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Abstract
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discuss this question in an oligopoly model with a local firm and a distant
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a social planer. Depending on market demand, firm conduct and investment
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homogenous products.
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1 Introduction

Electronic coordination has the potential to reduce search and transport costs.

While the effect on search costs has already been discussed in the literature (see e. g.

Bakos, 1997 ), the reduction of transport costs is largely neglected. The impact of

electronic commerce on transport costs is most obvious for digital or digitalizable

products or services: Think of software which can be directly downloaded and there-

fore must no longer been shipped to the customer or a lokal store. Another example

are online bank transactions that allow to do the banking without the necessity to

“transport” the customer to the local bank office. But even if products have still

to be shipped, like books for example, transport costs in this broader sense may

be reduced because a book can now be sent directly to the customer who must no

longer drive or walk to a bookstore.1

Obtaining the benefits of transport cost reduction by electronic coordination, how-

ever, does not come for free: Substantial investment in hardware, software and sup-

porting services (e. g. marketing, logistics) are necessary to sell products or services

on an electronic market. In the present paper we analyze whether the investment

decision of a firm is likely to be efficient. Bakos (1997) already discussed investment

incentives of firms that could reduce the search costs of their customers by imple-

menting an electronic market. He argued that investment incentives of all sellers as

a group are too low while a single seller might overinvest. However, in his paper a

formal analysis of this decision is not performed: He just assumes that firms may

capture a certain proportion of the buyers efficiency gain. Our paper extends Bakos

(1997) in two ways:

• Assuming that electronic coordination reduces transport costs we consider

another investment incentive.

• The investment decision is explicitly modelled as first stage action in a two–

stage game and therefore we can derive equilibrium transport costs as a func-

tion of parameters like degree of product differentiation, strategic variables in

the output market or the initial transport cost of a firm. This enables us to

derive explicit statements about efficiency in various situations.

We consider both quantity and price competition. While many markets with phys-

ical goods may be appropriately described by an oligopoly model with quantity

1Transport costs in this case will only be lowered if the reduced opportunity costs of customers
exceed the cost differential due to sending books directly to each customer in a given area instead
of sending all books together to a local book store.
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strategies (this is the case if setting capacities is the most important strategic deci-

sion), this approach is not adequate for digital goods like software or MP3 music: A

digital good may be reproduced almost unlimited at very low costs and thus setting

capacities (i. e. quantities) is not a strategic issue. Thus it should be kept in mind

that only results derived under price competition apply to digital products.

The relative strength of two effects determines whether under- or overinvestment in

comparison to the decision of a social planer results in equilibrium: The investing

firm does neither consider the positive effect on consumer surplus due to lower

equilibrium prices and availability of another type of the differentiated product nor

the negative impact on the profits of its competitor due to intensified competition.

We obtain the general result that overinvestment is especially likely under quantity

competition with (almost) homogenous goods and/or in situations where the optimal

investment of the initially disadvantaged firm results in still relatively high, but not

prohibitive transport costs.

We proceed as follows: In section 2 we present the two–stage model with a heteroge-

nous good oligopoly in the output stage and derive the second stage equilibria under

price and quantity competition for given transport costs. Based on this, section 3

shows for arbitrary investment cost functions how the profit maximizing transport

cost reduction differs from the social optimum, i. e. whether the subgame–perfect

equilibrium yields over- or underinvestment. In section 4 a specific investment cost

function is considered in order to explore in more detail how the initial situation de-

termines the investment decision. Section 5 summarizes and discusses implications

for firm strategy and public policy.

2 Model structure and second stage equilibria

The underlying model structure, initially developed in Morasch/Welzel (2000), is as

follows: There are two markets each served by a local firm with transport costs nor-

malized to zero and, as long as transportation between regions is not prohibitively

expensive, also by the firm located in the other market. Each firm produces a specific

type of a symmetrically differentiated product; consumers value product differen-

tiation per se and the degree of product differentiation is exogenously given (see

Dixit/Stiglitz, 1977 and Spence, 1976 for this concept of symmetric product differ-

entiation). We assume that firms produce with linear homogeneous cost functions

and that arbitrage between the two locations is not feasible. Under these assump-

tions pricing or output decisions for the two markets are independent and we can

restrict attention to one market only.
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Thus the decision to invest in electronic coordination can be analyzed in the following

two–stage game:

• In the first stage, the firm from the distant region, firm 2, decides about the

investment level I that determines the extent to which its transport costs are

reduced. The local producer, firm 1, is assumed to be inactive in this stage

because it already does not incur any transport cost.2

• In the second stage, competition in a differentiated product duopoly with

either price or quantity as strategic variables is considered. While transport

costs of the local firm are normalized to zero, costs of firm 2 depend on the

investment level chosen in stage one.

Let us first consider the second stage of the game for some arbitrary transport cost t.

The consumption side is given by an representative consumer with linear-quadratic

utility

U(x1, x2;x0) = α(x1 + x2)− 1

2
(x2

1 + x2
2 + 2βx1x2) + x0 (1)

with x1 and x2 indicating the specific types of the differentiated good produced by

firm 1 or 2, respectively, and x0 a numeraire good which is assumed to be produced

in another sector of the economy and has been added linearly to ensure that the

marginal utility of income is equal to one. The parameter α is a measure of market

size while β describes the degree of substitutability between the products of the two

firms: If the products are perfect substitutes β = 1, if they are independent β = 0.

For the ease of computation the market size parameter is normalized to α = 1 and

firms are assumed to produce with identical and constant average costs normalized

to zero, i. e. we assume c1(x1) = c2(x2) = 0. Given the utility function for α = 1,

the consumer maximization problem leads to linear inverse demand functions

pi = 1− xi − βxj with j �= i. (2)

While we are now able to determine the second stage equilibrium under quantity

competition, we need demand functions expressing quantity demanded as a function

of the two prices to analyze the duopoly with price strategies. Based on the two

inverse demand functions a straightforward calculation yields

xi(p1, p2) =
1

1− β2
[(1− β)− pi + βpj]. (3)

2Note, however, that in the complete model the local firm would decide about investing in
electronic coordination to penetrate the distant market.
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Let total profits be labeled by Πi and second period profits of firm 2 (without

considering the sunk investment in stage one) by π2. Given that transport costs are

zero for the local firm, profit functions under (Cournot-) quantity competition, ΠC
i ,

are

ΠC
1 (x1, x2) = x1(1− x1 − βx2) (4)

ΠC
2 (x1, x2, t) = x2(1− x2 − βx1)− tx2 − I(t) (5)

while profits in the case of price strategies (Bertrand–competition), ΠB
i , are

ΠB
1 (p1, p2) = p1

(
1

1− β2
[(1− β)− p1 + βp2]

)
(6)

ΠB
2 (p1, p2, t) = (p2 − t)

(
1

1− β2
[(1− β)− p2 + βp1]

)
− I(t). (7)

Now second–stage equilibria for given transport costs t of firms 2 will be determined.

This is done by simultaneously solving the first order conditions — in the case of

quantity competition with respect to (x1, x2) and under price strategies with respect

to (p1, p2). For Cournot competition output and prices in equilibrium are then given

by

xC
1 =

(2− β) + tβ

4− β2
(8)

pC
1 =

(2− β) + tβ

4− β2
(9)

xC
2 =

(2− β)− 2t

4− β2
(10)

pC
2 =

(2− β) + t(2− β2)

4− β2
(11)

while price strategies yield

xB
1 =

(1− β)(2 + β) + tβ

(1− β2)(4− β2)
(12)

pB
1 =

(1− β)(2 + β) + tβ

4− β2
(13)

xB
2 =

(1− β)(2 + β)− t(2− β2)

(1− β2)(4− β2)
(14)

pB
2 =

(1− β)(2 + β) + 2t

4− β2
. (15)

Note that these results are only valid as long as second period profits of firm 2

exceed zero — otherwise firm 2 would not enter the market. This restriction is
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met as long as transport costs do not exceed t̄C or t̄B, respectively. These limiting

values are determined by inserting the equilibrium levels of prices and quantities

into π2 = Π2 + I(t) and solving the resulting equation π2 = 0 with respect to t.

Second period profits are given by

πC
2 =

[(2− β)− 2t]2

(4− β2)2
(16)

πB
2 =

[(1− β)(2 + β)− t(2− β2)]2

(1− β2)(4− β2)2
(17)

and thus conditions for transport cost are

t̄C ≤ 2− β

2
(18)

t̄B ≤ (1− β)(2 + β)

2− β2
. (19)

Based on this information about second stage equilibria, we are able to analyze

the investment decision: In section 3 we analyze investment incentives for arbitrary

investment cost functions and in section 4 we explore some aspects in greater depth

by assuming an explicit quadratic investment cost function.

3 Efficiency of the investment decision

We do now consider the first stage investment decision of firm 2. We assume an

arbitrary investment cost function I(t) that is defined for t ≥ 0 with I ′(t) < 0 and

I ′′(t) ≥ 0 — investment in electronic coordination reduces transport costs, however,

at a diminishing rate. Firm 2 aims to maximize total profit Π2. Consider an interior

solution t∗ to that maximization problem. This implies that a marginal change in

investment I(t∗) or more specific in t would not change total profits of firm 2:

∂Π2(t
∗)

∂t
=

∂π2(t
∗)

∂t
− ∂I(t∗)

∂t
= 0 (20)

This solution must now be compared with a welfare maximizing investment level.

For an interior solution t̂ the following first order condition with CS indicating

consumer surplus must be fullfiled:

∂Π1(t̂)

∂t
+

∂π2(t̂)

∂t
− ∂I(t̂)

∂t
+

∂CS(t̂)

∂t
= 0 (21)

The investment decision by firm 2 is socially efficient, i. e. t∗ = t̂, if the exter-

nal effects on profits of the local firm and on consumers just cancel out (see Far-

rell/Shapiro, 1990 for applying a similar analysis of external effects to merger pol-

icy): The marginal loss of consumer surplus by raising t must equalize the according
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marginal gain of profits by firm 1.

∂Π1(t
∗)

∂t
+

∂CS(t∗)
∂t

= 0. (22)

Note that overinvestment relative to the social optimum is given if the left hand side

of equation (22) exceeds zero (a reduction of investment would raise t which in turn

would induce a positive external effect) while underinvestment coincides with the

sum of partial derivatives being below zero (a transport cost reducing investment,

i. e. a reduction of t, would then reduce the negative external effect).

We will now determine the t∗ that met t∗ = t̂ as a function of β: The condition is

fulfilled if equation (22) holds for some combination of t∗ and β. The derivatives

of Π1 with respect to t for quantity and price competition can easily be determined

after inserting the equilibrium values xC
i and pB

i into ΠC
i and ΠB

i , respectively. When

dealing with the external effect on consumers, however, we must keep in mind that

in a market with symmetrically differentiated products consumer surplus must be

calculated based on the utility function - it is not correct to add up the values for

consumer surplus in the market for each specific product (see Vives, 1985 ). Taking

into account that consumers have to pay the market price for each unit of the product

we obtain the following formula for consumer surplus (net utility) derived from the

consumption of x1 and x2:

CS = (1− p1)x1 + (1− p2)x2 − 1

2
(x2

1 + x2
2 + 2βx1x2) (23)

Based on the second stage equilibrium values for xi and pi from equations (8) through

(11) (for quantity competition) and (12) through (15) (for price strategies) we are

now able to write equation (22) as a function of t∗ and β:

∂ΠC
1

∂t
+

∂CSC

∂t
=

2β(2− β) + 2β2t∗

(4− β2)2
− (1 + β)(2− β)2 + t∗(3β2 − 4)

(4− β2)2
= 0 (24)

∂ΠB
1

∂t
+

∂CSB

∂t
=

2β(1− β)(2 + β) + 2β2t∗

(1− β2)(4− β2)2
− (1− β)(2 + β)2 + t∗(3β2 − 4)

(1− β2)(4− β2)2
= 0
(25)

Simplifying (24) and (25) yields for both cases the same equation(!):

−(1− β)(4− β2) + t̃(4− β2) = 0 (26)

So price and quantity competition yield the same function t̃(β) that gives us the

values of t∗ which are also efficient from a social point of view:

t̃(β) = 1− β (27)
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This implies that firms overinvest in electronic commerce if t∗ > 1 − β and under-

invest if t∗ < 1 − β. Figure 1 shows t̃(β) in β ∈ [0, 1] and displays in addition the

restriction that second stage profits of firm 2 must be greater than zero for transport

costs t∗.

Before interpreting the results, it should be noted that we assumed t∗ to be an

interior solution of the profit maximization problem of firm 2. This, however, is

only assured if the investment cost function is sufficiently convex. In the next section

when we consider an explicit investment cost function we will check whether second

order conditions are fulfilled. Keeping this caveat in mind, we may now discuss the

results displayed in figure 1:

• As long as products are imperfect substitutes, i. e. β ∈]0, 1[, either under- or
overinvestment may happen under price and quantity competition, just de-

pending on the exact value of t∗ (which in turn depends on the investment

cost function): A t∗ close to zero (most likely if investment costs are low) is

associated with underinvestment, while overinvestment tends to result if t∗

approaches the zero profit restriction. Intuitively overinvestment is likely in

situations where firm 2 remains inefficient even after investment while under-

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

underinvestment

over-
investment π2

B < 0

π2
C < 0

β

t *

Figure 1: Efficiency of investment as a function of β and t∗
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investment happens in situations were transport cost differences between the

two firms are small in equilibrium.

• Homogenous good quantity competition always yields overinvestment (except

for efficient investment to the borderline case t∗ = 0). This may be explained

as follows: With homogenous products consumers do not derive additional

utility by also consuming the good of the distant firm but only value the price

reduction due to intensified competition. In addition the profits of the local

firm are reduced more than under product differentiation. As expected, a firm

has no incentive to invest in the case of homogenous good price competition,

while an investment to t∗ = 0 is welfare improving as long as the investment

costs do not exceed the deadweight loss of monopoly pricing.

• While the borderline between over- and underinvestment is identical for both

price and quantity competition, overinvestment is less likely with price strate-

gies because more intense competition yields lower second stage profits of firm

2 and thus equilibrium transport costs are more likely to violate the zero profit

constraint.

4 A quadratic investment cost function

We do now analyze the game with a quadratic investment cost function. First this

allows us to discuss how specific details of the investment cost function affect the

results. Second we are able to analyze borderline cases like t∗ = 0 and to check

whether second order conditions for profit or welfare maximization are met.

Because consumer surplus and second period profit functions are all convex in t, a

linear investment function would always yield borderline cases, i. e. transport costs

are either reduced to zero or no investment results. We therefore consider a quadratic

investment cost function I(t) = (t0 − t)2 which ensures that second order conditions

for profit and welfare maximization are always met under quantity competition and

also under price strategies as long as products are not very close substitutes. The

parameter t0 may be naturally interpreted as the initial transport cost of firm 2.

Assuming digital or digitalizable products the function will be defined on t ∈ [0, t0]:

In this case electronic markets may reduce transport costs to zero, meaning that the

local firm has no longer any cost advantage. For physical products that still have

to be shipped to the customer, however, it seems more reasonable to assume that

transport costs could only be reduced but not eliminated. We therefore also discuss

what happens if a lower bound greater zero is introduced for transport costs.
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We start by determining first stage profits of firm 2 and welfare as a function of I(t),

t and β by assuming that for a given transport cost firms will follow second stage

equilibrium strategies as derived in (8) through (15).3

ΠC
2 = (1− xC

2 − βxC
1 )x

C
2 − txC

2 − (t0 − t)2 = (28)

[
1− t0(2 + β)2

(2 + β)2

]
−

[
4− t0[2(2− β)(2 + β)2]

(2− β)(2 + β)2

]
t −

[
(6− β)2

(2− β)(2 + β)

]
t2

ΠB
2 = 1/(1− β2)[(1− β)− pB

2 + βpB
1 ](p

B
2 − t)− (t0 − t)2 = (29)

[
(1− β)− t0[(1 + β)(2− β)2]

(1 + β)(2− β)2

]
−

[
2(2− β2)− t0[2(1 + β)(2 + β)(2− β)2]

(1 + β)(2 + β)(2− β)2

]
t

−
[

12− 20β2 + 8β4 − β6

(1 + β)(1− β)(2 + β)2(2− β)2

]
t2

WC = xC
1 + xC

2 − 1/2[(xC
1 )

2 + (xC
2 )

2 + 2βxC
1 xC

2 ]− txC
2 − (t0 − t)2 = (30)

[
(3 + β)− t0(2 + β)2

(2 + β)2

]
−

[
(3 + β)− t0[2(2 + β)2]

(2 + β)2

]
t −

[
20− 15β2 + 2β4

2(2 + β)2(2− β)2

]
t2

WB = xB
1 + xB

2 − 1/2[(xB
1 )

2 + (xB
2 )

2 + 2βxB
1 xB

2 ]− txB
2 − (t0 − t)2 = (31)

[
(3 + 2β)− t0[(1 + β)(2− β)2]

(1 + β)(2− β)2

]
−

[
(3 + 2β)− t0[2(1 + β)(2− β)2]

(1 + β)(2− β)2

]
t

−
[

20− 39β2 + 16β4 − 2β6

(1 + β)(1− β)(2 + β)2(2− β)2

]
t2

Note that all these functions are quadratic in t and have the form F = A−Bt−Ct2.

Thus first order conditions are given by ∂F/∂t = −B − 2Ct = 0 and second order

conditions for a maximum are ∂2F/∂t2 = −2C < 0 which is fulfilled as long as C > 0.

As can easily be seen by direct inspection of (28) through (31) this condition is always

met under quantity competition while it fails to hold for β close to one under price

competition. The limiting values of β for profit and welfare maximization under

price competition are given by (32) and (33), respectively:

12− 20β2 + 8β4 − β6 > 0 (32)

3Note that xB
i refers to the quantities which result in the second stage equilibrium with price

strategies — WB is written based on these quantities because the formula based on equilibrium
prices would be much more complicated.
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⇐⇒ βΠB
2 <

√√√√√√1

3


8− (

46− 6
√
57

)1/3 − 222/3(
23− 3

√
57

)1/3


 ≈ 0.932526

20− 39β2 + 16β4 − 2β6 > 0 (33)

⇐⇒ βW B

<

√√√√√√1

6


16− (

440− 66
√
42

)1/3 − 222/3(
20− 3

√
42

)1/3


 ≈ 0.832203

It should be kept in mind that the solutions for price strategies are thus only valid

as long as these restrictions are met. Based on the first order conditions we obtain

the following transport costs after investment (which for a given t0 in turn imply

investment costs I(t∗) = (t0 − t∗)2):

tC
∗

=
−2(2− β) + t0[(4− β2)2]

(2− β2)(6− β2)
(34)

tB
∗

=
−(1− β)(2− β2)(2 + β) + t0[(1− β2)(2− β)2(2 + β)2]

12− 20β2 + 8β4 − β6
(35)

t̂C =
−(3 + β)(2− β)2 + t0[2(2− β)2(2 + β)2]

20− 15β2 + 2β4
(36)

t̂B =
−(3− 2β)(1− β)(2 + β)2 + t0[2(1− β2)(2− β)2(2 + β)2]

20− 39β2 + 16β4 − 2β6
(37)

Note that equilibrium values of t are negative for t0 close to zero and thus the

constraint t ≥ 0 binds. On the other hand, for large t0 the restriction t ≤ t0 must

be considered.

We will now explicitly derive the solutions for quantity and price strategies and

display the results in appropriate figures. Because quantity competition is especially

relevant for non-digital goods, we also consider a Cournot model where transport

costs can not be eliminated totally.

For quantity competition we must determine the combinations of β and t0 where

the interior solutions tC
∗
and t̂C coincide and the limiting values tC

∗
= 0, tC

∗
= t0,

t̂C = 0 and t̂C = t0.

tC
∗
= t̂C ⇐⇒ t0 =

16− 14β − 8β2 + 8β3 + β4 − β5

(4− β2)2
(38)

tC
∗
= 0 ⇐⇒ t0 =

2

(2− β)(2 + β)2
(39)
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tC
∗
= t0 ⇐⇒ t0 =

2− β

2
(40)

t̂C = 0 ⇐⇒ t0 =
3 + β

2(2 + β)2
(41)

t̂C = t0 ⇐⇒ t0 =
(3 + β)(2− β)2

12− β2
(42)

Using equations (38) through (42) we can display regions with over-, under- and

efficient investments in a (β, t0)–diagram similar to the one used in section 3. Figure

2 also shows the borderline for efficient investment derived in section 3 for the (β, t∗)
diagram to indicate how the areas for over- and underinvestment change if we base

them on initial instead of equilibrium transport costs.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

β

t 
0

underinvestment

over-
investment

efficient investment

no investment
(efficient)

0ˆ* == tt

0ˆ* => tt

0* ˆ ttt <<0ˆ* >> tt

0* ˆ ttt ==

0* ˆ ttt =<

borderline of efficient 
investment for t* 

Figure 2: Efficiency of investment for quantity competition with a quadratic invest-

ment cost function

What can be seen in figure 2? If transport costs are relatively low initially, the firm

will invest efficiently by reducing transport costs to zero. For somewhat higher t0 and

thus also higher investment costs to obtain a certain level of t, it mainly depends on

the degree of product differentiation whether over- or underinvestment results: For

homogenous goods only overinvestment may happen while underinvestment results
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with independent products. For an intermediate level of product differentiation,

medium levels of t0 will yield underinvestment while we get overinvestment for t0

close to the zero profit constraint. The firm has no incentive to invest if transport

costs are initially so high that the zero profit constraint is violated. This decision

is efficient because entry would reduce welfare. This is due to the large investment

cost and to the inefficient entry of the firm from the distant region (this firm would

be likely to have relatively high transport costs even after investment).

How will these results be affected, if physical goods are considered and thus a re-

duction of transport costs to zero is no longer feasible? If we assume that transport

costs could be reduced by no more than 50%, the restrictions t∗ = t0/2 and t̂ = t0/2

replace the former limiting values t∗ = 0 and t̂ = 0 :

tC
∗
=

t0

2
⇐⇒ t0 =

4(2− β)

20− 8β2 + β4
(43)

t̂C =
t0

2
⇐⇒ t0 =

2(2− β)2(3 + β)

44− 17β2 + 2β4
(44)

Figure 3 shows the results for this alternative formulation. By comparing it with

figure 2 we observe two main changes: First, the (β, t0)–area of efficient investment

is enlarged since the lower bound restriction has tightened. Second, for close substi-

tutes firms may overinvest even if transport costs in equilibrium are reduced as far

as possible. This can be explained as follows: Consider a marginal investment to

t∗ = 0 in a homogenous goods market. This investment decision is efficient, because

two external effects offset each other. On the one hand, profits of the local com-

petitor are reduced. On the other hand, consumer surplus rises due to intensified

competition. However, if minimum transport costs are restricted to be higher than

zero, there is an additional external effect: Higher investment means a higher mar-

ket share for the distant firm and thus more people buy a product that is produced

inefficiently since transport costs have to be incured.

We now derive results for price strategies. Here we have to bear in mind that second

order conditions are not met for all β. Similar to the calculations above, we first

determine the combinations of β and t0 where the interior solutions tB
∗
and t̂B

coincide and the limiting values tB
∗
= 0, tB

∗
= t0, t̂B = 0, t̂B = t0.

tB
∗
= t̂B ⇐⇒ t0 =

16− 14β − 8β2 + 7β3 + β4 − β5

(4− β2)2
(45)

tB
∗
= 0 ⇐⇒ t0 =

2− β2

(2− β)2(2 + 3β + β2)
(46)
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tB
∗
= t0 ⇐⇒ t0 =

(1− β)(2 + β)

2− β2
(47)

t̂B = 0 ⇐⇒ t0 =
−3 + 2β

2(2− β)2(1 + β)
(48)

t̂B = t0 ⇐⇒ t0 =
(1− β)(3− 2β)(2 + β)2

12− 9β2 + 2β4
(49)

Now let us consider the case where second order conditions are violated. Here t̂B

and tB
∗
would minimize welfare and profits, respectively. Since ∂2WB/∂t2 as well

as ∂2ΠB
2 /∂t2 are constant in t, both welfare and profit functions are strictly convex

under these circumstances. As a consequence, the maximum of ΠB
2 and WB is either

given for t = 0 or for t = t0. Since marginal investment costs are zero for the first

unit and grow slower than second stage profits (according to convexity), investment

will be profitable as soon as ΠB
2 exceeds zero, and it is socially efficient as long as

welfare increases relative to the initial state.

ΠB
2 |t=0 = 0 ⇐⇒ t0 =

(1− β)(2 + β)√
1− β2(4− β2)

(50)
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Figure 3: Efficiency of investment for quantity competition with a lower bound t0/2.
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WB|t=0 = WB|t=t0 ⇐⇒ t0 =
2(2 + β)2(3− 5β + 2β2)

44− 57β2 + 20β4 − 2β6
(51)

Using equations (45) through (51), figure 4 displays regions with over-, under- and

efficient investments in a (β, t0)–diagram. As can be seen, results are not quali-

tatively different to that under quantity competition as long as products are suffi-

ciently differentiated. For very close substitutes, however, investment is only likely

if investment costs are quite low (in these cases it is usually also socially efficient).

0.2 0.4 0.6 0.8 1
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Figure 4: Efficiency of investment for price competition with a quadratic investment

cost function

5 Conclusion

As has been shown, both underinvestment or overinvestment relative to the welfare

maximizing strategy may result in equilibrium: The outcome depends on the degree

of product differentiation, the competitive strategy (price or quantity competition)

and the investment cost function. Overinvestment is most likely under quantity

competition with a low degree of product differentiation, while underinvestment
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results if products are substantially differentiated and the initial transport costs are

considerably below the zero profit level of transport costs for the distant firm.

With respect to firm strategies we have a prisoners dilemma situation: Joint profits

would rise if a firm reduces its investment in electronic coordination relative to equi-

librium investment levels.4 However, because each firm could improve its position

by deviating from the lower jointly optimal investment, the competitors will invest

in electronic markets as long as they are not able to effectively coordinate their

strategies.

From a public policy point of view the first lesson is that anti trust authorities should

have a close look on efforts of firms in an industry to jointly develop electronic mar-

kets — underinvestment due to cartellization is quite likely in this case. What can

be said if it is assured that firm strategies are set non–cooperatively? As has been

shown a deviation from the social optimum is still possible. However, firms may

either under- or overinvestment and given the sensitivity of the results to factors

like market demand, firm conduct and investment costs, and the information disad-

vantage of public authorities with respect to these factors, it seems most reasonable

not intervene in this investment decision.
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