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REGULATORY BENCHMARKING WITH PANEL DATA 
 

1. INTRODUCTION  
 
In many developed economies the electricity utility industry has been liberalised, de-

regulated and privatised with the wide adoption of forward looking incentive 

regulation often based on price-capping or revenue-capping. Comparative efficiency 

and productivity analysis, more commonly ‘benchmarking’, has become widely used 

by network regulators as part of these regulatory regimes, see Jamasb and Pollitt 

(2003) for a wide-ranging survey. The European Union Electricity Directive of 2003 

requires that ex ante regulation will become the norm throughout the European Union, 

leading to wider use of efficiency and productivity analysis as noted by Filippini, et al 

(2005). However, productivity comparison requires careful consideration of the 

relative importance of inter-firm heterogeneity and inefficiency in contributing to firm 

performance. Distinguishing these two features is essential to the credibility of 

liberalisation and regulatory proposals. Panel data methods offer regulatory 

authorities a potential means of achieving this distinction between latent heterogeneity 

and inefficiency in a credible and consistent manner. However, the specification of 

the error terms in panel data analysis is critical to interpreting how inter-firm 

heterogeneity and inefficiency combine to impact on measured firm performance, as 

shown by Farsi et al (2006).  

 

In this paper, we use stochastic frontier analysis to investigate the panel data 

modelling of heterogeneity and inefficiency for regulatory benchmarking. We apply 

several different approaches including true-SFA models, Greene (2005), to a sample 

of electricity distribution utilities in Turkey, where the industry is being liberalised as 
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it emerges from a period of extensive state ownership in preparation for EU 

accession; see Atiyas and Dutz (2005) and Erdogdu (2006) for the policy background 

on this issue. We demonstrate the sensitivity of the performance measures to the 

stochastic specification, and suggest a procedure based on satisfaction of second order 

concavity conditions for choosing between models. We investigate different models 

of the technology and find support for production relationships in which geographical 

characteristics are non-separable from other inputs in the electricity distribution 

industry. The paper commences by reviewing models for distinguishing heterogeneity 

and inefficiency emphasising the interpretation of time invariant effects in panel data. 

Specifications of the technology using second order approximations to the input 

distance function are then derived and these are used to measure inefficiency. The 

paper concludes with the regulatory policy implications of the findings. 

  

2. PANEL DATA MODELS FOR REGULATORY BENCHMARKING 
 
A general panel data framework, e.g., as suggested by Greene (2005), is: 

( ) ititititititititit uvuvfy −+′+′+=−+= zπxββzx αα ,;, ;  TtNi KK 1,1 ==  [1] 

In this model, itxβ′+α contains the information about the production structure, and 

 represents observable heterogeneity not related to the production structure but 

capturing firm specific effects; the composed error term comprises idiosyncratic error 

(v) and non-negative inefficiency (u). The alternative statements in [1] allow for the 

observable heterogeneity to be non-separable from the production function variables, 

[

itzπ′

02 ≠∂∂∂ litkitit zxy ], or separable from them, [ 0; 2 =∂∂∂=∂∂ litkititllitit zxyzy π ].  
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Equation [1] is a general statement, and includes the pooled model as well as a 

number of multi-layered and interdependent panel data approaches. In regulatory 

benchmarking a key issue concerns the presence of time-invariant effects arising 

partly because the number of firms in the sample is likely to be large relative to the 

available number of time periods2. Time-invariant effects (abbreviated to TIE) could 

arise for two principal reasons. First, there may be significant inter-firm 

heterogeneity; this will be particularly important when geographical features affect 

the production relationships observed in a sample of regionally based firms. This is a 

characteristic of the electricity distribution industry. Second, there may be a wide 

variation in economic performance which does not change over time, if the regulated 

or state-owned firms have poor incentives to reduce costs. This is a characteristic of 

utilities making the transition from a period of cost of service based state-ownership 

or municipal ownership. We can classify these two causes of TIE as time-invariant 

latent heterogeneity (TIH) and time-invariant inefficiency (TIU). Consequently we 

need to specify the general model in [1] in a more restricted manner to capture the 

regulatory dilemma of whether TIE = TIH or TIE = TIU, or both, TIE = TIH + TIU. 

 

If we are dealing with a sample in which TIH is not likely to be an important issue, 

then most or all time invariant effects can be attributed to inefficiency of firm 

performance: TIE = TIU. This reflects the application of classical panel data methods 

to stochastic frontier analysis, as suggested by Schmidt and Sickles (1984), see 

Kumbhakar and Lovell (2000) for a wide survey: 

iitititit uvy −+′+′+= zπxβα       [2] 

                                                 
2 In this paper for example,  ,while 82=N 6=T  
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Time-invariant effects are restricted to the inefficiency component of the error term, 

and may be estimated by a range of methods. Fixed effects with firm dummy 

variables, FE-LSDV, or random effects with feasible generalised least squares, RE-

FGLS, make minimal assumptions about the density function of the error 

components. The FE-LSDV model has the additional advantage that the inefficiency 

component can be correlated with the explanatory variables, but time-invariant 

observed heterogeneity, TIH, however, is not feasible. Pitt and Lee (1981) extended 

the RE version of the model by specifying additional properties for the inefficiency 

and idiosyncratic components of the error term: ( )2
ui ,N~u σμ+  , ( )20 vit ,N~v σ , and 

used maximum likelihood estimation, RE-MLE, while Battese and Coelli (1992), and 

Kumbahakar (1990) further allowed the inefficiency component to be time persistent 

with a common structure across firms: ( )thuu iit = . We refer to this group of 

specifications as the classical SFA-panel model. 

 

Greene (2001, 2005) argues strongly in favour of accounting carefully for inter-firm 

heterogeneity in applying SFA-panel methods. He first raised the ideas in connection 

with inter-country environmental and cultural differences in health service provision, 

but the geographical dispersion factor is also relevant. Therefore the assumption is 

now that time-invariant heterogeneity is the critically important time-invariant effect: 

TIE = TIH. Greene (2005) suggests a True-SFA-panel approach in which all time-

invariant effects are treated as inter-firm heterogeneity, and inefficiency is treated as 

an unstructured time-varying effect. 

ititititiit uvy −+′+′+= zπxβα        [3] 

There are FE and RE approaches in this TIH model. The FE approach uses firm 

dummy variables in a MLE model with specified density functions for the error 
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components, while in the random effects approach the intercept is treated as random 

variable in a random parameters framework. 

 

This True SFA-panel approach could, however, overcompensate for heterogeneity 

since inefficiency may also to be time-invariant in short panels of firms which have 

only been subject to state-ownership or non-incentive-based regulation. Consequently, 

in such panels of regionally dispersed firms, where geographical features impact on 

the production technology, and where pressures to improve efficiency may be absent, 

it is essential to measure time-invariant effects as both time-invariant inefficiency and 

time-invariant heterogeneity: TIE = TIU + TIH. The ability to do this is sample 

dependent, and requires the availability of time-invariant observed heterogeneity 

information, as Greene (2005) shows. In addition, the inclusion of both TIH and TIU 

in the model rules out a fixed effects approach, so that only versions of the random 

effects Classical RE-MLE method can be used. The consequence is that we can no 

longer permit the assumption that inefficiency can be correlated with the explanatory 

variables, which is available for FE approaches. This third approach could be referred 

to as Classical Random Effects SFA with observable heterogeneity, 

 

iitiitit uvy −+′+′+= zπxβα        [4] 

 

This model may have several different inefficiency specifications including time-

invariant inefficiency, ( )2
ui ,N~u σμ+ , time-persistent inefficiency with a common 

structure across firms, , or, even pooled or non-specific time-varying 

inefficiency, , but the key feature is that it includes both TIH and TIU as 

possibilities. While the models in this third category are clearly richer formulations 

( )thui

itu
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and allow for time-invariant inter-firm heterogeneity and time-invariant or time-

persistent inefficiency, as well as non-specific time-varying inefficiency, their 

applicability depends on the availability of sample-specific information. Maximum 

likelihood estimation is used for all of the models. The ability to capture both 

heterogeneity and inefficiency when both may be time-invariant is critical in 

investigating firms which may have been devoid of incentives for some, or all, of the 

sample. This is likely to be the outstanding feature of state-owned firms subject to 

several years of cost of service regulation. Such firms are found throughout the 

liberalising transition and accession countries, and they dominate the dataset used in 

this paper.  

 

Farsi et al (2006) address this problem in a panel data study of electricity distribution 

utilities in Switzerland. Identifying the division between heterogeneity and 

inefficiency as crucial to regulatory benchmarking, they argue that inefficiency should 

be regarded as time varying because, even if managerial performance is constant, it 

interacts with time varying factors in a dynamic manner. They compare the Schmidt 

and Sickles GLS, Pitt and Lee MLE and Greene True RE-MLE models for error term 

specification in a Cobb-Douglas total cost regression. The parameter results are 

consistent across all three models but the inefficiency results are higher for the GLS 

and MLE models than the true RE-MLE model. This confirms the view that 

inefficiency and heterogeneity need carefully to be distinguished in regulatory 

benchmarking, and that the error term specification is critical. They argue that the 

assumptions of the true RE model are more consistent with the real world. 
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In the case of the sample of Turkey, it is more difficult to defend this argument 

because the industry, unlike the Swiss case, has had few if any regulatory incentives, 

and has instead experienced a policy of increasing nationalisation and expanded state-

ownership, see Bagdadioglu et al (2007). In these circumstances, time invariant 

effects may include both heterogeneity and inefficiency. Consequently, we need an 

additional criterion to help distinguish between the time invariant heterogeneity and 

inefficiency in the sample. We suggest that a comparison be made of the economic 

properties, in particular the use of second order concavity tests, to discriminate 

amongst the different models; this allows us to compare the estimates of inefficiency 

from different models in a structured manner, and to note which specification has the 

stronger economic properties.  

3. MODELLING THE TECHNOLOGY AND RELATIVE EFFICIENCY   
 

The outputs are  and the required inputs are , and we represent the 

technology at time t by the input distance function, 

R
+∈ Ry K

+∈ Rx

( )t,,DI xy , see McFadden 

(1978)3. Since the value of the input distance function equals one if a producer is on 

the efficient production frontier, and exceeds one where the producer is 

inefficient, , we write 1≥ID

( ) 00 ≥=− u,ut,Dln I xy,        [5] 

The non-negative variable  corresponds to the inefficient slack in the use of 

inputs by each producer; it is the feasible contraction in inputs which will project an 

inefficient producer on to the efficient frontier of the input requirement set. In the 

econometric approach to inefficiency measurement  is treated as a random variable 

0≥u

u

                                                 
3 Coelli et al (2003) suggest reasons why the input distance function is a suitable model for regulatory 
benchmarking. 
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distributed across producers with a known asymmetrical probability density function. 

McFadden (1978:26) and Kumbhakar and Lovell (2000:32) state that properties of the 

input distance function include: 

(i) non-decreasing in x, Kk,exxlnDln kkI K10 =≥≡∂∂  

(ii) homogeneity of degree one in x, ( ) ( ) KIKI xt,Dt,xD xy,xy, =  

(iii) concave in x 

(iv) non-increasing in y, Rr,eyylnDln rrI K10 =≤≡∂∂  

(v) scale elasticity of the production technology is measured by (see also Fare 

and Primont (1995)): 
1

1

1

1

−=

=

−=

=
⎟
⎠
⎞⎜

⎝
⎛ ∑−≡⎟

⎠
⎞⎜

⎝
⎛ ∑ ∂∂−=

Rr

r
r

Rr

r
rI

t eyylnDlnE   

Applying the property in (ii), and using [5], provides an equation for estimation 

purposes: 

( ) ut,xDlnxln KIK −=− xy,                  [6] 

This paper proposes three elements to make [6] operational in a setting of panel data, 

 :  T,,t;N,,i KK 11 ==

( ) ititititKKit uvt,xTLxln −+′+≈− zxy, π      [7] 

In this model ( itK t,xTL xy, )  represents the technology as the translog approximation 

to the log of the distance function containing the inputs normalised by the input on the 

left hand side of [6], itzπ ′  is the inter-firm heterogeneity that is separate from 

inefficiency and includes the exogenous operating characteristics, and is the 

conventional idiosyncratic error term incorporating sampling error, measurement 

error and specification error. The remaining term in [7], i.e. (

itv

itu− ), is the inefficiency 

component of the disturbance error. The formulation in [7] is less general than it 

could be however since it imposes separability of the distance function in operating 

 10



characteristics. With non-separability, the exogenous characteristics can be modelled 

as if they enter the y vector directly so that they appear with second order and cross-

product terms interacting with the other outputs, inputs and time to reflect the intrinsic 

nonlinearity of their impact on production technology 

 

Making use of the notation: Kkk xxx~ ≡ , ( )Rylnyln K1=′yl  and 

( 11 −=′ Kx )~lnx~ln~ Kxl , the translog input distance function ( )t~TL ,xy,  in [7] is: 

( ) t~ttt~~~~t,~TL xlηlyμxlΓylxlΒxllyΑylxlβlyαxy, ′+′+++′+′+′+′+′+= 2
22

1
12

1
2
1

0 δδα
 

[8] 

The property of continuity of the function requires the symmetry restrictions on the 

elements of the matrices A, B: srrs αα = and kjjk ββ = . The elasticities needed for the 

monotonicity properties are Rr,ylnDlney rIr K1=∂∂= ,  and 

11 −=∂∂= Kk,x~lnDlnex kIk K ,  and tDlne It ∂∂= . These can be solved in 

terms of the coefficients of the fitted translog distance function as: 
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e
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1

21 δδ
     [9] 

In [9]  is the column vector of output elasticities,  is the column vector of input 

elasticities. The normalising input in [7] and therefore the dependent variable in the 

regression analysis is ; in the sample used here, this will be the (negative log 

of) the number of employees, so that an intuitive interpretation of the model in [7] is 

that it is (the negative of) a generalised labour input requirement function, but with 

the additional homogeneity properties of the input distance function imposed.  

ye xe

Kxln−
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Kumbhakar and Hjalmarsson (1998) investigated the relative efficiency of electricity 

distribution in Sweden using a labour input requirement function, with a range of 

outputs and capital similar to those considered here4. The focus of that paper was on 

the impact of ownership type on relative efficiency. In this paper by contrast, where 

ownership type is not dispersed in the sample, the focus is on cross-unit 

heterogeneity. Returns to scale findings are mixed: Kumbhakar and Hjalmarsson, 

whose sample contained many small municipal utilities found evidence of increasing 

returns to scale, but many studies, such as Yatchew (2000) find that scale elasticity is 

not significantly different from one.  

 

Concavity of the input distance function in x can be expressed in terms of the Hessian, 

by applying the arguments used by Diewert and Wales (1987) for the cost function. 

The Hessian of the input distance function with respect to x is derived as: 

( ) xxxˆH eeeBx ′+−=        [10] 
 
In [10],  is a diagonal matrix with the input elasticities xê 11 −= K...k,exk  on the 

leading diagonal, and zeros elsewhere, and  is the matrix of second order 

coefficients on the input terms in the translog function. Concavity requires that  

be negative semi-definite

B

( )xH

5. At the sample means with mean corrected data, these first 

and second order derivatives in [9] and [10] simplify to: 

⎟
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⎟
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⎝

⎛
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⎠

⎞

⎜
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⎜

⎝

⎛
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e
e

t

x

y

e
        [11] 

 
( ) βββBx ′+−= ˆH             [12]  

                                                 
4 Kumbhakar and Hjalmarsson (1998) found that a hedonic composite of energy, customers and 
network length performed successfully in their labour input requirement function. 
5 Negative semi-definiteness is checked from the sign pattern of the principal minors of the Hessian. 
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4. DATA AND MODEL SPECIFICATION 
 
The data used comprise a panel of 82 regional electricity distribution utilities in 

Turkey from 1999-2004, i.e. 492 observations in total. The source of the data is the 

Ministry of Energy and Natural Resources of the Government of Turkey. 

 

The variables describing the technology of the electricity utilities are: 

y1: numbers of customers 

y2: electricity consumed (MWh) 

x1: transformer capacity (MVA) 

x2: network length (kilometres) 

x3: network losses (MWh) 

x4: numbers of employees 

x5: numbers of transformers 

z1: service area (squared kilometres) 

z2: customer dispersion, i.e. the reciprocal of customers relative to service area 

(1/numbers per squared kilometre).  

 

Output variables are designated as yr, input variables as xk, and operating 

characteristics as zm.  An input orientation is adopted because it is recognised that 

utilities will be constrained to minimise input usage subject to meeting exogenous 

output targets. The outputs are customer services, which are proxied by the numbers 

of customers served in each area by each distribution utility, and electricity 

distributed. Both of these outputs have price signals in the customer tariff components 

of the utilities. Service area in the case of these utilities is a time invariant exogenous 
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operating characteristic variable. However it could be regarded in this context also as 

a non-priced output since it represents an additional target for service level coverage. 

If this assumption is adopted, then, in the input orientation used here, service area (in 

log form) will appear as indistinguishable from the other outputs, and it will enter the 

translog function with first and second order cross product terms. It will also directly 

impact on the scale elasticity:  
13

1

−=

=
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r

r
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 A second way to treat service area is to model it as an exogenous firm characteristic 

(also in log form), which captures inter-firm heterogeneity, and which appears 

linearly in the regression model as part of the itzπ ′  component: the estimated scale 

elasticity is: . A third way to incorporate service area in the model is 

to embed it in the ratio variable: customer dispersion, and to incorporate this (not in 

log form) as an exogenous operating characteristic, with no scale elasticity impact.  

12
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The capital infrastructure to supply this range of services consists of transformers and 

network length, and this is supplemented by labour input. In all of the initial 

estimation work, the number of transformers and transformer capacity were found to 

be highly collinear (as will be expected when network reinforcement is accomplished 

by simply adding transformers of a given capacity rating), and consequently the 

number of transformers (x5) was eventually excluded (after considerable initial 

experimentation with both variables) in order to achieve meaningful estimation. In 

reinforcing a network, electricity losses will rise as service area expands unless 

additional physical capital is used. Consequently, electrical losses can be used as 

another form of input to proxy the direct capital requirements of improving the quality 
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of the network. The model is similar in concept to Bagdadioglu et al (2007). Summary 

statistics are shown in table 1. 

 

TABLE 1 HERE 

 

In computing the estimates, all data were expressed in terms of ratios of the panel 

mean for each variable, so that the first order terms in the translog estimates measure 

the elasticities at the sample mean6. The normalising input and therefore the 

dependent variable in the regression analysis is 4xln− , the negative log of the number 

of employees, as described earlier. 

 

5. EMPIRICAL RESULTS FOR THE EFFICIENCY COMPARISONS 
 
The three broad categories of panel data model outlined earlier are: 1. Classical SFA-

panel models, which assumes that all time invariant effects are inefficiency, TIE = 

TIU, 2. True SFA-panel which assumes that all time invariant effects are latent 

heterogeneity, TIE = TIH, and 3. Classical Random Effects SFA with observable 

heterogeneity, which permits time invariant effects to be both heterogeneity and 

inefficiency, TIE = TIH + TIU. Within this group we can choose between separable 

(S) and non-separable (N) time-invariant heterogeneity. In all of the fitted models, 

time-varying customer dispersion consistently failed to demonstrate any statistical 

significance, and this is in line with other studies which have found that customer 

dispersion performs badly in panel data applications to regulated electricity industries, 

Burns and Weyman-Jones (1996). 

 

                                                 
6 All of the estimations and the computation of the productivity indexes were done in the LIMDEP 8 
and STATA 9 software applications. 
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The spread of technical efficiency scores can be large or small depending on the 

model fitted, which serves to demonstrate the fundamental regulatory dilemma. This 

is shown in figure 1, which illustrates the kernel density distributions of Technical 

Efficiency for models 1 and 2. In model 1, all time invariant effects are inefficiency; 

this is the standard SFA approach, represented here by the random effects Pitt and 

Lee(1981)  time-invariant inefficiency model. In model 2, by contrast, represented 

here by the True FE-SFA-panel, all time invariant effects are treated as heterogeneity, 

and inefficiency is found in the time varying residual which is equivalent to the non-

specific Aigner, Lovell and Schmidt (1977) model of the composed error term.  

 

FIGURE 1 HERE 

 

It is clear from figure 1 that assuming that all time invariant effects are heterogeneity 

has driven out all of the measured inefficiency from the model, since the distribution 

of technical efficiency for model 2 is clustered close to the value of 1. A regulator 

choosing model 1 over model 2 would run into severe challenge from regulated firms 

for failing to account for latent heterogeneity. This is a stark illustration of the 

regulatory dilemma which has been played out in many western European 

jurisdictions. Farsi et al (2006) found exactly this effect in their study of Swiss 

electricity utilities. In that case, they were able to argue that the assumptions of the 

true-SFA model are more consistent with the real world.  

 

On the other hand it should be expected that, in a transition economy emerging from 

years of state-ownership, there will be a legacy of time-invariant inefficiency which 

has not yet been subject to direct high-powered incentive regulation. If inefficiency is 
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indeed time-invariant, then the True SFA-panel model may have over compensated 

for heterogeneity and failed to reveal the time-invariant inefficiency. In applying the 

True SFA-panel model with fixed effects to UK water regulation, Saal et al (2007) 

were able to argue that in a sample with a long time span, and where the firms had for 

several years been the subject of incentive based regulation, the true-SFA model was 

an appropriate procedure. In that context, it was inappropriate to expect extensive 

time-invariant inefficiency. The opposite argument could apply in the case of state-

owned companies in transition economies where incentive regulation has not yet 

replaced extensive public ownership. This is likely to be especially the case with a 

short time-span panel data set such as we have here. Consequently it is necessary to 

investigate a model which allows time-invariant effects to represent both inefficiency 

and heterogeneity. A fixed effects model is not appropriate here, because it excludes 

direct measures of time-invariant heterogeneity which are needed to allow room for 

measuring time-invariant inefficiency. 

 

In this sample we have a geographical variable which can represent time-invariant 

heterogeneity: the service area of each utility. Although we already know that time-

varying customer dispersion does not add to explanatory power, it is likely that 

utilities with very different service areas will have different production characteristics. 

We are able to allow this characteristic to be non-separable in the production function 

variables in model 3(N) and separable in model 3(S).  Figure 2 shows the effect on the 

technical efficiency distribution from model 1 of including time-invariant 

heterogeneity in the form of service area data in model 3(N). Any of the random 

effects models can be used for the comparison, and the one shown here is the time-
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invariant inefficiency model of Pitt and Lee (1981) with first order, second order and 

cross product terms in service area included in the regression.  

 

FIGURE 2 HERE 

 

Two conclusions can be drawn from the kernel distributions shown in figure 2. The 

distribution of technical efficiency in model 3(N) is shifted further towards the 100 

percent efficiency standard compared with model 1, but the effect is much less 

marked than that from model 2’s comparison with model 1. Using the time-invariant 

heterogeneity implicit in the geography of service area produces a statistically 

significant but much lower compensation for heterogeneity than the full fixed effects 

model. Heterogeneity is allowed for without driving out the measured inefficiency. 

The use of separable time-invariant heterogeneity in model 3(S) is compared with 

model 3(N) in figure 3 and it can be seen that there is a significantly different effect 

from using the service area variable in a non-separable manner. The model with non-

separability produces a technical efficiency distribution that is displaced further 

towards higher levels of efficiency than when separability is assumed.  

 

FIGURE 3 HERE 

 

The effect of non-separable time-invariant heterogeneity in model 3(N) has been 

treated as an additional output which interacts with the other outputs and inputs in the 

model. However, service area is not a priced output in the sense of affecting the level 

or structure of customer tariffs. Yet it does appear to affect the production relationship 

in electricity distribution in an important way, and appears to be a more statistically 
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successful means of modelling heterogeneity than the use of customer dispersion. In 

tables 2 and 3, we look in more detail at the properties of the models being compared.  

 

TABLE 2 HERE 

 

Summary statistics for representative examples of all four (1, 2, 3(N), 3(S)) of these 

model categories are presented in table 2. In comparing the two polar cases of models 

1 and 2, the mean technical efficiency differs by over 34 percent in line with the 

impression from figure 1, and the true fixed effects model shows virtually zero 

variation in the technical efficiency scores. Both models 1 and 2 suggest that there are 

increasing returns to scale which does not reflect other findings in the literature on 

electricity utilities of this average size, and both models 1 and 2 fail the concavity test 

since neither set of parameters produces a negative definite Hessian, ( )xH  at the 

sample mean.  

 

Consequently there are issues with the specification of these two models. Model 3(S) 

with separable time-invariant heterogeneity displays lower elasticity of scale but still 

in the range of increasing returns, and has a similar average and dispersion of 

technical efficiency to model 1. However, it too fails to satisfy concavity at the 

sample mean. Model 3(N) is the case of non-separable time-invariant heterogeneity in 

which service area is modelled as a non-priced output interacting with the other 

variables in the production technology. It does have an elasticity of scale closer to that 

found in other studies of distribution utilities of comparable size, and it displays a 

higher average technical efficiency than either of the other random effects models, 1 

and 3(S). In addition, this random effects model with time-invariant heterogeneity is 
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the only category of model to satisfy the negative definite Hessian (concavity) 

conditions at the sample mean. Consequently, we investigate this model in more 

detail. 

 

Table 3 reports two forms of hypothesis test between different random effects models; 

we use a likelihood ratio (LR) test on the log likelihood functions from the underlying 

regression to test for preferred specification, and we use a non-parametric Mann-

Whitney test on the difference in the median technical efficiency scores. For the LR 

tests, we impose one restriction on comparing models 1 and 3(S), and impose 6 

restrictions on comparing models 3(S) and 3(N). Model 3(N) is clearly the preferred 

specification and it yields higher average technical efficiency scores than the other 

two models, in addition to satisfying the economic property of concavity of the 

Hessian. It appears therefore that using time-invariant observed heterogeneity that is 

non-separable from the production function has allowed us to improve on model 1’s 

failure to allow for heterogeneity, to improve on model 2’s inability to permit time-

invariant inefficiency, and to improve on the failure of model 3(S) to meet the 

concavity conditions7. 

 

TABLE 3 HERE 

 

Although we have concentrated on the results for one form of model 3(N) here, there 

are several different versions of it that can be used. While a fixed effects approach is 

                                                 
7 Some researchers have imposed concavity conditions as part of the estimation procedure. Jorgenson 
and Fraumeni (1981) use Cholesky decomposition to impose concavity at every sample point, but this 
results in a very highly restricted model with many coefficients constrained to zero. Ryan and Wales 
(2000) impose concavity at a single point and find that this resulted in satisfaction of the conditions at 
most other sample points; this study used a time series sample on US manufacturing with a relatively 
low number of observations. O’Donnell and Coelli (2005) use Bayesian estimation to impose 
concavity. 
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ruled out because of the presence of observed time-invariant heterogeneity, model 

3(N) can be fitted as a standard RE-FGLS model with no distributional assumptions 

about the  error terms other than constant variance, or it can be fitted as a time-

invariant inefficiency model based on Pitt and Lee (1981), or it can be fitted as a 

common structure time-persistent model based on Battese and Coelli (1992), or even 

as a pooled sample time varying inefficiency model based on Aigner Lovell and 

Schmidt (1977). In other words the model permits but does not impose time-invariant 

inefficiency, and permits time persistent and time varying inefficiency as well. We 

use LR and asymptotic t-tests to choose between these candidates. The LR test clearly 

rejected the pooled time-varying inefficiency model against the Pitt and Lee model 

(LR test statistic: 949.04). The coefficients and log likelihood function values for Pitt 

and Lee and Battese and Coelli models are very close, except that the common time 

persistence parameter (eta) in the Battese and Coelli model is not significantly 

different from zero at the 5 per cent level. The coefficients and scale elasticities of the 

Pitt and Lee and RE-FGLS models are virtually identical at the first order and all of 

the versions of model 3(N) satisfy the concavity conditions at around 88 percent of 

the sample points, and give virtually identical technical efficiency distributions.  

 

Table 4 displays the estimated parameters for the Pitt and Lee version of the model. 

We note that from the separate estimates of the underlying error variances: σu
2 and 

σv
2, we can infer that over 94 percent of the composed error variation remains 

attributable to time-invariant inefficiency, even when time-invariant heterogeneity is 

explicitly allowed for. 

 

TABLE 4 HERE 
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Finally, in table 5 we summarize the economic properties of the estimated model at 

the sample mean and throughout the sample. 

 

TABLE 5 HERE 

 

Monotonicity properties are strongly satisfied in terms of statistical significance at the 

sample mean, as they are in virtually every model that has been fitted. In addition they 

are also satisfied at over 430 of the sample points. The same is true of the negative 

semi-definiteness property of the Hessian ( )xH  which is satisfied not only at the 

sample mean but also at 88 percent of the individual sample points. Scale elasticity is 

not significantly different from one at the sample mean, confirming that utilities of 

this mean size have largely exhausted the available scale economies. Nevertheless a 

notable result for the scale property is that although scale elasticity, E, is not 

significantly different from one at the sample mean, it does exceed one at around 360 

of the sample points. This indicates that the mean scale of the utilities is skewed 

upwards by the presence of a limited number of large utilities, and that there are many 

small utilities that individually display increasing returns to scale. This may explain 

why the Government of Turkey is keen to encourage mergers of electricity 

distribution utilities in the period prior to liberalisation, see Bagdadioglu et al (2007) 

for a non-parametric analysis of theses proposed mergers. 

6. INTERPRETATION AND CONCLUSIONS 
 

In this paper, our objective has been to examine the issue of regulatory benchmarking. 

We described panel data procedures that permitted two sources of time-invariant 
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effects, heterogeneity and inefficiency, which encapsulate the regulatory dilemma in 

benchmarking. Since the distinction between heterogeneity and inefficiency is critical 

for regulatory credibility, benchmarking exercises need to adopt a specification which 

can allow both effects to be measured. Typically, panel data samples will do this, 

especially if one of these factors (usually heterogeneity) can be assumed to be time-

invariant while the other (usually inefficiency) can be assumed to be time-varying. 

Farsi et al (2006) were able to use this assumption effectively in modelling the 

regulated electricity distribution industry in Switzerland. This assumption is more 

difficult to sustain in the type of sample used here, involving centrally controlled 

state-owned firms whose inefficiency may be static. One solution therefore is to 

incorporate observed time-invariant heterogeneity into a classical RE-SFA model and 

to determine whether the economic properties (such as concavity) of this model are 

superior to those of the other models. This model permits but does not impose time-

invariant inefficiency, and this can be tested, as we did in this paper. In addition, we 

found that treating the observed heterogeneity as non-separable from the other inputs 

and outputs was superior to a separable model. Overall, we found that a model with 

non-separable observed heterogeneity did have stronger economic properties 

(concavity in inputs) than the alternative specifications in this sample. The problem 

for regulators in such benchmarking cases is twofold: how to obtain good data on 

time-invariant heterogeneity, and how to specify the economic properties used to 

distinguish between models.  
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Table 1: Summary data for electricity distribution utilities in Turkey 
 
 

82 utilities, 1999-2004, Inputs and 
Outputs 

Average Standard  Deviation Minimum Maximum 

X1: Transformer capacity (MVA) 550 1052 35 8603 
X2: Network length (km) 9014 7006 809 36280 
X3: Network losses (MWh) 239818 472704 4507 3738892 
X4: Employees 405 410 62 2547 
X5: Number of transformers 1779 1273 176 6605 
Y1: Customers 308380 441945 25775 3431596 
Y2: Electricity (MWh) 956997 1709629 32827 13193349 
Z1 = Y3: Service area (km2) 9450 6342 840 38257 
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Table 2: Comparative results from different treatments of time-invariant effects, TIE 
 
model 1. classical 

SFA-panel 
(RE-MLE) 

2. True Fixed 
Effects SFA-
panel 

3 (S). 
separable 
TIH in RE-
MLE 

3 (NS). non-
separable 
TIH in RE-
MLE 

Property All TIE are 
inefficiency 

All TIE are 
heterogeneity

TIE can be 
inefficiency 
and 
heterogeneity 

TIE can be 
inefficiency 
and 
heterogeneity 

Scale 
elasticity 

1.27 1.09 1.03 0.958 

Median 
TE (%) 

61.8 96.4 61.9 66.6 

Quartile 
Range (%) 

16.9 0.8 17.3 19.6 

Negative 
definite 
Hessian, 

( )xH  

no no no yes 
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Table 3: Differences between Technical Efficiency scores. 
 
 
Comparison H0: no difference in the 

model specification 
underlying the efficiency 
score 

H0: no difference in the 
median technical 
efficiency scores 

Test LR value on H0 Mann-Whitney p-value on 
H0

Model 1 and 3(S) 30.64  
(χ2 5% critical value: 3.84) 

0.0371 

Model 3(N) and 3(S) 112.18  
(χ2 5% critical value: 12.59) 

0.0368 
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Table 4: Translog input distance function with time-invariant inefficiency and non-
separable time-invariant firm heterogeneity  
Dependent Variable: -ln x4, NT = 492 

Variable Coef. asymptotic t value 
ly1 -0.5164 -11.91 
ly2 -0.1178 -4.61 
ly3 -0.4093 -8.66 
lxn1 0.19619 6.24 
lxn2 0.27103 8.84 
lxn3 0.03704 2.52 
ly11 -0.1196 -2.41 
ly22 0.03801 1.22 
ly33 -0.1458 -4.09 
ly12 -0.0285 -0.4 
ly13 0.28397 5.32 
ly23 -0.0772 -2.05 
lxn11 -0.0296 -0.65 
lxn22 -0.0194 -0.74 
lxn33 -0.0095 -1.27 
lxn12 -0.0256 -0.43 
lxn13 -0.0367 -1.29 
lxn23 -0.0051 -0.22 
ly1lxn1 0.19916 2.68 
ly1lxn2 -0.1484 -2.54 
ly1lxn3 0.02898 0.94 
ly2lxn1 -0.1261 -2.28 
ly2lxn2 0.16416 3.62 
ly2lxn3 0.014 0.67 
ly3lxn1 -0.2499 -6.93 
ly3lxn2 0.14319 4.42 
ly3lxn3 -0.0755 -4.33 
t 0.02765 10.37 
tsq 0.00217 2.7 
ly1t 0.00731 1.28 
ly2t 0.00006 0.01 
lxn1t 0.00027 0.05 
lxn2t 0.00691 1.54 
lxn3t -0.0008 -0.38 
intercept 0.47454 11.63 
μ 0.37934 7.82 
γ 0.95836 = σu

2/σu
2+σv

2  
σu

2

0.0398
(inefficiency 
distribution) 

σv
2

0.00173
(idiosyncratic 
distribution) 
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Table 5:  Monotonicity, scale and concavity properties of the fitted input distance 
function with non-separable time-invariant heterogeneity at the sample mean and 
throughout the whole sample 
 
MONOTONICITY 

property 
Elasticity  Parameter  Standard error Whole 

sample: % of 
sample 

points with 
function 

decreasing in 
outputs, 

increasing in 
inputs 

at sample mean ey1 -0.516 0.043 100 
at sample mean ey2 -0.118 0.026 94 
at sample mean ey3 -0.409 0.047 92 
at sample mean ex1 0.196 0.031 98 
at sample mean ex2 0.271 0.031 93 
at sample mean ex3 0.037 0.015 89 

SCALE property Scale 
Elasticity  

Parameter  Standard error Whole 
sample: % of 

sample 
points with 
increasing 
returns to 

scale 
at sample mean E 0.958 0.046 

Fail to reject H0: 
E = 1 

 
72 

CONCAVITY 
property 

Function Principal 
Minors 

 

Values Whole 
sample: % of 

sample 
points where 

is 
negative 
definite 

( )xH

at sample mean  ( )xH  First order: 
 
 

Second 
order: 

 
Third order: 

-0.217, -0.236,  
-0.055 

 
0.051, 0.011, 

0.013 
 

-0.003 

 
 
 

88 
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Figure 1: Technical Efficiency distribution for models 1 and 2 
Classical RE without time invariant heterogeneity and True FE-SFA 
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Figure 2: Technical Efficiency distribution for models 1 and 3 (N) (time invariant 
inefficiency and time-varying heterogeneity versus time-invariant inefficiency and 
time-invariant heterogeneity)  
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Figure 3: Technical Efficiency distribution for models 3 (N), and 3 (S) (time-invariant 
inefficiency and time-invariant heterogeneity) with and without separability 
 
 
 
 
 
 

0
1

2
3

4
D

en
si

ty

.4 .6 .8 1
technical efficiency: classical RE with and without separability

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 33


	 REGULATORY BENCHMARKING WITH PANEL DATA  
	Necmiddin Bagdadioglu 
	Thomas Weyman-Jones( 
	 REGULATORY BENCHMARKING WITH PANEL DATA 
	1. INTRODUCTION  
	2. PANEL DATA MODELS FOR REGULATORY BENCHMARKING 
	3. MODELLING THE TECHNOLOGY AND RELATIVE EFFICIENCY   
	 
	4. DATA AND MODEL SPECIFICATION 
	5. EMPIRICAL RESULTS FOR THE EFFICIENCY COMPARISONS 
	6. INTERPRETATION AND CONCLUSIONS 



