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Abstract

This paper constitutes a first attempt at studying the ttiansilynamics of the Tsur and Zemel
(2007) continuous time endogenous growth framework in twkitowledge evolves according to
the Weitzman (1998) recombinant process. For a specificetadithe probability function char-
acterizing the Weitzman recombinant process, we find aldaiteansformation for the state and
control variables in the dynamical system diverging to gstatic constant growth, so that an
equivalent ‘detrended’ system converging to a steady statee long run can be tackled. Since
the dynamical system obtained so far turns out to be analljtimtractable, we rely on numerical
simulation in order to fully describe the transition dynamfor a set of values of the parameters.

Journal of Economic Literature Classification Numbers: C61, 031, O41.
Keywords: Knowledge Production, Recombinant Expansion Processydembus Balanced Growth,
Turnpike, Transition Dynamics.

1 Introduction

Tsur and Zemel (2007) developed an endogenous growth moaeéiich balanced long-run growth
is obtained by assuming that the stock of knowledge evoleesrding to Weitzman'’s (1998) recom-
binant expansion process and is used, together with physipéal, as input factor by competitive
firms in order to produce a unique physical good. At each imistaw knowledge is produced by an
independent R&D sector directly controlled by a ‘regulat@no aims at maximizing the discounted
utility of a representative consumer over an infinite hanizéhe optimal resources required for new
knowledge production are obtained by the regulator in thienfof a tax levied on the consumers.
The economy, thus, envisages two sectors, a competitive@rated to the production of the unique
physical good, and a regulated R&D sector in which the puipiod ‘knowledge’ is being directly
financed by the regulator and produced according to Weitzypaaduction function.

In such framework Tsur and Zemel provide conditions undeicivthe economy performs sus-
tained constant balanced growth in the long run; moreovieenmbalanced growth occurs, they also
characterize the asymptotic optimal tax rate and the comgnowth rate of all variables. Hence,

*We wish to thank Giovanni Ramello for bringing our attentiomecombinant growth models, Raouf Boucekkine for
precious (and critical) technical suggestions and MaudirBamet in Urbino during the MDEF 2008, for encouragement
at a time when we were nearly giving up looking for a suitadkgtendization’ of the model. We are also grateful to Carla
Marchese, for her help in the economic interpretation oféseilts. All remaining errors are, of course, ours.
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by endogenizing the optimal choice for investing in knovgedgroduction, their result generalizes
Weitzman (1998) endogenous growth model in which the imaest in knowledge production was
assumed to be constant and exogenously determined.

In this paper we further extend the Tsur and Zemel resultdumysng more accurately the tran-
sition dynamics along a characteristic turnpike curve im khowledge-capital state space already
discussed in Tsur and Zemel (2007). For a specific pararagtizof the model and when the condi-
tions allowing sustained long-run growth are met, we are &blnumerically) compute the optimal
policy — in terms of optimal consumption — and thus the optitime-path trajectories of the stock
of knowledge, capital, output and consumption — as well a# tinansition growth rates — while
the economy is being headed along the turnpike curve towsitdrig-run constant balanced growth
behavior.

Our method is based on the standard technique of transfgrtnenstate and control variables of
the Hamiltonian describing the optimal dynamics of (a dligheneralized version of) the Tsur and
Zemel model — all diverging in the long-run — into ‘detrentstite-like and control-like variables,
both converging to a saddle-path stable steady state irpfir@priate space as time elapses. To study
such detrended system we apply the time-elimination methisdduced by Mulligan and Sala-i-
Martin (1991) (see also Mulligan and Sala-i-Martin, 1998d 8arro and Sala-i-Martin, 2004, pp.
593-596) so that the optimal detrended consumption pohcytae calculated by means of numerical
methods for ODEs; then, substituting such policy in the ODEhe state-like variable and solving
it — again numerically — with respect to time, the optimal éipath trajectories of both state-like
and control-like variables are obtained. Eventually, ¢hieajectories are reconverted into time-path
trajectories for the original model, thus allowing for aalktd analysis of the transition dynamics of
all relevant variables.

Two main technical difficulties had to be overcome: 1) findangroper probability function for
the Weitzman'’s recombinant process suitable for the chahgariables in the construction of the
detrended system of ODEs, and 2) the exploitation of a sarqubint — other than the saddle-path
steady state — along the turnpike curve, which can be usetti condition for calculating specific
solutions for the ODE describing the policy. Due to the highktability of the system of ODEs
characterizing the detrended variables, we have been ablély solve the model only for a set
of values of the parameters; more precisely, our approacksagatisfactory only on a manifold of
dimension one in the parameters’ space (see Remark 1 atdref &ection 6).

In Section 2 the original contribution by Weitzman (1998)tbe production of new knowledge
by combining existing ideas — and its adaptation to a cootisuime setting — is briefly recalled.
Section 3 introduces an endogenous recombinant growthlrbaded on the framework provided by
Tsur and Zemel (2007) and recalls the main asymptotic ie&albwn for this model, while Section
4 better specifies the dynamics along a transitional tumpikhe central contribution of this paper
is contained in Section 5, where, under a suitable choicéhifunctions of the model — in partic-
ular, for the Weitzman probability of success in matchinggaf ideas — we are able to transform
the original diverging dynamics into an equivalent systénwo ODES in two ‘detrended’ variables
converging asymptotically to a steady state in the appatpspace. This allows for numeric compu-
tation of the optimal policy of both the detrended system taedoriginal diverging dynamics, which
is implemented in Section 6 for a specific set of parameteakies. Finally, after using the optimal
policy obtained so far to numerically trace out the optinialet-path trajectories, Section 7 is ded-
icated to a qualitative discussion of the transition dyr@nthus obtained, while Section 8 reports
some concluding remarks and topics for future research.



2 Recombinant growth

2.1 Producing ideas by means of ideas

Weitzman (1998) stylizes the production of knowledge tigtoa function that uses previous knowl-
edge inputs and exhibits ‘strongly’ increasing returns.itfviean’s device postulates that originally
unprocessed ideasgedin his terminology, are blended with all other ideas avddab order to gen-
erate newhybrid seed ideas; a costly selection process permits in turn tae¥tom those a subset
of fertile seed ideas that are again recombined with all the existeiiefe@leas to produce yet new
hybrids, and so on. Therefore the process occurs indejingeherating knowledge growth.

The hybridization is based on matchingideas together and then checking whether such match-
ing is able to produce a new fertiled., successful) idea. I (¢) is the stock of knowledge available
at timet (measured as the total number of fertile ideas){lgf A (¢)] denote the number of different
combinations ofn elements (hybrids) ofl (¢); i.e.

Co [A(1)] = (A (t>) _ A

m ) ml[A(t) —m]

fm=2Cy(A)=A(A—-1)/2,while,ifm=3,C3(A) =A(A—-1)(A—-2)/[6(A—3)],and so
on. Therefore, at timéthe number of hybrid seed ideas is given by

H(t) = Cn[A(t)] = Cr [A(t = 1)]. (1)

By assuming a probability of obtaining a successful idea from each hybridization ¢malg), the
number of new successful idea generatedby) seed ideas at any given timés given by [see eqgn.
(2) on p. 337 in Weitzman, 1998]:

AA(t)=At+1)—A@t)=7nH () =7{C [A{)] — Cn [A(t —1)]}, (2

which, in a discrete time framework, definesewombinant expansion process second order. It
represents the potential knowledge production path.

According to (2), the stock of knowledgéhas the potential of growing faster than exponentially,
that is, at an increasing rate of growth (Lemma on p. 338 intxk®&n, 1998). However, since the hy-
bridization process of seed ideas, as previously asseredssarily consumes an amount of physical
resources, potentially explosive growth is precluded byspial constraints; precisely, scarcity of re-
sources. As a matter of fact, Weitzman (1998) shows that ledgye actually grows at some bounded
positive rate, thus reconciling his theory with standardiaggenous growth models, suggesting that the
growth rate of GNP in real economies should be bounded agsedle.g, Romer, 1996, Aghion and
Howitt, 1999, or Barro and Sala-i-Martin, 2004). Accordinghe knowledge generation mechanism
envisaged by Weitzman uses two inputs: hybrid seed id&da the fashion already discussed, and
physical resourceg. The latter, although not entering directly the recombinaocess, affects the
probability r of producing successful idead.e., transforming hybrid seeds in fertile seeds — so that
7 turns out to be increasing ihfor each givenr. However, a fixed amount of resourcé®ecomes
less productive if hybrid seed ide&kincrease. To summarize, the success probabhiligsults to be
increasing in the ratio’/ H.

All these considerations lead to the followipgoduction function for new knowledgeA which
uses the two variabled and.J as input factors:

H

which corresponds to (28) on p. 346 in Weitzman (1998). Nwaell (-, -) in (3) is homogeneous of
degree 1 in the variablesand H. In the sequel we shall assume the following.

AA=W (J,H) = Hr (i) , (3)
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A. 1 The functiont : R, — [0, 1] is independent of time and is such that> 0, 7’ < 0, 7 (0) =0
and (c0) < 1; moreover, it will be assumed thaim, o+ 7’ (z) < +oc.

Provided that the resourcdsemployed in the production of new knowledge are a constaotitm
of the total outpuy produced by the economy,= sy, wheres is exogenously determined, Weitzman
(1998) establishes that in the long run the asymptotic droate is a positive constant which depends
on the saving rate.

2.2 The continuous time setting

In a recent work, Tsur and Zemel (2007), made an importameefent of Weitzman'’s analysis
by endogenizing the (optimal) determination of the resesilcemployed in the production of new
knowledgée? Their model features a ‘regulator’, a sort of Leviathan, wilas the task of choosing the
optimal amount/ to be employed into the production of new knowledge — whiahturn, is being
assigned to all firms producing the amognof a unique (physical) output — in order to maximize
the discounted utility of a representative consumer ovenfamite horizon. Output producing firms
operate in a competitive environment, while the regulats the power to levy the exact amount
J as a tax on the representative consumer, through whichn giNehe H hybrid seed ideas freely
available, new useful knowledge is being directly generatecording to (3)AA = Hx (J/H), and
is immediately and freely passed to the output producingsfirm

The difficulty in dealing with the second-order dynamic (2}he constraint of the maximization
problem is overcome by switching from the Weitzman’s diseztane formulation into a continuous
time model. This allows the authors to rewrite (1) as follows

H(t)=C, [AM]A), (4)

whereA (t) denotes the derivative of the stock of knowledge at instat(t), with respect to time,
and corresponds tA A (t) in the discrete time framework. By replacidgA (¢) with A (¢) in (3) we
obtain the analogous of Weitzman'’s new knowledge prodadtiaction, (3), in continuous time:

AW =1 0|7, ®)

where the probability of generating a new fertile idestill satisfies A.1.
By combining (4) and (5) the following law of motion for thesk of knowledgeA (¢) is obtained:

()
A® =T ©
where .
el =CL | o )

is theexpected unit cost of knowledge productidiote thaty (-) is decreasing and, as knowledge
keeps spreading, it converges to

A e (A) =270

wherel /7’ (0) is strictly positive by Assumption 1.

> 0, (8)

For simplicity, in the sequéim,, _q+ 7 () will be denoted by’ (0).

2Here our analysis slightly departs from the original modelTisur and zemel by allowing to be any amount of
physical capital available in the economy, while the awhemnstrain such resources to be only a fraction s < 1
of the total outpuy. In other words, in our economy the regulator has the powektact resources also from existing
physical capital, in addition to the whole total output



3 Endogenous recombinant growth

With no loss of generality, in the sequel we shall assumel#aiur is constant through time and
normalized to oné: L = 1. The output producing firms use a neoclassical productination,

y(t)=FIlk(t),A®)], )
depending on aggregate capitaland knowledge-augmented labour () L, with L = 1].

A.2 F : R — R, exhibits constant returns to scale and is such that> 0, F4 > 0, Fi < 0,
Faa <0, Fpa > 0, and satisfies the Inada conditidimy,, o+ F' (k, A) = +oo forall A > 0.

Each firmi maximizes instantaneous profit by renting capitadnd hiring labourl; < 1 from
the households, while taking as given the capital renta rathe labour wagev and the stock
of knowledgeA. Under the assumption that all firms use the same technolodyoperate in a
competitive market, and that all households are the saraesubscript can be dropped and (9) can
be rewritten ag = Af (k/A), where

f(x)=F(x,1). (20)

Since firms act competitively, in equilibrium their profitasro, that is, households eara= Af (k/A) =
rk + w; moreover, the amount of capital demandedsatisfies

[ (k/A) = (11)

Given that a fractior/ (¢) of the whole endowment of the econoniy(t) + v (¢), is being employed
to finance R&D firms, and a fractian(t) is being consumed, capital evolves through time according
to

k() =y (t) = J () —c(t), (12)

wherec (t) denotes instantaneous per capita consumption and, folisitypt is assumed that capital
does not depreciate. Since the upper bduod J (t) andc(t) is jointly given by J (¢) + ¢ (t) <
k(t) 4y (t), k (t) in (12) may be negative.

Assuming that all households enjoy an instantaneousyuiilit (¢)], with« : R, — R increasing
and strictly concave, the ‘regulator’ solves

{c(rtr)l,z}jz{t)}/(; wle(t)] e Pdt (13)
At)=J(t)/¢[A{)]
| k(t)=F[k@®),A®)] —J(t)—c(t)
subjecttoq J(t)+c(t) <k(t)+ Flk(t),A(t)
k(t)>0,J(t)>0,c(t) >0
k(0) = ko > 0, A(0) = Ay > 0,

where utility is discounted at a constant rate- 0. (13) may be interpreted as a maximum welfare
problem, wherg: and A are the state variables an@nd.J are the controls; the regulator chooses the

3Tsur and Zemel (2007) assume that the amount of labour &lailathe economy i€, constant through time even if
not necessarlily equals to one. As stationarity with resfzeime of L is the strong assumption here, normalizing labour
to L = 1 has the advantage of simplifying notation at no cost.

4See note 2.



optimal consumption{c (¢)}, and the optimal investment in R&0Q,J (¢)}, policies by taking into
account the evolution of knowledge according to (6).
Suppressing the time argument, the current-value Hanmlitoassociated to (13) is

J
H (A K, J,c,01,99) = u(c) + 01 [F(k,A) —J =] + 792m7 (14)
where A andk are the state variableg,and .J are the controlsy, andy, are the costate variables
associated witlt and A respectively. Necessary conditions are the following:

u' (¢) =t (15)

J=qJ if 95/ (A) =0, (16)
; J¢' (A)

192 - ’192 - 191F ]{Z, A 192 ) 18

A ) 1o

lim H (t)e " =0, (19)

t—o0

where.J in (16) will be defined later in (22). Clearly, the cage= k + F (k, A) — c whend, /¢ (A) >
Y in (16) can be immediately ruled out by the Inada conditioAsgumption A.2; therefore), /1, <
¢ (A), must hold.
By differentiatingd; = J,/¢ (A) in (16) with respect to time and coupling it with (17) and (18)
the following condition is met:

Fa(k, A)
v (A)
defining the locus on the state spacé k) on which the marginal product of capital equals that

of knowledge per unit cost. Equation (20) can be rewritten 8s/A) = ¢ (A) wherez (z) =
f(z)/f (z) — z, with f defined in (10), is an increasing function af thus, the curve defined by
(20) can be expressed as a function of the only varidble

k(A)=z""[p(A)] 4, (21)

Fy (k,A) - =0, (20)

wherez " is the inverse of (z).
Differentiatingk (A) with respect to time, substituting into (12) and using (@lgs

T =l - o) A
FA®]+ ¢ [A@)]
wherey (t) = F [k (t), A(t)]. Condition (22) establishes a relationship between thengptinvest-
ment in R&D, J (t), as a function of the other control variable, the optimalstonptionc (t), when
the economy is constrained to grow along the cu}\éel) defined in (21); that is, in view of (16),
whend, (t) /¢ [A (t)] = 4 (t) holds.

It will be useful to consider the limiting shape of (21), whjdor largerA, tends to become linear.
For this purpose, define its asymptote:

koo (A) = 1A + g, (23)

where, using (8)77 = 2! [1/#' (0)] andgq is a non-negative constant. Note thiat4) lies above
ks (A) for all A < oo, and approachek,, (A) as A increases. Whether the intercepis zero or
strictly positive depends on the number of ideadeing matched at each instanin Weitzman'’s
recombinant process (4).

(22)



Proposition 1 The intercept in (23) is zero whenevern > 2, whileq > 0 for m = 2.
Proof. Sincek,, (A) = 1A + g is the asymptote df (A),

q= lim [k(4)=id] = lm {z7[p(4)] =27 [1/7 (O)]} A (24)
As ¢ (A) is decreasing and, under Assumption A.1, bounded away frem [pecifically0 <
1/7'(0) < ¢ (A) < ¢(Ap)], by Assumption A.2 the term~" [p (A)] — 271 [1/7/(0)] in (24) is
o[¢ (A)]. Thus, since, by (7)O[¢ (A)] = O[C!, (A)] = O (A™7) [i.e, C, (A) ~ A™! for
large A], for m > 2 the limit in (24) is zero, while, forn = 2, such limit must be nonzero; as
2 e (A)]—2711/7' (0)] > 0forall A < +o0, ¢ > 0 must hold whenevern = 2. =

Another locus in the state space will be used in the analybis:curve on which the marginal
product of capital equals the individual discount rgte(k/A) = p, which, by (11), implies: = p.
As f'(k/A) is decreasing, also such curve can be expressed as a fuotteal variable:

~

k(A) =nA, (25)

with /) = (') " (p); that is, % (A) is the linear function with slopg > 0.

The curvesk (A), ko (A) andk (A) defined in (21), (23) and (25) respectively, will be labelled
turnpike asymptotic turnpikandstagnation lineespectively. The optimal investmentin R&D{?),
when the economy grows along the turnpikeA) defined by (22) will be referred as tiséngular
policy.

In order to simplify our analysis, throughout the whole pape shall assume the following.

A. 3 The instantaneous utility of the representative consumef the CIES type:

with the reciprocal of the intertemporal elasticity of stihgion satisfyingr > 1.
The next proposition summarizes the main results in TsuiZamdel (2007).
Proposition 2 (Tsur and Zemel)
i) A necessary condition for the economy to sustain long-romgr is
0>, (26)
conversely, ify < 7 the economy eventually reaches a steady (stagnation) poitiite line (25)
corresponding to zero growth.

if) Under condition (26), for any given initial knowledge stotkthere is a corresponding threshold
capital stockk®* (4y) > 0 such that whenevek, > k% (4,) the economy — possibly after
an initial transition outside the turnpiké (A) — first reaches the turnpiké (A) defined in
(21) in a finite time, and then continues to grow along it aset@apses until the asymptotic
turnpikek.. (4) defined in (23) is reached in the long-run. Alohg (A) the economy follows
a balanced growth path characterized by a common constanttiyrrate of output, knowledge,
capital and consumption defined by:

Too — P
o

v = >0, (27)



wherer., = limy .o f' [k: (A) /A} = limy_oo [ [l%oo (A) /A} — /' (7) defines the long-run
capital rental rate> Moreover, J (t) < y(t) = F[k(t),A(t)] for large t, and the income
shares devoted to investments in knowledge and capitalarstant and given respectively by

(1 (i)
e <1+ﬁw'<0>) and e =77 <1+ﬁﬂ’(0)>' (%)

If ko < k** (A,) the economy eventually stagnates.

Proposition 2, whose proof can be found in the Appendix inrBswd Zemel (2007), establishes
that, if (26) holds and initial capital stodk, is sufficiently high (with respect to initial knowledge
stock Ag), the economy is able to grow along a turnpike path whichhelong run, converges to a
balanced growth path in which both knowledge and physigatakgrow at the same positive constant
rate and the saving rate is positive and constant as wefl,dbafirming the original Weitzman result
in a more general setting.

As we ruled out the casg, /¢ (A) > ¥, in (16), two (optimal) regimes are possible:

1. zero R&D, corresponding td = 0, which, if maintained forever, eventually leads the ecopom
to some steady state (stagnation point) on the&if#) defined in (25), and

2. an optimal path along the turnpikg A) defined in (21) — maybe started after a finite period
of transition outside the turnpike itself — correspondiagtte singular policy/ satisfying (22),
which envisages growth for all variables as time elapsesiénthintained forever, eventually
lead to a balanced growth path along the asymptotic turrihmeél) defined in (23).

Since, under conditions (26) arig > k** (Ay), it can be shown that the turnpike(A) is
‘trapping’—i.e., the economy keeps growing along the turnpike whenevegithes it by selecting
the optimal policyJ as in (22) thereafter — there are two types of transition thios: the first driving
the system toward the turnpike starting from some initiadibon outside it, and the second charac-
terizing the optimal path along the turnpil?;éA) after the economy entered it. In the sequel we shall
focus on the latter: specifically, we shall assume that (8&)d) that isy; > 7, which implies that the
line containing all potential steady states for the econcirﬂyl), must lie strictly abovthe turnpike
k (A) on the state spadel, k) for A sufficiently large; moreover, we shall restrict our attentto
initial conditions A, and k, such thatk, = IE(AO) Note that in this scenario thekiba condition
ko > k*% (Ap) is certainly satisfied, as the turnpikgA) is trapping.

4 Dynamics along the turnpike

We now adapt the optimal conditions (15) - (19) to the syssdmehavior along the turnpiklé(A).
All variables on the turnpike will be labelled with a* symbol.
Suppressing the time argument and using (22), (6) becomes

g(A) —e¢
K (A) + o (A)
°Note that, under (26),. = f' () > ' (1) = f' |( [ ) }
8This holds for allA > 0 whenm > 2, while for A large enough |fn =2.

A= (29)




wherej (A) = F [zg (A), A] —Af [zg (A) /A} ,with f (-) defined in (10). Note that (29) is the unique

dynamic constraint since = k (A) and thusk = &' (A) A = k' (A) [§ (A) — ¢ / [/5’ (A) + ¢ (A)];
therefore, the unique state variable nowdiswhile, thanks to (22), the unique control variablé.is
Thus, the ‘regulator’ solves

max wle(t)] e Pdt 30
max [ ule) (30)

w@[m]a»&[<»wmm&
() <FAW]+7A0)

At
subjecttoq (<
A0 0 > 0.

(0)

The current-value Hamiltonian for problem (30) is

H (A, &) =u(e) + ﬂM, (31)
K (A)+ ¢ (4)
where? is the costate variable associated withNecessary conditions are the following:
o (@) = L (32)
K (A)+ ¢ (4)
| 7 (A4) = [k () + ¢ (4)] 4
9=<p— v (33)
K (A) + ¢ (A)
lim H (t)e " =0, (34)

t—o00

whereA in (33) is given by (29).
Since, by (20),F's [l} (A) ,A] = F, [/?; (A) ,A} ¢ (A) along the turnpike and, by (11j,(A4) =

Fy [l% (A), A] , Wherer (A) is the capital rental rate on the turnpike when the stock of\aedge is4,
7 (A) = Fa [E(A), A] + Fi [k (A), A (4) = B [B(4), A] [0 (4) + 7 (4)] =7 (4) [p (4) +
K (A)]. Hence, dividing by, (33) can be rewritten as

N [ RV
v TR rem
[

(35)
By rewriting (32) as) = ’ (&) [ (A) + ¢ (A)} and taking time derivative we get

d =" (8)é [k (A) + ¢ (A)] + 4 () [k (A) + ¢/ (A)} A,
which, divided byd = «' (¢) [k (A) + ¢ (A)] yields

B (4)+¢ ()]
= A
WO R (A) + e (4)

9



Coupling the last equality with (35) and using AssumptioB3,Ave easily obtain:

_r—p S FA/A] -

o o

vl O

, (36)

where in the second equality (11) and (10) have been used.

Therefore, from (29) and (36) we obtain the following systefmODEs defining the optimal
dynamics for the state variablé (¢) and the controF (¢) through time along the turnpike under
Assumption A.3:

e s

R A +ed) KA+ e

(37)

Proposition 2 (ii) states that in the long run the ratibéél andé/é obtained from (37) converge to the
balanced growth rate = (1., — p) /o, wherer,, =lima_ f' [l% (A) /A} = lim g0 [’ [l%oo (A) /A] =
f' (), with 77 defined in (23).

5 Model specification
We now continue our analysis by suitably restricting thesglaf models under investigation.
A. 4 In addition to Assumption A.3, the followings hold.

(i) Only pairs of ideas will be matched together in the recombimmocess; i.eqn = 2.

(i) The probability functionr : R, — [0, 1] of the Weitzman’s recombinant procébss the follow-
ing form:
Bx

m ()
(i) The production function has the Cobb-Douglas form:

F(k,A) = 0k*A" = 9A (%) . 0>0,0<a<l.

Clearly, the functionr defined in (38) satisfies Assumption A.1. Paramegtén (38) measures
the degree of efficiency of the Weitzman matching processgifipally, the largers, the higher
probability of obtaining a new successful idea out of the samamber of (pairwise) matchings of
hybrid ideas.

Assumption 4(i) and (ii) allows for a direct computation detfunctiony (A). Since, when
m = 2,Ch(A) = (2A — 1) /2, and from (38) we get~! (y) = y/[3 (1 — y)], substituting both in
(7) yields the following analytical form for the unit cost kliowledge production:

2A -1 1 2
P =55 () .

’See Section 2.1.
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As 7’ (0) = 3, Assumption 4(iii) and (39) yields:

k(A) = QD(A)A:i)(H

1l -«

) A (40)

oo (A) = ﬁ (A+1) (i.e., i=q= L) (41)

k(A) = (970‘)1/(1_@/1 (i.e.,ﬁ = (97&)1/(1_@) : (42)

and the growth condition (26) becomes
B(1— a)}

«

p < Ba [ (43)

5.1 Preliminary features of the policy along the turnpike

It is easily seen from (40) thé:t( ) diverges tot+-oo when A approache8/2 from the right; therefore
we must restrict the range for the feasible initial condiitid, to the open interval3/2, +oo). Since
k (A) approaches the asymptotic turnpllbgg( ) from above for larged, andk., (A) is increasing,
it is easily understood that the graphiofA) on the whole interval3/2, +c0) must be a U-shaped
curve. Since the stock of knowledgkecannot be depleted and the economy is bound to follow the
optimal (strictly positive) investment in R&D policy defined in (22), on such graphi-e., along
the turnpike — the stock of knowledge must grow through time; that is{ (t) > 0 must hold for
all t > 0. A U-shaped curve fok (A) implies that, whileA keeps growing, the optimal amount of

capitalk [A (t)] must decrease wheris small, and increase for larggrin other wordsf: (¢) < 0 for

small¢, andk (t) > 0 ast becomes larger, envisaging that in early times it is optitnaake away
from the output-producing sector some physical capitaliawést it in R&D, in order to allow the
stock of knowledged to take-off.

Having A (t) > 0 for all t > 0 has important implications for the study of system (37),as loe
easily grasped from equation (29).

Proposition 3 Under Assumption A.4, thaptimal policyalong the turnpikeg (A), must necessarily

satisfy {

A =14 = (awm) (45)

Moreover,& (A®) < 0in a neighborhood oft”.

(4)

(A
(4)

>g(A) for3/2 < A< A°
°) =g (A7) (44)
<y (A) for A > A,

O Or O

where

Proof. by differentiatingk (A) in (40) it is easily seen that the denominator of (29),4)+¢ (A),
vanishes on the unique poiAt defined in (45), which belongs to the dom&#i2, +oc) asA® > 3/2
forall 0 < a < 1; moreoverk’ (A) + ¢ (A) < 0for3/2 < A < A* andk’ (A) + ¢ (A) > 0 for
A > A*. Therefore,A (t) > 0 for all t > 0 in (29) implies (44). Since it can be checked thiitis
also the unigue (minimum) stationary point for the optimatiputy (A) —i.e., ¥’ (A%) = 0—and (44)
states that the graph of the optimal policyA) must intersect the graph of the optimal outpuytd)
from above o4 = A%, & (A*) < 0 must hold in a neighborhood of°. m

11



From the proof we also learn thait A) has a U-shaped graph similar to thatafA).
By taking the ratio of the two equations in (37) we get the uridifferential equation

E 7k ay /4] -
AW ey
in the sole variablel characterizing the optimal policy(A) (see Mulligan and Sala-i-Martin ,1991,
and Barro and Sala-i-Martin, 2004, pp. 593-596). As a maitéact, property (44) actually provides
the initial conditioné (A°) = ¢ (A*) for the ODE (46); hence, by replacing all functions in (46)
according to Assumption A.4 ke, by using (39) and (40) under condition (43¢~ A®) can be
easily computed by applying I'Hopital rule to (46) evaluhtet A = A®, and taking the negative
solution of the second-order equation thus obtained. Withinformation at hand, one may try to
solve (46) numerically in order to find the optimal polieyA). We actually tried this approach, but
the result was not satisfactory, especially for larggehence, we chose to rely our analysis on the
‘detrended’ system that will be discussed in the next sactio
Nonetheless, Proposition 3 will prove useful in studying goint corresponding teA®, ¢ (A®))
in terms of detrended variables.

¥ (4) + ¢ (4)] (4) (46)

5.2 State-like and control-like variables

Since an economy growing along the turnpik(eél) in the long run performs sustained growth, there
are no steady states toward which the system may eventwaiyemye. Thus, we first need to trans-
form the state variablel and the control variablé in a state-like variabley, and a control-like
variable,y, respectively, so that (¢) andy (¢) converge to some fixed points andy* in the space
(u, x) as time elapses. Specifically, we choose the following foansations:

_INC(A)_ o B o 2
Bl-a) <H2A—3) @

é
= — 4
X =7 (48)

=
|
s
|
©
=
|

where the second equality in (47) holds by (40), and the ty@39). Hence A is related tou as

follows: 5
e
A= —. 4
D ET R (49)

Similarly, provided that one can compute the ‘detrendedinoal policy x (1), the optimal policy of
problem (30) turns out to be

- «
o) = x| 2ot 4 (50)
Under Assumption A.4(iii), from (37) we obtain the follovgmatios:
A1 | EA 2 (51)
AT F(A)+p(4) A A

) — ,0} . (52)
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The growth rate of: in (47) is given by:

therefore, _ . . .
o i R s

which, coupled with (51) and using (48), yields

L= M (O
K (A)+ ¢ (4)
Note that, as (39) can be rewrittenB§(24 — 3) = By (A) — 1 andy’ (A) = —4/ [3 (24 — 3)?],
¢’ turns out to be a function af: ¢’ (4) = — (1/5) [2/ (24 — 3)]* = — (1/8) [B¢ (A) — 1]*; more-
over, (39) may be rewritten a$ = 1/ [ (A) — 1] + 3/2. By differentiating (40) and substituting
¢’ (A) and A, after a fair amount of algebrd (A) in (54) becomes

i (A) = % [ (A) A+ ¢ (A)]

«

—X)- (54)

_ 1fa{—%[ﬁw<A>—1]2 [m%} +so<A>}

:m{w@ ) = 38%[p (A)? -1}

i [ () (5 ] e

where in the last line we used (47) to replaceA) = [(1 — «) /a] . We can now rewrite (54) only
in terms of variableg andy:

oy 26(1—a)p } .
ne [1 26 (1 —a) (1+2a) u—362(1—a)* 2 —a? (Op™ —x) - (56)
Similarly, using (51), (52) and (47), the growth rateyoih (48) is given by:

Pop*' —p  Ou* —x
o K (A) + o (A)

sin (55) andp (A) = [(1 — «) /a] u, yields the following ODE for the

_A
A

o = Ix<
ol O

which, by replacing:’ (A)
control-like variabley:

. [fapt—p 208 (1 — &) (0p* — x) }

X_[ o 26(1—a)(1+20)p—382(1—a) u2—a? X 57)

Hence, we must study the following system of ODEs:

P [I_M] (0 — )
Q (1) (58)

_ {Hozu“‘l —p  208(1—a)(@p - X)]
o Q (1) ’
where

Q(p)==30"(1—a)’1*+26(1—a)(1+20)u—a” (59)

13



5.3 Fixed points and phase diagram

In Section 5.1 we have seen thét> 3/2 must hold. Using this information in (47) one immediately

obtains the rangg:*, +-00), with
«

ST ©0)
for the state-like variablg, with endpoints corresponding tb— 400 andA — (3/2)" respectively.
In other wordsu* in (60) is thesteady valudor variabley corresponding to long-run behavior of
the economy along the asymptotic turnpike (4) [ is the slope of., (A), as seen in (41)]. The
feasible set for the detrended variablesy) therefore isS = [u*, +00) x R, .

By studying the first equation in (58), two loci in the spateontaining the points such that= 0
are found: the curve

X =0p® (61)
and the vertical ling.* = o/ [3 (1 — «)] defined in (60). Equation (61) vanishes the second factor in
the RHS of the first equation in (58), whilg is the largest (and the only feasible) solution of

Q) —20(1—a)p=-30(1-a)p’+4af(l—a)p—a’ =0,

which vanishes the first factor in the same equation.
It is clear from the second equation in (58) that all the poipt y) such thaty = 0 are on the
unique locus
o Q (1)

O G =y ) (62)

By studying the sign of the functio® (1) defined in (59), we find a unique (admissible) root, call it
1*, solving
Qp)=-338(1—a)u*+28(1—a)(1+20)p—a®=0, (63)

while Q (u) > 0 for p* < p < p® and@ (u) < 0 for p > p®. Thus, whether the locus in (62) lies
above or below the locus in (61) depends on whejlfeK n < p® or i > pf, and on the sign of
(Bau~=t — p); onp = p*, however, they intersect, and this yields fhist steady statef our system:
(1%, x%), with x* = 6 ()"

It turns out that{ 1., x*) corresponds to the poititd®, ¢ (A®)) for the original dynamic (37) dis-
cussed in Proposition 3. To see this, recall that, from (@4)\°) = 7 (A®*) must hold on the critical
point A® defined in (45); by replacing® in (47) and (48), we get,

s« s _1+2a+\/1+4a+a2
7 (A ks ]”
=L g | RO gy (65)

wherep? in (64) coincides with the largest (and the only admissibtgyition of (63).

It is immediately seen that* < p° for all feasible values of parametetsand 3, which means
that @ (*) > 0 must hold; moreover, using (60), the necessary conditiogfowth (43) can be
rewritten asp < fa (1), that is, [0 (1*)* ™ — p] > 0. Therefore, we can conclude from (62)
that the locusy = 0 intersects the vertical ling* = o/ [3 (1 — «)] strictly below the locug: = 0
in (61). Since along such line = 0 as well, we have found theecond steady staté system (58):
(u*, x*), whereyx* is (62) evaluated gt = p*, specifically,

el D
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As fu~in (61) is increasing ang* < 0 (u*), it follows that(u*, x*) lies south-west of.*, x*). We
shall see in short tha*, x*) is the saddle-path stable steady state to which system ¢88¢rges in
the long-run. More precisely* in (66) corresponds to the slope of the optimal consumptiot)
steadily growing at the constant rat@long the asymptotic turnpikie,, (A) in the original model.

As the necessary condition for growth (43) states that f« (u*)o"1 must always be satisfied
and, a®) < a < 1, fapu®~! is a decreasing function ¢f, it follows that there must be a unique value
fi > p* such thata () = p, thatis, [0 (1)* " — p] = 0. Itis clear from the last factor in the
second term in the RHS of (62) that the two Igci= 0 in (62) andi = 0 in (61) must intersect in

w = f1, hence(fi, x), with
) 0o\ =
P (_) (67)
p

-o(5)"

is thethird (and last)steady stat@associated to (58). It is worth noting thain (67) corresponds to
the (unique) valued at which the turnplkek( ) intersects the stagnation Imke(A) in the original
model, as it becomes clear from (42). By equating (40) anil[@¥2by substituting: as in (67) into

(49)], A turns out to be
«@ 3

T + 5
B(1—a)(@a/p)Ts —a 2
which in turn, if replaced in (50) and usingas in (68), yields the value of the optimal policy at the
intersection pointd, ¢ (A) = YA, of the original model.

The position of the last steady stat@, x), depends on how large the discount fagids with

respect to the parametersf and3. Sinceu* < p° impliesfa (1°)* ™" < Ao (1*)*", three scenarios
may occur, all satisfying condition (43).

A=

(69)

1. If p < B ()", thenp® < (Hoz/p)l o = [1; hence, x) lies north-east of.*, x*) [asOu”
in (61) is increasmg]

2. If p =0 ()", theny® = (9a/p) -« = [1, and thus the two steady states collaggey) =
(1, x°).

3. Finally, if 0o (16°)° " < p < fa (u*)* ", thenp* < (Ba/p) T = ji < p*; therefore(ji, ¢) lies
north-east of .*, x*) and south-west o(f/,L X®).

In this paper we shall focus on the third case, which cornedpto a scenario in which the critical
point A* defined in (45) lies on the left of the intersection poifitdefined in (69) on which the
turnpikek (A) intersects (from above) the stagnation ling4).

Proposition 4 Under Assumption A.4 and provided tifat(1)* ' < p < fa (1*)* " holds, the two
fixed points(i*, x*) and (11, x) defined above can be classified as follows in terms of thelilgta
properties.

L (i) =(a/ [B(1—a)],0{a/[B(1 - a)}* (1 — 1/01) + p[Bo (1 - a)]) issaddle-path sta-
ble, with the stable arm converging to it from north-east wheméhe initial values 1 (¢y) , x (to))
are suitably chosen.

2. (f1,x) = ((9a/p)1 @, 0(0a/p)T= ) is an unstable clockwise-rotating spiral.
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The third point,(*, x*), cannot be classified analytically.

Proof. It is immediately seen that the Jacobian matrix of (58) ex&d at(;.°, x*) =

([1+2a+\/1+4a+a2}/[3ﬁ (1—a)],0{[1 +2a+\/1+4a+a2}/[35(1—a]}“)isunde-

fined, as some of its elements diverge eitherte or to +o0o as(u, x) approachesu®, x*), the sign
of infinity depending on the direction along whi¢h, x) — (1, x*). We thus focus our attention on
the other two steady states.

Above the locug: = 0 (61), x = 6u®, the term(6u~ — x) in the first equation of (58) is negative,
while it is positive below the same locu®.(x) defined in (59) is such tha&p (1) > 0 for p* < p <
w®, while @Q (1) < 0 for > p®; therefore,[1 — 28 (1 — «) 1/Q ()] turns out to be negative for
w* < p < p®, while it is positive fory > p®. Hence: ifu* < u < p®, i > 0 above the locus (59) and
it < 0 below the same locus; while, if > 1*, i < 0 above the locus (59) and> 0 below the same
locus.

Sincey > 0, the sign ofy in the second equation of (58) depends on the sign of the tesquare
brackets in the RHS. A (1) > 0 for u* < p < p® and@ (p) < 0 for > p®, it turns out that in the
first case such term is positive above the locus (82}, 01— Q (1) (fau*t — p) / [2af0 (1 — )],
while it is negative below the same locus; the converse Holds > 1. Thus, whenu* < u < uf,

x > 0 above the locus (62), whilg < 0 below the same locus; converselyuit> p*, x < 0 above
the locus (62), whiley > 0 below the same locus.

The analysis above is sufficient to trace out the whole phaggain for the caséa (;ﬁ)“*1 <
p < Ba(p*)* ", thatis, whenu* < i < *, which is fully reported in Figure 1. Itis clearly seen that
the fixed point(x*, x*), whose coordinates are defined in (60) and (66) respectigedpddle-path
stable it can be guessed that its stable arm is increasing and begtayv the locus (62) on the interval
[1*, 1*). To check its saddle-path stability, consider the Jacobigb8) evaluated afu*, y*):

C o T B8 — ) () o 0
TWX) =] e ()™ £ oy () + 7 4 8001 —a) (o —1) () o |* 7O

wherec; = (80)> ao (1 — ) (0 — 1) ande, = 30p (a + o — 1). Note that, by (43), the term on the
top left is negative; while the term on the bottom right isaelg positive. Hencedet [J (1*, x*)] < 0,
establishing thaf.*, y*) is a saddle.

As the fixed point(u*, x*) lies strictly below the locus (61) and the unique intersecipoint
between the loci (62) and (61) is the fixed pofpt x), whose coordinates are defined in (67) and
(68) respectively, it must be the case that (62) crossesf(6) below on(ji, x). Therefore,(ji, x)
must be a clockwise rotatirgpiral and the eigenvalues of the Jacobian of (58) evaluatéd gt) are
complex. Thus, to establish instability we need to showtthegit real part is positive, or, equivalently,
thattr [J (fz, x)] > 0. The Jacobian is

1 [Q () —28(1—a)fi]p 20(1—a)p—Q(p)
Q) [ =52 10Q (&) + 200260 (1) + p*10 ()" 2aB(1—a)0 ()

with @ (1) > 0, asp* < i < p. Hence,

tr[J (2, X)] = pQ (i) — 28 (1 — a) p+2aﬁ(1—@)9(ﬂ)a
= pQ () +26 (1 —a) i [af ()" = p]
—pQ () > 0

where the last equality holds é&@ 1 “‘1 — p} = 0 on the intersection between the loci (61) and
(62) on(, x). This completes the prooi

J (i X) =

9
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FIGURE 1: phase diagram of system (58) whn(;5)* ™ < p < far (u*)®

We have seen in Section 3 that the turnpiked) lies always above the asymptotic turnpike,
k (A) > ko (A) for all A (and thus for all instants); this is consistent with the fact that(t) > ;*
must hold for allt and thus, the stable trajectory must approach the fixed paink*) from the right.
We denote byy (1) the stable trajectory converging tp*, x*); that is, y (1) is theoptimal policy
expressed in terms of state-like and control-like variablecording to (58). Its slope on the fixed point
(u*, x*) is given by the slope of the eigenvector associated to thativegeigenvalue of the Jacobian
J (pn*, x*) defined in (70) (see Barro and Sala-i-Martin, 2004, p. 598 &igenvalues of (u*, x*)
are the elements on its diagonah — 86 (1 — «) (u*)*] /o and[p+ B0 (1 — a) (0 — 1) (u*)?] /o
respectively, where the first one is negative; its assatiaigenvector has slope given by:

) = - —(L—a) [er () +e2 ()" + ] / (a0?)
[p+80(1—a)(o—1) )] /o—[p—P0(1—a) )] /o
(36)” a0 (1= a) (o = 1) (1) + B0p (a+ 0 — 1) (1) + 7
ao?B30 (u)*
_ Bbac (1 —a) (0 = 1) () +plato—1) ()" +p’
ao? (p*)* ’

(71)
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which is clearly positive.

Therefore, the optimal trajectory approaches the fixedtgmm north-east in a (right) neighbor-
hood of.*: along the transitional turnpiké,(A), both ratiosk (4) /A andé/A must decline in time
when they are approaching the asymptotic turnéﬂge(A). It is clear, however, from the phase dia-
gram that, as the optimal trajectoyy(x) must lie below the locug = 0 defined in (62) for > p*,
such slope must be less than the (positive) slope of the I@)swhich, after some tedious algebra,
can be computed to bél — «) [af00 (u*)* + p] / (o) > 0.

Under the assumption théd (15)*" < p < o (u*)* ", u* < fi < p* holds true; it follows that,
by translating: into A [see (69)] through (49) in the original model, the interg®tpoint between
the turnpikek (A) and the stagnation link(A) lies on the right of the singular point* defined in
(45): A* < A. Therefore, condition (44) of Proposition 3 implies tt&a(tfl) < g (A) which is
equivalent toy (1) < 6 (1) = x. Such inequality states that the optimal trajectgriy:) cannot
intersect the (unstable) steady stgiey); as a matter of fact, it keeps well below it, and thgsy)
happens to be harmless for our analysis, at least for thé éage®)* " < p < far (u*)* "

Conversely, the steady state left out;, x°), is the most problematic, as, on one hand there is no
way of studying its stability analytically, but on the oth&and, since condition (44) of Proposition 3
states that (A°) = ¢ (A®), it turns out thaty = 0 (u*)® = x* holds true, implying that the optimal
policy x (x) actually must cross it. Hence, we opted for a qualitativeapgh based on information
gathered on a neighborhood(@f, y*). Condition (44) of Proposition 3 outside the singular polat
translates into

{ X () < 8 (p)™ forp* < p < p’ 72)

X () >0 (p)* forpu > p°,

which, in turn, means that the optimal policy must lie belbe bbcus: = 0 defined in (61)x = 6u?,
whenp* < p < p® and above the same locus far > p°. Moreover, a close inspection of a
neighborhood of 1*, x*) in Figure 1 shows that such point is attractive on the areaabte locus
i =01In(61), that is, above = 6u, and on the right of the ling = 1*, while it is repulsive on the
area below the same locus and on the left of thegire 1.°. As6u is increasing, these considerations
suggest that the optimal policy (1) must be increasing arourig®, x*) and the optimal trajectory
(u (t), x (t)) must cross the singular poifjt®, x*) from north-east to south-west as time elapses.

5.4 Time elimination, policy function and initial conditions

In order to study the policy functiog (1) expressed in terms of control-like and state-like varigble
x andy along the transitory turnpikk(A) we apply the technique developed by Mulligan and Sala-
i-Martin (1991). Thus, we write the unique differential edjon given by the ratio between the
equations in (58):

X _ [afp™" = p) 0] Q (1) — 2053 (1 — o) [0 — x ()]
fi [Q (1) =26 (1 — ) p] [Op> — x ()]

whereQ (p) is defined in (59).

The natural choice for the initial condition of (73) is itdwa on the saddle-path stable steady state:
(1*, x*), whose coordinates are defined in (60) and (66) respectirredyeover, the value of’ (1*)
given by (71) will be used to let the numerical algorithm cb@dhe direction along the stable arm

X' () = X (1), (73)

8The same situation occurs when< o (us)a’l, in which case (A) > g (A) and thusy () > 0 ()" = .

a—1

Only whenp = fa (1*)” 7, and the two pointsi and A* collapse, the optimal trajectory necessarily must cross th
(unstable) steady stafg, x); in this case, however, the poifjt, x) = (u*, x*) inherits the peculiar singularity properties
of (u®, x*), thus becoming a “supersingular” point to be handled witburnspection.
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outside the poinfu*, x*). The previous analysis, however, has endowed us with anctference
point, the singular poini.®, x*) —whose coordinates are defined in (64) and (65) respectiwehjich
may be exploited to check whether the optimal trajectory poied from the steady statg*, x*)
actually crosses such point as well.

Even if, as we have seen in the previous section, the JacobiésB) evaluated ory®, x°) is
intractable, we are able to compute the slope of the poligy-atu® by applying I'Hopital rule to the
RHS of (73) evaluated at = p°. By differentiating both the numerator and the denominatdhe
RHS of (73), by taking into account thé(x*) = 0 and[f (15)* — x (1*)] = 0, and by substituting
into (73) we obtain the following quadratic equationyf(.*):

260 (1 —a) () [¥' (1)) = 4afio (1 = a) () [X' (")) (74)
—{[ab (1) = p] @ (1*) — 20500 (1 — o) ()" } (x*) = 0.

Substituting:® = [1 + 2+ V1 + 4o+ a?] /36 (1 — )], x* =0 (p*)" andQ’ (1) = —26 (1 — )
V1 + 4a + o2 into (74) two positive real solutions appear, the largestdpéarger than the slope of
the locusi = 0 defined in (61)fa (,us)c“*l. However, this happens only under the assumption that
O (1°)* " < p < Ba(p*)*"; this is why we chose to confine our numerical approach to such
scenario.

With all the information gathered so far, we are ready to s@lumerically ODE (73) and thus
find the (numeric approximation of the) optimal poligy x).

6 Numeric simulation of the optimal policy

After several attempts by means of thehlberg fourth-fifth order Runge-Kutta method with degree
four interpolantmethod (seee.g, Shampine and Corless, 2000) applied to ODE (73) and imple-
mented through Maple 12.02, we eventually were able to fitidfaatory result only for single sets
of parameters values. Specifically, we chose values fonpetexrsw, p, o andd which seem reason-
able and are often assumed in the macroeconomic literageese(.g, Mulligan and Sala-i-Martin,
1993): a = 0.5, p = 0.04 andf = o = 1. By assuming the same output elasticity= 0.5, for
both physical capitat and stock of knowledgé in the Cobb-Douglas technology we opted for the
simplest and most clear-cut case, while the choicg ef 1 is motivated again by simplicity and the
fact that we are not interested in the total factor proditgtivi he values = 1 for the reciprocal of
the intertemporal elasticity of substitution implies logfamic instantaneous utility. Given the para-
meters’ values above, we shall consider values for the pateari (the efficiency parameter in the
Weitzman process of matching pairs of seed ideas) satgstyi@ necessary growth condition (43);
that is, such that > 0.0064.

We planned to exploit both the steady stgté, x*) and the singular poinfu®, x*) discussed in
the previous section [see (60), (66), (64) and (65) respalgiias initial conditions in order to trace
out two separate trajectories for the solution of the sam& Qf3) through Maple 12.02 implementa-
tion.® Under the choice of parameters’ values discussed abovenéd out that such two trajectories
perfectly match on most of the intenjal*, 1.°] only for a unique (feasible) value of the technological
parameters: specifically,5 = 0.0124. Therefore, we shall approximate the optimal policf) by
numerically solving ODE (73) fotv = 0.5, p = 0.04,0 = 0 = 1 andg = 0.0124.

By using this set of parameters’ values in (64), it turns ot {,° = 204.4503, which implies

a—1

thatp = 0.04 > 0.035 = Ao (u*)*"; therefore our example satisfies condition> G (%),

SApparently, the improvement of the algorithasolve/numeridn the recent update from version 12 to version 12.02
of Maple has been crucial: we would not have been able to atahur trajectory fop, > p® through the older release
12.
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corresponding to the third scenario discussed in Sect@®nrbwhich the critical pointd® defined in
(45) lies on the left of the intersection poiAtdefined in (69) on which the turnpiki?e(A) intersects
(from above) the stagnation Iini?e(A). Figure 2 portraits the turnpikfe(A), the asymptotic turnpike
ko (A) and the stagnation Iinfe(A) as defined in (40), (41) and (42) respectively, for our choice
parameters’ values; as expecteld,= 2.1514 < A = 2.567.

800

600

400

A

FIGURE 2: the turnpikek (A), the asymptotic turnpiké., (4) and the stagnation line(A) for a = 0.5,
p=0.04,0=0c=1andg = 0.0124.

As far as the long-run behavior of the economy is concerng@édb)n = ¢ = o/ [6 (1 — )] =
80.6452; thus, the asymptotic turnpike is defined by (4) = 80.6452 (A + 1). In view of Propo-
sition 2 (ii), the long-run capital rental rateits, = f' (77) = 0.0557, the long-run common constant
growth rate is, according to (27), = 0.0157, while the long-run income shares devoted to invest-
ments in knowledge and capital are the same and, accord{@g}ogiven bys., = s* = 0.1408.

The critical values defining the steady states in the phasgralin (see Figure 1) ate*, x*) =
(80.6452,6.4516), (f1, X) = (156.25,12.5) and(u*, x*) = (204.4503, 14.2986).

We now proceed to the numeric computation of two separatgisok of the same ODE (73)
through Maple 12.02: the first uses the steady statey*) = (80.6452,6.4516) as initial condition
and condition (71)x’ (u*) = 0.0687, for the selection of the stable arm, and will be labeléd.);
while the second has the singular pofpt, y*) = (204.4503,14.2986) as initial condition and has
slope given by the larger solution of (74) an= p*, i.e,, X’ (¢*) = 0.0602, and will be denoted by
x® (). The same two lociy = 0 andx = 0 of Figure 1 are the two slim black curves reported
in Figure 3, while the thick curves, the black one and the gmey, represent trajectony* (1) and
trajectoryx® (u) respectively.
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FIGURE 3: the two locuseg = 0 andy = 0 (the two slim black curves) and the trajectorigs(x) andx® (1)
(the black and the grey thick curves respectively)doe 0.5, p = 0.04, 0 = o0 = 1 ands = 0.0124.

Even for our peculiar choice of parameters’ values the Maglé2 algorithm is capable of com-
puting the solutiony* (1) — starting from the initial conditiof.*, x*) — only up to a point: it actually
stops atuz ~ 197 < 204.4503 = p*, thus falling short of the singular pointy*, x*). Similarly, as
it is clear from Figure 3, the other trajectory; (1) — using(r®, x*) as initial conditions — heavily
underestimates the policy for values;ofipproaching.* (i.e., far away fromu*). The two trajecto-
ries, however, perfectly match on most of the (central pathe) interval|.*, 1*], thus suggesting
that the numeric approach actually works satisfactorilytfese values of the parameters. In order
to construct our estimation of the whole optimal policyu), for all > p*, we shall use trajectory
x* (u) for values ofu close tou*, and trajectoryy® (1) for values ofu in a neighborhood of tg®.
Specifically, since, as from Figure 3 it is clear that the galdies in the part oflu*, 1*] on which
x* (1) = x° (1), we shall define the policy by joining the two trajectoriessoich point, that is, as the
following piecewise function:

X(M):{X*(M) for w* < pu < j (75)

X* (w) for p > fi.
Surprisingly, already by choosing = 0.0123, or 8 = 0.0125 the two curves¢* (1) and x® (u)
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in Figure 3 split apart while, at the same time, the range bfeson which the numeric algorithm
is able to provide a solution starts to shrink dramaticdtly;this reason we take as reliable only the
solution obtained fop = 0.0124 and portrayed in Figure 3.

Remark 1 We tried different values for the parametersp, o andd; for all feasible set of values
for such parameters we found a scenario similar to that desd above, at least under condition
O (1°)* " < p < Ba (u*)*": only for one specific value of parametér- related to the choice of
a, p, o andf — the two numerical solutions of the poligy(x) in (75) —x* (1) with initial condition
(u*, x*) andx® (p) with initial condition(u*, x*) —turned out to match perfectly on a large part of the
interval [*, 1*]. We conclude, thus, that the numeric approach works satmfaonly on a manifold

of dimension one in the parameters’ space.

7 Discussion

7.1 Time-path trajectories of the detrended variables

To obtain the time-path trajectory of the detrended vaeiablve substitute the optimal policy (1)
as obtained in (75) into the first equation of system (58)dyig the following ODE with respect to

time:
i) = {1 = 2= O o 0 - o). (76)

where(@ (-) is defined in (59). Again (76) can be numerically solved inghene manner as we did
for ODE (73). Since the policy () in (75) is defined piecewise, we first need to choose a date
t =t > 0 on which the trajectory assumes the (common) value 156.25; then, in order to find
the initial valueuy = 1 (0) for uint = 0, we solve (76) withy [u ()] = x® [i (t)] and with initial
conditiony (t) = [11 po IS the value of the numeric solution just computed ia 0. Note that by
choosing different values @fwe can consider any initial valyg = 1 (0) > /.

In our example we assume that= 36, corresponding to the initial conditiom, = 251.977 in
t = 0. Then, according to (75), we define the time-path trajectofs) as the numeric solution of
(76) with x [ ()] = x* [p (t)] for 0 < ¢ < £ [corresponding to the range< 1 (t) < j], and as the
numeric solution of (76) withy [ (t)] = x* [i (t)] for t > ¢ [corresponding to the range <y (t) <
i]. Figure 4(a) plots the whole trajectopy(t) for 0 < ¢ < 400, by distinguishing the first part (in
grey), obtained through® (+) for 0 < ¢ < ¢ = 36, from the trajectory eventually converging i =
80.6452 (in black) obtained by means gf (-) for ¢ > 36.

The time-path trajectory (¢) is then computed by evaluating the optimal policy (75) ontthe
jectory . (t) just obtainedj.e., by letting x (¢t) = x [u (¢)] for all 0 < ¢ < 400. Figure 4(b) reports
the result once again emphasizing the first part (in greydiobtl throughy® (-) for 0 < t <t = 36,
while that eventually converging tg" = 6.4516 (in black) is obtained by means gf (-) for t > 36.

In t = 0, the initial value isy (0) = xo = 17.1194, corresponding tg, = 251.977, while int = ¢ =
36, x (36) = 11.3688; clearly, x ({) = 11.3688 < 12.5 = ¥, as expected.

7.2 Optimal policy of the original model

With the trajectorieg: (t) andy (¢) at hand, we first compute the optimal consumptioA) and the
optimal outputj (4) along the turnpiké: (A) in the original model, both as functions of the stock
of knowledgeA. By using (49) we immediately find the initial stock of knowtge Ay = 1.9707 in
t = 0, corresponding t@,, = 251.977 established in the previous section by choosing 36. To
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such value corresponds an initial endowment of capitat (Ag) =496.57in t = 0; therefore, the
starting point of the optimal trajectories on the turnpi&éAy, ky) = (1.9707,496.57).
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FIGURE 4: time-path trajectories of the detrended variable,) in (a) andx (¢) in (b), fora = 0.5,
p=0.04,0 =0c=1andg = 0.0124.

The optimal consumptiofi( A) along the turnpike is then obtained by using (50), in which) is
defined in (75), thatisy® () for Ay < A < A [corresponding, by (49), tb < u < 0], andy* (+) for
A > A [corresponding, by (49), to* < u < [, where the abscissa of the intersection point between
the turnpikek (A) and the stagnation line(A), corresponding tg in the detrended model, is, again
by (49), A = 2.567.
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FIGURE 5: (a) optimal consumption, output and capital as functioind along the turnpikek (A) for
a=0.5,p=0.04,0 =0 =1andg = 0.0124; (b) optimal consumption and output close to the initiatkto
of knowledgeA, = 1.9707.

_ Figure 5(a) reports the turnpilie(A) as in Figure 2 plus the optimal outpitA) corresponding to
k (A) and the optimal consumptiain( A) just evaluated. Figure 5(b) magnifies the intersectiontpoin
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between the optimal outpudt(A) and the optimal consumptiof(A) occurring onA® = 2.1514,
close to the initial stockl, = 1.9707 and to the left ofdA = 2.567, as discussed in Section 5.1. Since,
through its counterpayt® in the detrended model, such intersection point has beahtasmnstruct
the optimal policy for the initial values of the stock of knieadge A — precisely ford, < A < A,
corresponding ta® (-) in the detrended model — in Figure 5(b) the graphi of) betweend, and A
has been emphasized in grey, as we did in previous figures.

7.3 Time-path trajectories of the original variables

The time-path trajectory of the stock of knowledde(t), is immediately obtained by evaluating (49)
at each point of the time-path trajectgry¢) computed in Section 7.1; hence, the time-path trajecto-
ries of capital (£) and outputj (¢) along the turnpike follow by construction. As far as the oy
consumption along the turnpiké(t), is concerned, its time path-trajectory can be computesiiir
(50) evaluated at each point of the trajectaryt) and withy (-) defined as in (75); specifically, by
usingy® (-) for0 <t <t =36 andy* () fort > ¢ = 36.

These trajectories are drawn in Figure 6(a), while in Figi(t®) the time path-trajectory of the
capital rental rate is reported; once more, their dependence onythe) arm of the policy in (75)
for 0 <t <t = 36is emphasized in grey.

1000+ k(1) G [ &) Too = 0.056 7
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FIGURE 6: (a) time-path trajectories for the stock of knowledgjecapitalk, output; and optimal
consumptiore along the turnpike forv = 0.5, p = 0.04, § = o = 1 and = 0.0124; (b) time-path trajectory
for the capital rental rate.

From Figures 2, 5(a) and 6(a), it is immediately seen thaleuour choice for the parameters’
values, the dynamics along the turnpike are characterigechtuch larger amount of physical capital
than any other variable. Specifically, a large initial calit = 496.57, compared to very few initial
ideas availabled, = 1.9707, is required in order to let the Weitzman recombinant predegake-
off; such amount of capital, even if for a short time, is pallyibeing ‘eaten up’ by both consumption
[recall that¢ (A) > g (A) for Ay < A < A®]and investment in R&D, thus envisaging an initial period
of decline for the physical capitdl. As it is clear from Figure 5(b), also output and consumption
decrease for a short time; specifically, output declines aftl) hitsg (A) from above — that is, when
the stock of knowledge reaches level — and consumption decreases until the stock of knowledge
reaches levell (at the crossing point between the turnpike and the stagnbitie, as seen from Figure
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2) at timef = 36. As time keeps elapsing, however, all variables start toemse, with the amount of
capitalk keeping much higher values with respect of all others, dagthe stock of knowledget.
For example, whent is around73, % is arounds000, as can be evinced from figure 5(a).

Especially Figure 5(a) emphasizes the striking high vafoeshe ratiok (A) /A — also ratios
7 (A) /Aandé (A) /A, however, are quite larger than- which becomes constant ddncreases, e,
as the turnpike: (A) approaches the asymptotic turnpike (A) in Figure 2 [note that all graphs,
k (A), 7 (A) andé (A) tend to become linear for largé].

In our example, thus, sustained long-run growth requirasgelexploitation of physical resources,
at least relatively to the other input factor, knowledgesreunder a ‘balanced’ Cobb-Douglas tech-
nology assigning the same weight & 0.5) to both its input factors (capital and knowledge
respectively). Such ‘asymmetry’ is explained by the ratidetween the (low) price of capital —
which is 1, the numéraire — and the relatively high unit cost of knowkeg@roductiony (A), as de-
fined in (39); as a matter of fact, under our choicesof 0.0124, ¢ (A) turns out to be significantly
larger thanl, asy (A) > lima_., ¢ (A) =1/7"(0) = 1/5 = 80.6452 [see also Figures 8(a) and 8(b)
in the next section].

We now focus our attention on the time-dynamics shown in feigi(a). The figure exhibits a
system which actually takes some time to take-off, befaxgisy to approach the constant balanced
growth pattern in the long-run. In other words, provided tha economy starts with very few ideas
available (less than twad, = 1.9707) and with sufficiently large physical capitdl,(= 496.57), the
initial transient dynamics happen to last quite a bit; egdlyahe stock of knowledge! (¢) in Figure
6(a) takes no less thax®0 periods before becoming significant [note, however, thaéhémeantime
capitalk (t) already started to “blow up”]; for example, it takes aro@8d periods to reach the stock
A = 73, corresponding to the amount of capitat: 6000 discussed before. Similarly, the apparent
constant ratia (A) /g (A) visible in Figure 5(a) — due to almost linearity of the fucisé (A) and
7 (A), and which can be easily checked to be close to the asympatitid).07184, corresponding to
the asymptotic saving ratg,+ s* = 0.2816 —is actually not reached before, say, at I&astperiods.
To conclude, Figures 2 and 5(a) should be read carefully vamenintroduces time, as Figure 6(a)
explains: of course the whole system grows along the tuenlb(kél), but at a very slow pace on the
initial portion of it, while it keeps accelerating as timaps$es until it “explodes” along the asymptotic
turnpikek., (A).

Figure 6(b) adds another interesting piece of informatethe analysis above: even if physical
capital is always (much) larger than the stock of knowledggrroductivity keeps rising in time, as
confirmed by its increasing rental ratg until it reaches its asymptotic value, = 0.0557.

Finally, Figure 7 confirms all previous results in terms désaof growth. The stock of knowledge
A (t) happens to be (by construction) the only variable with abyaysitive rate of growth, = A/A;
conversely, as already discussed before, the capital the outputj (£) and consumptio (¢), all

experience some negative growth at initial times, as théjbénegative rates of growth; = k /l%,

V5 = gj/gj andy; = é/é, for ¢ close to zero. Interestingly, it can be observed th@i reaches its
absolute minimum in = 36 [corresponding t@ (A) as confirmed by Figure 5(b)].

The most important feature of recombinant endogenous growadels, however, is strikingly
evidentin Figure 7: all rates of growth must be increasinignie, while approaching their asymptotic
common ratey = 0.0157, corresponding to balanced (and extremely fast in timeyvtr@along the
asymptotic turnpike.. (A). Such property is clearly consistent with the strictly cexghape of alll
curves in Figure 6(a). This feature reflects the originaldiipsis introduced by Weitzman (1998): at
initial periods, seed ideas are scarce, and thus have that@tof growing at increasing rates, while
in the long-run, limited physical resources to be investe@R&D — with respect to the exploding
number of seeds ideas available for matching — cools downthrim the more realistic case of
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FIGURE 7: growth ratesy 4, 73, 73 andyg, of 4, k, § andé respectively as functions of time, far= 0.5,

p=0.04,0 =0 =1andg = 0.0124.
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FIGURE 8: (a) expected unit cost of knowledge productipnas a function of the stock of knowledgeand

(b) its time-path trajectory.
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constant rates. In the next section we analyze more in déeispecific nature of the transition
dynamics related to knowledge.

7.4 The dynamics of recombinant knowledge

Figure 8(a) shows the graph of the unit cost of knowledge yetidn, ¢ (A), given by (39) as a
function of the stock of knowledgé: it is the arm of a hyperbole sharply decreasing for valued of
close toA, with its asymptote given by /7’ (0) = 1/5 = 80.6452. Such sudden jump, however, is
to be diluted when time comes into the analysis; we have desrtiie stock of knowledgd starts

to grow significantly only after a certain amount of time [$égure 6(a)], this fact explains why the
hyperbole representing in Figure 8(b) as a function of time— obtained by using the trajectory
computed in the previous sectiod,(t), in (39) — looks less steep than that in Figure 8(a). Note
that in Figure 8(b), as well as in the following ones, we com to emphasize in grey the portion of
time-path trajectory dependent on the(-) part of the policy in (75), that is, fay < t < ¢ = 36.
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FIGURE 9: (a) investment in R&D,J, as a function of the stock of knowledgeand (b) its detail forA close

to Ag = 1.9707; (c) capital investment;, as a function ofd and (d) its detail ford close toA,.

Investment in R&D,J, and investment in physical capitdl, along the turnpike as functions of
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the stock of knowledged, are plotted in Figure 9/ is computed as in (22) by using functions
¢(A) andy (A) discussed in Section 7.2, and functianA) defined in (39) and’ (A) obtained by
differentiating (40) with respect td. From Figures 9(a) and 9(c), where a large rangd ehlues

is considered, we learn that bafhand k are essentially linear functions f; moreover, it is clear

that bothJ andk have the same magnitude, implying that they become the sathbefore reaching
their asymptotic (common) constant ratg, = Jo. /Yoo = % = kuo/ys = 0.1408 (see Section 6).

Only for A sufficiently close to its initial valued, = 1.9707, their behavior differ, sincé is negative
for small A, when capital experiences initial ‘disinvestment’, as mtgd by Figures 9(b) and 9(d).
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FIGURE 10: (a) investment rate in R&D;, = .J /7, as a function ofd and (b) its detail ford close toAy; (c)

investment rate in physical capitall = k /7, as a function of4 and (d) its detail ford close toA,.

Itis interesting to compare the magnitude of both investrireknowledge production] (A),and

capital,k (A), in Figures 9(a) and 9(c) with the magnitude of consumptigni), and outputjj (A),

in Figures 5(a) and 5(b): for all values df— also close t4, — the optimal dynamics postulate a rel-
atively small investment in both production factors witegect to consumption and output levels. To
examine this property more in depth, Figures 10(a) and 18fgrt the investment rates in knowledge
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production and in physical capital as the ratios J/g ands* = l%/g respectively, again as functions
of the stock of knowledgel. Both investment rates are increasingdrand reach their asymptotic
(common) values,, = s* = 0.1408, quite rapidly, as confirmed by the details closeitoplotted in
Figures 10(b) and 10(d), even if the investment rate in ahit, is negative for small, due to the
initial disinvestment, as shown in Figures 10(c) and 10§dich quick jumps to the asymptotic value
s+ = s¥_ for both investment rates,and*, is consistent with the linearity exhibited by(A4) and

k (A) in Figures 9(a) and 9(c).
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FIGURE 11: (a) new knowledge p[oductiopi,, as a function ofd and (b) its detail ford close toAg; (c)
number of seed idea#], as a function ofd and (d) its detail forA close toAy.

As far as investment in knowledgé, (or 3), is concerned, these dynamics confirm Weitzman’s
(1998) description of the evolution of (recombinant) knedde: when knowledge — and thus seed
ideasH — is scarce the Weitzman'’s production function (5) exhilmtg productivity; accordingly,
only a small fraction of resources is employed in R&D, whilels fraction increases as the stock
of knowledgeA — and thus seed ided$ — become more abundant. In the long-run, however, are
the physical resources that become scarce with respecbtel&dge — more specifically, they grow
slower than what (potentially) could do knowledge — and this scarcity that bounds the (initially
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increasing) rate of investmeato its asymptotic value,,, thus also bounding the whole economy to
its long-run constant balanced growth-path.

With ¢ (A) andy (A) at hand, it is also possible to evaluate the new (succedsfalyledge pro-
duction, A, and the evolution of seed ided$, along the turnpike as functions of the stock of knowl-
edge,A; the former is given by (29), while the latter can be computiedctly from the Weitzman’s
dynamics (4), wherel has just been obtained af§ (A) = (9/0A) [A (A — 1) /2] = A—1/2. Their
graphs are reported in Figure 11, in which it is striking tinerity of A, even for values ofi close
to its initial value, A, as can be grasped from Figure 11(a) and, especially, thaé oheFigure 11(b),
while the seed idead remain uniformly convex for all values of, also when is close toA,, as
Figures 11(c) and 11(d) clearly show. Strict convexityfA) in Figures 11(c) and 11(d), associated
to (more or less uniform) linearity of in Figures 11(a) and 11(b), is consistent to formula (4) -hwit
C,(A) = A — 1/2 itself linear — which implies quadratic growth féf when A grows linearly. It
is also worth noting the difference in magnitudes betweemimber of seed ided$ produced for
each given stock! and the actual successful idedsproduced out of, even for small values of
A: such low returns are justified by the choice of a very low edlr the efficiency parametes, =
0.0124, in the probability of success (38) of the Weitzman’s maighprocess; with such a low,
seed idea$/ must abound in order to guarantee sustained growth of kuigele

To conclude, Figure 12 shows the time-path trajectoried shaables just discussed, specifically,

J, k, 3,5", AandH. Due to the slow growth pace of the stock of knowledge) for initial periods, as

reported in Figure 6(a), linearity of investment$A), k (A) and new knowledge as functions of4,
evident in Figures 9(a), 9(c) and 11(a) respectively, givag to corresponding time-path trajectories
which are convex, as shown in Figures 12(a), 12(b) and 1&fele, for the same reason, convexity of
the seed ideaH (A) as a function ofd in Figure 11(c) becomes more accentuated in its corresponde
time-path trajectory of Figure 12(f). Similarly, the sudd@mps to their asymptotic values of the
investment rates (A) ands* (A) as functions ofd exhibited in Figures 10(a) and 10(c) respectively,
is being smoothed down in their corresponding time-pajbdtaries of Figures 12(c) and 12(d), again
by the initial slow growth of the stock of knowledgg(t); that is, along their time-path trajectories
both investment rates need at least 200 periods before téwtyapproaching their long-run (common)
constant value,, = s*_ = 0.1408.

8 Conclusions

The exercise performed in this paper is a very preliminaignapt to tackle the transition dynamics in
the recombinant growth model introduced by Tsur and Zen@) 72 For CIES instantaneous utility
and Cobb-Douglas production in the output sector, we chasetable function for the Weitzman’s
(1998) probability of obtaining a successful idea from epahliwise matching of seed ideas, so that
the original optimal dynamics along the turnpike, whichedge at a constant rate of growth in the
long-run, can be ‘detrended’ to an equivalent system cgngrto a steady state. In the space of
the detrended variables we exploit the asymptotic steadg ptus a singular point, across which the
optimal policy must get through at some early instant, ireotd compute numerically two optimal
trajectories which, for a specific choice for the paramétatsies, happen to match on a large range
between such two points. We therefore conclude that, byrngitogether these trajectories, we can
build an approximation of the optimal policy in the detreddariables which must be reasonably
close to the true policy for all feasible values of the dediemhvariables. By converting such trajectory
into the original state variable (stock of knowledge) andtoa variable (consumption) trajectory
along the turnpike, we obtain a numeric approximation ofgpe&mal consumption, which in turn,
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FIGURE 12: (a) time-path trajectory of the investment in R&D,(b) time-path trajectory of the capital

investmentf, (c) time-path trajectory of the investment rate in R&Ds .J /9, (d) time-path trajectory of the

investment rate in physical capitall = & /9, (e) time-path trajectory of the new knowledge productidn(f)
time-path trajectory of the number of seed ideds,
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again by solving numerically an ODE, yields the transitigtimal time-path trajectories of the stock
of knowledge, physical capital, output and consumption wel as their transition growth rates —
along the turnpike.

We believe that the main technical contribution of the pnéserk is the appropriate form chosen
for the Weitzman’s probability function defined in AssungptiA.4(ii), which allows for ‘detrending’
the original system of ODEs (37) into the equivalent syst&8).(

If, on one hand the optimal policy obtained in section 6 — aseduo build time-path trajectories
in Section 7 — may clearly be of interest per se, on the othed litas insufficient for studying how
the system behavior along the transitional turnpike is dpaiifiected by changes in the technological
parameters of the probability functionr of Assumption A.4(ii), while keeping fixed the values of
the other parameters. In order to further pursue the arsalggiard this direction, one needs either
to improve the numerical computation of system (58) so thambatching of the two aforementioned
trajectories in the detrended space — one crossing at timepasiic steady state and the other cross-
ing the singular point — is maintained at least on a nontrivierval of values for parametet for
given values of the other parameters, or trying a completifigrent approach on either system (37)
or system (58) by means of analytical tools in order to expi¢ind the true form of the optimal
trajectories. One may tackle the latter by looking for sompecgal function that may prove useful
in solving one of the systems (37) or system (58); seg, Boucekkine and Ruiz-Tamarit (2008)
for a recent application of the Gaussian hypergeometrictions to the Lucas-Uzawa model. Both
approaches will be investigated in future research preject

References

[1] Aghion, P. and P. HowittEndogenous Growth Theqr€ambridge, Mass.: The MIT Press, 1999.

[2] Barro, R. J. and X. Sala-i-MartirEconomic Growth2"¢ Edition, Cambridge, Mass.: The MIT
Press, 2004.

[3] Boucekkine, R. and J. R. Ruiz-Tamarit, Special Funditor the Study of Economic Dynamics:
The Case of the Lucas-Uzawa Mod&urnal of Mathematical Economidsl: 33-54, 2008.

[4] Mulligan, C. B. and X. Sala-i-Martin, A Note on the TimduBination Method for Solving Re-
cursive Dynamic Economic ModelSIBER Working Paper Serid€ 6, 1991.

[5] Mulligan, C. B. and X. Sala-i-Matrtin, Transitional Dymacs in Two-Sector Models of Endoge-
nous Growth;The Quarterly Journal of Economid98 737-773, 1993.

[6] Romer, D.,Advanced Macroeconomiddew York: McGraw-Hill, 1996.

[7] Shampine, L.F. and R.M. Corless, Initial Value ProbleiorsODESs in Problem Solving Environ-
ments,Journal of Computational and Applied Mathematics 31-40, 2000.

[8] Tsur, Y. and A. Zemel, Towards Endogenous Recombinawiv@r, Journal of Economic Dy-
namics and ContraBl: 3459-3477, 2007.

[9] Weitzman, M. L., Recombinant Growtfi;he Quarterly Journal of Economickl3 331-360,
1998.

32



Recent working papers

The complete list of working papers is can be found at http://polis.unipmn.it/pubbl

*Economics Series **Political Theory Series ¢ ALEX Series

2009 n.133°  Matteo Migheli: Assessing trust through social capital? A possible experimental
answer

2009 n.132*  Piero Cavaleri, Michael Keren, Giovanni B. Ramello and Vittorio Valli:
Publishing an E-journal on a shoe string: is it a sustainable project?

2009 n.130*  Alberto Cassone and Pietro Zaccarella: 1/ bilancio sociale delle universita’.
Inventario dei problemi e analisi comparata delle esperienze italiane

2009 n.129°  Matteo Migheli, Guido Ortona and Ferruccio Ponzano: A preliminary simulative
assessment of disproportionality indices

2008 n.128*  Fabio Privileggi: On the transition dynamics in endogenous recombinant growth
models

2008 n.127*  Roberto Zanola: Who likes circus animals?
2008 n.126*  Michele Giuranno: Regional income disparity and the size of the Public Sector

2008 n.125*  Giorgio Brosio and Roberto Zanola: The welfare costs of national standards: a
contribution to the debate on the outcomes of de/centralization

2008 n.124°*  Guido Ortona, Stefania Ottone, Ferruccio Ponzano and Francesco Scacciati:
Some differences in revealed behaviour under different inquiry methods

2008 n.123*  J. Stephen Ferris, Soo-Bin Park and Stanley L. Winer: Studying the role of
political competition in the evolution of government size over long horizons

2008 n.122**  Stefano Parodi: I/ funzionalismo di D. Mitrany: Dall’economia alla scienza
politica

2008 n.121** Joerg Luther: L antinegazionismo nell esperienza giuridica tedesca e comparata
2008 n.120*  Roberto Zanola: Consumer preferences for circus. a cluster approach

2008 n.119*  Roberto Ippoliti: L incentivazione economica nei problemi di agenzia: Il caso
dell’Azienda Sanitaria Pubblica

2008 n.118*  Piermassimo Pavese and Roberto Zanola: Autochthon vs. blended wines: Do
objective and sensory characteristics matter?



2008 n.117*  Andrea Vindigni: Uncertainty and the politics of employment protection
2008 n.116*  Carla Marchese: The limits to growth then and now
2008 n.115** Guido Ortona: Perché in Italia le elezioni violano la legge di Duverger?

2008 n.114*  Cinzia Di Novi: From theory to implementation of the best policy instrument to
protect human health: a brief overview

2008 n.113*  Cinzia Di Novi: Adverse selection in the U.S. health insurance markets:
evidence from the MEPS

2008 n.112*  Giovanni B. Ramello: Semiotica, diritto e mercato. Economia del marchio nel
terzo millenio

2008 n.111%*  Stefania Ottone and Ferruccio Ponzano: How people perceive the welfare state.
A real effort experiment

2008 n.110*  Daron Acemoglu, Davide Ticchi and Andrea Vindigni: A theory of military
dictatorships

2008 n.109*  Marcello Montefiori and Marina Resta: Social influence and neighbourhood
effects in the health care market

2007 n.108*  Davide Ticchi and Andrea Vindigni: War and endogenous democracy

2007 n.107*  Fabio Privileggi: The cutoff policy of taxation when CRRA taxpayers differ in
risk aversion coefficients and income: a proof

2007 n.106*  Daniele Bondonio: La valuazione d’impatto della riforma universitaria 3+2:
un’analisi empirica sui dati dell Ufficio Statistica del MIUR

2007 n.105*  Franco Amisano and Alberto Cassone: Proprieta intellettuale ed industria
farmaceutica: ricerche nel campo della proprieta intellettuale dei farmaci

2007 n.104*  Gianna Lotito: Resolute Choice in interaction: a qualitative experiment

2007 n.103*  Daniele Bondonio: La distribuzione dei finanziamenti europei sul territorio
regionale: un’analisi su micro-dati 2000-2006

2007 n.102*  Stefania Ottone and Ferruccio Ponzano: Non-self-centered inequity aversion
matters. A model



