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Abstract

We study a one-sector stochastic optimal growth model whssduction is affected by a
shock taking one of two values. Such exogenous shock may reatéplicatively or additively.
A result is presented which provides sufficient conditiamenisure that the attractor of the iter-
ated function system (IFS) representing the optimal pplgwa generalized topological Cantor
set. To indicate the role of the strict monotonicity coratition the IFS in this result, examples
of attractors, which are not of the Cantor type, are constduwith iterated function systems,
whose maps are contractions and satisfy a no overlap pyopert
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1 Introduction

In this paper we provide a further generalization of the ®amrk introduced by Mitra and Privi-
leggi [11], where a stochastic one-sector discounted @byrowth model with an iso-elastic utility
function, and a Cobb-Douglas production function affedtgch multiplicative random exogenous
shock taking one of two values, was investigated. This, in,twas an expansion of the specific
example thoroughly studied in Mitra, Montrucchio and Reggi [10], where utility was assumed
to be logarithmic.

Here, the general setting of Brock and Mirman [3] is con®defsee also [9]): both the util-
ity function and the production function are any increasingcave twice differentiable functions
satisfying the standard assumptions of neoclassical diged optimal growth models. Two speci-
fications of the model are considered: the case in which thgara shocks affect production multi-
plicatively, and the case in which random shocks are addiilne assumption of a discrete random
variable taking one of two values to describe the uncegtaihthe model is maintained as in [11]. In
such a setting, suitable sufficient conditions on the patarsef the model under which the invariant
distribution is supported on a generalized Cantor set dabkshed.

The paper is organized in two main parts. In the first parerdihding a lower bound for the
largest fixed point of the lower map of the Iterated Functigat&m (IFS) generated by the optimal
policy, we establish a sufficient condition for the cruaial overlap propertyof the IFS, which in
turn is a necessary condition to obtain an attractor of ti® tRat is a stable invariant set of the
stochastic process of optimal output, with the featuresgdreeralized topological Cantor set.

In the second part we study topological properties of theaetivr of the IFS describing the
optimal dynamics. We first define thgeeneralized topological Cantor séh set which is totally
disconnected and contains no isolated points) as the @ttratan IFS with nonlinear maps, as
opposed to the well known lineaniiddle«” Cantor setobtained as the limit of iterations of linear
maps. Then, we use the general theory of IFS to establisiwtih@mbever the no overlap property
holds and the maps of the IFS are strictly monotone and adiviea the attractor of the IFS is a
generalized topological Cantor set. This result appliesady to the findings of the first part of the
paper, thus yielding ranges for the values of the parameteis stochastic one-sector growth model
such that its invariant distribution is supported on a gelweed topological Cantor set, provided that
the maps of the IFS are contractions.

A section of the second part is devoted to construct couxaenples that test robustness of the
main result. We focus on the essential role played by strami@tonicity: whenever it is relaxed,
while the no overlap property is kept in place and the mapsaméractions, it becomes straightfor-
ward to construct attractors which contain isolated padntson-trivial intervals, and thus cannot be
topological Cantor sets.

The outline of the paper is as follows. Section 2 containssziigtion and basic properties of
the model with the assumptions that hold throughout all thesequent sections. Section 3 is con-
cerned with the no overlap property of the maps constitutiegoptimal IFS: sufficient conditions
for the no overlap property in terms of the parameters of thdehare established, both for the mul-
tiplicative shocks and for the additive shocks cases. Ini@ed the notion of topological Cantor
set is discussed and the main result, establishing conditinder which such a set is the attractor
of the IFS describing the optimal dynamics of our growth mipepresented. Some examples of
attractors which are not of the Cantor type are illustrate8ection 4.3. Finally, Section 5 reports
some concluding remarks. All proofs are gathered in the Adpe



2 Preliminaries

We consider the standard model of optimal growth under taicsy as presented in [3] and [9]: the
production functionf (z,r) depends on the amount of capitabmployed and on some exogenous
shockr which is a random variable taking one of two values, r € {rg,r1}, 7o < 71, Whererg
occurs with probabilityp € (0,1) andr; with probability 1 — p, independently through time. We
shall study two specifications of the production functiome avith multiplicative shocks and one
with additive shocks. So, there is a functién; R, — R, such thatf (z,r) = rh (z) in the first
case and (z,r) = h (z)+r in the second, fofz, r) € R, x {ry, r }. Both the production function,
h, and the utility functionu, are continuous o, and areC? functions onR, , satisfying the
following standard assumptions:

h(0) =0, h'(-) >0, h" (+) <0, 1i%1+ h' (x) = +o0, lilf ' (x) =0, (1)
u (+) >0, u’ (1) <0, lim+ u' (r) = +o0. 2)
z—0

Under (1), there is a unique numbler> 0 such thath (k) = k, h(x) > kforall 0 < z < k and
h(x) < kforall x > k. Thus, a closed interval of the forf, k,, ] can be taken as the state space
for our model. Thus, the “primitives” of our model are the ¢tionsh andu, the values, r, the
probabilityp and the discount factar € (0, 1).

One can apply the standard theory of stochastic dynamicamaging to obtain an (optimal)
value function,V : R, — R, and two (optimal) policy functions; : R, — R, andy : R, —
R, which we will interpret as the consumption and the investirienctions respectively. That
is, given any output levely > 0, the optimal consumption out of this output is given bpy),
while the optimal input choice (for production in the nextipd) is thenvy (y) = [y — g (v)]. In
both specifications for the exogenous shocks (multipliesind additive), we denot€]y (v) , ro] by
Gy (y), which gives the output obtained in the next period whéakes the value,, andf [y (y) , ]
by G, (y), which gives the output obtained in the next period whéskes the value,. The inverse
of h’ will play an important role in our analysis, and will be deedby F'.

Following [3] and [9], one can establish several useful praps of the value and policy func-
tions. We summarize these results (without proofs) in tiieweng Proposition, where we denote

(0f J0x) (x,r) by f (z,7).
Proposition 1 The value functionl’, and the policy function;, satisfy the following properties:

(i) Visconcave oriR,, and continuous o _;
(i) giscontinuousoiR, and0 < g (y) <y fory > 0;
(i) ¢ (y) and~y (y) are both strictly increasing i onR ;

(iv) fory > 0, we have
u'lg )] = 0 {pu'[g (Go ()] fo [y (1) rol + (1 = p)u' [g (G1 ()] fa [y (), 1]} (3)
The optimal policy function leads to the stochastic process

Yoor = { Go(y:)  with probabilityp fort >0 @

G1(yr) with probabilityl — p



Alternately, one might say that the optimal policy functleads to an iterated function system (IFS)
{Go, G1;p,1 —p}. Itis known (from [3]), that there is a unique invariant disttion, 1, of the
Markov process described by (4), and the distribution oinogtoutput at date, call it 1;, converges
weakly tou..! We are principally interested in the geometric propertiefe support of..

It can be checked that the functiong and G; have positive fixed points, and all the fixed
points are less thaky.,. Denote byu the largest fixed point of7y, and byb the smallest fixed point
of G;. Following [3], one can establish that < b. The intervala, b] is an invariant stable set
of the stochastic process (4). In particular, the suppoyt &f contained ina, b]. Consequently,
in studying the support g, it is enough to concentrate on the stochastic process (#),imtial
output,y € [a,b]. Equivalently, one need only study the IR&, G1;p, 1 — p} on the state space
X = [a,b].

3 The No Overlap Property

Let us examine some elementary features of the{lF$ G1; p, 1 — p} on the state spacE = [a, b].
First, we look at the functiods,. We haveG, (a) = a; and, fory € (a, b], we haveGy (y) < y, SO
the graph of the map lies below th&° line (except at)). FurtherG (y) increases withy, reaching
Gy (b) < Gy (b) = baty = b. Next, we look at the functionr;. Clearly,G; (a) > Go(a) = a; and
for all y € [a,b), we must haver, (y) > y, so the graph of the map lies above t#i#8 line (except
atb). Further,(¢; (y) increases withy, reachingz; (b) = b aty = b.

We say that the two mags, andG, do not overlapgf:

Go (b) < G1 ((l) (5)

so that the maximum of th€', function is less than the minimum of tlie¢, function on the state
spaceX = [a,b).

We want to find conditions on the primitives of the model, sfealy, p, 6, o, 1, which ensure
the no overlap property (5). We shall obtain similar cormuhs for the two cases — multiplicative
shocks and additive shocks — which are treated separately.

3.1 Multiplicative Shocks

Let the production function have the forf(x,r) = rh (x), with h satisfying (1), and let the set
of values of the random variabtebe {r,, 7} = {q, 1}, whereq € (0,1). We interpret the value
1 of r to be the “normal” state, withh representing a downward production shock, occurring with
probabilityp € (0,1). Therefore, we can re-label the fixed point/oés the numbek,, = &k such
thath (k) = k. The two maps of the IFS are in this casg(y) = ¢h [y (v)] andG; (y) = h [y (v)].

We start by establishing a lower bound for the fixed paiat the (lower) mag~, which depends
on the parameters of the model. Recall thRadenotes the inverse éf.

Lemma 1 The following inequalities hold true:

Y(a) > F (ﬁ) (6)

a > qh [F <L>} . (7)
opq

1For an alternate and simpler approach to this result, see [2]

and
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The proof is reported in the Appendix.
Remark 1

() It is immediately seen that Lemma 1 holds under more genssalraptions on the stochastic
shocks. In particular, it holds under the assumptions of ib&s 3.1 and 3.2 in Brock and
Mirman (1972); that is, for any random variableon some intervalrg, r1], with ry > 0,
provided thatPr (o) > 0. Moreover it holds for any production functigh(z, ) with random
shocks that not necessarily enter multiplicatively, butsthat f («, -) is non-decreasing and
f (-, r) satisfies conditions similar to (1).

(ii) If, for example,h (z) has the Cobb-Douglas form, that i8,(z) = z'~*/(1 — «) for z >
0, wherea € (0,1), then conditions (6) and (7) becomea) > [1/ (6pq)] */* anda >
[ql/a (0p)"* 7t / (1 — a) respectively.

It is convenient to label the lower bound in (7) as follows:

1
0,, = qh [F <%)} . (8)

Note that our proof of Lemma 1 shows tl#gt constitutes a lower bound for all fixed points@§;
specifically,a > 6,,,.

Lemma 1 is useful in constructing a sufficient condition fog ho overlap property 5 by means
of the parameters of the model.

Proposition 2 Suppose the following condition is satisfied:

Om

k
wherek is such thatc = h (k) andé,, is defined in (8). Then the IF&7y, G1;p, 1 — p} on the state
spaceX = [a, b] has the no overlap property (5).

> ¢, 9)

The proof is reported in the Appendix.
Remark 2

(i) Note that the no overlap property as stated in (9) does noedémn the utility function.

(i) If A (z) has the Cobb-Douglas form, that is(z) = z'=*/ (1 — a) for x > 0, wherea € (0, 1),
then condition (9) becomes
1/a 1/a—1
q’* (dp) > q2,
(1—a)k
which can be rewritten as
(6pa)' ™" > [(1 — a) kq]*. (10)
Sinceh (k) = k, we havek!~*/ (1 — a) = k, thatis, (1 — a)~' = k. By using this in (10)
we easily obtain condition (5) in [11]:

< p(1-a) ™



3.2 Additive Shocks

We turn our attention now to a production function which Hasform f (z,r) = h (x) + r, with
satisfying (1); moreover, let the set of values of the rand@amnmabler be {ry,r;} = {0, ¢}, where
g > 0. We may interpret the valugof r to be the “normal” state, while represents some positive
production shock, occurring with probability- p. The two maps of the IFS are in this casg(y) =
hly(y)] andGy (y) = Gy (y) + q. Let k be the unique fixed point of the mapz) = h(z) + ¢, SO
that we havei(k) + ¢ = k. Then, we can sét,, = k. Note thatk > k + ¢, wherek is the unique
positive fixed point ofh. It is also straightforward to shovelg, by implicit differentiation using
condition (1)] thatk increases agincreases.

A lower bound for the fixed point of the (lower) magr, in this case is defined by the following
lemma.

Lemma 2 The following inequalities hold true:

v(a)> F <i) (11)

op

0> h {F (%p)} . (12)

The proof is reported in the Appendix.

and

Remark 3 Unlike the case where shocks enter production multiphedyi when the exogenous
shock is additive the lower bound for the fixed paindf the (lower) mapG, does not depend
on the shock itself.

Let us label the lower bound in (7) as follows,

1
b=t [F (%)} ’ 13)

and state a sufficient condition for the no overlap propettiy Bold for the additive shocks case.
Proposition 3 Suppose the following condition is satisfied:
0, > 2h (k) — k, (14)

wheref is such that: = h (k) + ¢ andé, is defined in (13). Then the IR+, G1;p, 1 — p} on the
state spaceX = [a, b] has the no overlap property (5).

The proof is reported in the Appendix.
Remark 4
(i) Again the no overlap property as stated in (14) does not dejperthe utility function..

(i) The case where production is affected by an additive shdowslfor a more striking interpre-
tation than the previous case with multiplicative shockse Teft term in (14) does not depend
on ¢, while the right term does, singeis a strictly increasing function of; but, under as-
sumption (1), the right term in (14) divergestao ask — +oo. Therefore, condition (14),
and thus the no overlap property (5), holds whenever thekshag large enough. Note that
condition (9) does not allow for a similar interpretation asthat case also the lower bound
0,, does depend on



4 Topological Structure of the Attractor of a IFS

In the previous sections we provided enough informationhenlES{ Gy, G1; p, 1 — p} defined on
the spaceX = [a, b] so that the standard theory of IFS can be applied (8eg,[8], [1], [4] and
[5]). In view of the examples of Section 4.3, we slightly gaize the setting by considering any
pair of continuous map#, and H; defined on some compact subsépf the real line; that is, we
shall study a generic IF§H,, H;p, 1 — p}, abstracting from the mags, andG; discussed so far.

4.1 A Well Known Result on IFS

Let X C R be a compact set. Leét (X) denote the sigma-algebra of Borel measurable subsets
of X andP (X) the space of probability measures Bri.X). Recall that theBarnsley operator
S : X — X is defined by

S(E) = Hy(E)U Hy(E), forEC X, (15)
and theMarkov operatorM : P (X) — P (X) is defined by
My (B) = pp [Hy (B)] + (L= p)u [H7(B)],  forue P(X), andB € B(X),

whereH; ' (B) and H; * (B) denote the counter-image sets of the Behrough the mapg/, and
H, respectively. Operata¥/ describes the evolution of probabilities under the stath@socess

Y1 = H, (yt)7 (16)

wherez, are i.i.d. over{0, 1} with distribution{p, 1 — p} for all t > 0. We shall denote the iterates
of such operators by’ (E) = S[S*! (E)]andM® () = M [M*~! (p)] forallt > 1, with S° (E) =
EandM° (u) = p.

Recall that theHausdorff distancé is defined over the class of all non-empty compact sets in
X, K (X), by

dy (A,B) =inf {0 : AC BsandB C A5}, forA,B e K(X), (17)

where As and Bs denote the)-neighborhoodgd-parallel bodie$ of the setsA and B respectively,
that is,
As={r € X : |z —a| <oforsomea € A}

is the set of points within distan@eof A. Seege.g, [4] and [5] for more details.

In the next proposition are reported (without proof) the mraisults regarding the attractor and
the unique invariant distribution of the IKS4,, H;p,1 — p} on the space& C R induced by the
stochastic process (16) when the mafasand H; arecontractions

Proposition 4 If constants/; exist such thad < ¢, < 1 and|H; (y) — H;(z)| < ¢; |y — z| for all
y,z € X,i=0,1, thenthe IF§ Hy, H,;p, 1 — p} satisfies the following properties:

(i) there is a unique (invariant) compact sét C X such thatS (A*) = Hy(A*) U H,(A*) = A%;

(i) for any compact set, such thatS (A,) C Ay, denotingA; = S* (4y) fort > 1, we have4, D
Ay DA D DAY

(iii) A* is the support of the unique (invariant) probability digtition, * € P (X)), satisfying
p(B) =pp [Hy' (B)] + (1 —p)u* [H{ ' (B)],  forall B e B(X);
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(iv) for u € P(X), denotingu; = M*(uu) for t > 1, u; converges weakly to*.

Proposition 4 (ii) states that the iterates of the Barnsfagrator,S?, converge in the Hausdorff
distance to the unique sdt, and that convergence is monotonically decreasing whetlegestart-
ing setA, is sufficiently large to contain the union of the images délitshrough the mapé#/,, H;:
Hy(Ag) U Hi(Ag) C Ap. Often, a suitable starting séf, to construct a decreasing sequence con-
verging toA* is the spaceX itself.

We shall callA* theattractorof the IFS{ Hy, H;p, 1 — p} onthe spac&. Forthe IFS{Gy, G1;
p, 1 — p} A*isthus the support of the invariant distributiohto which the one-sector growth model
discussed in the previous sections converges asymptugtical

4.2 Generalized Cantor Type Attractors

It is well known that if X = [0, 1] and the mapgi, and H; of the IFS are linear with slope:,
0 < m < 1/2, the attractord* of the IFS is a niddle«” Cantor sefwherea = 1 — 2m. This set is
obtained by removing the open middle interval of lengith o < 1 from [0, 1] at the first step, then
removing the open middle-proportion from the two disjoint closed intervals remaipiafter the
first step, and continuing the process by removing at eagh $kee open middlev-proportion from
all the 2¢ disjoint closed intervals remaining after step 1, ast — +oo (see [10] for a thorough
discussion of this example).

The maps of the IF$G,, G1; p, 1 — p} characterizing the model discussed in the previous sec-
tions are clearly nonlinear. The natural question thataris thus under what conditions such IFS
has an attractor that resembles the typical features of Bnean Cantor type set. The answer to
this question is not obvious as long as nonlinear maps awdvied, as it will be illustrated by the
examples in Section 4.3.

First we need to make clear what are the main features clearcty a nonlinear Cantor type
set. We shall adopt a sufficiently general definition of Casei based on topological properties.

Definition 1 We shall say that a seét' C R is a generalized (topological) Cantor set on the real
line if it is totally disconnectednd perfect

This definition is fully justified,e.g, in view of Chapter 2 in [7], where it is established that
any compact metric space that is totally disconnected arféqies homeomorphic to the classical
“middle-third” Cantor set.

Let diam (E) = sup{|y — z| : y,z € E} denote thediameterof a setZ C X. Recall that the
closureof a setE C X, denoted byF, is the set containing all accumulation pointsifthat is,
points that are the limit of some sequence of pointg’inWe shall denote the composition of maps
fo: X —=Yandf; : Y — Zbyafunctionfyo f; : X — Z defined agf, o f1) () = fo[f1 (z)];
this notation extends to the composition of any finite nundienaps in the obvious way. For any

t > 0 let us denote @-sequence of zeros and onesiby= (i, i1, .., %), Wherei, € {0,1} for
k = 0,...,t, and byY, the set of all such sequences; = {(ig,i1,...,%): ix € {0,1}, k =
0,...,t}. Similarly, leti,, = (0,11, ...) denote an infinite sequence of zeros and onesYand

{(do,41,...) - iy € {0,1}, t > 0} denote the set of all such sequences. With this notationrat,ha
we can use the shorthand
H;, = Hj, 0 H;y o---0 H;,

to denote the composition of tltet- 1 mapsH,,, H;,, ..., H;, for a specific sequence of zeros and
onesi; = (ig, i1, - - .,0;) € X4.



We shall now see that the sgtconstitutes the natural environment for codifying eacimelet
in the attractord* (see Chapter IV in [1] for a more exhaustive treatment). Take compact set
K C X such thatS (K) C K; then, by Proposition 4 (ii)A* = N2, S* (K). On the other hand, by
definition of operatosS, S* (K') = U,ex, H;, (K), and thus

A= H, (K). (18)

t=0i;cX;

Note that, sinced* is unique, the right hand side in (18) must be independe.oBy definition
of operatorS and by Proposition 4 (ii){Z;, (K) 2 H;,,, (K) foralli; € ¥, andi;;; € ¥4, hence
H;, (K) is a decreasing sequence and has a limit-asco. Let ¢ = max {/y, ¢, }, then for allt > 0

and for alli, € %, iyy1 € Sipq, diam [H;,,, (K)] < diam [H;, (K)] < diam [H;, (K)], and thus
the diameter of all setH;, (K) vanishes as — oo; since the setéf;, (K') are compact for all > 0,

the limit of the sequenc#;, (K') must consist of a single point:

Yy = mHit (K> € A*7
t=0

which again must be independentiéf Through this construction we can define a map
Im:x— A* (19)

associating with each element of the 8dthat is, each sequence of zeros and dres: (i, i1, - - -)],
some point of the attractot™.

Theorem 1 reports some useful properties of the map (19)hisypurpose, we need to introduce
a distance for the set® so that we can work on a metric space. For any pair of sequ&Rcgs €
Y, let

P (looaJOO) = Eiogh o .£i¢7 (20)
wherei, € {0,1} for k = 0,...,¢, andy = max{t: i, = j;} is the largest such that the first
elements in the sequencis andj.,, coincide. If we agree to set(i., jo) = 1 wheniy # j, and
p (s, joo) = 01if i, = joo, then it can be easily shown thasatisfies the properties of a distance.
The metric spacé, p) is often calleccoding space

Finally, we generalize property (5) discussed in Sectiog 8dying that the mapH,; : X — X,
i = 0, 1, have the no overlap propettif

max Hy(z) < min H (). (21)

Theorem 1 The magl : ¥ — A* defined by

e}

v =T (i) = (Hi, ()

t=0

for some compact sét C X such thatS (K) C K, satisfies the following properties:

() itis independent of the sé&f and is onto;

°Note that the no overlap condition (21) in this context isieglent to thestrong separation conditiodefined on p.
35in [4].



(ii) it is Lipschitz with respect to the distance defined in (203hwWipschitz constant given by
diam (A*), that is,

IIT (ine) — I (joo)| < diam (A¥) p (isosJoo) , forall i, joo € %,
and hencdl is continuous;

(i) if the mapsH;, i = 0,1, are injections and the no overlap property (21) holds, theis
bijective.

Theorem 1 is well known in the literature on fractals; for d freatment, a good reference is
Chapter IV in [1].

Note that, sincé{;, are contractions for all, € {0,1} andk =0, ...,¢, H;, is also a contraction,
and therefore it has a unique fixed point, which will be deddefix (H;,). The following theorem
is due to Williams [13].

Theorem 2 The unique attractorA* of the IFS{H,, Hy; p, 1 — p} is the closure of the set of fixed
points of arbitrary finite compositiond;,, for all ¢ > 0, namely,

See [13] or [8] for general proofs.
We are now ready to state the main result of this section.

Theorem 3 Suppose that the mags;, : X — X, i = 0, 1, are strictly monotone on some closed
interval X = [a, b] and constantg; exist such thab < ¢, < 1 and|H; (y) — H;(2)| < ¢; |y — z| for

all y, z € X andi = 0, 1, moreover assume that the no overlap property (21) holdenTihe unique
attractor A* of the IFS{H,, Hy; p, 1 — p} is totally disconnected and perfect, and therefore it is a
generalized (topological) Cantor set.

The proof is reported in the Appendix. For a generalizatibfiteeorem 3 see Theorem 3.4 in
[6].

The following section contains examples illustrating thkerof the assumptions in Theorem 3.
All three main assumptions, no overlap, contractivity amgtismonotonicity of the map#/;s, seem
to be essential. Clearly, the role of no overlap is neededvwe hholes” spreading during iterations
of operatorS?, a necessary requirement for the attractor to be a Cantersgp The role of the other
two assumptions appears more subtle. Contractivity, besadsuring existence and uniqueness of
the attractord* as stated in Proposition 4, causes the diameter of the caenpoaf each pre-fractal
to shrink fast enough so that enough space for the new apgdaules to survive is left after iterates
of operatorS?. Strict monotonicity prevents such components to shriokfast so that the attractor
can have neither isolated points nor components which caaireconnected.

We conclude this section by applying Theorem 3 to the onesgeowth model discussed in
Sections 2 and 3. Note that strict monotonicity of the optipwicy postulated by Proposition 1
(i) implies that the maps$7, and G of the IFS describing the evolution of optimal output levels
through time must be always strictly increasing; thus thky eonditions required for the attractor
of the model to be a Cantor set are the no overlap propersed in Section 3, and contractivity
of the maps7, andG;.

10



Corollary 1 Assume that the mapgs, and G; satisfy the no overlap property (5) — i.e., either
condition (9) for the multiplicative shocks case, or coiulit(14) for the additive shocks case —and
that constantg; exist such that < ¢; < 1 and|G; (y) — G;(z)| < l; |y — z| forall y, = € X and

i =0, 1. Then the attractorl* of the IFS{G, G1;p, 1 — p} associated to the stochastic process (4)
is a generalized (topological) Cantor set.

The goal of establishing sufficient conditions (on the ptives of the one-sector optimal growth
model) for the maps§:, and G, to be contractions directly in terms of the parameter of ttosvth
model is the topic of a companion paper under preparation.

4.3 Examples

The aim of this section is to stress the role of strict monigignin Theorem 3. The following
examples show that when strict monotonicity is relaxed,dtweclusion of Theorem 3 no longer
holds. Indeed, under such relaxation, we are able to canistamples of attractors which are
either purely isolated points or the union of non-triviairvals, even while the other assumptions,
no overlap and contractivity, are kept in place. Note thalliexamples we assume that the mafs
are non-decreasing, that is, only strict monotonicity (eore generally, injectiveness), as required
by Theorem 3, is dropped. We shall usé maps in order to dispel any doubt that we might be
looking for pathological cases. Moreover, if the mas areC?, it is well known that the IFS
{Hy, Hi;p,1 — p} can be obtained as the solution of some concave stochastordy programming
problem (see [12]).

We shall assume thdf, and H; are contractions on some intendl = [q, b], that is, constants
¢; existsuch thab < ¢; < 1and|H; (y) — Hi(2)| < 4 ly — z| forall y, z € X andi = 0, 1, and that
H, and H, are only non-decreasing, that B; (y1) < H; (y,) whenevery; < y, fori = 0,1. The
last assumption allows us to restate the no overlap propEntylition (21), as follows:

HO (b) < H1 ((l),

which will be assumed in all examples.
We start with an extreme example producing a trivial atoaof purely isolated points, followed
by a non trivial example again exhibiting an attractor ofgdyisolated points.

Example 1 Consider the following maps defined on some intejual):
Hy (y) = a, H, (y) =b.

These maps are clearly? and non-decreasing oX = [a,b]. Hy(b) = a < b = H, (a) and thus
there is no overlap and also contractivity is trivially ssfied. As it can be seen in figure 1(a), the
attractor of the IFS{Hy, Hy;p,1 — p} on X = [a, b] is A* = {a, b}, which is a set of two isolated
points and, clearly, it is not of the Cantor type, as is totalisconnected but not perfect. The dét

is invariant for the IFS and is produced after the first itecet of the stochastic process (16).

Example 2 Consider the following maps:

0 for0 <y <1/4
(72/5) y® — (54/5) y* + (27/10) y — 9/40 for1/4<y<1/3
Ho(y) = —(36/5)y° + (54/5)y* — (9/2) y + 23/40 for1/3 <y <2/3
(72/5) 3> — (162/5) 3> + (243/10)y — 233/40  for2/3 <y < 3/4
1/4 for3/4 <y <1,
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FIGURE 1: (a) Hyp andH; as in Example 1; (bJ{y andH; as in Example 2.

3/4 for0<y<1/4
(72/5) y® — (54/5) y* + (27/10) y + 21/40 for1/4 <y <1/3
Hy (y) =< —(36/5)y>+ (54/5) 3> — (9/2) y + 53/40 for1/3 <y <2/3
(72/5) y® — (162/5) y* + (243/10)y — 203/40  for2/3 <y < 3/4
1 for3/4 <y <1.

It can be shown that these piecewise maps@teand non-decreasing oX = [0,1]. Hy (1) =
1/4 < 3/4 = Hy (0) and thus there is no overlap. Contractivity can be easilyckkd by computing
derivatives orny = 1/2, which is the point where both maps are steepest:

Hj(1/2) = H; (1/2) =9/10 < 1
and thus they are both contractions. As it can be seen in fityiog the attractor of the IF$H,, H;
p,1 —p}onX =[0,1] is A* ={0,1/4,3/4, 1}, which is a set of four isolated points and, clearly,
it is not of the Cantor type, as is totally disconnected butpesfect. The setl* is invariant for the
IFS and is produced just after two iterations of the stocttgstocess (16).

The next example shows how it is possible to construct an IR an attractor which is the
union of two non-trivial intervals. Such an attractor is d#ély a perfect set, but it is not totally
disconnected.

Example 3 Consider the following maps:

((225/8) 3 for0 <y <1/9
—(75/4) y® + (75/8) y* — (5/8) y + 1/72 for1/15 <y < 4/15
(225/8) v — (225/8) y? + (75/8)y — 7/8 for4/15 <y <1/3
Hy(y) =< 1/6 for1/3 <y <2/3
(225/8) y3 — (225/8) y? + (75/2) y — 49/6 for2/3 <y <11/15
—(75/4) y® + (375/8) y* — (305/8) y + 743/72  for11/15 <y < 14/15
| (225/8) y® — (675/8) y* + (675/8)y — 667/24  for14/15 <y <1,
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FIGURE 2: Hy and H; as in Example 3.

[ (225/8)y° +2/3 foro <y <1/9
—(75/4) y> + (75/8) y? — (5/8) y + 49/72 for1/15 <y <4/15
(225/8) y> — (225/8) y* + (75/8) y — 5/24 ford4/15 <y <1/3

H, (y) = 1/6 for1/3 <y <2/3
(225/8) y? — (225/8) y? + (75/2) y — 15/2 for2/3 <y <11/15
—(75/4)y® + (375/8) y*> — (305/8) y + 791/72 for11/15 <y < 14/15
(225/8)y> — (675/8) y* + (675/8) y — 217/8 for14/15 <y < 1.

\

It can be checked that these piecewise mapg“&rand non-decreasing oX = [0,1]. Hy (1) =
1/3 < 2/3 = H, (0) and thus there is no overlap. They are contractions, as ttiefivatives are
bounded by their values an= 1/6:

H!(1/6) = H! (1/6) = 15/16 < 1.

Figure 2 shows that the attractor of the IRy, Hy;p,1 —p} on X = [0,1] is A* = [0,1/3]U
[2/3, 1], that is, the disjoint union of two closed non-empty intésvahis is not a Cantor type set,
as it is perfect but not totally disconnected. The4ets invariant for the IFS and is produced just
after the first iteration of the stochastic process (16).

These examples show how attractors which are not of the €&e can be constructed by
relaxing strict monotonicity of the mag$;s: the trick to obtain an attractor of purely isolated points
versus an attractor which is the union of closed non-empérvals is to choose maps which are flat
in some appropriate subset of the inter¥ak [a, b].

Remark 5 It is important to stress that attractors of the kind desedhln the previous examples,
which are not of the Cantor type, are ruled out in the one-@egptimal growth model of Section 2
by Corollary 1. In other words, the main finding of the preseotk is that whenever the no overlap
property holds and the maps representing the optimal pareycontractions the attractor of the
stochastic one-sector growth model is necessarily a géizechCantor set (since the optimal policy
generates an IFS with strictly increasing maps).
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5 Concluding Remarks

The main results of this work, Theorem 3 and Corollary 1, mtesufficient conditions on the sto-
chastic one-sector growth model described in Section 2adltle invariant probability distribution
to which the model converges in the long run is supported apaldgical Cantor set. Proposition 1
(iif) and Propositions 2 and 3, provide conditions on theapaaters of the model for two of the three
sufficient conditions of Theorem 3 to hold: monotonicity armoverlap property. If, in addition,
the maps of the iterated function system (4) are contrastitwven Corollary 1 holds. The problem of
finding conditions in terms of the parameters of the modelh$hat the maps describing the optimal
policy turn out to be contractions (thus filling the gap leiit by the last condition needed to apply
Theorem 3), is addressed in ongoing research by the autbdrs,reported at a future date.

Appendix

Proof of Lemma 1. Clearly, (7) follows immediately from (6) by strict monoterty of ~ and since
a is a fixed point forGy, that is,a = Gy (a) = gh [y (a)].

To prove (6), take any fixed point for the mapGy, ¥ = Gy (y). We calculate the stochastic
Ramsey-Euler equation (3) [Proposition 1, (iv)jat ¥:

u'lg ()] = 6{pu’ [9 (Go D)) ah' [y )] + (1 = p) ' [g (G2 ()] 1" [v ()]}
> opu’ 9 (Go ()] ah' [7 ()]
= opu’ [g (W) " [y (9)],

where the last equality holds singe= G, (y). Thus, we have

1 /
%>h[ v ()]

By applying the decreasing functioR, to both sides we get

1
Fl— ) <7,
( 5pq) 7 (9)
and sincey is an arbitrary fixed point for the mag,, inequality (6) is establishes.

Proof of Proposition 2. SinceG, (a) = (a/q) and Gy (b) = ¢G; (b) = ¢b, the no overlap
condition (5) is equivalent to

qb < g. (22)

Asb < k, a sufficient condition for (22) to hold ig: < a/q, which, since: > 0, leads immediately
to condition (9)m

Proof of Lemma 2. As in the proof of Lemma 1, (12) follows immediately from (1dy strict
monotonicity ofh and since: is a fixed point forG,, that is,a = G (a) = h [y (a)]. For any fixed
pointy of the mapG,, y = Gy (y), through a similar use of the stochastic Ramsey-Euler exuat
(3) as in the proof of Lemma 1, we easily obtain

1,
%>h[ v ()] -
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By applying the decreasing functioR, to both sides we get

F(5) <.

and sincey is an arbitrary fixed point for the mag,, inequality (11) is establishes.

Proof of Proposition 3. SinceGy (b) = G1 (b) — ¢ = b — g andG, (a) = a + ¢, the no overlap
condition (5) is equivalent to
b—a < 2q. (23)

Asb < kanda > 6,, a sufficient condition for (23) i& — 6, < 2¢, which, by substituting =
k—h(k),yields (14)m

Proof of Theorem 3. SinceS (X) C X, we can use Proposition 4 (ii) to construct a monoton-
ically decreasing sequence of sets converging'taon the Hausdorff distance starting froxi =
la,b]: denotingA; = S*(X) fort > 0, we haveX = Ay D A; D Ay, D --- D A*. The sets4, are
calledpre-fractals as they provide increasingly better estimations of theetibr A* ast becomes
larger. Note that, if the starting setis = X = [q, b], all pre-fractals4, are the union of closed
intervals, which are calledomponentsf the pre-fractald;. Clearly each component is a set of the
type H;, (X)) for some sequendeg € ¥;. Since the map#/; are strictly monotone — and thus they
are injections — and the no overlap property (21) holds, lfar 2 0 the pre-fractal4, is the union of
2" non-empty closed disjoint intervalst; = U, e, H;, (X) with H;, (X) N H;, (X) = @ fori; # j;.
Moreover Theorem 1 (iii) applies and, for any two poigts € A* such thaty # z, we can write
y =11 (i) = N2 H;, (X) andz =11 (joo) = N2 Hj, (X) With i, joo € ¥ andi # joo. But this
implies that there i9 < t < oo such thaf, # j, with y € H;, (X) andz € H;, (X). SinceH;, (X)
andHj, (X) are closed and disjoint}* C A;, andy, z are arbitrary, this is enough to establish that
A* is totally disconnected.

To show thatd* is also perfect we shall use Theorem 2. We must show that peenyy € A*is
the limit of some sequence of (distinct) pointsdn. Lety € A*; then, by Theorem 2, either ga)=
fix (H;,) for somei, € 3, t > 0, or b) itis the limit of some sequence of such points; limy, . yx
where, for allk, y, = fix (H;,) for somei, € 3, t > 0. Let us consider case (a) and assume that
y = fix (H;,) for somei; € ¥4, t > 0; thatis,y = H;, (y). Now choose € {0,1} so thatz =
fix (H;) andz # y; since there are two distinct mapg and H; in the IFS, such choice is always
possible. Clearly, by Theorem 2,c A*. Define the sequenag, = (H;,)" (z), where(H;,)" =
H;,o ---o H;, denotes thé-fold composition of the mapf;,. As H;, mapsA* into itself andz €
A*, yp € A* for all k. Sincel;, is a contraction and is strictly monotone, sq%, )", and thus the
sequence, constructed so far convergesit@nd contains distinct elementst for all k; hencey
is an accumulation point of*. As far as case (b) is considered, note that in this gase A* for all
k; thusy turns out to be an accumulation point4f by definition, and the proof is completa
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