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Abstract

In this position paper we deal with the conception of heterogeneity as both the force and
the result of evolutionary change. We ask, how this heterogeneity can be measured em-
pirically and how we can get a measure which allows to get a broad comparable empiri-
cal account especially on several levels of aggregation. Based on this discussion we sug-
gest that for several questions the measures of total factor productivity (TFP) and local
changes of TFP seem to be acceptable candidates for measuring heterogeneity and its
dynamics. Examples out of a number of empirical investigations applying this measures
show how interesting empirical facts about evolutionary change on several levels of ag-
gregation can be detected. The paper concludes by raising a number of unresolved issues
mainly related to the question about the relationship between evolutionary dynamics on
several levels of aggregation.
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1. Introduction

This paper summarizes part of the research performed during the last about 9 years at the
University of Augsburg. This research has been concerned with the issue of heterogene-
ity of actors on various levels of aggregation, its sources and its consequences in the
context of innovation and technological change. In this respect we have taken up the
issue from a theoretical and from an empirical side. The theoretical work has dealt mainly
with the question of how knowledge spillovers arising out of technologically different
actors do influence the direction and intensity of technological change1, the structural
development in sectors2, the cross-fertilization effects between sectors3, as well as the
comparative development of countries4.

This position paper, however, will report on the empirical oriented research. There we
have been concerned with the issue of measuring the heterogeneity within a population
of actors and track its development over time.

This again has been performed on several levels of analysis, the intra-sectoral5, the secto-
ral6, the regional7 as well as the international level8. Although quite different levels of
aggregation have been approached, the respective research has in common a certain con-
ception about heterogeneity with respect to the productive structure of the sample under
consideration, i.e. the firms, the sectors or the countries. These structures are built up (a)
by differences in total factor productivity and (b) by differences in input-intensities, out-
put-intensities and/our output coefficients.

In order to identify such heterogeneous structures and to track their development and
their change over time we suggest a specific empirical approach. For this purpose we
introduce a two-step analysis consisting of the non-parametric procedure to constructing
production or efficiency frontiers and the Malmquist-productivity index to tracking the
change of this structure over time.

The plan of the presentation is as follows. In section 2 we will briefly refer to some theo-
retical issues describing, first, the role heterogeneity plays in the evolutionary framework;
secondly, we ask for the criteria to be applied in order to determine the analytically rele-
vant heterogeneity in empirical data and put forward four requirements for the empirical
approach to be employed. In section 3 we refer to the measure total factor productivity,
distinguish our procedure from the traditional way of computing this measure and briefly
                                               
1 e.g. Cantner/Hanusch/Pyka (1999)
2 e.g. Cantner/Pyka (1998a, 1998b) Cantner (2000)
3 e.g. Cantner (1996)
4 Pyka/Krüger/Cantner (1999).
5 e.g. Cantner (1996), Cantner/Hanusch/Westermann (1998), Cantner/Westermann (1998)
6 Cantner/Hanusch (1999)
7 Bernard/Cantner (1999)
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introduce the main methodological approach we have chosen in order to detect hetero-
geneity and to track its development over time. Section 4 presents a selected number of
results pertaining to different levels of aggregation. The final section 5 summarizes our
approach and discusses some as yet unresolved issues and problems.

2. The Concept of Heterogeneity

In this section, what we attempt to briefly discuss is the concept of heterogeneity both in
a more general way and more specific with respect to the economic theory of techno-
logical change and innovation. For the further discussion this initial step allows us to
propose a rather well defined analytical frame constructed on the basis of a conception of
heterogeneity which aims at differences in the technological performance of agents.
This, of course, is an extraction out of all possible sources and instances of heterogene-
ity, but it enables us to focus on that kind of heterogeneity we consider analytically rele-
vant in the economic theory of technical change.

2.1 Theoretical Issues

In economics, there are a number of distinguishing elements of the neoclassical and the
evolutionary approach. Probably one of the most important ones, however, is the hetero-
geneity of behavior, attitudes, characteristics etc. of agents.9 Thus, what heterogeneity is
all about is asymmetry among the agents in a set. However, it is not at all obvious
whether this asymmetry matters for the description of the state of this set or for its de-
velopment over time. In neoclassical approaches one would deny this in general with the
consequence that the theoretical models suggested are characterized by symmetry of
agents or even by a representative agent.10 All the approaches designed in this way are
justified by the attitude that for the final outcome of a certain process the differences in
agents´ behavior during this process do not matter – it is just average behavior which is
determining the result and which analytically is relevant and interesting. Hence, hetero-
geneity is of an only temporary nature and by this it is a phenomenon only showing up
during transitory dynamics.

EVOLUTIONARY APPROACHES Contrariwise, heterogeneity or asymmetry is a funda-
mental principle in the theories of economic evolution. Selectionist approaches, syner-
getic approaches and developmental approaches rely on it and discuss how the system’s
nature or structure, on the one hand, and how, on the other hand, – based on this – its

                                                                                                                                         
8 Cantner/Hanusch/Krüger (2000, 1999)
9 Other distinguishing features are the different conception of uncertainty, of rationality, of equi-
librium, etc.
10 Analyses dealing with asymmetric information are an exception to this.
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(structural) dynamics is affected or driven by it. However, in each approach the way het-
erogeneity affects evolutionary development is quite specific: In the selectionist approach
it is heterogeneity which is reduced by competition and generated by innovation. In the
synergetic approach it is heterogeneity which brings about specific structural, self-
organizing features with respect to learning, co-operation etc. In the developmental ap-
proach, finally, heterogeneity is a matter of the stages of development (to be) passed.

HETEROGENEITY AS ASYMMETRY AND VARIETY Heterogeneity is a concept which
refers to the degree of difference within a population of observations, let that be house-
holds, firms, sectors or even regions or countries which differ with respect to their ef-
forts, behaviors and/or success due to – among others – the artefacts they consume or
produce, the modes of production they employ, the direction and intensity of innovative
activities they pursue, or the organizational setting they choose. This heterogeneity of
agents is, on the one hand, considered the result of technological change, i.e. of different
innovative/imitative/adaptive activities and differential innovative/imitative/adaptive suc-
cess; on the other hand, it also serves as a source for further progress in the sense that
this heterogeneity puts pressure on technologically backward actors to improve perform-
ance when the gaps become too large and on leaders when the gaps become too close;
and that it provides for different kinds of learning processes (imitative and adaptive
learning, cross-fertilization etc.).

In order to account for the heterogeneity of agents driven by and driving technological
change one draws on the close relationship between the characteristics and the behavior
of agents, on the one hand, and the kind of inputs which, on the other hand, they trans-
form into outputs. In fact, in the theory of technological change the actors are charac-
terized by the nature, the level and the degree of their innovative activities – either on the
input or on the output side.

In this respect heterogeneity can be accounted for by a conception of variety (Saviotti
1996). This concept is based on the number of distinguishable elements of a set of arte-
facts.11 In this sense Saviotti (1996, 94) distinguishes output and input variety, the for-
mer being the number of distinguishable outputs and the latter taking account of the
number of distinguishable types of processes.

However, heterogeneity in general and within the context of innovativeness in particular
is not only a matter of simply counting distinguishable elements. Any innovator attempts
to perform better than his competitors, and this „better“ may show up in providing goods
and services with superior price-quality ratios – compared to the ones of the competitors.
Thus, more than often one would like to have a conception which allows for a quantifi-
                                               
11 An obvious candidate would be this number itsself. According to Saviotti (1991, 177) in infor-
mation theory the variety of a set is just the logarithm in base 2 of the number of distinguishable ele-
ments.
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cation of the differences on which heterogeneity rests. Hence, with respect to output
variety one would be interested whether the variety observed is also built upon measur-
able quality differences (i.e. „higher“ and „lower“ quality) or whether this variety is found
within a more narrow or more broad range of the specific characteristic under considera-
tion (i.e. „more“ or „less“ built-in features). Equivalently, with respect to input or pro-
duction variety we should have an account of whether the several techniques in use are
rather similar or far different with respect to their efficiency (i.e. „more“ or „less“ effi-
cient) or their relative input requirements (e.g. „more“ or „less“ capital-intensive).

An appropriate conception in this respect is found in Dosi (1988, 1155–7) who is con-
cerned with the asymmetry of activities and distinguishes variety as a special case of
asymmetry. Both are to be seen in a context where firms engaged in innovative activities
are affected differently by technological change in terms of their process technologies
and quality (or kind) of output. Whenever firms can be ranked as „better“ or „worse“
according to their distance to some technological frontier he refers to as asymmetry. The
degree of asymmetry of an industry is then its dispersion of input efficiencies for a given
(homogeneous) output and price-weighted performance characteristics of firms´ (differ-
entiated) products. For all differences or asymmetries among firms which cannot be
ranked as unequivocally better or worse he refers to variety. This may be the case when
(a) firms producing the same good with identical costs employ different production tech-
niques or (b) when firms´ search for their product innovations in different product
spaces, embodying different product characteristics and aim at different corners of the
markets.

THE CONCEPT OF HETEROGENEITY Based on this discussion, in the following we will
be concerned with heterogeneity which is as closely as much related to technological
performances and their differences – thus, heterogeneity is meant to be technological
heterogeneity and it is based on the local application of certain technologies. By this it,
first, includes performances which can be compared directly to each other and by this be
ranked – i.e. producing a certain product with a higher/lower quality or running a spe-
cific production process more/less efficiently. Second, this conception comprises also
technological performances which cannot be compared to each other directly – i.e. pro-
ducing different products in the sense of old and new or running quite different produc-
tion techniques. These latter performances cannot be compared directly (in terms of
some physical measures) and one has to rely on some other measures such as the com-
parative economic success of those performances (as measured in terms of further tech-
nological change, of profitability, of market share, of growth rates, etc.).

TECHNOLOGICAL HETEROGENEITY ON HIGHER AGGREGATION LEVELS Moreover, the
technological heterogeneity we are concerned with is not only confined to the techno-
logical performance of individual actors. It is also applicable to higher levels of aggrega-
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tion such as the sectoral, the regional or the national level. By the way of aggregation, of
course, any sub-level heterogeneity gets covered and only some – here no matter how
defined – average characterizes the higher level unit. Despite this inevitable loss of in-
formation involved here, we nevertheless expect considerable and relevant heterogeneity
in technological performance of sectors, regions or economies with respect to the prod-
uct and quality range produced (e.g. agricultural products, Germany compared to India)
and/or the kind and degree of certain production techniques employed (e.g. cotton pro-
duction, US compared to Pakistan). Accordingly, what we mean with locally applied
technologies does – with a loss of specific description – also refer in a more aggregate
sense to sectors, regions and countries.

HETEROGENEITY AND DYNAMICS Heterogeneity as just introduced can be considered as
a snapshot description of a sample of observations. Especially in the context of techno-
logical progress it is quite obvious and has to be expected that heterogeneity is subject to
change. One could easily think of exogenous forces which quite equally affect all agents.
However, for endogenous changes which are provoked by individual action it is just as
much obvious that the respective changes are to a considerable degree specific to a cer-
tain agent or group of agents – that is the change we are concerned with is local tech-
nological change.12 And even if we considered a number of agents to behave rather
similar, e.g. in catching up to the technology leaders, such progress as well is local in the
sense that only a subgroup of the agents under consideration achieved at that.

Equivalently to our discussion of heterogeneity the concept of local technological
change is applicable to several levels of aggregation. In this respect, technological
change is specific to a certain country (e.g. the US compared to Togo), to a certain re-
gion (e.g. East Asian Tigers compared to Western Europe), or to a certain sector (e.g. in
machinery, Germany compared to Japan). Of course, and again equivalent to above, local
change on higher levels of aggregation hides local changes on lower aggregation levels,
so that only an „average“ change shows up.

2.2 Empirical Issues

HETEROGENEITY EVERYWHERE To state the importance of heterogeneity is one side of
the coin, the other one is to clearly specify in which unit we should measure or observe
heterogeneity and this in a way that it is also analytically relevant.

To clarify this, it is at all obvious that we are not all the same. But is this extreme degree
of heterogeneity of analytical relevance for explaining e.g. any difference in language
among us? Probably we have to be more crude or even more abstract. We thus could put

                                               
12 See Atkinson/Stiglitz (1969); a good overview is found in Antonelli (1995).
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forward that it is only nationality that matters – and for analyzing the differences in
structure and content of the comments we could give here each one in his native lan-
guage this might be a helpful distinction.

Consequently, to identify heterogeneity in empirical work is not an easy and straight-
forward task at all. In principle, one is facing a similar problem the typological approach
is confronted with: what is essential for analyzing the issue under concern? Whereas the
typological approach searches for some reliable average characteristic, the population
perspective is confronted with the task to find characteristics which are diverse, i.e. het-
erogeneous, and by this essential for performance and the progress of the population
under consideration. Looking for variables which can render this, one more than often
has to be engaged in rather detailed analyses of an nearly case-study type. Although the
results are often very illuminating and interesting, it is more than often not possible to
transfer the methodology and the results of one study to another one; the aggregation of
several results is often not possible, because the relevant variables are not of the same
type; etc.

HETEROGENEITY AND INNOVATION Let us now look more carefully at the theory of
technological change and innovation. How can we measure technological performance?
To give an answer we start with another question: What does technological progress
provoke, how do we distinguish an innovation from a well-known old artefact?

Here it is quite obvious that innovations provide for heterogeneity because something
new – a „new combination“ in Schumpeter´s (1912) words – is introduced into the mar-
ket. This may be a better technique of production, a better organizational structure, a
better product quality, or an entirely new product. Hence, the innovator introducing this
new combination can be distinguished from competitors just by his/her innovation.

Thus, more generally, technological heterogeneity is just the consequence of differential
innovative success cumulated up to the present. In a dynamic context, with respect to
several features of the process of technological change such as path dependency, cumu-
lativeness etc., this heterogeneity can also serve as an indicator for the direction and suc-
cess probability of further innovative activities – such as innovation, imitation, adoption
etc..

The central question arising out of this is concerned with the measure we should apply in
order to account for this innovation and technology related or determined heterogeneity.

SPECIFIC VERSUS GENERAL MEASURES Of course, we could have a long list of possible
characteristics or features which perform the task of detecting the effects of technologi-
cal change and innovations. All of the characteristics used in technometrics are based on
rather technical issues. Look for example at the technological development of helicopters
so well studied by Saviotti: technological progress here is represented by the develop-
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ment in technical characteristics such as engine power, rotor diameter, number of engines
etc. Or, look at computer chips where we are informed about technological progress by
steadily increasing storage capacities. Or, finally look at automobile production where
technological progress or organizational progress shows up in the increased number of
cars assembled within one hour (Fordism) or in the decreased number of bad quality cars
assembled (Toyotism).

However, by all its merits this quite specific and quite exact technical measurement has
also its drawbacks:

1. Despite the respective specific characteristics of a technology and despite its
development can be represented relatively exactly, it also causes that the more
exactly one measures specific features the less a comparison between different
observations will be possible and meaningful.

2. Whenever different technologies and their respective progress are analyzed, a
comparison of the results is less likely to be possible.

3. Any aggregation from the business unit to the firm, to the sector and industry,
to the regional or even to the macroeconomic level is not possible anymore.
The reason for that is quite obvious, because to aggregate the products of dif-
ferent firms in a sector, the products of different sectors in an economy cannot
be accomplished when technical attributes are used such as pieces, kg, MB
etc.

On the basis of the following four central requirements we suggest and introduce a
measure and empirical procedure which attempts to circumvent the problematic issues
just raised and which allows to analyze empirical observations within a theoretical
framework aiming at locally applied technologies and local technological change. For
each requirement we give a brief suggestion here – a completed discussion is found in
section 3.

REQUIREMENT 1 The first task is to detect a measure which may help to overcome the
problems mentioned. Thus, what one has to look for in this context is a measure which
on the one hand is exact enough and on the other hand is not that specific so that the
above-mentioned deficit will not show up. Hence, what we look for is a measure which
serves this purpose and is applicable to a broad range of innovative phenomena on dif-
ferent levels of aggregation.13

SUGGESTION 1 In order to show the way for setting up a broadly applicable taxonomy
we suggest the measure of total factor productivity (TFP) and its change over time to

                                               
13 Saviotti (1996, 52) states:“ ... a taxonomy at all levels of aggregation in such a way that the relation-
ships of the various units of analysis within and between each level of aggregation can be analysed.”
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play a major or even pivotal role in this endeavor. This suggestion, on a first glance,
might look somewhat old-fashioned as the concept of total factor productivity has been
criticized intensely in the past – mainly in the context of growth accounting exercises
where its construction is based on equilibrium assumption and conditions of traditional
production theory combined with notion of the same production to be applied at all ob-
servations. This leads us to a second requirement.

REQUIREMENT 2 The way TFP is measured should differ considerably from standard
procedures. By this, in a first step, it should allow to distinguish innovators from imita-
tors and account for better and for worse technological performance. Moreover, it
should deliver a quantitative account of these differences.

SUGGESTION 2 With respect to requirement 2 we suggest to apply a frontier analysis
where the frontier function or technology frontier is set up by the best performing ob-
servations. All worse performing observations are in some distance to this technology
frontier where this distance can be used as a measure for different technological perform-
ance.

REQUIREMENT 3 Related to the need to distinguish better from worse performance is
the requirement that, following the evolutionary approach, the empirical analyses should
not be restrictive in the sense that functional relationships, e.g. a specific production
function, is a priori assumed to hold for all observations. One rather should allow for an
open number of those relationships and take into account also variety in productions
functions or output mixes.

SUGGESTION 3 For satisfying requirement 3 we suggest the computation of TFP meas-
ures by a non-parametric procedure to determine technology frontiers which – at least
compared to the traditional approaches of TFP index numbers, parametric production
functions and parametric production frontiers14 – are rather unrestrictive in the functional
form employed for the aggregation of inputs and outputs, respectively. In principle, there
are as much functional forms allowed for as a sample contains observations.

REQUIREMENT 4 The measure applied should be tracked over time. The respective
measure of the change in TFP should be able to take account of local technological
change.

SUGGESTION 4 In this respect we suggest to employ the procedure to compute the
Malmquist productivity index which just measures the change in TFP. The important
feature of this measure is that it allows to identify local technological change at both the
technology frontier as well as the below best-practice observations.

                                               
14 For a discussion and comparison of the non-parametric approach with more traditional methods
see Cantner/Krüger (1999).
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3. TFP, technological process and evolutionary theory

3.1 TFP as a measure of technological performance

Referring to requirement and suggestion 1 we consider total factor productivity and its
change over time as an appropriate measure for technological performance and techno-
logical change. This, of course, requires some qualifications.

GENERALITY As already claimed we are interested in a generally applicable measure
which allows to track technological change on several levels of aggregation and in sev-
eral fields of application. Thus, what we have to accept is a loss of specificity especially
found if one applies the analysis on lower levels of aggregation often coming close to
pure case studies. The loss of specificity, however, is counterbalanced (and in our view
even over-compensated) by the opportunity to detect more general insights into structure
and change whose driving elements are found on the individual level of actors and firms,
whose collective outcome then shows up in a characteristic manner on the next level of
aggregation and so forth. In this respect the measure of total factor productivity is appli-
cable to all levels and areas of aggregation whenever we have at hand appropriate data
on outputs and inputs.

CONSTRUCTION Index numbers for total factor productivity TFP have found a prominent
application in growth accounting exercises. There it is aggregate output Y, prominently
GDP, set into relation to an aggregate X of various input factors, prominently labor and
capital:

X
YTFP =

One can easily apply this measure to lower levels of aggregation such as to the sectoral
level15 and to the firm level. Any change in total factor productivity, in the sense that this
indicator rises, is considered as the effect of technological progress, i.e. that change in
output which cannot be accounted for with a change in aggregate inputs:

XYTFP ∆−∆=∆

It is this so-called residual which attracted so much research especially in the analysis of
economic growth. And it is also this residual what Abramovitz called „our measure of
ignorance“.

A first question arising in this context refers to whether TFP can be taken as a measure
of technological performance and whether a change in total factor productivity can ade-
quately account for technological change. Let us take up this issue accordingly.

                                               
15 E.g. Wolff (1997).
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TFP AS PERFORMANCE INDICATOR In order to account for the performance of an ob-
servation the indicator applied is to be interpreted always as a relative measure, either
with respect to some known optimal performance or with respect to the best perform-
ance observed. In empirical work it is always the latter relativisation employed. For this
comparison to work, however, one has to provide for that

1. the categories used for measuring inputs and outputs and

2. the respective way of aggregating of inputs and outputs in order to compute
the TFP

are identical among the observations. Otherwise the comparison is inadequate.

To cope with the first problem, one has to look for measures which allow for homoge-
neous input and output categories. This is certainly not always achievable, but by some
degree of abstraction or clever chosen units of measurement – in the sense of real units
(e.g. hours worked, kg, etc.) – one might be able to cope with this problem – at least
partly.

As to the aggregation functions for inputs and outputs, with respect to inputs it is just
the production function what is searched for and which has a number of specific prob-
lems. We do not want to go into detail here but only remind that on the theoretically
founded perceptions of techniques applied locally and local technological change a ag-
gregation or production function identical for all observations cannot be expected a pri-
ori – contrariwise heterogeneity is to be expected.

With respect to outputs the problem is similar whenever we are not in the lucky situation
to have to consider only one homogeneous output. Again, this is not the normal case and
among the observations we normally have to expect both differences in the quality of the
output as well as differences with respect to the number of outputs produced. A common
way to deal with this is to accept product prices as weights which account for quality
differences as well as differences in kind.16 This leads to output measures such as GDP,
sectoral sales or firm sales. Besides this, however, one might also be interested in dealing
with output variety in an disaggregated way such as splitting up GDP into the output of
various sectors or of firms sales into the sales of different products. A possible way of
performing this is presented below.

CHANGE OF TFP AS MEASURE OF TECHNOLOGICAL CHANGE Interpreting the change
of TFP as a measure for technological progress faces the same problems as just stated.
Whenever we consider process innovations allowing the given resources to produce
more of a homogeneous output, the change in TFP appropriately takes account of this.

                                               
16 This comes close to what Dosi (1988, 1155-7 ) claims to be price-weighted performance char-
acteristics of firms´ (differentiated) products.
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However, dealing with quality improvements or new products, whenever quantity and
price changes account for this in a proper way we can use the aggregate output. But if
we were interested in the development beneath the level of aggregation it would be
helpful to have the respective TFP change determined on the basis of a disaggregated
TFP index.

OTHER INFLUENCES ON TFP A final remark here refers to differences in the TFP which
are not due to the respective technological performance of the observation. Proper can-
didates are vintage structures as well as economies of scale. 17 For the change in TFP we
should additionally be aware of substitution effects to work. With respect to substitution
effects according to Rosenberg (1976) substitution along a traditional isoquant is to be
considered as applying a technique not applied yet and this could also be considered as
technical change.

Having given some justification and qualifications on the TFP measure as response to
requirement 1 we now want to go one step further and introduce a method taking care of
requirements 2 and 3.

3.2 Structure: a non-parametric frontier function approach

Requirements 2 and 3 ask for a method which allows to determine TFP in a way that
technological heterogeneity in the sense of asymmetry and variety shows up. For this purpose
we suggest a non-parametric frontier function approach.

UNRESTRICTED PERFORMANCE MEASURE The non-parametric frontier function approach
(or DEA for Data Envelopment Analysis) basically relies on index numbers to measure total
factor productivity in a fashion similar to the one used in more standard productivity analysis.
In a sample of n observations for each observation j (j=1,...,n) a productivity index hj is given
by:

j

T
j

T
j

h  =  
u Y

v X
(1)

Here Yj is a s-vector of outputs (r=1,...,s) and Xj a m-vector of inputs (i=1,...,m) of
observation j. The s-vector u and the m-vector v contain the aggregation weights ur and vi

respectively.

The hj in (1) is nothing else than an index of total factor productivity. The respective
aggregation functions (for inputs and outputs respectively) are of a linear arithmetic type

                                               
17 Differences might occur also due to scale effects and/or vintage structures (Dosi 1988, 1156)
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as also employed in the well-known Kendrick-Ott productivity index.18 There, however,
by special assumptions the aggregations weights, ur and vi, are given exogenously. The
non-parametric approach does not rely on such assumptions – in particular, it is not as-
sumed that all observations of the sample have a common identical production function.
With this – at least to a certain degree – unconstrained way of aggregating both inputs
and outputs we are able to account for requirement 3 above. The parameterization of the
aggregation functions and thus the aggregation weights which may be specific to a cer-
tain observation are determined endogenously. They are the solution to a specific optimi-
zation problem (as discussed below), and therefore they are dependent on the empirical
data of the sample. Critics often argue that a linear arithmetic aggregation nevertheless
presupposes at least a special type of production function,19 such as the Leontief-type
production function.20 Since the aggregation weights are determined endogenously and
can be different between observations, there ultimately exists a number of parametrically
different possible aggregation functions although they are all of the same type.21 For the
input side, moreover, the fact that the Leontief production function fits well into this
framework suits well to the widely held assumption of short-run limited substitutability
of production factors whenever techniques employed are of a local character.

This unrestricted form of the total factor productivity measure is central to an application of
this method to evolutionary analysis and to detecting heterogeneity in particular. For
computing this index we can include all different kinds of inputs and different types of
outputs. This implies also that new products can be taken care of and equivalently new
production factors. Since the non-parametric approach does not require all inputs to be
employed or outputs to be produced by each observation we are readily able to take into
account both product innovations and new techniques of production.

Having found a rather unrestricted mode for measuring the performance of an observation we
would like to provide also a comparison of this performance with those of the other
observations in the sense that we find statements about „unequivocally better“, or
„unequivocally worse“ or even „not comparable“.

COMPARISON OF PERFORMANCE For doing so, the basic principle of the non-parametric
approach is just to determine the indices hj in such a way that they can be interpreted as
efficiency ratings which implies a comparison of each observation with the best

                                               
18 See Ott (1959).
19 See also Chang/Guh (1991, p.217).
20 Leontief (1947) has shown that a linear aggregation exists for a Leontief-type production func-
tion. Instead of a Leontief function one could also use a linear production function.
21 Employing parametric methods, e.g. the COLS or the EM-algorithm a specific production
function is assumed. The coefficients of this function are estimated using the available data and the
resulting production function is used to determine technical (in)-efficiencies of all the fims in the
sample. This procedure, however, suggests that there is only one "best-practice"-technology. With the
non-parametric approach a number of "best-practice"-technologies can be determined.
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observation(s). The (relatively) most efficient observations of a sample are evaluated by h=1,
less efficient observations by h<1. Hence, by comparing all observations with each other we
achieve at an account of different technological performance where the differences are
quantified in the measure h – this is just what requirement 2 asked for.

The following constrained maximization problem is used to determine such a h-value for a
particular observation l, { }l n∈ 1,..., :

max  h  =  u Y
v X

s.t.:  
u Y

v X
  1;   j = 1,...,n;

u,v  0.

l
T

l
T

l
T

j
T

j
≤

>

(2)

Problem (2) determines hl of observation l subject to the constraint that the hj of all
observations (including l itself) of the sample are equal or less to 1. The constraints provide
that h is indexed on (0,1]. Moreover the elements of u and v have to be positive. This
requirement is to be interpreted that for all inputs used and outputs obtained there must exist
at least a positive efficiency value.22

BEST-PRACTICE OR FRONTIER FUNCTIONS Since we employ linear arithmetic aggregation
functions for inputs and outputs, (2) is a problem of linear fractional programming.23 To solve
such optimization problems, there exist a number of methods the best known of which is
Charnes and Cooper (1962). They suggest transforming (2) into a standard linear program
which then can be solved with the well-known simplex algorithm. Performing this step and
transforming the resulting primal to its corresponding dual problem, one arrives at the well-
known Charnes/Cooper/Rhodes24 envelopment form of the non-parametric approach:

0 
0XX
YY

:s.t.
  

l

lll

ll

l

≥
≥−
≥

λ
λθ
λ

θmin
(3)

                                               
22 This procedure is also known from activity analysis.
23 An overview over linear fractional programming is given in Böhm (1978).
24 There obviously exists a range of possible model specifications where the one chosen is known
as CCR. Applying this one has to keep in mind that possible scale inefficiencies are included in the
technical inefficiency measure.
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Yl  and X l  are the r- and s-vectors of outputs and inputs respectively of observation l, Y and

X are the s×n-matrix of outputs and m×n-matrix of inputs of all observations of the sample.
The parameter θl  to be minimized expresses the percentage level to which the inputs of

observation l can be reduced proportionally, in order to have this observation producing on
the production frontier representing the best practice technologies – it is identical to hl and is
a relative measure of technological performance. With θl = 1 the respective observation

belongs to the efficient observations on the frontier. Proceeding in this way and solving (3)
for all observations in the sample, the non-parametric approach determines an efficiency
frontier or technology frontier constructed by the best-practice observations. The efficiency
rating of each observation is measured relative to this frontier.

Figure 1 states this result for a sample of observations which produce with two inputs, x1 and
x2, one unit of output. The technology frontier determined is DAB. The technological
performance is the relative distance of an observation from the technology frontier. In the
case of observation C, the measure θC  is given by the ratio OC´ to OC.

Figure 1: Technology frontier and the measure θC

The n-vector λl  states the weights of all (efficient) observations which serve as reference for

observation l. For the efficient observation l (with θl = 1), we obtain 1 for the lth element of

λl and 0 for all other elements. Grouping all observations according to their respective

reference observations allows to detect fields of similarity. These fields are distinguished by
different input intensities, output intensities or input coefficients. In terms of figure 1, for
observation C the reference observations are A and B. Consequently only λA  and λB  are

different from 0. The respective values state the degree to which A and B are used
respectively to construct C´.
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A FIRST CHARACTERISATION OF THE STRUCTURE OF A SAMPLE So far the discussion
has delivered an account of a sample which allows to detect and quantify heterogeneity in
productive performance. With program (3) we are now readily able to characterize the
structure of a sample of observations:

1. θ as a measure of performance indicating and quantifying whether an obser-
vation is best-practice or below best-practice;

2. λ as a measure of structural (dis)similarity (Cantner 1996).

However, modifying the program (3) some measures can be computed which shed additional
light on the structure of a sample.

COMPARISON OF BEST-PRACTICE Since the frontier function quite regularly is con-
structed by several best-practice observations which cannot be ranked as better or worse,
one might additionally be interested in a comparison between them. The following modi-
fication of program (3) allows for this where now the observation under consideration l
is not member of the reference set:
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YY

:s.t.

  

l
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lll

l

l
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≥
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λ
λθ
λ

θ

*

*min

(4)

The matrices Y l−  and X l−  contain the outputs and inputs of all n observations except

observation l. The modified efficiency measure is 
l
*θ . For all below best-practice obser-

vations it is identical to θl  determined by program (3). However, for all best-practice

observations 
l
*θ  is different. It holds 

l
*θ ≥ 1 and the difference 

l
*θ − 1 can be inter-

preted as the buffer or lead observation l holds compared to certain other observations.
This 

l
*θ  is a measure to distinguish observations which with program (3) are determined

as not comparable (Cantner/Westermann (1998)).
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Figure 2: Comparison of best-practice observations

Figure 2 states the result of program (4) for observation A. The respective frontier for A
in this case is DB and the 

A
*θ  is equal to the ratio OA´ to OA which is larger than 1.

Besides this mode of comparing best-practice observations an alternative or additional
way is to look at the dynamic performance, i.e. their comparative ability to shift the fron-
tier function (by technological progress). This issue will be taken up below.

ACCOUNTING FOR SCALE EFFECTS Finally, since the programs used so far have been
discussed under the assumption of constant returns to scale technologies one might be
interested in taking into account size effects. This is done by first setting up a program
allowing for non-constant returns to scale. This leads to a formulation where the ele-

ments of the λl  vector have to sum up to 1 (eT  is a vector containing only elements 1):
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For the efficiency measure determined by program (5) we get 
l
v lθ θ≥ . Taking the ratio

of these two measures, σ θ θl l l
v= , states the level of efficiency which is due to scale

with 1 − σl  accounting for that degree of below best practice which is caused by a size

different to the minimum efficient scale size.
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Besides these measures the non-parametric frontier approach does deliver a number of
other measures allowing to deal with allocative efficiency, non-radial inefficiencies, spe-
cific forms of returns-to-scale etc. These are of minor importance in the context of this
paper. More interesting, however, is the dynamic extension of the analysis.

3.3 Structural Dynamics: Local Technological Change, Catching-up and
Falling-behind

The following discussion refers to requirement 4 asking for an appropriate way of dealing
with localized technological change and thus the structural dynamics induced.

DYNAMIC ANALYSIS In order to track the structure – determined by the above introduced
measures – it is by no means sufficient to compare the structural results of consecutive
periods. Because for each period these measures are of an only relative type such a
comparison makes no sense. Consequently, consecutive periods have to be set into relation
implying that we have to compute relative measures which compare period t with t+1 and
vice versa. Doing this pairwise for all consecutive periods allows to track structural change
over time. The procedure chosen for this purpose is based on the Malmquist index which
states a specific observation’s change in productivity between two periods. A quite interesting
feature of this index is that it can be decomposed into a measure for technological change
and one for catch-up – or , of course, technological regress and falling behind.

MALMQUIST INDEX The theoretical basis of the Malmquist-productivity index is found in the
work of Malmquist (1953), Solow (1957) and Moorsteen (1961). For productivity
measurement this index has been applied by Caves/Christensen/Diewert (1982a, 1982b).
Färe/Grosskopf/Lindgren/Roos (1994) have shown how the efficiency measure θ above
can be used to compute the Malmquist index. We will follow this line of reasoning.

In order to explain what the Malmquist-productivity index measures we refer to figure 3
which contains a simple example of two non-parametric production frontiers Ft and Ft+1

pertaining to period t and t+1. For measuring the productivity change of observation A
from At to At+1 consider the following: First evaluate At and At+1 towards the frontier Ft

and compute the ratio of the two results. For this we get Ob/OAt divided by Od/OAt+1; if
this ratio is less than 1 the productivity of A increased. Second, and in addition to that we
could also evaluate At and At+1 towards the shifted frontier Ft+1; again we determine the
ratio, here Oc/OAt divided by Oe/OAt+1; this ratio less than 1 implies a productivity im-
provement. In a final step the geometric mean of these two computations is taken.
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Figure 3: Malmquist productivity index

The resulting index
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the Malmquist-productivity index, states the productivity change of A between t and t+1.

In a general way, the Malmquist productivity index Ml
t + 1 measuring the productivity

change of observation l from t to t+1 is defined as follows:
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(6)

θt s, , t,s∈T, is the efficiency of observation l in period t whenever the frontier function of
period s serves as reference measure. 25

DECOMPOSITION OF THE MALMQUIST INDEX With some manipulation we can develop
(6) to the following expression for the Malmquist index:

                                               
25 For the respective programs required to compute the several θ-measures see appendix.
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The second line in (7) states the decomposition of the productivity change into in tech-
nological progress MT and change in the technology gap MC.

Whenever MC<1 (MC>1) we find catch-up (falling-behind). The second term is MT and
indicates the movement of the frontier. This is measured twice: first with the factor inten-
sities of l in t, and a second time with those of l in t+1. With MT<1 (MT>1) we have
technological progress (technological regress) at the frontier. Looking at our example in
figure 3 this decomposition is given by the following ratio of distances:
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By this, we can state that the first bracket term measures the change in the distance of A
towards the frontiers Ft and Ft+1. The second term in brackets takes account of the
(geometric) mean change of the frontier part pertaining to A. In this example both terms
will be smaller than 1 indicating that observation A performed technological progress and
was able to catch-up to the frontier.

LOCAL CHANGE As is readily apparent from figure 3 the productivity change in (6) is
local in the sense that it is specific to the observation under consideration. In this respect
the degree of this local change depends (a) on the observation’s ability to shift in direc-
tion to the origin and (b) on the behavior of the frontier. As to (b) the respective change
is also local in the sense that for observation l it is only relevant how the respective part
of the frontier assigned to l (by the way of the elements of the λ-vector) shifts. The de-
composition of the index allows to distinguish these two movements.

Moreover, the decomposition allows also to evaluate best-practice observations in a dy-
namic context by comparing them by the way of the index MT and thus by the ability to
locally shift the frontier function. An application of this is found in 4.3.
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3.4 Summary of the issue

In face of the theoretical and empirical requirements stated in section 2 we have sug-
gested to measure total factor productivity by a procedure which is as unconstrained as
possible but nevertheless allows

1. to systematize heterogeneity and

2. to track its change accomplished by technological progress in general and local
technological progress in particular.

For this purpose we apply a non-parametric procedure to determine frontier functions.
These consist of the best-practice observations in a sample and do not rely on any com-
mon a priori parametrically given production function. We thus dispense with any notion
of the neoclassical production function and rely entirely on production techniques which
in the short-run show no substitutability among production factors, i.e. which could be
described by a Leontief-type relationship between output and input.

For the dynamics we apply the Malmquist-index measuring productivity change by com-
paring the non-parametric production frontiers and observations of consecutive periods.
By this we dispense with the notion that technological progress shifts the entire produc-
tion frontier and instead we allow for (a) parts of the frontier to shift and for (b) this shift
not to be proportional.

With respect to heterogeneity and its change this two-step procedure performs or detects
the following. The first step of this two-step procedure allows to detect heterogeneity –
here technological heterogeneity – and classify the observations into the following cate-
gories:

1. Heterogeneity in the performance of running a specific technique, class or range
of techniques.

2. Heterogeneity in applying a specific technique out of a larger range of possible
techniques.

The second step then tracks this heterogeneity over time and allows for the following:

1. Measuring local technological change.

2. Distinguishing between progress of the best-practice techniques or forging-ahead
and dynamics of catching-up, falling-behind.

Taken literally, the procedure suggested does classify the observations in a specific way
in both a static and a dynamic context. By this we do not have to a priori rely on restric-
tive assumptions or constraints which force the observations to behave in a certain way,
e.g. to obey to the same parametrically given production function.
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4. Selected Empirical Results

In the following we will briefly present some empirical results found by using the meth-
ods introduced above. In this respect, our focus will be on heterogeneity and its devel-
opment over time. Of course, such kind of exercise does not prove any of the evolution-
ary concepts or theories. In order to perform this task, the respective results have to be
analyzed in a further step by applying other statistical techniques such as regression
analyses. Only then one can give answers on questions such as whether heterogeneity is
the result of different innovative success, of different abilities to imitate etc.; or whether
there are spillover effects arising out of heterogeneity and influence the structural devel-
opment; or how macro growth is influenced by meso or micro dynamics; etc. Whenever
available for our empirical analyses we will also briefly report on the results of those re-
quired third steps.

4.1 Intra-sectoral analysis of technological and structural change – Industrial
Dynamics

The first of our selected empirical applications is concerned with the dynamics of pro-
ductivity within industrial sectors (Cantner 1996, 1998). This dynamics is characterized
by a certain structural stability with respect to best-practice performance as well as some
regularities as to which firms are more likely to catch-up than others. We concentrate
here on heterogeneity „defined“ on the basis of the performance differences between
best- and below practice firms.

For the purpose of presentation we refer to a number of investigations into the German
manufacturing sector. Here we report on the sectors plastics (22 firms), machinery (83
firms) and electronics (36 firms). The analysis is performed for the period 1981 to 1993.
We use three inputs: labor (labor hours), capital (machinery and equipment, capacity
adjusted) and materials. Output is sales corrected by change in stocks. Hence, the non-
parametric frontier approach is run with 3 inputs and 1 output.

In figure 4 we present results for the three sectors. Using the efficiency values deter-
mined by the non-parametric approach we draw Salter curves of 1986 and 1993 for the
three selected sectors. Here the order of firms on the abscissa is always in accordance to
the efficiency ranking as found in 1986. Comparing the Salter curves for the two selected
years we find

1. some degree of persistency because

• a number of best-practice firms in 1986 are still ahead in 1993;

• the efficiency ranking of firms is rather similar in 1993 compared to 1986 at
least in plastics and machinery.
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2. tendencies of overall convergence or divergence

• where in plastics the 1993 curve is almost everywhere above the 1986 curve
implying that the efficiency levels came closer together; the contrary applies to
electronics; no clear answer is possible for machinery;

3. characteristic structural dynamics

• where the „falling-back“ from 1986 to 1993 is more often the case in regions
of higher efficiency in all three sectors;

• where „catching-up“ from 1986 to 1993 is more likely in the lower regions of
efficiency in plastics and machinery and only in regions of middle efficiency
levels in electronics.
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Electronics 1986 and 1993
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Figure 4: Salter curves 1986 compared to 1993

To explain those results additional analyses have to be performed. For the structural dy-
namics of catching-up and falling behind one could test for the hypothesis of „advantage
of backwardness“ and the role of absorptive capacities for the followers in catching up.

Table 1a: Regression results for plastics (t-values in brackets)
dep. const. gap θi absorptive capacity ACi R2

MCi SRDSL SRDWORK F-value

OLS 0.117

(4.390)

-0.244

(-6.415)

0.37

(11.47)

OLS 0.02

(0.497)

-0.267

(-6.422)

0.151

(3.211)

0.47

(7.987)

OLS 0.027

(0.231)

-0.332

(-6.172)

0.110

(1.288)

0.45

(7.17)

NLS 0.280

(5.719)

-0.893

(-4.687)

-0.587

(-5.392)

0.51

(9.73)

NLS 0.297

(6.556)

-0.806

(-5.908)

-0.371

(-5.871)

0.54

(10.56)

The results of this analysis are stated in tables 1a–c. We regress the catch-up variable MCi

(which measures the change in efficiency from 1986 to 1993) as the dependent variable on the
technology gap in 1986, θi , and proxy variables for absorptive capacity, ACi. SRDSL is the

R&D capital stock per worker of firm i (determined by the capital inventory method) and
SRDWORK is the number of R&D-personnel in total working force of firm i
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Moreover we distinguish a linear relationship from a non-linear one; the latter presumes that,
first, catching up is easier when the gap is larger because much more can be learned; this is
the of „advantage of backwardness“-hypothesis. Alternatively and second, it is assumed
that although much more can be learned with a larger gap, it becomes more difficult to absorb
the respective knowledge when the gap increases. Thus, the ability to catch up is dependent
on the firm´s absorptive capacity. For this case a bell-shaped relationship between catching-up
and technology-gap can be deduced stating that up to some point a larger gap allows for
higher spillovers but with the gap further increasing the absorptive capacity puts a constraint
on the level of spillovers which then are decreasing.

For both specifications the signs of the coefficients except the constant are all expected to be
negative. The linear version is estimated by using OLS whereas the bell-shaped relationship
requires non-linear least squares (NLS).

The results show that the linear version of the catch-up hypothesis and thus the of „advan-
tage of backwardness“ hypothesis holds in all sectors, whereas the non-linear one shows up
in the expected way only in plastics and in electronics. This result fits quite well with the
Pavitt classification (1984) of sectors where machinery is considered as specialized supplier
implying that progress is mainly dependent on user-producer contacts rather than on knowl-
edge flows among the machinery sector firms.

Table 1b: Regression results machinery (t-values in brackets)
dep. const. gapθi absorptive capacity ACi R2

MCi SRDSL SRDWORK (F-value)

OLS 0.148

(14.16)

-0.345

(-12.88)

0.34

(32.02)

OLS 0.149

(14.85)

-0.357

(-12.98)

-0.005

(-1.494)

0.35

(16.68)

OLS 0.150

(14.33)

-0.359

(-13.04)

-0.002

(-1.841)

0.36

(17.44)

NLS 0.125

(9.358)

-0.249

(-5.574)

0.296

(2.472)

0.37

(18.02)

NLS 0.129

(9.543)

-0.268

(-5.633)

0.239

(1.935)

0.36

(17.90)

Similar results are found in other sectors of the German manufacturing industry (Cantner
(1996)) in the French manufacturing sector for machinery, electronics and chemical
products (Bernard/Cantner (1998)).
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Table1c: Regression results for electronics (t-values in brackets)
dep. const. gap θi absorptive capacity ACi R2

MCi SRDSL SRDWORK F-value

OLS 0.048

(0.491)

-0.107

(-1.45)

0.08

(2.26)

OLS 0.050

(0.497)

-0.107

(-1.42)

-0.0001

(-0.246)

0.08

(1.17)

OLS 0.050

(0.495)

-0.107

(-1.42)

-0.0001

(-0.229)

0.08

(1.17)

NLS 0.135

(1.463)

-0.318

(-2.874)

-0.570

(-2.332)

0.23

(3.73)

NLS 0.107

(1.103)

-0.262

(-2.553)

-0.657

(-1.834)

0.19

(2.93)

4.2 Comparative Macroeconomic Growth

The second group of empirical results refer to a study concerned with comparative mac-
roeconomic growth of economies as analyzed by Cantner, Hanusch and Krüger (2000,
1999) and Cantner and Krüger (1999a, 1999b). Similar to the intra-sectoral analysis
above we are here interested in a heterogeneity based on the performance differences
among countries. Additionally we take into account the local character of progress and
by this we explicitly consider internationally different „technological approaches“ –
meaning that countries differ in the technology mix they employ, where the input inten-
sity is used as a proxy for those differences.

The data we use for these investigations are taken from Penn World Table 5.6. As input
we use the labor force and the capital stock (computed by the perpetual inventory ap-
proach). Output is gross domestic product in international prices. We thus run a non-
parametric frontier model with two inputs and one output.

Taking into account 87 countries, the frontier functions and their dynamics are computed
for the 1960 to 1990. Figure 5 shows the world technology frontiers of the selected years
1960, 1970, 1975, and 1990.

The local character of change clearly shows up as best-practice performance increases
only in the range of relatively high capital intensities – this range of capital intensities is
where the G7 countries are located with the US as continuously being on the world tech-
nology frontier. In this range of capital intensity a continuous improvement of the re-
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spective frontier parts is observed. In the range of middle capital intensities the backward
shift of the frontier in the late seventies and the eighties is considerable and quite obvi-
ous. Here we have mainly countries from Latin America, Northern Africa and Middle
East, where Venezuela and Iran often have the leading position. At the lowest range of
capital intensities we have countries from Africa; here some improvement of the frontier
is to be observed which is mainly due to the development of Egypt.

Development of the world technology frontier from 1960 to 1990
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Figure 5: The world technology frontier for selected years

Figure 6 shows the development of several groups of countries. Most interesting is the
development of the Tiger states compared to the countries from Latin America. During
the whole period under consideration, the Tigers increase their capital intensity much
more than the Latin Americas. By this they first where not able to achieve high produc-
tivities as they were falling behind the frontier in the first periods. Lateron, they have
been able to catch-up to the frontier (e.g. Japan in the range of the G7 capital intensities),
overtake the Latin Americas, and even come to dominate part of the world technology
frontier as in the case of Hongkong.

For this phase of catching up one can distinguish two sub-groups within the Tiger states.
A first one – consisting of Japan (which now is G7 but the 60s and 70s could be consid-
ered an early Tiger state) and Singapore and possibly South Korea – succeeded to
achieve capital intensities as high as in the G7 countries – consequently their productivity
development is rather similar to the G7 development. For this group there seems to hold
the assimilation hypothesis at least for the second part of the period 1960-1990 – pro-
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ductivity growth and growth rates are considerably high although compared to 1960-
1973 the intensity of investment slowed down.
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Figure 6: Tigers versus Latin Americas

A second group of Tiger states did not manage to raise capital intensity to G7 values.
Those countries stick to „technologies on average“ much more similar to those in Latin
Americas. Here, however, they succeeded to catch up to the frontier and even to become
best-practice. However the respective frontier parts do not show much technological
progress and we even find considerable backward shifts. Thus, those Tigers succeeded in
improving the application of relatively labor intensive technologies which did not show
much technological improvements.

For explaining these developments in a third step an analysis is performed which attempts
to explain the internationally different technology levels the countries achieved. These
technology levels are computed by using the efficiency level in 1960 and then accumu-
lating the productivity changes of each country from 1960 up to 1990. Doing this we
distinguish between the productivity level, the efficiency level and the technology level,
each one related to the measures M, MC and MT respectively.

As explanatory variables we used patents granted in the US, human capital, share of
years open, investment ratio, etc.26 Some selected results are stated in table 2.

                                               
26 Patents grated are the sum of the per capita number of patent grants for inhabitants from the
country under consideration in the US over the periodd 1963-90 from the US Patent and Trademark
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Table 2: Basic regressions on the technology levels

dependent variable→
regressors↓

Productivity level

(M)

Efficiency level

(MC)

Technology level

(MT)

constant 0,50913***
(9,595)

0,67648***
(11,374)

0,47422***
(7,640)

patents granted in the US 0,05478**
(2,606)

0,00898
(0,799)

0,08994***
(2,989)

Human capital 0,04098***
(4,434)

0,03319***
(3,340)

0,04781***
(4,310)

share of years open 0,17552***
(3,126)

0,20457***
(3,517)

0,02574
(0,465)

investment ratio -0,0082**
(-2,071)

-0,0113***
(-2,818)

-0,0099**
(-2,377)

sample size 70 70 70

R 2 0,558 0,346 0,492

RESET(3): F robust 0,1242 0,4335 0,2494

ANN test: F robust 1,3960 0,3631 2,1868*

White: F (no cross) 1,4584 4,1275*** 0,1933

White: F (cross terms) 1,0721 2,6202*** 0,2330

Jarque-Bera residuals 2,7820 0,5452 6,6695**

Note: t-statistics (in parentheses), the RESET and the ANN test are based on Jackknife
corrected heteroscedasticity consistent covariance matrix; significance is indi-
cated by * on 10%, ** on 5% and *** on 1% level.

Most interesting are differences in results between the efficiency and the technology lev-
els. Patents granted are insignificant for the MC regression but significant on the 1%
level in the MT regression with a much higher coefficient estimate. This implies that pat-
ents represent the amount of research activities leading to technological progress. In
catching up through efficiency improvements there seems to be no strong case for activi-
ties that lead to inventions which are valuable enough to become granted in the US. For
the years open to international trade we have exactly the reverse pattern. There is a sub-
stantially stronger relation between openness and the efficiency levels than between
openness and the technology levels.

                                                                                                                                         
Office; human capital is the average schooling years in the total population over age 25 averaged over
all six five-year values from 1960 to 1985 as reported in Barro/Lee (1993); openess to foreign trade is
the fraction of years open to international trade between 1960 and 1990 according to a classification of
Sachs/Warner (1995); investment ratio is the average percentage share of public and private investment
in real GDP during 1960 to 1990 obtained from the Penn World Table 5.6.
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Finally and contrary to the other variables, public and private investment in physical
capital is significantly negative correlated with all total factor productivity levels. Positive
externalities from capital accumulation seem to arise here. However, this result has to be
taken with caution because the investment ratio data are the same as the ones used in the
construction of the capital stocks for the non-parametric analysis and rapid accumulation
of capital naturally depresses the efficiency parameter θ  and also the Malmquist index.

4.3 Productivity growth – a macro-meso approach

The following results refer to a paper in preparation by Cantner/Hanusch (1999) which
deals with the analysis of productivity growth for the OECD countries for the years 1970
to 1991. The analysis performed builds upon the advantage of the non-parametric fron-
tier approach to allow the analyst to include output data in a disaggregated form. Look
at equation (1) where we also have an aggregation function for outputs; the non-
parametric frontier approach computes the respective aggregation weights – they are
determined endogenously – and using them computes the productivity or efficiency in-
dex.

Referring to this feature of the non-parametric approach our analysis focuses on the dif-
ference between an analysis where the aggregated output is used and an analysis where
output is included in a disaggregated way. In this respect we attempt to analyze whether
and how „heterogeneity below the aggregate“ matters for the performance of the aggre-
gate.

The data for the analysis are taken from the ISDB database of the OECD. For 13 coun-
tries27 we run the following two computations:

1. A further on called „macro“-analysis with one output and two inputs. Output is the
economy’s real value added in international prices of 1990. Labor is the number of
employed persons; capital is gross capital formation in prices of 1990.

2. A further on called „macro-meso“ analysis where the inputs are just the same as in the
previous design. Output, however, is now disaggregated into 6 subsectors: natural re-
sources, services, consumer goods, wood&paper, chemicals, remaining manufactur-
ing.

These 6 subsectors have been selected in a first step in order to include all 13 countries in
the analysis – which otherwise would not work. Obviously some more disaggregation as
well as a focus on other subsectors would be preferable. This is future work.

                                               
27 These countries are Belgium (BEL), Canada (CAN), Germany (DEU), Denmark (DEN), Fin-
land (FIN), France (FRA), the UK (GBR), Italy (ITA), Japan (JPN), the Netherlands (NDL), Norway
(NOR), Sweden (SWE) and the US (USA).
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For both analyses the efficiency indexes are computed for each year from 1970-1991.
Then the Malmquist productivity index and its decomposition was computed for 21 years
from 1971 to 1991. We here discuss mainly the results we obtain for the Malmquist
computation. We obtain the following more general results:

1. Best-practice performance

Comparing the results of the two yearly efficiency analyses delivers that in the case of
„macro-meso“ much more countries become best-practice than in „macro“. This, of
course, is as expected for the non-parametric frontier analysis where the number of effi-
cient observations (those with θ = 1) increases with the number of outputs and inputs
included. In the „macro“ we have for each year between 3 and 4 best-practice observa-
tions, whereas for the „macro-meso“ this number increases to between 5 and 9.

Table 3: Best-practice observations for the analyses „macro“ and „macro-meso“

For the purpose of interpretation we read this as follows: disaggregating the output real
value added into subsectoral output implies to look at the specific importance each sub-
sector has in a country’s „portfolio“ – which also could be its international specialization.
Take an example where several countries are compared to each other on an aggregate
basis. As to figure 7 the ranking is B, C, A, ..., D,... .

Figure 7: Ranking on the macro level

On a disaggregated basis we would get the following frontier function which in this case
is a transformation function:

BEL CAN DEU DNK FIN FRA GBR ITA JPN NDL NOR SWE USA

Macro 89-
91

70-
91

70-
77

70-
91

Macro-
Meso

75-
91

70-
91

70-
91

80-
91

73-
91

70-
91

80-
91

70-
91

70-
91
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Figure 8: Performance on the disaggregated level

Obviously, there are more observations best-practice, because they differ in their output
mix. Observations with an extreme output mix, just as D, become best practice and even
overtake an observation which in the „macro“ performed better such as C compared to
D.

Thus, if a country compared to the other countries specializes extremely in natural re-
source (as is the case for Norway) then it may well happen that it becomes efficient in the
„macro-meso“ although it is not in the „macro“.

Consequently, the performance in the „.macro“ can be further analyzed in the „macro-
meso“ where the following results may occur:

1. The result in “macro-meso” still states only below best-practice, indicating that
some other country or a combination of countries have a better performance in
producing just the output mix of the country under consideration. This applies to
DNK, FRA, GBR and SWE.

2. The result delivers that in „macro-meso“ the country under consideration becomes
best-practice. Consequently, its output mix shows some specificity to be considered
further. This applies to GER and JPN which specialize in manufacturing with GER
relatively capital intensive and JPN relatively labor intensive. Equivalently, NOR
and FIN specialize in mining with FIN more labor intensive and NOR more capital
intensive.



33

2. Performance dynamics

For both the „macro“ and the „macro-meso“ the Malmquist computations and the de-
composition allow to look at the performance dynamics of the countries. Most interest-
ing is to compare the results of the two settings. Take for example the average produc-
tivity changes as stated in table 4a. For countries where productivity change in „macro“
is less than in „macro-meso“ we conclude that the progress due to the specificity in the
country’s output mix is larger than the overall rate of progress. Thus, the „specialization“
of the country is in sectors with relatively higher progress. This obviously holds for
DNK, FIN, ITA and NDL. The contrary case, where progress in „macro-meso“ is less
than in „macro“ is to be interpreted as a „specialization“ of country in less progressive
sectors. This holds for BEL, DEU, GBR and JPN. For GBR with a positive macro prog-
ress, the „macro-meso“ is even negative stating that the „specialization“ contributes even
negatively to overall progress. An equivalent argument holds for JPN.

Table 4a: Average productivity change
BEL CAN DEU DNK FIN FRA GBR ITA JPN NDL NOR SWE USA

71-91
macro 1,81 -0,26 0,86 0,85 1,05 0,97 0,55 0,76 -1,91 1,00 2,47 0,38 0,43
macro-
meso

0,78 -1,10 0,13 1,38 1,79 0,97 -1,34 1,28 -2,51 2,35 2,92 0,55 0,41

71-80
macro 2,91 0,31 0,90 0,59 1,10 1,39 0,38 1,39 -3,32 1,26 2,81 0,37 0,15
macro-
meso

0,91 -0,54 0,04 1,88 2,81 1,27 -1,49 2,72 -4,82 3,71 0,62 0,32 -0,15

81-91
macro 0,82 -0,77 0,82 1,09 1,01 0,59 0,71 0,18 -0,62 0,76 2,17 0,38 0,68
macro-
meso

0,67 -1,60 0,22 0,92 0,87 0,69 -1,21 0,00 -0,37 1,12 5,05 0,77 0,92

The decomposition of the productivity change into technological progress and catching
up sustains these findings. Tables 4b and 4c contain the respective changes. In table 4b
the shaded cells indicate that the country under consideration is best-practice and is
therefore responsible for the shift of the frontier.

For the subperiod 1981-91 the results show that there are countries which are able to
manage a higher rate of technological progress in their „specialization“ than on the
macro-level, such as BEL, FIN, NDL, NOR and USA. The contrary holds for CAN (re-
gress), DEU and ITA.
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Table 4b: Average technological progress
BEL CAN DEU DNK FIN FRA GBR ITA JPN NDL NOR SWE USA

71-91
macro 0,49 -0,26 0,37 0,28 0,37 0,30 0,24 0,36 -1,83 0,30 0,68 0,42 0,43
macro-
meso

0,33 -1,18 -0,04 0,53 0,52 0,67 -1,14 0,90 -2,49 1,55 2,92 0,74 0,37

71-80
macro 0,48 0,31 0,27 0,02 0,22 0,20 0,50 0,6 -3,22 0,13 0,39 0,29 0,16
macro-
meso

0,09 -0,72 0,04 0,42 0,14 0,55 -0,91 1,8 -4,82 1,00 0,62 -0,04 -0,15

81-91
macro 0,48 -0,77 0,46 0,52 0,51 0,39 0,02 0,46 -0,54 0,47 0,95 0,53 0,68
macro-
meso

0,58 -1,60 -0,13 0,63 0,87 0,77 -,36 -0,09 -0,32 1,10 5,05 1,30 0,89

With respect to catching-up a comparison for the not best-practice countries shows again
that in some cases the performance in the „macro-meso“ is better than in the „macro“
such as for DNK and NDL; the contrary holds for FRA, GBR and SWE. However, here
one has to be careful with the interpretation because catching up is indicated also for a
backward shift of the frontier.

Table 4c: Average Catching up
BEL CAN DEU DNK FIN FRA GBR ITA JPN NDL NOR SWE USA

71-91
macro 1,32 0 0,49 0,57 0,68 0,67 0,31 0,39 -0,09 0,69 1,78 -0,04 0
macro-
meso

0,39 0 0 0,84 1,27 0,30 -0,20 0,40 0 0,79 0 -0,22 0

71-80
macro 2,41 0 0,63 0,57 0,88 1,19 -0,11 1,13 -0,10 1,13 2,41 0,07 0
macro-
meso

0,82 0 0 1,45 2,69 0,71 -0,59 0,85 0,00 1,67 0,12 0

81-91
macro 0,33 0 0,36 0,58 0,50 0,20 0,69 -0,27 -0,08 0,29 1,21 -0,15 0
macro-
meso

0 0 0 0,29 0 -0,08 0,15 0 0 0 0 -0,52 0
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5. Conclusion

This position paper deals with empirical analysis in evolutionary economics in general
and innovation economics as a prominent application of evolutionary ideas in particular.
Within the latter, heterogeneity in the sense of different innovative activities, different
production processes employed, different qualities or goods produced, is a major analyti-
cal element – even the more because innovative actors aim at creating heterogeneity and
imitators attempt to reduce it again. This heterogeneity has an additional feature to be
accounted for, the performance of the different techniques, activities, goods, etc. under
consideration. Thus, it is not only a counting of different elements in a set but also the
evaluation of these elements due to static or dynamic performance.

The task to be performed by empirical analyses contains three steps or problems: (1)
Defining the heterogeneity which is analytically relevant; (2) evaluating the performance
of the heterogeneous entities; (3) testing whether the structural development of the enti-
ties can be explained by evolutionary conceptions.

In this paper we focus mainly on the two first steps. The third one requires much more
space and cannot be presented in an appropriate way here. With respect to steps (1) and
(2) we suggest a measure and procedure which is applicable to all levels of aggregation –
micro, meso and macro – and which rests on a comparison of total factor productivities
of the entities under consideration. The procedure we suggests is as unrestricted as pos-
sible: in the static analysis of the non-parametric frontier function approach aiming at the
identification of structures there is no restriction on the production technique employed
or the output mix produced. In the dynamic analysis performed by the computation of
Malmquist productivity indexes the local character of technological change is allowed to
work and to be identified. By this „twin procedure“ the heterogeneity and the differences
in performance, so central to innovation, can be accounted for.

By the help of three empirical analyses we show how the method suggested works and
what results can de deduced. In an intra-sectoral study we focus on the stability and in-
stability of certain technological structures. The study on macroeconomic growth throws
some light on the dispute between accumulation and assimilation hypotheses concerning
the East Asian Tigers. The macro-meso study finally shows how (meso-) heterogeneity
below an (macro-)aggregate of countries may help to explain the differences in the
macro-performance.

These examples already show what the future research agenda could look like:

On all three levels much more work has to be done especially referring to the step (3)
analysis aiming at testing for evolutionary mechanisms. There the main problem is to find
appropriate hypotheses to be tested. Some hypotheses are readily available, e.g. the rela-
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tionship between market share dynamics and local technological progress, or spillover
relationships in the international context, etc.

The third empirical example, however, shows an additional line of further research. Here
we focus on the dependence of macro performance on the behavior or heterogeneity
below the aggregate. In an evolutionary context, where the innovative activities of indi-
viduals or groups of individuals are the main driving force for progress on several levels
of aggregation this focus seems to us of great importance. The following questions arise
in this respect: What structures provide for which characteristic development? How does
this development translate to the next level of aggregation? What performance is to be
expected there? Which characteristic development will then be observed? How does this
translate to the next level of aggregation?

Of course, the twin procedure presented provides opportunities for further development.
For example stochastic elements could be included or the frontier conception chosen
could be switched. An example of the latter is found in Cantner/Hanusch (1997) where
we investigate a frontier function in the sense of best-practice up to period t.

A major problem is also the rather unrestricted form of the procedure which by definition
allows as much production functions or output mixes as observations. Does this imply
that a representative sample cannot be used to explain the behavior of the whole popula-
tion?

Obviously, all the results presented and the future research agenda are dependent on the
quality and the number of the data available. The coverage of the data with respect to the
time period under consideration is one point. Another one refers to the degree to which
the respective variables are an appropriate measure for the technology, the activity the
outputmix under consideration.

Finally, the research we attempt to follow aims at shedding some light on the phenome-
non of total factor productivity and its development. In many applications this still is a
black box or residual. To achieve at a better understanding for this residual our proce-
dure suggested might be an promising way to go.
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Appendix A1: The enhanced linear program of non-parametric frontier analysis

The version of the envelopment form including possible excess inputs and output slacks
reads as

min   -  e s  -  e s
s.t.:

  Y - s = Y

X - X - s = 0

,s ,s   0

l
T

l
+ T
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l l
- l
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l l
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θ ε ε

λ

θ λ

λ ≥

(A.1)

A proportional reduction of inputs (as given by θl) does not necessarily lead to efficiency in
the Pareto-Koopmanns sense. In order to correct for this the remaining excess inputs (s+) and
output slacks (s-) are taken into account in the objective function. Vector eT contains only
elements 1. (Of course, one should here distinguish two vectors eT for inputs and output
respectively which contain s and i elements respectively. To ease notation we do not take
account of this. The further analysis is not affected.) ε is a positive non-Archimedean small
number. Thus, additionally to θ program (A.1) takes into account the remaining output slacks
or excess inputs. Only then a clear-cut selection of efficient and inefficient observations is
possible.

Appendix A2: Linear programs required for computing the Malmquist index

In computing the Malmquist-productivity index, for each observation l and for each peri-
odical change four different linear programs have to be solved. In the case of θt,t and
θt+1,t+1 the programs being just the ones given by (3) and we will always get results
obeying θ≤1. In the case of θt,t+1 the observation in period t will be compared to the
frontier function of period t+1; and in the case of θt+1,t the observation in t+1 will be
compared with the frontier in t. In both cases the efficiency values θ are not necessarily
constrained to the interval ]0,1] but they may be larger than 1. In this case technical pro-
gress would be detected.

For these four computations different linear programs are required. They are given as
follows with t as the period under consideration and s as the period of the reference
frontier:
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With these programs T-1 index number can be computed for all observations, with T
being the length of the period under investigation.


