form the transfer function.  In practice, however, a close 

correspondence across multiple dimensions for a study site and policy site is unlikely.  Therefore, 

researchers have increasingly resorted to meta-analytical approaches to derive parameter estimates for 

function transfer. 

 1



 

 The primary rationale for combining information from multiple existing sources in a meta-dataset 

and using a Meta-Regression Model (MRM) to derive parameter estimates for BT is that each source 

context will likely overlap with the policy scenario in one or several dimensions of site or population 

characteristics.  In essence, the MRM produces parameters that apply to the “prototypical” context or site, 

and this prototypical context can be expected to more closely correspond to the policy setting than any 

single context alone.  In addition, MRMs allow disentangling the effects of site attributes, user 

characteristics, and study-methodological factors on welfare estimates from underlying source studies. 

 As can be expected, this approach is not without flaws or pitfalls.  Common shortcomings of the 

MRM-BT approach range from weak links with underlying economic theory ([2, 9]), difficulties in 

identifying appropriate source studies and collecting sufficient and adequate data ([10]), and econometric 

challenges related to data gaps and small sample issues ([6]). 

 Perhaps one of the most important, yet least analyzed challenges in meta-analytical BT is the 

question of ‘optimal scope’ of the MRM, given a specific target policy application.  For example, if 

welfare measures associated with the reduction in sulfur dioxide are sought, could or should the MRM 

also include values corresponding to a reduction in, say, nitrogen oxides or carbon monoxide?  If the 

value of a day of trout fishing is of primary interest, should the meta-model also include data on bass or 

salmon fishing?  In econometric terms, the question of optimal scope can be interpreted as the exact 

definition of the dependent variable in the MRM, which, in turn, defines the set of source studies to be 

considered for inclusion in the meta-dataset.  This issue has been briefly raised at various points in time in 

the literature (e.g. [9, 11, 12])1, but has not yet been examined in depth in existing contributions. 

 This study aims to fill this gap.  We discuss the exact nature of the optimal scope problem and 

illustrate the associated econometric dilemmas (next Section), develop an econometric framework that 

can aid in the determination of optimal scope (Section III), and apply this framework to simulated and 

actual meta-data (Section IV).  Section V summarizes our findings and offers concluding remarks. 
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II) Optimal Scope: Conceptual and Econometric Considerations 

Optimal Scope, Data Space, and Model Space 

 The question of optimal scope is best illustrated with a brief example:  Imagine a resource planner 

that is considering improving habitat and access along a specific river segment and managing it as a 

recreational coldwater fishery2.  The costs of the project are relatively clear, but, as usual, expected 

economic benefits to potential users are more difficult to assess.  Time and funding considerations call for 

a BT approach.  For simplicity, assume that the only relevant and well-predictable characteristic of the 

new fishery, other than the basic identifiers “coldwater fishery” and  “running water”, is the expected 

daily catch rate, xp (“p” stands for “policy site”).  A thorough literature search reveals a set of S0 studies 

comprising n0 observations that report welfare results for coldwater fishing at running water3.  This 

suggests the following simple MRM: 

0 1js jsy x jsβ β ε= + +   (1) 

where yjs is a welfare measure for a day of coldwater / river fishing at site j reported in study s, xjs is the 

catch rate for that site, jsε is an i.i.d. distributed normal error term with zero mean, and the β -terms are 

meta-regression coefficients to be estimated by the MRM.  For simplicity, we will abstract for the 

moment from econometric considerations such as study-specific unobservables and heteroskedasticity, as 

well as from the potential effect of study-methodological characteristics on reported welfare estimates.  A 

Benefit Transfer measure for the policy site could then be computed as 

0 1
ˆ ˆˆ p py xβ β= + ,  (2) 

i.e. by combining MRM parameter estimates with known attributes of the policy site, in this case simply 

the expected catch rate xp.  

 However, the analyst may have reservations taking this approach due to the following possible 

(and, in practice, commonly observed) reasons: (i) The sample size n0 may be too small to estimate the 

parameters in (1) with any degree of precision, and / or (ii) the studies included in set S0 have a narrow 

geographic distribution, a narrow definition of underlying visitor populations, or are in other ways too 
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context specific to allow for the construction of a robust BT function.  To attenuate these problems the 

analyst may want to combine the original set of studies with another available set S1, comprising n1 

observations, that report welfare results and catch rates associated with warmwater / running water 

fisheries4.  A natural rationale for combining the two data sets would be the hopeful anticipation that the 

regression intercept and the marginal effect of catch rates may be similar for both fishery types (reflecting 

similarity in underlying angler preferences), and that in that case a pooled MRM of the form (1), but with 

sample size  can be expected to generate more efficient parameter estimates, and thus a more 

efficient BT function.  

0n n n= + 1

The added studies deviate in one identifying dimension (“type of fishery”) from the policy 

context.  In other words, the scope of the MRM has been broadened to include both coldwater and 

warmwater fisheries, and the definition of the dependent variable has changed from, say, “WTP for a day 

of coldwater fishing at a river” to “WTP for a day of fishing (cold- or warmwater) at a river”.  In our 

terminology, this constitutes a re-definition (and augmentation) of the data space underlying the MRM.  

For notational convenience we will label the original (“baseline”) dataset as d0 , the added dataset as d1 , 

the original data space as D0 , and the augmented data space as D1.  Thus, we have { }0 0D d=  and 

{ }1 0 1,D d d= .   

 Naturally, imposing any pooling constraints on the augmented MRM a priori would be risky.  If 

the two activity types do not pool on the intercept, catch rate, or both, using (1) would amount to a model 

mis-specification, producing biased parameter estimates and misleading BT predictions for the policy 

context.  A more prudent approach would be to start with the most general specification, i.e. 

0, 1, 0, 1,js c c js w js w js jsy x W W x jsβ β β β= + + + + ε   (3) 

where Wjs is a 0/1 indicator for observations associated with the warmwater sub-set, 0,wβ captures the 

deviation in intercept for warmwater observations, and 1,wβ measures the differentiated marginal effect of 
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catch rate on WTP for warmwater cases compared to the baseline effect for coldwater observations (now 

indexed by subscript c).   

In the terminology of this study, equation (3) implicitly defines the model space for data space 

D1.  Specifically, the augmentation of scope of the MRM has ex ante added two additional regressors to 

the MRM – Wjs and Wjsxjs.  This implies 22 = 4 possible models, since each new regressor can either 

emerge as significant (and should thus be included in the augmented model) or not (and could thus be 

dropped from the augmented model).  Indexing inclusion by “1”, and exclusion by “0”, the model space 

corresponding to data space D1 can then be described as  

1,1

1,2
1

1,3

1,4

0 0
0 1

Μ
1 0
1 1

M
M
M
M

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢= =
⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

⎥
⎥

  (4) 

 
In a classical framework, statistical insignificance of estimates for both 0,wβ  and 1,wβ would lend 

support for the [ ]1,1 0 0M =  case, leading to the pooled model (1), with augmented sample size n.  This 

model would then be a logical candidate to generate the BT function.  Decision rules for cases M1,2 – M1,4 

are less clear-cut.  Since the BT function will always be solely based on estimates of the baseline 

parameters (here 0,cβ and 1,cβ ), the added model coefficients constitute de facto nuisance terms which 

will add noise to the estimation of the parameters that are actually needed to construct the Benefit 

Transfer.  In this case, broadening the scope of the MRM will only improve the efficiency of the BT 

function if the gain in sample size offsets the loss in degrees of freedom and estimation noise associated 

with the introduction of the nuisance terms. 

Econometric theory provides only limited guidance as to these countervailing effects.  In most 

cases the analyst will have to take an empirical approach to identify the optimal scope of the MRM.  For 

example, a reasonable strategy would be to estimate both model (1) with original data space D0 and the 

applicable version of model (3) for data space D1, and to compute BT predictions and confidence 
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intervals for both cases.  The prediction with the tighter confidence interval could then be chosen to guide 

policy decisions for the new context. 

Finally, assume another dataset d2 exists for a second related activity that deviates in a different 

single dimension from the baseline context, say “coldwater fishing at stillwaters” (lakes, ponds, etc).  This 

enables the analyst to define two additional data spaces, { }2 0 2,D d d= and { }3 0 1 2, ,D d d d= .  The model 

selection procedure outlined above has to be repeated for each new space, as the trade-off between 

increase in sample size and efficiency loss due to nuisance parameters will be different in each case.  Note 

that D3 yields the MRM with the broadest scope, i.e. “WTP for a day of coldwater or warmwater fishing 

at rivers or stillwaters”. 

 

Classical Challenges and Bayesian Approaches 

As conveyed in the above example, the classical strategy to determine the optimal scope of the 

MRM is conceptually straightforward: (i) Compile a baseline meta-dataset D0 that corresponds exactly to 

the policy context, (ii) specify a baseline MRM that includes explanatory variables with known values for 

the policy site, (iii) identify “related, but different” activities or resource amenities and collect 

corresponding meta-data, (iv) specify the most general MRM for the resulting augmented data space, (v) 

through a series of specification tests, determine which activities share common parameters with the 

baseline context and impose the corresponding equality constraints on the augmented model, (vi) compute 

BT predictions for the baseline model and the augmented model, (vii) repeat steps (iii) – (vi) for other 

related activities and resulting data spaces, and (viii) choose the data space and MRM that produces the 

most efficient BT predictions. 

However, there are several problematic issues with this approach.  As can be imagined, the 

number of additional indicators and interaction terms (which become nuisance parameters if found 

significant in the augmented model) proliferates rapidly with both the number of initial regressors for 

which policy site information is available, and the related activities or amenities considered.  To illustrate, 

 6



 

given the availability of  additional data sets corresponding to “related” activities or 

amenities, the number of possible additional data spaces 

, 1ad a A= L ,

, 1tD t = LT , amounts to 

 , i.e. the number of all single data sets that can be combined 

with the baseline data, all possible combinations of pairs of data sets that can be combined with d

1

1

1
2 3 1

A

j

A A A A
T A

A j

−

=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + + + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑L

0, all 

possible combinations of triplets, etc., until the final space that combines all available data.  The last 

column in Table 1 shows the number of data spaces resulting from adding up to five activities to the 

baseline model.   

Each data space requires the specification of a separate MRM and a corresponding series of 

specification tests to identify pooling restrictions.  For each added activity, the MRM must ex ante 

include a deviation term for the intercept and interaction terms with all other baseline regressors, as 

shown in (3).  For example, for k1 original regressors, and a added activities, the resulting augmented 

MRM will include  additional covariates1k a⋅ 5.  The upper half of Table 1 depicts this product for up to 

five added activities and baseline regressors.  While these figures appear manageable, the associated 

model spaces will comprise ( )12 k a⋅ elements, i.e. all possible combination of included and excluded terms.  

Thus, model spaces and therefore the number of possible pooling restrictions can quickly take on 

formidable dimensions, even for a modest number of baseline regressors and added activities, as shown in 

the lower half of Table 1. 

In a classical estimation framework, this poses the dilemma of either (i) embarking on a time-

consuming battery of specification tests with the usual risks of propagating decision errors and other 

problems related to ‘pretest estimators’ (e.g. [13]), (ii) ex ante imposing pooling constraints, thus risking 

model mis-specification, or (iii) facing small sample problems by falling back on the baseline model or an 

MRM with reduced data space.  Furthermore, with increasing data fragmentation, some cell counts for 

specific interaction terms may become too small for specification test to provide any meaningful 

guidance. 
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A related problem in a classical estimation framework arises through its reliance on asymptotic 

theory.  Regardless of scope, a realistically specified MRM will at the very least have to control for intra-

study error correlation and heteroskedastic error variances (e.g. [4], [6], [14]) This departure from the 

basic linear regression model and thus from well understood small sample properties requires invoking 

asymptotic theory in the interpretation of model and test results.  However, for augmented MRMs with 

lower dimensional scope sample sizes may still be too small to have much confidence in asymptotic test 

results.  This further complicates the model selection process within a given data space and thus the 

search for optimal scope. 

We therefore propose a Bayesian approach to model search in this study.  The general rationale of 

Bayesian Model Search (BMS) techniques is to assign a posterior model probability to each possible 

specification as part of the overall estimation process.  Rather than assessing the superiority of one model 

over another through pair-wise hypothesis tests, the Bayesian approach either selects the model with the 

highest posterior probability, or, more frequently, creates a weighted average of model results for 

inference purposes.  The latter strategy is labeled Bayesian Model Averaging (BMA).  Hoeting et al [15], 

Chipman et al. [16], and Koop [17], Ch. 11, provide a good overview of these concepts and techniques.  

 The BMA approach controls for model uncertainty, i.e. the notion that even with extensive 

theoretical guidance the researcher can never be completely certain which of a set of competing model 

specifications best describes the underlying data.  Rather than selecting a potentially inferior model, the 

researcher may then prefer to base any econometric inference on a weighted average over all models.  

This will naturally give more weight to “more likely” models, and low weight to models with low 

posterior probabilities.  Not surprisingly, a common application of BMS and BMA is within the context 

of identifying the best set of explanatory variables in large regression models (e.g. ,[18, 19], [20, 21]) 

which, in essence, is also the problem at hand for this study. 

Based on the exact computational strategy to generate posterior model probabilities BMS 

techniques can be grouped into two broad categories: (i) Strategies that require the computation of the 

marginal likelihood for each model to generate model weights (e.g. [22],[19]), and (ii) Strategies that 
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assign mixture priors to each coefficients, and base model selection and weights on the posterior 

probabilities that a given coefficient should be included in the model (e.g. [23, 24]). 

Since the derivation of the marginal likelihood is computationally burdensome for specifications 

other than the basic linear regression model6, we will follow the second strategy to examine the model 

space for each MRM within a given data space, and, ultimately, to identify the MRM that generates the 

most efficient BT predictions.  Specifically, we will employ George and McCulloch’s [23] Stochastic 

Search Variable Selection (SSVS) algorithm to examine the plausibility of pooling restrictions in a given 

augmented MRM.  We use the search results to assign posterior weights to each model in the MRM’s 

model space, and illustrate how these results can be used to either select a single specification to generate 

the BT function, or to produce model-averaged BT predictions in cases where no single model receives 

overwhelming posterior support.  The details of this approach are described in the next Section. 

 

III) Econometric Framework 

The baseline MRM 

 As point of departure we specify a baseline MRM that relates welfare measures for the activity or 

amenity of primary interest reported in study s for site j, yis, to site and population characteristics for 

which information is also available for the policy context, xjs, and study-methodological indicators ms.  

The importance of including these methodological indicators to avoid omitted variables problems has 

been acknowledged numerous times in meta-analytical research related to resource valuation.  For a 

recent discussion see Johnston et al. [26] and Moeltner et al. [6].7  The baseline model is thus given as   

( ) ( ) ( )2
2 2

with

~ 0, ~ 0, , where  ~ ,

js s js

v v
s js js js

y

n V n igα .

α ε

α ε σ ω ω

′ ′= + + +js x s mx β m β
 (5) 

As indicated in (5) the baseline model also includes a normally distributed study-specific random effect 

term sα with a mean of zero and variance Vα , and an observation-specific stochastic error term jsε .  Since 

most source studies report multiple welfare measures reflecting several sites or applications, the random 
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effect term will capture study-specific unobservables and intra-study correlation.  To control for 

heteroskedasticity, we specify jsε  to have observation-specific variance 2
jsσ ω , with jsω drawn from an 

inverse-gamma distribution with shape and scale equal to v/2.8  In essence, this stochastic structure 

corresponds to Geweke’s [27] Student-t linear model with the added feature of a random effects term.  As 

shown in that study the hierarchical specification of the variance of jsε is exactly equivalent to drawing 

jsε from a t-distribution with mean zero, scale 2σ and v degrees of freedom.  This allows for higher 

probabilities of large error variances than would be expected for a basic normal model, a likely 

occurrence in a meta-regression context.  To be specific, for any given 2σ  a small value of  v (say 5 to 

10) implies a heavy-tailed distribution, while, as is well known, the t-distribution approaches normality 

for larger values of v.  As discussed in Koop [17], Ch. 6, for v>100 the t-distribution becomes virtually 

indistinguishable from the normal (0, 2σ ) density.   

 Allowing for heteroskedasticity and the possibility of large differences in error variances across 

observations and studies is of integral importance for our application.  Specifically, it may well be 

possible that a given activity shares common marginal effects of regressors with the baseline context, yet 

differs substantially in the mix and magnitude of unobservables that enter the reported welfare measures.  

This may further improve the efficiency of data-augmented BT functions if variance terms for the added 

activity are generally smaller than those for the baseline model, but could also introduce additional noise 

into the MRM and thus the transfer function if error variances are larger than those for the baseline case.  

These effects and trade-offs become clearly visible in our empirical application.  At the same time, our 

specification of heteroskedasticity follows the paradigm of parameter sparseness – it only requires the 

estimation of a single additional parameter, v.  This is important given our objective of searching model 

space rapidly and efficiently, and the corresponding requirement to keep run-times for individual models 

as short as possible. 

At the panel (= study) level, the baseline model can be written as  
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( )2
1 2 ,

with

~ , and
s

s

s s n smvn diag ,

α

σ ω ω

= + + +

⎡ ⎤= ⎣ ⎦

ss s x s m n s

s s s

y x β m β i ε

ε 0 Ω Ω L ω
 (6) 

where is a vector of ones with length n
sni s, i.e. the total number of observations furnished by study s.  It 

should be noted that conditional on sα and , ysΩ s remains multivariate-normally distributed with 

expectation  ( )sα+ +
ss x s m nx β m β i  and variance-covariance matrix ( )2σ sΩ .   

 

Scope augmentation and the SSVS algorithm 

 Let us now combine the baseline data d0 with meta-data for a related activity, d1, as discussed in 

the previous Section.  This adds a deviation indicator and a set of interaction terms to the original model, 

yielding 

( ) ( ) ( ) ( )
11 1 1, 1 2, 1 , ,

js s js

js js k js

y with

I js d I js d x I js d x I js d x

α ε′ ′ ′= + + + +

′⎡ ⎤= ∈ ∈ ∈ ∈⎣ ⎦

js x s m js

js

x β m β z δ

z L
 (7) 

where I(.) is an indicator function taking a value of one if observation js belongs to the added data set.9  

The objective at hand is now to examine which of the elements in jsz  are “close enough” to zero to call 

for a pooling restriction.   

 This is precisely the intuition behind the SSVS algorithm ([23, 24]).  The basic idea of this 

approach is to assign a mixture prior to model parameters with uncertain explanatory importance, i.e. the 

elements of vector δ  in our case.  Specifically, we model each coefficient in  to have a prior probability 

p of coming from a “well behaved” normal distribution with mean zero and “large” variance, and 

probability (1-p) of following a close-to-degenerate normal distribution with mean zero and a “very 

small” variance.  The resulting mixture prior for, say, element 

δ

kδ  can then be expressed as 

( ) ( ) ( ) ( )
( ) ( )

2 2 20, 1 0, with

,
k k k k k k

k

pr n c n

pr bern p

δ γ τ γ τ

γ

= ⋅ + − ⋅

=
 (8) 
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where kγ  is a Bernoulli-distributed indicator term taking a value of one with probability p, and a value of 

zero with probability (1-p).  We follow standard SSVS notation by labeling the “small” variance as 2
kτ  

and the “large” variance as 2 2
k kc τ  10.   

 As indicated in (8) and discussed in [24], each element of  could in theory be assigned its own 

variance priors, perhaps based on “thresholds of practical significance”.  In other words,  and 

δ

2
kc 2

kτ  could 

be chosen such that kδ  is assigned to the degenerate distribution with high probability whenever its 

absolute value falls below a threshold beyond which it no longer affects the dependent variable for all 

practical purposes.  While such coefficient-specific thresholds are meaningful in the medical field and 

related sciences, they are ex ante difficult to assess in our application.  We thus follow a common 

alternative strategy by setting , ,k kc c k ,τ τ= = ∀  and standardizing all regressors in (7) to allow model 

coefficients to have the common interpretation of “marginal effect on yjs due to a 1-standard deviation 

movement away from the mean” for a given regressor (e.g. [17], Ch. 11).  We will discuss the exact 

choice of  and c τ  in the empirical Section below. 

 The likelihood function for our full Bayesian specification for a scope-augmented MRM thus 

emerges as 

( )

( ) ( ) ( ) ( ) ( )

[ ] [ ] [ ] [

1/ 2 12 2 21
2

1

1 2

1 2

| , ,

2 exp

with , , , and

s

S

S
n

s

s s n S

pr V

V V

diag

α

α απ σ σ

ω ω ω

− −−

=

=

⎧ ⎫⎛ ⎞′′ ′+ − − − + − −⎜ ⎟⎨ ⎬⎝ ⎠⎩ ⎭

′ ′′′ ′ ′ ′ ′ ′ ′ ′= = = =

⎡ ⎤= ⎣ ⎦

∏ s s s sn n s s s s n n s s s s

s s s x m S 1 2 S

y X,Z θ,δ, ω

i i Ω y X θ z δ i i Ω y X θ z δ

X x m θ β β X X X X Z z z z

Ω

L L

L

]

⋅
 (9) 

where S is the total number of studies included in the MRM.  For notational convenience we have 

collected original regressors xs and study-methodological indicators ms into a common panel matrix Xs, 

with corresponding combined coefficient vector .  It should be noted that SSVS vector does not enter 

the likelihood function.  This will facilitate the posterior updating for this vector as shown in Appendix A. 

The full set of priors for the augmented Bayesian MRM is given as 

θ γ
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

0

0 0

2
0 0

1
2 2

2 2 2
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 (10) 

where kz indicates the total number of regressors in zs.  Equation (a) indicates that the prior for all 

coefficients not subjected to SSVS scrutiny is multivariate normal with mean vector 0 and variance-

covariance matrix V0.  Equation (b) re-states the hierarchical distribution of random effect sα shown 

above, with the common variance Vα following an inverse gamma distribution with shape 0ϕ  and scale 

0γ .  The same prior distribution, albeit with potentially different shape and scale parameters, holds for 

2σ , the common variance component of jsε , as shown in equation (c).  As discussed above, the 

heteroskedastic variance component of jsε follows an inverse-gamma distribution with identical shape 

and scale parameter v/2, with the hyper-prior distribution of v given as gamma with shape 1 and inverse 

scale 1/v0.  In our parameterization, this corresponds directly to the exponential distribution with inverse 

scale 1/v0.  As discussed in Koop [17], Ch. 6, this choice of hyper-prior distribution for v is 

computationally convenient and assures the required condition of v > 0.  Finally, equation (f) reiterates 

the hierarchical prior distribution for kγ as discussed above.  The likelihood in (9) and the priors in (10) 

also apply to variants of our model that do not call for the SSVS algorithm (see below).  Naturally, a 

standardization of regressors and use of prior (f) are no longer needed in that case.  

 The Bayesian framework then combines likelihood function and priors to derive marginal 

posterior distributions for all parameters.  We use a Gibbs Sampler (GS) along the lines suggested in 

Koop [17], Ch. 6, to simulate these distributions.  The details of this algorithm are given in Appendix A. 

 

Model weights and BT predictions 
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 For each element of and for each draw rδ  = 1…R  of the GS, the posterior simulator produces a 

binary draw of kγ  based on its posterior probability, ( )| , ,kpr γ y X Z , as outlined in detail in Appendix A.  

This draw will take the value of one if there is posterior support that kδ  belongs to the large-variance 

distribution and should thus be included in the augmented model, and a value of zero otherwise.  For 

example, if δ and thus  have three elements, a GS sequence of 20 consecutive posterior draws of γ kγ , 

k=1…3, could look like this: 

1

2

3

0 1 1 1 0 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1
0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0

γ
γ
γ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 (11) 

In the first round of this hypothetical GS sequence none of the coefficients in δ , and thus none of the 

variables in zjs were chosen for inclusion in the model, in the second and third round only the first 

element of zjs was selected, in the fourth round the first two elements were selected, and so forth.   

This information can then be used to examine how often, out of R repetitions, a given element of 

is set to “1”, i.e. how often the underlying explanatory variable is selected for inclusion in the model.  

In our simple example above, these empirical shares are 11

γ

/ 20 0.55=  for 1γ , 8 for / 20 0.4= 2γ , and 5/20 

= 0.25 for 3γ .  This provides a quick first look at the relative importance of each ex ante questionable 

regressor.  However, as shown e.g. in George and McCulloch [23] and Chipman [18] a more thorough 

examination of this sequence is needed to draw conclusions on model weights and model selection.  As 

illustrated in the previous Section (equ. (4)), the number of elements in de facto determine the model 

space 

γ

tM for the added regressors in data space Dt.  Thus, sequence (11) also contains information on the 

empirical probabilities for each possible model in tM .  In our simple example above there are 23 = 8 

possible models.  For example, model [0,0,0] was selected 4/20 times and would thus receive model 

weight 0.2.  Model [0 0 1] was selected only once, yielding a model weight of 1/20 = 0.05, and so on.  

 The researcher can then select a single model as the “most promising specification” if model 

weights are distributed such that a specific model receives overwhelming support.  Alternatively, if these 
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posterior weights are more uniformly distributed and thus less discriminating, the analyst may want to use 

these weights to form model-averaged posterior inferences.  Since the latter scenario is more likely in the 

context of MRM and BT, and since the selection of a single model is a trivial special case of forming 

model-averaged predictions, we will focus on the model-averaging approach in this analysis. 

 Thus, our generation of BT predictions associated with a given data space Dt proceeds in two 

steps: First, we standardize all regressors and implement the SSVS algorithm to derive individual model 

weights as described above.  Second, after recording these weights, we re-run all models in model space 

tM with non-standardized regressors, using the modified Geweke [27] model without the SSVS 

component.  For each model, we then derive a posterior distribution of BT predictions, and then average 

these predictions over models using the model weights collected from Step 1.  Analytically, this posterior 

distribution of BT prediction given policy site descriptors xpy p is given as 

( ) ( ) ( ) ( ) ( ) (
1 1

| | , , , | , , ,
M H

p p m h h m
m h

pr y pr y M m pr m pr M d pr M
= =

⎧ ⎫⎡ ⎤⎪ ⎪= ⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑∫p p
Γ

x x Γ Γ y X Z Γ y )|m  (12) 

where subscript m indexes a specific model in tM , M denotes the total number of models in Mt, mh labels 

a specific combination of methodological indicators, H is the total number of such combinations, and 

comprises all model parameters as introduced in Γ (10), with the exception of , which is no longer 

needed for Step 2.   

γ

 Equation (12) indicates that the posterior predictive distribution of , conditional only on policy 

descriptors x

py

p is derived by marginalizing conditional draws of over (i) methodological indicators, (ii) 

model parameters, and (iii) all models in M

py

t.  The practical implementation of (12) is described in 

Appendix B.  The statistical properties of the model-averaged posterior distribution of can then be 

examined for each available data space and compared to analogous predictions for the baseline model.  

We will illustrate this final step in selecting a transfer function within the context of our empirical 

applications in the next Section. 

p py | x

 15



 

 

IV) Empirical Implementation 

Simulated application 

 We first illustrate our approach using simulated data.  To examine the performance of the SSVS 

algorithm under different sample sizes and error distributions we generate eight simulated data sets with 

degrees-of-freedom parameter v set to either 40 or 10 for each of four sample sizes, 2000, 1000, 600, and 

300.  These scenarios are captured in the first column of Table 2.  We ex ante hypothesize that the ability 

of the SSVS algorithm to discern “true” models will diminish with smaller sample size and heavier tails 

of the error distribution (i.e. a smaller value of v).  The n = 300, v = 10 scenario is designed to mimic 

some key aspects of typical meta-data traditionally employed for BT purposes, i.e. small to moderate 

sample size and considerable error noise. 

For each simulation scenario we first create a baseline data set d0 composed of S0 “studies” with 

ns0  observations on “WTP” and three explanatory variables, yielding an initial baseline sample size n0.  

For ease of communication and close correspondence with the empirical application below we label these 

variables “catch rate”, “income” and “travel cost”.  Catch rate is computed as the log of a uniform (0.8, 

20) variate, income is generated as ( )( )1
1000log uniform 30000,200000 , and travel cost is derived as 

( )( )1
10log uniform 10,200 .  We then add a constant term and combine these regressors with the 

coefficients given in the first row of Table 2.  We further add a random effects term drawn from the 

standard normal distribution, and an error term drawn from a t-distribution with mean 0, scale 1, and v 

degrees of freedom.  A dependent variable y0 is then computed following equation (5) (without 

methodological indicators).  

 Next, we create a second data set d1 of same panel structure and sample size as the baseline, with 

regressors, random effects, and error terms drawn from the exact same distributions as hold for the 

baseline data.  However, we specify regression coefficients that deviate from those stipulated for the 

baseline model in the slope coefficients for “catch rate” and “travel cost”, as shown in the second row of 
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Table 2.  This yields dependent variable y1. We then combine the two data sets in an augmented model 

with sample size n by stacking vectors ya , a = 1,2, and the two sets of explanatory variables, adding an 

indicator for the d1- set, and its interactions with the three explanatory variables.  This yields the 

specification given in equation (7) (without methodological indicators). 

 For each n / v scenario, we standardize these regressors and apply the SSVS algorithm to derive 

model weights for the 24 = 16 individual models contained in the augmented model space M1.  We use the 

following prior values: 2 2 1 1
0 0 0 0 02 20.03, 100, , 9 , , 10, andc c vτ τ ϕ γ η κ= = = = = = = = =

1 10 k kV I I p = . 

As discussed in George and McCulloch ([23], [24]), a larger value of c and a lower value of τ  implies a 

sharper distinction between the two normal densities in the mixture prior for .  However, the authors 

recommend keeping the ratio of the two variances, i.e. c

δ

2, at or below 10,000 to avoid convergence 

problems.  Such problems will also arise if τ is located “too close to zero”.  Our choice of τ and c reflects 

these conflicting concerns.  The variance terms for the prior distribution of the baseline coefficients , 

i.e. the diagonal elements of V

xβ

0, are chosen to correspond to the variance of the non-degenerate 

distribution of δ .  The shape and scale parameters for the inverse-gamma priors imply diffuse 

distributions for 2σ , and Vα .  Given our parameterization of the gamma prior for v in (10), the inverse 

scale v0 also constitutes the expectation for this distribution, and denotes the variance.  A value of 10 

for v

2
0v

0 implies that v is a priori expected to take this value, leading to a moderately heavy-tailed t-prior for 

the regression errors.  At the same time, a variance of =100 keeps the prior distribution for v 

sufficiently diffuse to assign adequate weight to the data in posterior updating.  Finally, the choice of 0.5 

for the Bernoulli parameter p implies an equal prior weight of 

2
0v

( )1
2

zk
for each possible model contained in 

a given data space.  For each scenario, the standard deviation of the proposal density for v in the 

Metropolis Hastings algorithm contained in the GS (denoted as sv in Appendix A) is set to achieve an 

optimal acceptance rate of 44-50% (see e.g. [28] Ch. 11).  All models are estimated using 15000 burn-in 
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draws and 10000 retained draws in the Gibbs Sampler.  The decision on the appropriate amount of burn-

ins was guided by  Geweke’s [29] convergence diagnostic (CD). 

 The lower half of Table 2 shows the SSVS acceptance shares for each coefficient associated with 

the added regressors.  A perfectly discriminating GS run would always select the interacted coefficients 

for “catch rate” and “travel cost”, and never select the deviation from the constant term and the interacted 

coefficient for “income”.  As can be seen from Table 2, our simulated models with large sample sizes 

come close to this ideal notion of “perfect discrimination”.  For both the n = 2000 and n = 1000 cases 

acceptance shares are at 100% for “catch rate”, and close to 90% for “travel cost”, while the coefficients 

of deviation for the constant term and “income” are only selected in 5-8% of draws.  The lower share of 

“hits” for “travel cost” compared to “catch rate” may be a result of the somewhat more subtle absolute 

difference between baseline and added data with respect to the travel cost coefficient, or it may simply be 

a manifestation of the relative lower information content for this variable in the generated data.  It is also 

clear from the Table that a lower value for v, i.e. a more diffuse distribution of the regression error, results 

in a subtle but systematic further reduction in acceptance shares for “travel cost” for the two large-sample 

scenarios. 

 As is evident from the last four rows of the Table, the SSVS routine essentially loses its ability to 

identify the difference in coefficients between baseline and added data for “travel cost”,  while acceptance 

shares for “catch rate” remain fairly high even for the n = 300, v =10 scenario.  Overall, this first 

examination of simulation results suggests that the ability of the SSVS algorithm to correctly identify 

regressors that should be included in a given model (i) generally diminishes with sample size, (ii) slightly 

diminishes with lower values of v, and (iii) can be variable-specific, depending on how informative the 

underlying data are for each individual regressor.   

 Data space, model combinations, and empirical model weights flowing from the SSVS analysis 

for the n = 300, v = 10 case are given in Table 3.  The first row simply lists the baseline model, which, by 

definition, does not include any added regression terms.  The last column depicts the empirical model 

weights assigned by the SSVS routine to each of the 16 possible models in data space D1.  Clearly, no 
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single model receives overwhelming posterior support.  The highest weight (0.48) is assigned to the 

partially correct model M5, which stipulates a difference in coefficients for “catch rate”, but a shared 

coefficient for “travel cost”.  The second largest share (0.267) is allocated to the null model M1 while the 

correct model M11 only receives a very small posterior weight of 0.007.  In our simulated context high 

weights for the null model and low weights for the correct augmented model simply imply that the 

underlying data lack sufficient information to identify structural parameter differences. 

Overall, given our empirical context these results convey two important messages regarding the 

interpretation of model weights flowing from the SSVS algorithm:  (i) A high weight for the null model, 

which a hopeful analyst may interpret as “perfect poolability” of two activities or contexts, may simply be 

indicative of noise in the underlying data, and (ii) the most appropriate model may not receive 

considerable posterior weight.  This suggests a model averaging approach to generate BT predictions. 

 The results for the second step of our analysis are provided in Table 4.  For ease of interpretation 

the first three columns reiterate data space, model labels, and model weights, respectively.  The next four 

columns show the posterior means for the BT-relevant coefficients, i.e. the elements of in equation xβ (7).  

The last six columns depict key statistical features of the posterior predictive distribution of BT prediction 

yp.  We follow the steps outlined in Appendix B to generate these predictions. For each of the R = 10,000 

parameter draws from the original GS, we draw a set of rp = 100 predicted values for policy outcome yp.  

We then keep every 20th of these draws to reduce autocorrelation in our sequence.  Thus, we retain 50,000 

posterior predictive draws for our analysis11.  To mimic our sport fishing application below and derive 

“realistic” WTP figures the statistics in Table 4 refer to the exponentiated version of this predictive 

distribution. 

 The first row in Table 4 gives the results for the baseline model.  For our purposes the key 

features of these results are a mean predicted benefit of 32.5, with a numerical standard error (nse) of 

0.5.12  The last three columns show the lower bound, upper bound, and width of the corresponding 95% 

numerical confidence interval.  As can be seen from the Table, the posterior means for BT-relevant 
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coefficients generated by models in the D1 space differ from those for the baseline model primarily in the 

estimated intercept.  Given our random effects specification, this intercept is somewhat more difficult to 

estimate under small sample sizes.  The baseline model grossly under-predicts the true value of -2.5 (see 

Table 2). The D1 models, while still considerably off-target, are closer to the true values.  Also, the added 

data reduces posterior noise in the BT predictions, as evidenced by the substantially smaller posterior 

standard deviation for all D1 models compared to the baseline specification.  Given the known 

shortcomings of the baseline model and the noticeably reduced posterior variability in the scope 

augmented models, the model averaged predictive distribution, given in the bottom row of the Table, 

would clearly be a more robust choice to form BT predictions than the baseline model.  It also generates 

more efficient predictions than the baseline specification, as evident from the smaller nse and 

corresponding interval width. 

 

Sport fishing  application 

 To illustrate our methodology with actual meta-data, we selected a baseline set of studies that 

report aggregate estimates of consumer surplus for a day of coldwater fishing in a running water 

environment.  All welfare observations are associated with all-or-nothing site values to allow for a clear 

association of WTP estimates with status quo site characteristics.  The studies are drawn from two 

sources: an updated outdoor recreation meta-data set described in Rosenberger and Loomis [30], and the 

sport fishing meta-data collected by Boyle et al. [31].  These two sources combined constitute arguably 

the largest collection of recreational meta-information currently available.  Yet, as shown in Table 5, we 

could only identify 15 studies comprising a total of 73 observations that satisfy our “policy context” 

criteria.  This creates a realistic setting for the desire to augment the data with related activities. 

 We consider a scope augmentation along the dimensions used in our introductory example: 

warmwater fisheries, and stillwater environments. This yields four possible data spaces, as summarized in 

Table 5.  As can be seen from the table, augmenting the scope of the data produces a marked increase in 

sample size, especially for the saturated data space D4, which comprises 37 studies and 229 observations.  
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Our methodological indicators are “journal” (1 = journal article), “report” (1 = government report), “dc” 

(1 = dichotomous choice framework), “oe” (1 = open ended, iterative bidding, or payment card 

framework), “substitute” (1 = study addressed or incorporates substitute sites), and “sample 200” (1 = 

underlying sample size  200).  The implicit baseline categories for publication source and elicitation 

format are “technical report, thesis, or dissertation”, and “travel cost method”, respectively.  All data 

spaces have reasonable cell counts for these methodological categories, as shown in the second half of 

Table 5.  To assure a positive value for WTP we model the dependent variable in log form. 

≥

 For an illustrative implementation of our approach we require continuous baseline variables that – 

ideally - are reported for all observations.  Given the data gaps traditionally encountered in meta-sets (see  

[6]) this proved to be a major challenge.  We ultimately chose daily catch rate and annual household 

income (both in log form) to represent site attributes and population characteristics, respectively.  We 

replaced missing observations for income (approximately 70% of cases) with State-level census 

information, and missing observations on catch rates (approximately 50% of cases) with predicted values 

flowing from an auxiliary regression model relating available catch rates to regional indicators, water 

types, and fish species.  The derivation of daily catch rates was further complicated by the fact that many 

studies reported this attribute in units other than “per-day”, which required additional conversion steps 

reliant on aggregate information.  Despite these shortcomings our meta-dataset is still suitable to illustrate 

our conceptual and estimation framework. 

 The priors and number of GS draws for the standardized model with the SSVS components are 

the same as for the simulated case, except for the value of τ , which is increased to 0.3 to improve the 

convergence properties of the Gibbs Sampler .  The standard deviation for the proposal density in the MH 

component varies from 110 n  to 145 n  to yield a uniform acceptance rate of 45-50% for all data spaces.  

Table 6 shows the composition of individual models for each data space.  The one-dimensionally 

augmented data spaces D1 and D2 each include eight models, while this number increases sharply to 64 

for the saturated space D3.  For the latter, only models with empirical weights ≥ 1% are listed in the Table 
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6 for ease of exposition.  For each augmented data space, the first model (M1) denotes the “null” model, 

i.e. the fully pooled specification. 

 The last column of Table 6 shows the posterior weights for each model produced by the first-

stage SSVS analysis.  For each data space, the null model carries by far the largest weight, with all other 

specifications receiving relatively minor weight shares.  At this stage it might be tempting to embrace the 

null model and ignore all other specifications for BT purposes.  However, this would be risky for two 

reasons: (i) The weight shares for the fully pooled version, while substantial, are far from overwhelming, 

and (ii) as seen from the simulated example, a large weight for the null model may simply indicate a lack 

of explanatory power in the underlying data.  Overall, thus, there still exists a considerable degree of 

model uncertainty for all augmented data spaces, which again suggests a model-averaging approach.    

 Therefore, we subject all data spaces and models to the second step of our analysis.  For D3, we 

only estimate the models with probability weight of 1% or higher to conserve on computing time13. As 

for the simulated data we set for this step.  The results from this second stage analysis are 

captured in Table 7.  The layout for Table 7 is the same as for Table 4.  As can be seen from the first row 

the baseline model generates a posterior distribution of WTP with a mean $67.13, a standard deviation of 

94.14, and numerical standard error of 0.42.  Augmenting the baseline scope of the MRM with 

observations on warmwater fishing reduces posterior noise as evidenced by a significantly smaller 

posterior standard deviation for all models in D

100= ⋅
10V kI

1.  In contrast, posterior noise increases compared to the 

baseline model for models in D2 and D3.   

 Clearly, thus, WTP estimates associated with stillwater environments carry more error noise than 

estimates corresponding to warmwater fishing, ceteris paribus.  Also, the point estimates for the posterior 

mean of yp are systematically higher than the baseline result for all models in D2 and most models in D3.  

Therefore, the overall picture that emerges is that the context of warmwater fishing in a running water 

environment is more compatible with the baseline scenario than the context of coldwater fishing in a 

stillwater environment.  Even the substantial gain in sample size for the fully saturated space D3 cannot 
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compensate for this lack of affinity with the baseline context and the added noise through larger 

regression errors.  This is also evidenced by the larger standard deviation and nse for the model-averaged 

distribution for D2 and D3 compared to the baseline result.   

In contrast, and this is perhaps the most important finding flowing from this analysis, the model-

averaged predictive distribution for data space D1 has slightly more efficient properties than the baseline 

posterior, as indicated by a smaller posterior standard deviation (79.9 vs. 94.1) and nse (0.36 vs. 0.42).  

We can thus conclude that a more efficient BT function is derived if the scope of the baseline data is 

augmented along the dimension “warmwater fishing”, but not along the dimension of “stillwater”. 

 

V) Conclusion 

 We illustrate in this study how Bayesian Model Search and Model Averaging techniques can be 

used to better utilize existing information on resource values for BT predictions.  Specifically, we employ 

George and McCulloch’s [23] SSVS algorithm to assign posterior probability weights to different model 

versions in a scope-augmented Meta-Regression.  We show how these weights can then be used to derive 

model-averaged BT predictions for the augmented data space.  Our approach circumvents typical classical 

challenges that arise when combining different data sets, such as the reliance on asymptotic theory for the 

interpretation of test results in a small-sample environment, the risk of compounding Type I or Type II 

decision errors in series of specification tests, and small cell counts for different context combinations.  

Our empirical findings indicate that for some augmented MRMs resulting model-averaged BT functions 

can be more efficient than those flowing from a baseline model with a narrower scope and smaller sample 

size. 

 While our meta-data are based on aggregate estimates of welfare and aggregate values for site 

and user characteristics, it should be noted that our methodology is also applicable to individual-level 

source data.  In that case small sample problems may be less pressing.  However, the general question of 

‘optimal scope’ remains, and with it the classical challenges associated with rapidly proliferating model 
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spaces in augmented data.  The application of our approach to such refined and richer meta-data will be 

subject to future research. 

 

 24



 

APPENDIX A

This Appendix outlines the detailed steps of the Gibbs Sampler (GS) for the random effects 

regression model with t-distributed errors and an embedded SSVS routine for a subset of coefficients.  It 

is convenient to apply Tanner and Wong’s [32] concept of data augmentation and treat draws of 

[ ]1 2 Sα α α=α L and  as additional data.  As in the main text, we label 

the regression coefficients subjected to SSVS scrutiny as δ and the remaining coefficients as θ .  This 

yields the augmented joint posterior 

11 21 Sn Sω ω ω⎡= ⎣ω L ⎤⎦

( )2, , , , , |pr V vσ αθ δ γ,α,ω y, X, Z , which the GS breaks down into 

consecutive draws of conditional components. 

Step 1:  Draw , δ  θ

It is convenient to stack θ and  into a single coefficient vector  and to conformably combine 

data X and Z into common matrix XZ, with panel (= study) specific component Xz

δ ξ

s.  The prior variance 

of  can then be compactly written as , where ξ [ ,diag=ξ 0 δV V ]V

( ) ( ) ( )2 2 20, 1 0, , 1 zdiag n c n k kγ τ γ τ ⎤= ⋅ + ⋅ = ⎦δV L

) ⎞
⎟
⎠

k k
⎡ −⎣ .  To avoid highly correlated draws and to 

expedite convergence we will draw ξ unconditional on the random effects α , along the lines suggested in 

Chib and Carlin [33].  This leads to the following conditional posterior: 

( ) ( )

( ) (

2

1
1 12 2

1 1

| , , , , , where

and .
S S

s s

pr V mvn

V V

α

α α

σ

σ σ
−

− −

= =

=

⎛ ⎞ ⎛
′ ′ ′ ′= + + = +⎜ ⎟ ⎜

⎝ ⎠ ⎝
∑ ∑s s s s

1 1

-1
1 ξ s n n s s 1 1 s n n s s

ξ y X Z ω μ ,V

V V Xz i i Ω Xz μ V Xz i i Ω y
 

Step 2: Draw  α

Defining the conceptual regression model sα= − = +
ss s s ny y Xz ξ i ε% s

2 .⎞⎟
⎠

and applying standard 

results for posterior moments for Gaussian regressions (e.g. [34]), we obtain 

( ) ( ) ( ) ( )
11 12 2| , , , , where andspr mvnα σ σ σ
−− −⎛ ⎞ ⎛′ ′= = + =⎜ ⎟ ⎜

⎝ ⎠ ⎝s s s

-1
s s 1 1 1 α n s n 1 1 n s sy Xz ξ ω μ ,V V V i Ω i μ V i Ω y%
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Step 3: Draw Vα  

Given the vector of random effects, the conditional posterior distribution for Vα can be derived in 

straightforward fashion as ( ) ( ) ( ) ( )1 1 1 0 1 0| , with 2 / 2 and 2pr V ig Sα ϕ γ ϕ ϕ γ γ′= = + =α α / 2+α . 

Step 4: Draw 2σ  

Expressing the vector of random effects for the full sample as and applying standard results for 

generalized regression models, we obtain 

α%

( ) ( ) ( )

( ) ( )

2
1 1 1 0

1 0

| , with 2 / 2

1 2 .
2

pr ig nσ η κ η η

κ κ

= = +

⎛ ⎞′= +⎜ ⎟
⎝ ⎠

-1

y, X,Z,ξ,ω

y - XZξ -α Ω y - XZξ -α% %

and
 

Step 5: Draw v 

 The relevant kernel for draws of v is its prior times the density of , i.e. ω

( ) ( ) ( )
( )

( ) ( )
2

2

0 0

121
2

1 1 2

| exp exp

v
s v

js

n vS
v

jsv v v
s js

pr v ωω− +

= =

= − ⋅ −
Γ∏∏ω v .  This is a non-standard density, and we use a 

random walk Metropolis-Hastings algorithm (MH, [35], [36] ) to take draws from this kernel.  

Specifically, we draw a candidate value of in the rcv th round of the GS from a truncated-at-zero normal 

proposal density with mean , i.e. the current value of v, and standard deviation s1rv − v, and accept the draw 

as the new current value with probability ( )
( )1

|
min ,1

|
c

v
r

pr v
pr v

α
−

⎛ ⎞
= ⎜⎜

⎝ ⎠

ω
ω

⎟⎟ .  The standard deviation of sv is 

chosen (after some trial and error in preliminary runs) to yield an acceptance probability in the 45-50% 

range, as suggested  by Gelman et al. [28], Ch. 11.   

Step 6: Draw  ω

 For this step we note that (~ 0,js
jsn )ε

ω
σ

.  We can then use again standard results for the 

Gaussian regression model to obtain ( ) ( ) ( )2| , , , , , , with 1 / 2js js spr y v ig vω σ α ψ ζ ψ= =jsxz ξ +  and  
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( )( )2 21 / .
2 js sy vζ α′= − − +jsxz ξ σ  

Step 7: Draw  γ

 As shown in Koop et al [37], Ch. 16, conditional on kδ , the conditional posterior of kγ remains 

Bernoulli with an updated success probability (i.e. ( )1|kpr kγ δ= ) of  

( )
( ) ( ) ( )

2 2

2 2 2

;0,

;0, 1 ;0,
k

k k

p c

p c p

φ δ τ

φ δ τ φ δ τ+ −
, where φ denotes the normal density.  In practice, draws from this 

updated Bernoulli are obtained by comparing this expression to a random draw u form the uniform [0,1] 

distribution.  If ( )1|kpr kγ δ= > u, kγ is set to one, and it is set to zero otherwise. 
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APENDIX B: 

To derive the posterior predictive distribution of yp | xp we proceed as follows:  

Step 1:  The methodological indicators comprised in ms delineate a set of H possible methodological 

combinations.  We follow [6] and assign equal probabilities 1h Hπ π= = to each combination.   

Step 2:  For a given draw of parameters within model Mm in the rth round of the original GS we first draw 

a random effect ,p rα from ( ),0, rn Vα , then an error term ,p rε from ( )20, ,r rt vσ , and compute 

, , , , , 1p r h p r p ry h Hα ε′ ′= + + + =p x,r h m,rx β m β K , where mh represents a specific mix of methodological 

indicators.  We then compute the weighted average over methodologies to obtain 

( ), , ,
1 1

H H

p r p r p r p r p r
h h

y , ,α ε π π α ε
= =

′ ′ ′ ′= + + + = + + +∑ ∑p x,r l m,r p x,r l m,rx β m β x β m β .   

Step 3:  We repeat Step 2 rp times to obtain multiple draws of yp,r for each set of parameters.  While this is 

optional, it is computationally inexpensive and improves the efficiency of the predictive distribution. 

Step 4:  Repeat Steps 2 and 3 for each set of original parameter draws, i.e. for each .  The 

resulting sequence of  draws of y

, 1r rΓ = KR

pr R⋅ p,r can then be examined to assess the properties of BT predictions 

associated with model Mm.   

Step 5:  To generate a model-averaged posterior predictive distribution of yp | xp , we repeat Steps 2- 4 for 

each model Mm in the model space Mt of data space Dt , multiply each model-specific sequence by the 

model-specific weight flowing from the SSVS analysis as shown in Section III, and sum over sequences.
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Notes: 

 
 

 

1 Bergstrom and Taylor [9] deem this issue alternatively “commodity consistency” across source studies. 

2 Coldwater fisheries traditionally include species such as trout, steelhead, salmon, mountain whitefish, 

and grayling. 

3 For simplicity and ease of exposition we will abstract in this example and in the remainder of this study 

from data gap issues and resulting “N vs. K” dilemmas as discussed in Moeltner et al. [6].  In other 

words, we assume that all source studies include information on all policy-relevant explanatory variables.  

It would be straightforward to incorporate  “N vs. K” corrections into the econometric framework 

outlined in this analysis. 

4 In the U.S., common warmwater fish are crappies, small and largemouth bass, sunfish, yellow perch, 

and catfish. 

5 For simplicity and without loss in generality, we abstract from any higher order interactions in this 

study.  Naturally, the proliferation of regressors and required specification tests would further accelerate 

with the consideration of such terms. 

6 As described in Raftery [25] there exist a variety of mathematical approximations for the marginal 

likelihood that can be used to ease computational requirements in posterior simulators.  However, these 

approximations all rely on asymptotic theory for consistency.  As mentioned in Chipman et al. [16], such 

approximations can become unreliable in small sample-cases.  Since small-sample issues are important in 

this study, we refrain from using BMS methods based on approximated marginal likelihoods. 

7 Naturally, the baseline model could also include other regressors than methodological indicators for 

which no information is available for the policy context, but which may be important for model stability.  

Just like the elements of xjs these additional covariates would then have to be interacted with activity 

indicators as new data sets are added to avoid mis-specification errors.  Furthermore, since there are no 

known values for the policy site to insert for these covariates when generating BT predictions, BT 
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predictions would have to be marginalized over these regressors, in analogy of our treatment of 

methodological indicators (see also [6]).  To avoid these straightforward but tedious computational  

additions we will abstract from such variables in this analysis. 

8 In our parameterization, this implies an expectation of ( )( ) 1
2 2 21 vv v

v
−

−− = , and ( )22 1 1v v+ = +

k

 degrees 

of freedom. 

9 To avoid a proliferation of interaction terms and added computational complexity in generating BT 

predictions we assume that the effect of methodological covariates does not change significantly across 

activities.  For most “related activities” that one would traditionally consider in a data-augmented model 

this is likely a relatively robust assumption. 

10 While seemingly adding notational clutter, the introduction of the γ -term and the resulting 

hierarchical setup for the mixture distribution of  kδ  corresponds well to the Bayesian notion of 

“hierarchical priors”, i.e. the prior of kδ  depends on another model parameter kγ , which, in turn has a 

hyper-prior distribution with parameter p.  It is also a natural and logical setup to allow for the derivation 

of a posterior probability for the event 1k = , which is of crucial importance in our case. γ

11 To guard against dramatic outliers, we further truncate this distribution at the 99.9th percentile, i.e. we 

discard the 50 largest observations.  This final adjustment is implemented in identical fashion for all 

models.  Intuitively, this correction could be interpreted as “imposing income constraints” on the 

predicted WTP values.   

( )12 The nse is computed as s / ptd R

1.96 nse± ⋅

 

 where std is the standard deviation of the predicted distribution 

and Rp is the length of the series.  A numerical 95% confidence interval is obtained as  (posterior mean 

). 
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13 The 13 models in D3 listed in Tables 6 and 7 have a combined model weight of 0.85.  For model-

averaging purposes we calibrate each individual model weight by this total to preserve the adding-up 

condition for the posterior probability mass function of these weights. 
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Table 1: Proliferation of Data Space and Model Space 

 

   number of  baseline regressors  

      1 2 3 4 5 number of 
data spaces 

    number of additional terms in the MRM   
1  1 2 3 4 5 1 
2  2 4 6 8 10 3 
3  3 6 9 12 15 7 
4  4 8 12 16 20 15 

number of 
added 

activities 
("data sets") 

5  5 10 15 20 25 31 
         
   number of possible models  

1  2 4 8 16 32   
2  4 16 64 256 1,024   
3  8 64 512 4,096 32,768   
4  16 256 4,096 65,536 1,048,576   

number of 
added 

activities 
("data sets") 

5  32 1,024 32,768 1,048,576 33,554,432   
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Table 2: Coefficients and SSVS Acceptance Shares for Simulated Data 

 

  constant catch income travel cost 
     

true coefficients for baseline data -2.500 1.000 0.600 -0.400 
true coefficients for added data -2.500 1.400 0.600 -0.200 

     
simulation scenario acceptance shares 

     
n = 2000, v = 40 0.052 1.000 0.047 0.889 
n = 2000, v = 10 0.065 1.000 0.047 0.850 

     
n = 1000, v = 40 0.079 1.000 0.072 0.857 
n = 1000, v = 10 0.073 1.000 0.076 0.693 

     
n = 600, v = 40 0.143 0.998 0.087 0.058 
n = 600, v = 10 0.182 0.993 0.098 0.069 

     
n = 300, v = 40 0.105 0.620 0.092 0.074 
n = 300, v = 10 0.106 0.597 0.100 0.079 
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Table 3: Data Space, Model Space and Empirical Model Weights for Simulated Data 

  interaction terms (1 = included)   
data space model d1 d1*catch d1*inc d1*tc n model weight 

        
D0 M1 - - - - 150 N/A 

        
M1 0 0 0 0 300 0.267 
M2 0 0 0 1 300 0.036 
M3 0 0 1 0 300 0.045 
M4 0 0 1 1 300 0.005 
M5 0 1 0 0 300 0.479 
M6 0 1 0 1 300 0.028 
M7 0 1 1 0 300 0.033 
M8 0 1 1 1 300 0.002 
M9 1 0 0 0 300 0.039 

M10 1 0 0 1 300 0.004 
M11 1 0 1 0 300 0.007 
M12 1 0 1 1 300 0.000 
M13 1 1 0 0 300 0.045 
M14 1 1 0 1 300 0.004 
M15 1 1 1 0 300 0.007 

D1

M16 1 1 1 1 300 0.001 
                

d1 = indicator for added data 
catch = catch rate 
inc = income 
tc = travel cost 
“correct model” shown in boldface 
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Table 4: Estimated Coefficients and Predictions for Simulated Data

   relevant coeff's for prediction exponentiated distribution of predictions  
Data  

Space Model weight const. catch inc tc mean std nse low up width
             

D0 
(n=150) M1 - -0.593 0.979 0.314 -0.395 32.500 110.803 0.496 31.528 33.472 1.944

             
M1 0.267 -1.055 1.150 0.380 -0.355 29.469 67.062 0.300 28.881 30.057 1.176
M2 0.036 -1.050 1.149 0.379 -0.432 25.096 56.402 0.252 24.602 25.591 0.989
M3 0.045 -1.061 1.148 0.321 -0.356 21.941 50.697 0.227 21.496 22.385 0.889
M4 0.005 -1.068 1.152 0.328 -0.374 21.916 49.394 0.221 21.483 22.349 0.866
M5 0.479 -1.157 1.007 0.392 -0.360 19.786 42.485 0.190 19.414 20.159 0.745
M6 0.028 -1.164 1.007 0.393 -0.361 20.327 47.280 0.212 19.912 20.742 0.830
M7 0.033 -1.148 0.997 0.401 -0.361 21.183 48.234 0.216 20.760 21.606 0.846
M8 0.002 -1.184 1.003 0.410 -0.371 20.819 46.345 0.207 20.413 21.226 0.813
M9 0.039 -1.341 1.147 0.384 -0.356 22.589 52.436 0.235 22.129 23.049 0.920

M10 0.004 -1.298 1.147 0.383 -0.376 22.745 53.107 0.238 22.279 23.210 0.931
M11 0.007 -0.982 1.152 0.305 -0.360 22.021 49.699 0.222 21.585 22.457 0.872
M12 0.000 - - - - - - - - -  
M13 0.045 -1.063 0.989 0.394 -0.360 22.572 52.329 0.234 22.114 23.031 0.917
M14 0.004 -0.968 0.986 0.391 -0.393 22.078 49.731 0.223 21.642 22.514 0.872
M15 0.007 -0.724 0.992 0.321 -0.362 22.267 50.384 0.225 21.825 22.709 0.884

D1 
(n=300) 

M16 0.001 -0.626 0.989 0.318 -0.397 22.161 51.172 0.229 21.712 22.610 0.898
             

D1, 
weighted 
average - - - - - - 23.017 51.239 0.229 22.569 23.466 0.897

             
catch = catch rate 
inc = income 
tc = travel cost 
mean = posterior mean / std = standard deviation / nse = numerical standard error / low (up) = lower (upper) bound of numerical 
95% confidence interval for the mean / width = (up – low) 
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Table 5: Data Space Composition and Methodological Indicators for Sport Fishing Data 

 

 data space composition 
 fishery water type   

data space cold warm river still studies obs. 
       

D0 x  x  15 73 
D1 x x x  21 94 
D2 x  x x 28 112 
D3 x x x x 37 229 

       
 cell counts for methodological indicators 
 journal report dc oe subst samp200 
       

D0 13 23 38 5 22 35 
D1 16 41 40 10 23 35 
D2 37 27 39 8 47 41 
D3 51 105 52 21 49 53 
              
       

dc = dichotomous choice method  
oe = open ended, iterative bidding, payment cards 
subst = substitute sites are addressed or included  
samp200 = sample size ≥ 200 
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Table 6: Data Space, Model Space and Empirical Model Weights for Sport Fishing Data 
 

  interaction terms (0 = excluded, 1 = included)   
data space model warm  warm*catch warm*inc still still*catch still*inc n model weight

          
D0 M1 - - - - - - 73 N/A 

          
M1 0 0 0 - - - 94 0.589 
M2 0 0 1 - - - 94 0.116 
M3 0 1 0 - - - 94 0.066 
M4 0 1 1 - - - 94 0.013 
M5 1 0 0 - - - 94 0.109 
M6 1 0 1 - - - 94 0.085 
M7 1 1 0 - - - 94 0.013 

D1

M8 1 1 1 - - - 94 0.009 
          

M1 - - - 0 0 0 112 0.519 
M2 - - - 0 0 1 112 0.116 
M3 - - - 0 1 0 112 0.098 
M4 - - - 0 1 1 112 0.034 
M5 - - - 1 0 0 112 0.104 
M6 - - - 1 0 1 112 0.082 
M7 - - - 1 1 0 112 0.027 

D2

M8 - - - 1 1 1 112 0.021 
          

M1 0 0 0 0 0 0 229 0.373 
M2 0 0 0 0 0 1 229 0.051 
M3 0 0 0 0 1 0 229 0.041 
M5 0 0 0 1 0 0 229 0.053 
M6 0 0 0 1 0 1 229 0.037 
M9 0 0 1 0 0 0 229 0.075 

M10 0 0 1 0 0 1 229 0.010 
M13 0 0 1 1 0 0 229 0.013 
M17 0 1 0 0 0 0 229 0.045 
M33 1 0 0 0 0 0 229 0.073 
M34 1 0 0 0 0 1 229 0.010 
M35 1 0 0 0 1 0 229 0.011 

D3 (all 
models with 

weight 
>=0.01) 

M41 1 0 1 0 0 0 229 0.060 
          
warm =  indicator for warmwater fishery 
still = indicator for stillwater environment 
catch = catch rate 
inc = income 
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Table 7: Estimated Coefficients and Predictions for Sport Fishing Data

   model 
relevant coeff's for 

prediction exponentiated distribution of predictions 
Data Space Model n weight const ln(catch) ln(inc) mean std nse low up width 

             
D0 M1 73 - 2.101 -0.091 0.116 67.127 94.143 0.421 66.302 67.953 1.651 

             
M1 94 0.589 1.278 -0.070 0.198 75.260 89.731 0.401 74.473 76.047 1.574 
M2 94 0.116 1.814 -0.036 0.133 58.446 64.415 0.288 57.881 59.011 1.130 
M3 94 0.066 0.301 -0.189 0.302 67.063 74.234 0.332 66.412 67.714 1.302 
M4 94 0.013 1.016 -0.095 0.214 58.540 65.788 0.294 57.963 59.117 1.154 
M5 94 0.109 1.503 -0.031 0.160 58.437 64.237 0.287 57.873 59.000 1.127 
M6 94 0.085 2.117 -0.034 0.104 58.431 63.823 0.286 57.872 58.991 1.119 
M7 94 0.013 0.886 -0.095 0.226 58.816 65.485 0.293 58.242 59.390 1.148 

D1

M8 94 0.009 1.444 -0.097 0.175 57.883 64.508 0.289 57.317 58.448 1.131 
             

D1, weighted average - 112 - - - - 68.925 79.923 0.358 68.224 69.626 1.402 
             

M1 112 0.519 3.711 0.066 -0.050 76.073 141.499 0.633 74.832 77.314 2.482 
M2 112 0.116 3.982 0.060 -0.070 79.788 141.514 0.633 78.547 81.030 2.483 
M3 112 0.098 3.738 0.061 -0.057 75.880 139.043 0.622 74.661 77.100 2.439 
M4 112 0.034 4.331 -0.106 -0.085 86.487 140.202 0.627 85.257 87.716 2.459 
M5 112 0.104 4.113 0.060 -0.081 81.361 148.390 0.664 80.060 82.662 2.602 
M6 112 0.082 3.552 0.056 -0.028 81.897 139.779 0.625 80.671 83.122 2.451 
M7 112 0.027 4.218 -0.103 -0.074 87.100 148.214 0.663 85.800 88.400 2.600 

D2

M8 112 0.021 4.044 -0.099 -0.058 89.162 153.572 0.687 87.815 90.509 2.694 
             

D2, weighted average - 112 - - - - 78.440 142.073 0.636 77.194 79.687 2.493 
             

M1 229 0.373 0.827 -0.072 0.231 80.799 120.148 0.538 79.746 81.853 2.107 
M2 229 0.052 0.98 -0.057 0.219 83.936 127.849 0.572 82.815 85.057 2.242 
M3 229 0.041 1.305 -0.021 0.186 85.828 130.985 0.586 84.679 86.977 2.298 
M5 229 0.054 1.131 -0.059 0.205 83.622 124.39 0.557 82.532 84.713 2.181 
M6 229 0.037 0.757 -0.054 0.239 82.748 122.661 0.549 81.672 83.824 2.152 
M9 229 0.075 -0.154 -0.082 0.307 66.299 93.872 0.42 65.476 67.122 1.646 

M10 229 0.010 -0.022 -0.07 0.296 68.065 96.538 0.432 67.218 68.912 1.694 
M13 229 0.013 0.001 -0.069 0.294 68.135 98.28 0.44 67.273 68.997 1.724 
M17 229 0.045 1.132 -0.046 0.201 83.019 127.803 0.572 81.898 84.14 2.242 
M33 229 0.074 -0.47 -0.08 0.335 65.914 91.694 0.41 65.11 66.718 1.608 
M34 229 0.010 -0.275 -0.067 0.319 68.08 97.649 0.437 67.224 68.936 1.712 
M35 229 0.011 0.142 -0.018 0.277 70.804 104.73 0.469 69.886 71.723 1.837 

D3 (all models with 
weight >=0.01) 

M41 229 0.060 0.903 -0.08 0.21 66.723 93.643 0.419 65.902 67.544 1.642 
             

D3, weighted average* - 229 - - - - 77.448 114.190 0.511 76.446 78.450 2.004 
             

mean = posterior mean / std = standard deviation / nse = numerical standard error / low (up) = lower (upper) bound of numerical 
95% confidence interval for the mean / width = (up – low) 
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