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Abstract

In this paper we model taxpayer participation in an unanticipated tax amnesty

which can be entered by paying a fixed amount. Taxpayers are characterized by

a Constant Relative Risk Aversion (CRRA) utility function and differ in relative

risk aversion coefficient and in income. With minor changes the same model also

describes a FATOTA (Fixed Amount of Taxes or Tax Audit) system. Our results

show that amnesties may fail as a self-selective device to fully separate large-scale

from small-scale tax evaders and to extract resources from the former. Only taxpayers

whose relative risk aversion falls within a given interval participate, while those whose

evasion is too small or too large do not enter. The model is used to estimate relative

risk aversion and tax evasion of participants in the 1991 and 1994 Italian income tax

amnesties.
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1 Introduction

Attitudes toward risk play a key role in determining citizens reactions to taxation. Risk

aversion, which is often assumed, helps explain why tax systems are viable, as it commands

the willingness to pay risk premia, even when the expected penalties are small. On the

other hand, differences in risk aversion may give rise to equity problems. Taxpayers who

differ in their risk attitudes may differ in their degree of tax compliance. The actual tax

burden thus varies without any equity justification. Efficiency problems are also likely to

arise, such as the “excess burden” of tax evasion pointed out by Yitzachi (1987).

Taxation could, however, be designed with a view to exploiting differences in risk at-

titude. Some specific tax law provisions seem in fact to do so in promising to remove, at

a given price, the uncertainty stemming from random tax audits, thus offering insurance

in order to induce the self-selection of taxpayers. The FATOTA system (see Chu [1990]),

for example, allows taxpayers to pay a Fixed Amount of Taxes (called FAT), rather than

to report income as usual and run the risk of a control. By assuming that all taxpayers

have the same preferences and are risk averse1, but differ in income, Chu (1990) shows that

the fixed tax will be chosen by those prone to the greatest evasion. The welfare improv-

ing characteristics of the FATOTA system resemble those of plea bargaining in criminal

proceedings2, which, at given conditions, induces the self-selection of the indicted. Unan-

ticipated tax amnesties in which participants make fixed payments may be modelled in a

similar way, as they remove the threat of (further) controls.

In this paper we present a tax amnesty model, based upon the expected utility ap-

proach, in which participants must pay a fixed amount. We depart from previous research
1Chu (1997) assumes in an example logarithmic utility (implying DARA, Decreasing Absolute Risk

Aversion) which belongs to the family of utility functions we study here.
2On this topic see Grossman and Katz (1983).
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conducted by Marchese and Privileggi (1997), which used a Constant Absolute Risk Aver-

sion (CARA) utility function, and here assume that all taxpayers are characterized by a

Constant Relative Risk Aversion (CRRA) utility function. Heterogeneity among taxpayers

is assumed. Taxpayers thus differ in relative risk aversion coefficient and in income, which

are treated as continuous unobservable variables.

The main result of this paper is that amnesties may fail as a self-selective device to

fully separate large from small evaders and to extract resources from the former. If tax-

payers display CRRA preferences, very rich taxpayers with very low risk aversion might

not enter3; participants are only those whose evasion belongs to a given interval. This re-

sult accords with available empirical research, which provides case studies (see Fisher et al.

[1989]) in which only small evaders participate in amnesties. It also accords with conjecture

and examples put forth in the literature about plea bargaining (see, e.g., Grossman and

Katz [1983]). However, the modelling of possible self-selection failures of FATOTA or tax

amnesties has not been considered in previous literature (see for example Chu [1990], Fran-

zoni [2000] and Marchese and Privileggi [1997]) and does not represent a trivial extension

from the plea bargaining literature.

In Section 2 we model the reaction to an unanticipated amnesty by a partial evader who

has previously optimally reported his income. With minor changes, the same model also

describes the reaction to a FAT proposal. The non-trivial analytical difficulties arising with

the CRRA utility function specification have been overcome by constructing and solving an

approximated version of the model. In Section 3, amnesty participants are characterized

with reference to their relative risk aversion and tax evasion. In Section 4, results of a

deterministic estimation on data pertaining to the 1991 and 1994 Italian tax amnesties are
3With CARA preferences this cannot happen, and all taxpayers with a percentage of concealed income

equal to or greater than a given threshold enter the amnesty (see Marchese and Privileggi [1997]).
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reported. The conclusions focus on the efficiency and equity implications of tax amnesties.

2 Modelling the Taxpayer’s Problem

The utility that taxpayers enjoy out of their income w is assumed to be of the standard

CRRA form, with constant relative risk-aversion coefficient α:

u (w) =
w1−α − 1
1− α

. (1)

In the class (1) we also include the case α = 1 by taking u(w) = limα→1 (w1−α − 1) / (1− α) =

lnw. To focus upon the tax evasion problem, it is assumed that income is exogenous and

non random, thus ignoring, on the one hand, the feed-back of taxation upon hours of work,

savings, etc., and, on the other hand, background risks the agent may face.

A progressive tax system is considered, where the income tax is approximated by the

following function:

t(y) = γyδ, (2)

where y denotes the reported income and 0 < γ < 1, δ > 1 are parameters such that

γyδ < y; i.e., the reported income must always be higher than the amount of tax to be

paid. This implies that y < γ1/(1−δ) must hold.

As we rule out rewards to honest taxpayers by assumption, a taxpayer will report

y ≤ w, where w > 0 denotes the true income. For reasons of analytical tractability that

will become clear in Section 3, we assume that the sanction to be paid in case of detection

is proportional to the amount of concealed income:

bs (w, y) = σ (w − y) , (3)

where σ > 0 is a penalty rate. Since we are considering a progressive tax system defined

as in (2) joined with a sanction function bs (w, y) which is linear in concealed income, the
4



selection of a suitable range of values for parameter σ becomes a critical issue that will be

extensively discussed in Appendix B.

To ensure that the taxpayer can always bear the loss in case of detected evasion, it is

assumed that:

σ (w − y) ≤ w − γyδ, (4)

which implies that, for each given w, there is some4 mw such that 0 ≤ mw ≤ y, with

mw > 0 whenever y < w.

To summarize, letting

Mw = min
¡
w, γ1/(1−δ) − ε

¢
,

with ε > 0 arbitrarily small, then the feasible set of values for the reported income y is the

closed interval [mw,Mw].

2.1 Rational Taxpayer’s Behavior

We assume that, while filling in their income tax forms, taxpayers are unaware of a coming

tax amnesty, and thus only concerned with standard income tax parameters.

A rational taxpayer who earned a true income w > 0 will choose to report the amount

v that maximizes her expected utility

Eu(y) =
(1− p) ¡w − γyδ

¢1−α
+ p

£
w − γyδ − σ (w − y)¤1−α − 1
1− α

(5)

with respect to the reported income y, where 0 < p < 1 is the probability of detection.

Note that, by considering u(w) = lnw when α = 1, Eu(y) is well defined for all α > 0

and for all feasible y. Note also that Eu(y) is strictly concave over [mw,Mw] for all α > 0,

hence, there exists a unique mw ≤ v ≤Mw that maximizes the expected utility.
4Note that mw cannot be explicitly calculated, since (4) cannot be solved with respect to y; moreover

mw = 0 if and only if y = w.
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Since we are interested exclusively in the behavior of partial evaders, we shall assume

that the optimal amount of reported income v lies in the interior of the feasible set, i.e.,

mw < v < Mw; we rule out full evaders and full compliers. Thus, utility maximization is

completely described by F.O.C. in (5), which leads to

w − γvδ − σ (w − v)
w − γvδ

=

·µ
p

1− p
¶µ

σ

γδvδ−1
− 1
¶¸1/α

. (6)

Note that the assumption of interiority of solution v implies the left hand of (6) to be

strictly positive and less than one, which translates into

0 <

µ
p

1− p
¶µ

σ

γδvδ−1
− 1
¶
< 1. (7)

A necessary condition for (7) clearly is

σ > γδvδ−1, (8)

which envisages a sanction rate larger than the marginal tax rate. It will thus be assumed

that (8) holds in the following.

The choice of joining an exponential function to determine the amount of taxes due,

t(y) = γyδ in (2), to an affine function to calculate the sanction in case of detection,

s(y) = σ (w − y) in (3), does not allow for an explicit solution v of the maximization

problem. Our goal, however, is that of estimating the true income w for a given (optimally)

reported income v, and for this it is enough to have existence and uniqueness of an interior

solution for the maximization problem of rational taxpayers, characterized by (6).

2.2 Participation in an Unexpected Amnesty

Suppose that after taxpayers have reported their optimal income v, but before audits begin,

the tax administration offers the taxpayers the possibility of paying some fixed amount x in

order to avoid any applicable sanction with certainty. Ignoring, for the sake of simplicity,
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inter-temporal discounting, and assuming that no other relevant variables (e.g., true income,

penalty rate, etc.) have changed in the meantime, the taxpayer will accept the offer if she

is at least indifferent between paying the certain amount x or maintaining her status as

partial evader. Thus, in order to participate in the amnesty, the following condition must

be met: ¡
w − γvδ − x¢1−α

1− α
≥ (1− p)

¡
w − γvδ

¢1−α
+ p

£
w − γvδ − σ (w − v)¤1−α

1− α
, (9)

where the additive constants − (1− α)−1 have already been dropped from both sides. Ob-

viously, a necessary condition for (9) to hold is that the extra payment x must be lower

than the sanction:

0 < x < σ (w − v) . (10)

From the point of view of the tax administration, the reported income v is available

(observable) information, and the fixed amount x is assumed to be a parameter exogenously

provided by some government decision maker5, while the true income w and the individual

constant relative risk-aversion coefficient α are unobservable variables. By considering

jointly the optimal behavior of taxpayers as expressed in (6) and the threshold condition

(9), we are led to the following system:

£
w − γvδ − σ (w − v)¤ ¡w − γvδ

¢−1
=
n
p (1− p)−1

h
σ
¡
γδvδ−1

¢−1 − 1io1/α
(1− α)−1

¡
w − γvδ − x¢1−α ≥ (1− α)−1

n
(1− p) ¡w − γvδ

¢1−α
+p
£
w − γvδ − σ (w − v)¤1−αo

(11)

where the reported income v and the amnesty payment x are given and α and w are the

unknowns. All pairs (α, w) solving system (11), characterize the subset of taxpayers who

previously (optimally) reported an income v and now participate in the amnesty for the

fixed amount x, in terms of their relative risk-aversion α and true earned income w.
5We do not address in this paper the symmetric problem of the government, which chooses tax and

amnesty parameters in order to maximize some objective function.
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2.3 An Alternative Interpretation of the Model: Fixed Amount

of Taxes

Model (11) can also be referred to an alternative scenario, in which there are no tax

amnesties, but, rather, the government offers a FAT (Fixed Amount of Taxes) as a substi-

tute for ordinary taxation. It is assumed in this case that the government holds some a

priori belief6 about a taxpayer’s optimally reported income v. The first equation of system

(11) then links v to the taxpayer’s true income w according to (6). The FAT offer includes

the tax calculated according to government beliefs, and amounts to γvδ + x. All pairs

(α, w) solving system (11), characterize the subset of taxpayers whose (believed) reported

income is v and who accept the FAT, in terms of their relative risk-aversion α and true

earned income w, which are unknown variables. The FAT scenario is more general than

the amnesty one, as taxpayers facing a FAT offer based on a priori government beliefs

have nothing to gain from altering their actual tax report, which is requested only if they

refuse the FAT. Note that the FAT can be offered immediately as an alternative to ordinary

taxation, while the amnesty must be unexpected to work according to the system (11).

In practice, implementation of the FAT approach may be somehow difficult for the

government, as a priori information about taxpayers’ (believed) reported income v may be

poor. To overcome this difficulty, FAT offers are often designed for income classes rather
6In the standard approach, the taxpayer’s true income is the realization w of a random variable bw, known

only by himself and not by the government, while value v(w) of reported income is the outcome of the

taxpayer’s optimal strategy. The probability distribution of r.v. bw conditional to some other information β
(such as profession, branch of activity, properties owned, etc.) is common knowledge among taxpayers and

the government itself, which, by solving the same optimization problem of the taxpayers, may calculate the

induced conditional probability distribution of r.v. bv|β = v( bw)|β as well. Hence, in this scenario, the value
for v used in model (11) could be some proxy of r.v. bv|β, such as, for instance, the conditional expected
value E [bv|β].
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than for pointwise income values. Tax amnesties, instead, may hinge upon actual tax

reports to provide the government with the information needed to determine personalized

entrance payments, as the examples quoted in Section 4 show. Each scenario thus has

advantages and disadvantages7.

3 Approximating Solutions for the Model

While we have not been able to find explicit solutions of (11), in what follows we shall

study a slight simplification of (11) that provides a sufficiently clear portrait of the solution

set. Thanks to the choice made in Section 2 of a sanction function that is linear in the true

income w, we can transform the left hand side of the first equation in (11) as follows:

£
w − γvδ − σ (w − v)¤ ¡w − γvδ

¢−1
= 1− σ (w − v) ¡w − γvδ

¢−1
= 1− σ(w − γvδ + γvδ − v) ¡w − γvδ

¢−1
= 1− σ + σ

¡
v − γvδ

¢ ¡
w − γvδ

¢−1
With this position, substituting into the first equation yields

w − γvδ =
σ
¡
v − γvδ

¢
σ − 1 + r1/α , (12)

where

r =

µ
p

1− p
¶µ

σ

γδvδ−1
− 1
¶
. (13)

7The Italian government is still, in fact, oscillating between these approaches. Since 1999, a reference

reported income (and implicitly a kind of FAT tax) was introduced for small business and self-employment

income. The amount of the reference incomes v are determined on the basis of physical and economic

indicators, according to the so called Studi di Settore (economic branch studies). The method for cal-

culating reference incomes has been agreed upon by the tax administration and the small business and

self-employment representative organizations.

On the other hand a new tax amnesty, based upon the disclosure of resort to moonlighters by firms and

professionals, is presently (summer 2001) under parliamentary examination.
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For a given reported income v, F.O.C. expressed in the first equation of (11), describing

the maximizing behavior of taxpayers, provides through (12) a representation for the true

income w as a function of the relative risk aversion α:

w = σ
¡
v − γvδ

¢ ¡
σ − 1 + r1/α¢−1 + γvδ. (14)

Therefore, we shall henceforth focus exclusively on the variable α to study solutions of (11).

Dividing the second inequality in (11) by
¡
w − γvδ

¢1−α
> 0, we have

1

1− α

µ
1− x

w − γvδ

¶1−α
≥ 1

1− α

"
1− p + p

µ
w − γvδ − σ (w − v)

w − γvδ

¶1−α#
,

and by substituting the left hand side as in (12) and the right hand side as in the first

equation of (11), system (11) boils down to a single inequality where the unknown is the

sole variable α:

1

1− α

¡
A−Br1/α¢1−α ≥ 1

1− α

h
1− p+ p ¡r1/α¢1−αi

where A and B are constants defined by

A = 1− (σ − 1)x
σ (v − γvδ)

(15)

B =
x

σ (v − γvδ)
. (16)

Since, by (13) and (7), 0 < r < 1, the right hand side is well defined. In order for

the left hand side to make sense as well, we need A − Br1/α > 0 for all α > 0, which is

equivalent to A−B > 0. A direct application of (15) and (16) to this inequality, leads to

the following assumption that will hold throughout the entire paper.

A. 1 0 < x < v − γvδ.

Assumption A.1 also ensures full liability of detected evaders when tax evasion is small,

i.e., v is very close to w. Note that, by (15), (16) and A.1, both 0 < B < A < 1 and

0 < A−B < A−Br < 1 also hold.
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Under Assumption A.1 we can define a function f on R++ by

f(α) =
¡
A−Br1/α¢1−α − p ¡r1/α¢1−α − (1− p). (17)

Note that f(α) is well defined for all α > 0 and is C∞. Moreover, f(1) = 0. With this

notation at hand, system (11) proves equivalent to f(α) ≥ 0 if 0 < α ≤ 1

f(α) ≤ 0 if α ≥ 1.
(18)

3.1 The Approximated Model

Function f defined in (17) does not permit a direct mathematical approach to characterizing

solutions of (18). Hence, we shall characterize solutions of a slightly simplified system and

under some further conditions. Specifically, we shall use a suitable lower bound l < f for

0 < α < 1, while for α ≥ 1 we will be able to characterize solutions only for a subclass of
models. However, we shall see that our technique covers the most meaningful cases.

Let

φ(α) =
¡
A−Br1/α¢1−α

ϕ(α) = −p ¡r1/α¢1−α .
Clearly f = φ+ ϕ− (1− p). Now define

ψ(α) = 1− ln(A−Br)(α− 1)

and

l(α) =

 ψ(α) + ϕ(α)− (1− p) for 0 < α < 1

f(α) for α ≥ 1.
We shall characterize solutions of the system l(α) ≥ 0 if 0 < α ≤ 1

l(α) ≤ 0 if α ≥ 1.
(19)
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Lemma 1 Under A.1, ψ(α) < φ(α) for all 0 < α < 1.

Proof. Since r < 1 and A.1 implies B < A,

(A−Br)1−α < ¡A−Br1/α¢1−α = φ(α) (20)

for all 0 < α < 1. Since (A−Br)1−α is strictly convex for all α > 0, by the superdifferen-

tiability property the following is true:

ψ(α) = 1− ln(A−Br)(α− 1) < (A−Br)1−α

for all 0 < α < 1, which, coupled with (20), proves the assertion.

The proof of the lemma above explains our construction of function l. Since function

φ is neither convex nor concave over (0, 1), we replace it with the convex lower bound

(A−Br)1−α, then we further lower it by taking its first order approximation centered

on α = 1. Thus, l turns out to be a lower bound for f on the interval (0, 1), with an

improved (linearized) shape for component φ in f ; while, by construction, l = f for all

α ≥ 1. Therefore, solutions to (19) are a subset of solutions to (18); in particular, some

points in the “left-side” solution set of (18), a subset of interval (0, 1), are lost through our

approximation. Note that, by construction, l0(1) = f 0(1) = − ln(A−Br) + p ln r.

3.2 The Main Result

The following result completely describes the solution set of our simplified model, system

(19). First we further restrict the admissible range of the parameters and the reported

income.

A. 2 Parameters p, γ, δ, σ and reported income v altogether satisfy

i)

r =

µ
p

1− p
¶µ

σ

γδvδ−1
− 1
¶
≤ e−2;
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ii)

1− r < σ ≤ 1
2

³
1 +
√
5
´
.

Both (i) and (ii) are technical restrictions. The proof of Proposition 1 is based on

condition (i), which has been chosen because r ≤ e−2 is met by all available data considered
in Section 4. The idea behind the proof of Proposition 1, however, can be applied through

a symmetrical argument to obtain analogous results for the case r > e−2, as will become

clear in the sequel. The left inequality in (ii) is necessary to let both conditions (21) and

(23) in the next Proposition 1 to be well defined. Note that, thanks to the same inequality,

condition (22) is also well defined whenever (i) is satisfied, as σ > 1− r implies σ > 1−e−2

provided that (i) is true. The right inequality in (ii) is a sufficient condition for full liability

assumption (4) to be satisfied8, obtained by means of (14). Hence, since 1 − e−2 ' 0.865
and (1/2)

¡
1 +
√
5
¢ ' 1.618, Assumption A.2 narrows the admissible values for the penalty

rate σ to a subset of the interval (0.865, 1.618].

Proposition 1 Suppose A.1 and A.2 hold. Then the solution set S ⊆ R++ of system (19)

has the following properties.

i) If condition (i) of A.2 holds with equality, then S is a nonempty interval9: S = [α,α],
8It should be remarked, however, that the right inequality in (ii) is only a sufficient condition for (4).

Actually it could be relaxed a little, since from both (4) and (14) the necessary and sufficient condition

for (4) turns out to be σ ≤ 1+ (1/2)
³√
4 + r2/α − r1/α

´
and so, as r < 1, less restrictive than the right

inequality in (ii). Nonetheless, since the last condition does depend on α, such an assumption would

exogenously impose some lower bound on α itself, thus further complicating the subsequent analysis.

In general, progressive taxation is problematic to model as, on the one hand, the sanction must be high

enough to sustain increasing marginal tax rates, while, on the other, it should not be prohibitive, as full

liability is assumed.
9To be precise S = (0,α] whenever α = 0, since Eu(·) is not defined for α = 0.
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with 0 ≤ α < 1 < α < +∞, if and only if

x <
σ
¡
v − γvδ

¢
σ − (1− r) (1− r

p) . (21)

ii) If condition (i) of A.2 holds with strict inequality, a sufficient condition for S to be

non-empty and of the form S = [α,α] with 0 ≤ α < 1 < α < +∞, is the following:

x ≤ σ
¡
v − γvδ

¢
σ − (1− e−2)

(
1−

·
1 + p (ln r)

µ
ln r

2
+ 1

¶¸2/(2+ln r))
. (22)

iii) If

x >
σ
¡
v − γvδ

¢
σ − (1− r)

·
1− exp

µ
4e−2p
r ln r

¶¸
, (23)

then S is empty.

The proof of Proposition 1 will be accomplished through several steps. First we need a

preliminary lemma.

Lemma 2 Under A.1, function φ(α) =
¡
A−Br1/α¢1−α is strictly convex for α ≥ 1, while

function ϕ(α) = −p ¡r1/α¢1−α is strictly concave for 0 < α ≤ − (1/2) ln r and is strictly
convex for α ≥ − (1/2) ln r.

Proof. A tedious direct computation of the second derivatives of both φ and ϕ gives

the result.

Proof of Proposition 1. Part (i). This is a very peculiar (and fortunate) circum-

stance, as, in most cases, available data meet condition (i) of A.2 with strict inequality.

We consider this case in detail mainly for expository reasons, because it helps in clarifying

the main idea behind the whole proof.

Since equality in condition (i) of A.2 is equivalent to − (1/2) ln r = 1, by Lemma 2

function l(α) = ψ(α) + ϕ(α) − (1 − p) turns out to be strictly concave over (0, 1) and

strictly convex over [1,+∞). This is true since l is the sum of a constant, and functions
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ψ and ϕ, which are linear and strictly concave respectively over (0, 1), and both strictly

convex over [1,+∞). In other words, l has a unique flex-point at α = 1. Moreover, since

l(1) = 0, S is non-empty and has the form S = [α,α] if and only if its derivative is strictly

negative at α = 1, that is,

l0(1) = − ln(A−Br) + p ln r < 0

which, after some algebra, is the same as condition (21), which makes sense thanks to (ii)

of A.2. Note also that α < +∞ since l(α)→ +∞ as α→ +∞.

Part (ii). Strict inequality in condition (i) of A.2 is equivalent to

− ln r
2
> 1. (24)

To simplify notation, let c = − (1/2) ln r > 1. In this case we extend the argument above

by constructing a function h(α) that is as similar to l as possible but is better shaped

than l over the interval (1, c) where the required convexity property of l cannot be verified

directly. Define

χ(α) = 1 +
φ (c)− 1
c− 1 (α− 1)

and

h(α) =

 l(α) for 0 < α ≤ 1 and α ≥ c

χ(α) + ϕ(α)− (1− p) for 1 < α < c.

As in the construction of function l, where we replaced the badly shaped function φ with

a linear one, ψ, over (0, 1), function h constitutes an improvement of function l again by

linearizing φ, which, by Lemma 2, is convex for all α ≥ 1. As a result, h turns out to be

strictly concave over (1, c), being the sum of a constant, a linear and a concave function.

Function h(α) turns out to be the same as l(α) outside the interval (1, c), where the

same argument of Part (i) applies. Specifically, h is strictly concave over (0, 1) and l(α) ≥ 0

has a non-empty interval [α, 1) as the solution as long as l0−(1) = l
0(1) < 0; while h is strictly
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convex over (c,+∞). Inside interval (1, c), we have seen that h(α) = χ(α)+ϕ(α)− (1− p)
is strictly concave. Moreover, since h is obtained by replacing the strictly convex function

φ with the segment joining two points of its graph, h(α) > l(α) holds true for all α ∈ (1, c),

while h(1) = l(1) and h (c) = l (c). Note that h is not differentiable at points α = 1 and

α = c, where it is only left and right-differentiable, while l0(1) exists.

Hence, h0+(1) ≤ 0 =⇒ h(α) < 0 =⇒ l(α) < 0 for all α ∈ (1, c]. Furthermore, l(c) < 0

plus its convexity over (c,+∞) implies l(α) ≤ 0 for all α ∈ [c,α], where c < α < +∞. To

conclude, h0+(1) ≤ 0 =⇒ l(α) ≤ 0 for all α ∈ (1,α], while, on the other side, h0+(1) ≤ 0 =⇒
l0+(1) = l

0(1) < 0, thus also establishing the non-emptiness of the interval [α, 1). A direct

computation shows that condition h0+(1) ≤ 0 is equivalent to condition (22), and the proof

is complete. Note that again, under our construction, we obtain a function h with a unique

flex point α = c.

Part (iii). By construction, ψ0(α) = φ0(1) = − ln(A−Br) over (0, 1]. By Lemma 2,

φ0(α) ≥ φ0(1) = − ln(A−Br) ∀α ≥ 1 and

ϕ0 (α) ≥ ϕ0
µ
− ln r
2

¶
=
4e−2p
r ln r

∀α > 0.

Therefore,

l0 (α) ≥ φ0(1) + ϕ0
µ
− ln r
2

¶
= − ln(A−Br) + 4e

−2p
r ln r

and l0 (α) > 0 if − ln(A − Br) + (4e−2p) (r ln r)−1 > 0, which is equivalent to (23); hence,
(23) =⇒ l0 (α) > 0 for all α > 0. Since l(1) = 0, l0 > 0 means that l “crosses” level zero

increasingly at α = 1, and system (19) has empty solution set, as was to be shown.

Clearly Proposition 1 is only theoretically meaningful: it provides the intrinsic shape of

the solution set of a model that approximates (18). It basically states that all participants

in the amnesty, if any, have a relative risk aversion coefficient belonging to some interval

which includes 1. From a different perspective, it states that taxpayers with a relative risk
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aversion coefficient below some lower bound α < 1 (that is, those who, by (14), concealed

a large amount w − v) and taxpayers with a relative risk aversion coefficient above some

upper bound α > 1 (that is, those who, again by (14), concealed only a small income

amount) do not enter the amnesty. In order to find values of both extrema α and α, one

must rely on numerics, as the following sections show.

3.3 Robustness of our Result: an Example

The proof showed how condition (i) of A.2 forces the unique flex-point of function ϕ to lie

to the right of α = 1. Clearly, it is possible to reproduce a similar technique for the case

r > e−2. Since, in view of most of the possible applications of the model, condition (i) of

A.2 is always satisfied, we did not pursue this analysis.

One shortcoming of our proof is that it does not work for “small intervals”: when α

approaches 1 from the right, the sufficient (but not necessary) condition (22) fails, since

h0(1) ≤ 0 does not hold anymore. On the other hand, condition (23) is also only sufficient,

and not necessary, to have an empty set as the solution. We illustrate these facts in the

following example, where it will be shown that for values of the fixed amount x between

the two thresholds (22) and (23) a solution may or may not exist, and, if there is any, it

could be an interval not containing 1. This reinforces the argument that our conditions

in Proposition 1, even if they are only sufficient conditions, are calibrated well enough to

capture most situations.

Also, in view of Section 4 which follows, let us study an example with the following values

of parameters: γ = 0.002, δ = σ = 1.28, p = 0.01 and v = 20, 000, 000. Assumption A.2 is

clearly satisfied since r ' 0.0355 < 0.135 ' e−2 and σ = 1.28 lies between 1− e−2 ' 0.865

and (1/2)
¡
1 +
√
5
¢ ' 1.618. In particular, condition (i) of A.2 holds with strict inequality

and thus parts (ii) and (iii) of Proposition 1 will be relevant. Any fixed payment x such
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that 0 < x < v− γvδ ' 15, 570, 564 satisfies A.1 and will be a good candidate for checking
conditions (22) and (23) of Proposition 1.

The upper bound for x in condition (22) turns out to be x ' 1, 558, 294, therefore any

fixed payment that satisfies x ≤ 1, 558, 294 produces a nonempty interval [α,α] of relative

risk aversion coefficients characterizing participants in the amnesty. For example, with

x = 800, 000, the interval has α ' 0.2 and α ' 4.85 as its extremes, as shown in figure

1 (a), where the function h discussed in part (ii) of the proof of Proposition 1 is plotted.

These two values, through (14), correspond to a minimum true income w ' 29, 900, 965

(corresponding to α ' 4.85) and a maximum true income w ' 75, 609, 144 (corresponding

to α ' 0.2), which imply an evasion (in terms of share of concealed income) of around 33%

and around 74% respectively.

The lower bound for x expressed by condition (23) is x ' 2, 820, 247, hence any fixed

payment that satisfies x > 2, 820, 247 produces an empty set of participants in the amnesty.

This means that function l is strictly increasing and crosses the x axis at the unique point

α = 1, as is shown in figure 1 (b) for x = 3, 000, 000.

For any value between x ' 1, 558, 294 and x ' 2, 820, 247 Proposition 1 cannot be

applied and, in principle, nothing can be said. The sufficient condition (22), fails to detect

the existence of a nonempty interval of values of relative risk aversion coefficients, even if

such an interval exists for some values of parameter x ∈ [x, x]. On the other hand, also

sufficient condition (23) fails to establish the emptiness of the solution set for other values

of the parameter x ∈ [x, x].
To illustrate the first case, take, for example, x = 1, 900, 000. Even if (22) is not sat-

isfied, figure 2 (a) shows that all taxpayers with risk aversion coefficients in the interval

[0.87, 1.75] will enter the amnesty10. The plot clearly shows why (22) fails: the approxima-
10The two extrema of the interval [0.87, 1.75], through (14), correspond in this case to a minimum
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tion of function l (dot line) through function h (solid line) used in part (ii) of the proof of

Proposition 1, which differs from l only in the interval (1,− (1/2) ln r) ' (1, 1.669), turns

out to be too rough as the interval [α,α] shrinks. In particular, for x = 1, 900, 000, the

right derivative h0+(1) turns out to be positive while l
0(1) is negative.

A similar situation is shown in figure 2 (b), where only function l is plotted for x =

2, 115, 000. This is a peculiar circumstance since, even if l0(1) itself turns out to be positive,

a nonempty interval of risk aversion coefficients characterizing taxpayers who enter the

amnesty exists: the interval11 [1.11, 1.26]. Note that, unlike the solution sets characterized

by condition (22), this interval does not contain the value α = 1.

Figure 2 (c) shows a situation where condition (23) is not satisfied but the solution set

is empty for x = 2, 125, 000. Here function l crosses the x axis increasingly at α = 1, but

l0(α) is negative for some α > 1.

The last three counterexamples considered support the robustness of our Proposition

1 by showing that outside the conditions used in the proposition anything goes, that is,

conditions (22) and (23), while being only sufficient, seem to be “nearly necessary”. More-

over, these counterexamples show that Proposition 1 proves to be useless only in special

cases where the possible interval of participants is extremely tiny, a circumstance that does

not seem very appealing while planning a tax amnesty program. It is not coincidental that

all estimates reported in the next section fall comfortably within the range provided by

condition (22).

A last remark regards the error on the lower bound α introduced by considering the

true income w ' 50, 945, 526 (corresponding to α ' 1.75) and a maximum true income w ' 70, 519, 592
(corresponding to α ' 0.87), which imply an evasion of around 61% and around 72% respectively.

11The two extrema of the interval [1.11, 1.26], through (14), correspond in this case to a minimum

true income w ' 61, 258, 459 (corresponding to α ' 1.26) and a maximum true income w ' 64, 929, 017
(corresponding to α ' 1.11), which imply an evasion of around 67% and around 69% respectively.
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approximated model (19) in place of (18). Again numerics show that such an error is small

compared to the size of the whole interval [α,α], in part because it affects only the side on

the left of α = 1.

4 Estimation on Data Pertaining to the 1991 and 1994

Italian Tax Amnesties

Italian Law no. 413/1991 introduced a general tax amnesty regarding basic Italian taxes12.

This amnesty was considered a success in terms of participation and revenue. Participation

was highly concentrated among taxpayers with self-employment and business income (where

it encompassed 40% of those who had filed a tax report), while it was scanty among wage

earners. While this amnesty followed another major one granted ten years before, it was

nevertheless not easy for taxpayers to anticipate its timing and characteristics in order to

suitably modify their tax reports. Thus, treating the amnesty as unanticipated seemed an

acceptable starting point, to be checked ex post by comparing estimation results with those

available from other sources.

With reference to the income tax, for taxpayers not yet audited, par. 38 of the amnesty

law provides rules for calculating the extra payment necessary to enter, i.e., for calculating

variable x in our model. They are summarized in Table 1. Requested x payment is an

increasing function of the income tax already paid by the participant and thus of her

reported income v. This schedule seems to be dictated by the aim of extracting each

taxpayer’s willingness to pay: i.e., Italian legislators exploited the information conveyed by

income reports about potential “amnesty demand”.

Payment x was due for each year for which the amnesty was entered, from 1985 to
12More details are provided in Marchese and Privileggi (1997).
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1990. To calculate the income tax amount due from each taxpayer, parameters of the tax

function (2) have been estimated with reference to the actual income brackets, for each

year for which the amnesty could be entered: details are reported in Appendix A. Amount

x due was calculated on the basis of the estimated tax due, according to the rules described

in Table 1. In view of the discussion in Appendix B, the sanction parameter σ in (3) has

been set equal to the tax parameter δ in (2). The audit rate13 in Italy in the relevant years

was around 1%; this is thus the value used for parameter p.

Following the same procedure carried out in the example of Section 3.3, for every amount

x requested, we calculated upper and lower threshold levels of relative risk aversion, α and

α, and percentage evasion, e and e, needed for participation in the amnesty. Values of

parameters p, γ, σ = δ and all reported incomes v, are such that condition (i) of Assumption

A.2 holds with strict inequality. Moreover, it is important to remark that all values of

parameter x turned out to be well below the bounds given by condition (22) in Proposition

1.

Here we report numeric solutions of model (19) for some representative taxpayers. Table

2 reports the results for a taxpayer endowed with an average net reported income, and who

enjoys average deductibles (case a); Table 3 refers to a taxpayer endowed with average

net reported business income14 (case b); Table 4 to a taxpayer endowed with average net

reported self-employment income15 (case c). All the taxpayers considered paid a tax which

belongs to the first bracket of Table 1.
13For data about controls, see Ministero delle Finanze, Ufficio di Statistica, Accertamenti effettuati ai

fini delle imposte dirette, Roma, various issues.
14The average value is calculated without taking into account taxpayers who report income equal to zero,

and refers to entrepreneurs in the ordinary tax regime (thus excluding cases of forfeit).
15The average value is calculated without taking into account the taxpayers who report an income equal

to zero, and refers to all types of self-employment.

21



The estimated relative risk aversion interval ranges from a high of around α = 4.5 to

virtually zero (as some lower threshold values are likely to be strictly positive only because

the solution of system (18) is approximated by the solution of system [19]) and is thus well

inside the range 1− 10 usually considered16. The upper risk aversion threshold is not far

from that calculated in Marchese and Privileggi (1997), which ranged from 6.3 to 4.617.

The lower threshold percentage evasion in the examples examined always lies between

34 and 35% of the true income (to be compared with 33 and 34% calculated in Marchese

and Privileggi [1997]). The upper threshold evasion is 73/75%, thus suggesting that only

quasi-full evaders were left out of the amnesty.

To roughly assess the results, the calculated percentage evasion thresholds can be com-

pared with available evasion estimates from other sources18. For the average Italian tax-

payer during the relevant time period, the minimum evasion estimate is 19.9%, the maxi-

mum 36%. For self-employment and business income, the corresponding values are 42.9% -

58.1%. For income from wages or pensions, evasion is relatively quite low (8.1% - 16.1%).

Our results show, for the average taxpayer, a lower-threshold percentage evasion (needed

to make the amnesty worth entering) which is close to the top evasion values calculated

by other studies. This fact is roughly consistent with the idea that the amnesty was not

designed to be appealing for the average taxpayer. For those endowed with the average

business or self-employment income instead, the mean value of our estimated thresholds is

at most 10% higher than the mean of the evasion estimates available from other studies.

The interval we found is thus consistent with an amnesty design aimed to be appealing for

mean/high evaders in business or self-employment.
16Epstein and Zin (1990) quote a tradition concerning relative risk aversion, which should not be greater

than α = 10.
17Remember that when CARA is assumed there is no lower risk aversion threshold.
18For surveys, see Bernasconi (1995) and Monacelli (1996).
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Law 656/1994 granted a further amnesty (concordato di massa) reserved for entrepre-

neurs and the self-employed. Rules regulating this amnesty provided an entrance payment

based upon relative gross revenue and profitability revealed by the tax reports19. Estima-

tion results based on model (19) are shown in Table 5.

They largely confirm results reached for the 1991 tax amnesty. Calculated lower thresh-

old evasion and upper threshold risk aversion parallel previous findings in Marchese and

Privileggi (1997) with a somewhat larger downward correction for risk aversion and upward

correction for evasion than for the 1991 tax amnesty.

An interesting reference point for assessing risk aversion estimates is represented by re-

sults reported in Guiso and Paiella (2001). To elicit risk attitudes they exploited household

reactions to a hypothetical lottery offered to the sample of the Italian population involved

in the periodical Bank of Italy household survey of 1995. According to their estimates,

relative risk aversion range from 0.2 to 36.3, with a right-skewed distribution, a median

value of 4.8 and a mean of 5.38. Our estimates are thus coherent with an amnesty design

aimed at being selective and appealing for median-low risk averse agents.

5 Conclusions

Optimal taxation literature has pointed out (see, e.g., Brito et al. [1995]) that differ-

ences in risk aversion may signal other relevant taxpayers characteristics, such as income or

productive ability. This observation has been mainly exploited to develop models of ran-

dom taxation. Suitably designed random taxes may in fact help in overcoming problems

of asymmetrical information between government and taxpayers. Moreover, differences in
19See Marchese and Privileggi (1997) for details. The amnesy was not available for those who had already

benefited from the 1991 one according to par. 38. For many taxpayers, the 1994 amnesty was cheaper

than the previous one.
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risk aversion imply that the least risk averse citizens are those most willing to play lotteries.

Random taxation may increase efficiency by offering lotteries which are cheaper to imple-

ment20 than the “tax evasion lottery”, which implies running tax controls (see Pestieau et

al. (1998).

Actual tax systems, however, do not explicitly seem to resort to the introduction of

forms of gambling, perhaps because of the traditional uncertain statute of this criterion on

moral and also religious ground. Moreover, if one assumes that taxpayers are risk averse

and that a benevolent government is at most risk neutral, randomization seems to be a

costly way of inducing taxpayer self selection, whenever it increases the overall amount of

risk with reference to the status quo ante. Taxpayer self-selection systems that resort to

insurance offers, such as FATOTA or unexpected tax amnesties, seem thus a more natural

and efficient way to pursue the same goals.

Some nice efficiency and welfare improving characteristics of the latter instruments

have been clarified in the literature. Both FATOTA and tax amnesties, however, may imply

equity problems, as they introduce some kind of discrimination. Specifically, taxpayers with

the same true income may pay different total amounts according to their attitudes toward

risk. Moreover, if one introduces time discounting and taxpayer anticipation, amnesties

may increase tax evasion by prospective participants, with effects upon total tax revenue

that could turn from positive into negative. In this paper we have added a further caveat

for the use of these instruments, by demonstrating that self-selection may fail when a

CRRA specification of the taxpayer utility function is considered. Our result is in line with

findings in the literature about plea-bargaining: Grossman and Katz (1983) have noted that

self-selection of the guilty may be problematic when the indicted differ in risk-aversion21.
20For instance, by offering the possibility of opting for a high tax and giving to those who accept it a

ticket for a lottery that provides for a given expected rebate.
21Other related results pertain to the so called cut-off rule, according to which taxpayers who report a

24



Extension of their observations to either FATOTA or amnesty models, however, is not

straightforward, as in their model committing the crime is a discrete choice (not explicitly

studied), and each defendant has an exogenously given degree of risk aversion. When taxes

are considered instead, the amount of the law breach (tax evasion), is a continuous variable,

while risk attitudes (which arguably vary depending on income) contribute to motivating

both the amount of the law breach and the willingness to accept a settlement proposal.

Self-selection of those guilty of large-scale tax evasion through FATOTA or tax amnesties

is thus quite likely to work, as happens in the examples in Chu (1990), Franzoni (2000),

and Marchese and Privileggi (1997). However, the present paper shows that the case

of an imperfect self-selection cannot be ruled out in general. With a CRRA specification,

participation in amnesties or FATOTA programs at any rate occurs in a predictable pattern,

and leaves out evaders below and above a given risk aversion interval.

With reference to empirical results, we find that the expected utility approach works

reasonably well to describe the behavior of participants in Italian tax amnesties, thus re-

inforcing the findings of a former paper by Marchese and Privileggi (1997). The model

studied in Marchese and Privileggi (1997) was constructed by means of an exponential

utility function (with constant absolute risk aversion), and was capable of describing only

the marginal (lower threshold tax evasion) participants; very little emerged about those

(arguably the majority of participants) who received a strictly positive benefit from par-

ticipating in the amnesty program. The new version presented in this paper provides more

information on the characteristics and the evasion extent of taxpayers entering the amnesty.

While one may argue that some quasi-full evaders did not participate, the coverage of the

Italian amnesties within the target social groups seems large, thus providing a different

threshold income amount should not be audited. In this case, allowing for differences in risk-aversion may

undermine the working of the mechanism as well.
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picture from the case studied in Fisher et al. (1989) where the amnesty considered was

appealing mainly to small evaders. On the other hand, empirical estimates of lower evasion

thresholds based on the model presented in Section 2 are quite close to those of the pre-

vious study by Marchese and Privileggi (1997), which relied on a different utility function

specification, thus further enhancing the appeal of the whole approach.

Note, finally, that the model discussed in Section 3 lends itself also to a converse view

of the approach pursued in this paper, where we focussed exclusively on the problem of

unravelling the information about taxpayers characteristics conveyed by amnesty partici-

pation. Since the solution set of participants in a FAT or amnesty offer is represented by

an interval [α,α] on the real line, a different model can be constructed aimed at finding

a value for parameter x that maximizes a given social or government utility function. To

solve this problem one must figure out the number of participants in the program when

x is offered, which depends on both the length α − α of the interval and the distribution

of taxpayers over the interval itself. Hence, while the problem tackled in this work was to

determine values for the unknown variable α, such a model would require the distribution

of taxpayer risk aversion α to be given. This alternative approach, which could provide

further insight into the equity and efficiency implications of tax amnesties, is left for future

research.

6 Appendix

A The Tax Function

The progressive income tax due, as a function of the net taxable income, can be represented

by as many linear segments as the number of income brackets; the higher the bracket, the
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higher the positive slope of the segment. O.L.S. estimation technique (with variables in

logarithms) was used to interpolate each tax schedule in order to obtain a shape like in

(2). As the income tax was often modified by the government in the period for which the

amnesties described in this paper were available, there were six tax schedules to consider,

as reported in Table 6.

B Constructing the Linear Sanction Function

In order to be consistent with the progressivity implied by the tax function (2), the sanction

to be applied in case of detection should exhibit some degree of progressivity as well. The

natural choice would be the same function on R2 as in Marchese and Privileggi (1997), that

is

s(w, y) = gγ
¡
wδ − yδ¢ , (25)

where g > 1 is a penalty rate. Here, parameter g replaces the more widely used term 1+ s;

that is, as in standard tax evasion models, the detected evader has to pay both the due tax

and the penalty s times the evaded tax.

On the other hand, we have seen in Section 3 that a crucial step in simplifying system

(11) requires a sanction function that is linear in the true income w; therefore we assumed

the form bs (w, y) = σ (w − y) as in (3). In this appendix, we provide some arguments for
determining a range for values of the coefficient σ so that bs (w, y) in (3) does not greatly
differ from s(w, y) in (25). To do this, let us discuss more thoroughly some restrictions

required by (25).

As we did in Section 2 through condition (4), we assume that cheating taxpayers caught

by the authorities are always able to pay the sanction; in terms of (25) this implies that

gγ
¡
wδ − yδ¢ ≤ w − γyδ, (26)
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which, in turn, forces the reported income y not to be smaller than a certain amount

depending on parameters and the true income:

y ≥
·
gγwδ − w
(g − 1) γ

¸(1/δ)
. (27)

Moreover, the left hand in (27) is defined only if gγwδ−w > 0, which yields a lower bound

also for the true income w to be considered:

w > (gγ)1/(1−δ) . (28)

Consider the first order Taylor expansion of (25) on the identity line, that is, on points

(w∗, y∗) ∈ R2 such that w∗ = y∗, which, in turn, implies s(w∗, y∗) = 0:

s(w, y) = gγδaδ−1 (w − y) + o ¡k(w, y)− (a, a)k2¢ ,
where a ∈ R satisfies (28), that is a > (gγ)1/(1−δ). Hence, function

L(w, y) = gγδaδ−1 (w − y)

is the linear approximation of s(w, y) around some point (a, a) ∈ R2. By denoting

σ = gγδaδ−1, (29)

we get a linear approximation of the progressive sanction s(w, y) in (25) of the same form

as in (3). Now we need to find suitable values for the critical point a, which translate in

suitable values for σ through (29). This will be achieved thanks to conditions (27) and

(28), which will provide an upper and a lower bound respectively for the critical point a.

On one side we can always calculate a lower bound for a by using the infimum value22

a = (gγ)1/(1−δ) . (30)
22By using such a point as the critical value for our approximation, we actually assume the relative

sanction bs to be parametrized on the lowest income bracket. In our model, this value represents the
borderline “poorest full complier” who earns the infimum (not even feasible) income w = (gγ)1/(1−δ) and

is compelled to be honest by the model itself through condition (26). The resulting approximation bs would
be biased in favor of richer evaders who would face a relatively lower sanction in case of detection.
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On the other side, an upper bound is impossible to compute directly, since the true income

w is unknown to the authorities, and condition (27) cannot be solved in terms of maximum

true income w given some reported income y. To be more specific, condition (27) establishes

the minimum reported income y that satisfies solvency condition (26); by reading condition

(27) in the opposite direction, one might pessimistically assume y to be the minimum

feasible reported income, that is,

y =

·
gγwδ − w
(g − 1) γ

¸(1/δ)
, (31)

and guess that the true income is the w in the right hand side of (31), for the given y.

The income w obtained this way is the maximum true income23 compatible with reported

income y, that satisfy (26), and could be a good candidate for an upper bound a of our

critical point a.

Unfortunately, (31) does not allow for calculation of w as a function of y. Hence we

shall rely on some upper bound of such true income w, obtained by linearizing from below

the strictly convex function gγwδ − w. Since we are considering values w > (gγ)1/(1−δ), a

useful approximation turns out to be on the point w∗ = (gγ)1/(1−δ), where gγw∗δ−w∗ = 0.
Hence, if we let

y =

(δ − 1)
h
w − (gγ)1/(1−δ)

i
(g − 1) γ


(1/δ)

<

·
gγwδ − w
(g − 1) γ

¸(1/δ)
, for all w > (gγ)1/(1−δ) ,

and, solve the equality on the left side for w as a function of y, we get an upper bound

a =
g − 1
δ − 1γy

δ + (gγ)1/(1−δ) (32)

23Such an upper bound for the true income w would represent some fictitious “rich” taxpayer who cheated

the most by reporting y as in (31). As opposed the previous case, the resulting approximation bs would
punish the poorer income brackets by considering a relative (linear) sanction parametrized with respect to

the richest.
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for the true income which is larger than any true income w satisfying (27) for the given

reported income y.

By calculating σ for both values a as in (30) and a as in (32), we get the lower and the

upper bounds

σ = δ (33)

σ = gγδ

·
g − 1
δ − 1γy

δ + (gγ)1/(1−δ)
¸δ−1

, (34)

where (increasing) dependency of the upper bound σ on the reported income y reflects its

“progressivity” with respect to higher reported incomes.

The lower approximation (33) looks very terse, since it does not even depend on para-

meter g. Moreover, for values of parameters used in the estimates of Section 4, it satisfies

both conditions (i) and (ii) in Assumption A.2, and numerics show that it behaves very

well for the true incomes w that were the targets of the amnesties there considered. This

justifies the adoption of the sanction function bs(w, y) = δ (w − y) there. In general, how-

ever, some good theoretical compromise could be achieved by taking an average of (33) and

(34), that is, by letting σ = λσ+(1− λ) σ, with 0 < λ < 1. Clearly, by doing so, one must

keep an eye on the right inequality in condition (ii) of A.2, which can easily be violated.

It is interesting to remark, finally, that the choice of the minimum value σ = δ implies

the largest participation in the amnesty, as comparative static analysis shows. To see this,

consider function f defined in (17) and rewrite it as a function of both α and σ:

f(α, σ) =
n
A (σ)−B (σ) [r (σ)]1/α

o1−α
− p

n
[r (σ)]1/α

o1−α
− (1− p),

where, following definitions (13), (15) and(16),

r (σ) =

µ
p

1− p
¶µ

σ

γδvδ−1
− 1
¶

A (σ) = 1 +
x

v − γvδ

µ
1

σ
− 1
¶
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B (σ) =
x

σ (v − γvδ)
.

Straightforward calculations show that
∂f
∂σ
< 0 if 0 < α < 1

∂f
∂σ
> 0 if α > 1,

(35)

for all feasible values of other parameters.

Now suppose that either condition (21) or (22) of Proposition 1 holds. Since, as we

have seen in Section 3, the solution set of system (11) is equivalent to the solution set of

system (18), which is,  f(α, σ) ≥ 0 if 0 < α ≤ 1

f(α, σ) ≤ 0 if α ≥ 1,
inequalities (35) mean that the graph of f(α) is uniformly lower if 0 < α ≤ 1 and uniformly

higher if α ≥ 1 for higher values of the sanction σ, which imply a “smaller” solution set

[α,α], as can easily be understood from figure24 1 (a). In other words, this heuristic

argument shows that the effects of increasing the sanction is a narrowing of the interval of

relative risk aversion which characterizes amnesty participants, which must be the largest

for the minimum sanction σ = δ, all other parameters remaining fixed.

24In figure 1 (a) h (α) is actually plotted, which is an approximation of function f (α). Recall, however,

that h is a lower bound for f if 0 < α ≤ 1 and an upper bound for f if α ≥ 1; hence, inequalities (35)
imply the same effects on the graph of h as on the graph of f .
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C Figures
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Figure 1: illustration of Proposition 1: a) plot of the function h for x = 800, 000; b) plot

of the function l for x = 3, 000, 000.
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Figure 2: failure of Proposition 1: a) plot of functions l (dot line) and h (solid line) for

x = 1, 900, 000; b) plot of the function l for x = 2, 115, 000; c) plot of the function l for

x = 2, 125, 000.
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D Tables

Brackets of paid tax Extra payment due

0− 10 20% of the paid tax (with a minimum of 0.1)

10− 40 18% of the paid tax

> 40 15% of the paid tax

Table 1: payment x in the 1991 tax amnesty (millions of Italian Lire).

Year v α e α e

1985 13.36 4.45 35% 0.21 75%

1986 14.18 4.44 34% 0.13 74%

1987 15.37 4.44 34% 0.15 74%

1988 16.74 4.44 34% 0.18 73%

1989 18.27 4.48 34% 0.08 75%

1990 19.45 4.48 34% 0.08 75%

Table 2: estimation results, 1991 tax amnesty, case (a) (v = reported income in millions of

Italian lire; α = upper threshold risk aversion; e = lower threshold percentage evasion; α

= lower threshold risk aversion; e = upper threshold percentage evasion).
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Year v α e α e

1985 12.80 4.45 35% 0.20 74%

1986 13.20 4.46 34% 0.11 74%

1987 14.00 4.45 34% 0.13 74%

1988 15.50 4.44 34% 0.16 74%

1989 17.92 4.48 34% 0.07 75%

1990 18.20 4.49 34% 0.06 75%

Table 3: estimation results, 1991 tax amnesty, case (b) (v = reported income in millions

of Italian lire; α = upper threshold risk aversion; e = lower threshold percentage evasion;

α = lower threshold risk aversion; e = upper threshold percentage evasion).

Year v α e α e

1985 16.10 4.43 35% 0.25 74%

1986 17.60 4.43 34% 0.19 73%

1987 19.60 4.42 35% 0.22 73%

1988 23.10 4.40 35% 0.26 73%

1989 25.84 4.45 35% 0.17 74%

1990 28.05 4.45 35% 0.18 74%

Table 4: estimation results, 1991 tax amnesty, case (c) (v = reported income in millions of

Italian lire; α = upper threshold risk aversion; e = lower threshold percentage evasion; α

= lower threshold risk aversion; e = upper threshold percentage evasion).
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Year v α e α e

1987 19.32 4.26 36% 0.24 73%

1988 20.17 4.18 36% 0.26 73%

1989 22.98 4.04 37% 0.22 74%

1990 24.33 4.07 37% 0.21 74%

1991 25.31 4.08 37% 0.28 74%

1992 30.32 5.64 29% 0.10 73%

Table 5: estimation results for a taxpayer endowed with median business income from

manufacturing industry, 1994 tax amnesty (v = reported income in millions of Italian lire;

α = upper threshold risk aversion; e = lower threshold percentage evasion; α = lower

threshold risk aversion; e = upper threshold percentage evasion).

Year γ δ

1985 0.002249 1.274515

1986− 1988 0.001441 1.292886

1989 0.001537 1.282436

1988 0.001508 1.282429

1989 0.001739 1.279154

1990 0.001615 1.285728

Table 6: parameters of the tax function t(y) = γyδ for years 1985-1992 (OLS estimation

on logarithms of data in Italian Lire).
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