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1 Introduction

In traditional models of spatial competition based on Hotelling (1929) a �rm has no advan-

tage in limiting its spatial coverage. However, in many real-world situations, the choice of

the market reach is voluntary. For example, a �rm chooses the size of its market area when

it decides whether to open a new store, to enter a new market, to advertise its products, to

develop a distributional channel, or to cream-skim consumers.

In this paper we use a modi�ed version of the standard framework proposed by Dixit

and Stiglitz (1977), where �rms and consumers face transport costs and �rms can choose

reach, quality and price. In this setup, �rms operate in a monopolistically competitive

market: product di¤erentiation ensures that a �rm retains some market power, but even

with the cheapest delivered price, it is no longer the exclusive supplier. A stylized example

of the model�s characteristics we present pertains to the tourist industry. Imagine that the

historical towns in Europe compete with each other in attracting visitors from around the

world. Each town faces transport costs in the form of advertising aimed at informing the

tourists about its attractions. If the campaign�s e¤ectiveness decreases with distance, then

a town may choose to limit its market coverage. This e¤ect is reinforced if also tourists�

transport costs increase with distance, as one would normally expect.

The model is solved assuming two di¤erent pricing mechanisms. Under spatial price

discrimination, a �rm may choose to limit its market coverage only when endogenous �xed

costs are increasing in reach. Under uniform pricing, the coverage may be limited also

when �xed costs are not a¤ected by reach, if unit variable costs are increasing in reach.

The contrast arises because in the �rst case increases in production costs can be perfectly

passed on to consumers, while in the second they cannot. In both settings, consumers�

transport costs push towards a reduction of the market size and enhance the pro�tability

of a strategy focussing on the more captive consumers. Finally, we show that the �rm�s

behaviour determines a constrained socially optimum equilibrium, i.e, it corresponds to the

outcome that an industry regulator would impose.

As a real-world case of competition involving �rms that limit their reach, consider the

Italian furniture districts of Prato, Biella, Brianza, Como and Pesaro. They consist of a few

leading �rms (e.g., Cassina, Molteni, B&B, Scavolini, etc.) and a myriad of independent

�rms which export their Italian-styled furniture around the world. A survey of 187 small

exporters reveals that 161 of these sell to EU countries, 109 to East Europe, 97 to Americas,

66 to China and 80 to the rest of the world (Bramanti, 2007). Among these, only 3 �rms

play globally, but 102 operate at least in three macro-areas. Excluding the EU market, 163
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�rms export to other macro-areas; the number of competitors which a �rm faces at least in

one market remains rather high (on average 125 competitors). This example illustrates a

couple of stylized facts that are included in our analysis. First, most of the �rms do limit

their reach. Second, �rms do not exactly compete for the same markets, but their market

areas do partially overlap.1

A great deal of economic analysis has focussed on the impact of reach on costs. The

international trade literature shows that �rms encounter important costs from being inter-

national. In fact, Rabino (1980) and Kedia and Chhokar (1986) found that logistic and

transport costs, the complexity of paperwork, the problems from understanding and manag-

ing export procedures and foreign business practices, the need to modify products to meet

foreign safety and health standards, engender important costs, especially to small manufac-

turing companies. These �ndings are con�rmed in more recent studies (McAuley, 1993, and

Katsikeas and Morgan, 1994, 1998). McCallum (1995), in analyzing the trade among regions

on the U.S.-Canada border, showed that the impact of borders on trade is quite large, even

if the two countries are similar in terms of culture, language, and institutions. Other studies

on border e¤ects provide many interpretations. For example, Rauch (1996) suggested that

there are �search�barriers, especially for di¤erentiated products. Anderson and van Win-

coop (2001) stated that border barriers generate trade costs, which �involve real resources,

such as gathering information about foreign regulations, hiring lawyers familiar with for-

eign laws, learning foreign languages and adjusting product designs to make them consistent

with foreign customs and regulations.� Bandyopadhyay (1999) analyzed distribution sec-

tors in OECD countries and showed that high distribution costs can be a barrier to trade

and limit the extent of spatial coverage. In informative advertising models, Grossman and

Shapiro (1984) considered the case where oligopolistic �rms and monopolistically-competitive

�rms are able to choose the amount of purely informative advertising (i.e., the fraction of

consumers they want to inform) and assume that the costs of advertising technology are

increasing in reach. Under these assumptions, they show that it may be optimal to limit

the coverage. In regulation literature, public utilities encounter di¤erent costs for serving

di¤erent types of customers (for example, urban and rural customers) and, if allowed, �rms

choose to cream-skim costumers (La¤ont and Tirole, 1990).

This paper is related to the stream of new economic geography literature (for a survey, see,

1A spatio-temporal interpretation of the same stylised facts is provided by the taxi market in a town.
Consumers value variety, i.e. the opportunity of hiring a taxi whenever they need and wherever they are.
Taxis usually choose to limit their market size (for example, they do not serve potential customers who
cannot be reached within 5 minutes). As consumers and taxis move around the town, competition on a
single consumer concerns only few taxis even if in general all taxis compete with each other.
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for example: Ottaviano and Puga, 1998) and, in particular, with the core-periphery model

(Krugman, 1980 and Helpman and Krugman, 1985, Ch. 10), where �rms�and consumers�

transport costs play a crucial role. However, our contribution is di¤erent in several ways.

First, we do not set the model in a two-country framework, but, rather, in a continuous

framework. Thus, transport costs vary with the relative location of consumers and �rms.

Second, in the core-periphery models, it is optimal for �rms to serve the entire market.

Transport costs only distort the consumption in favor of home production, while in our

model with increasing costs of reach, �rms can optimally choose to serve only a portion of

the market.

In models of spatial competition, �rms usually serve customers exclusively (Kohlberg,

1983; Parr, 1995; Piga and Poyago-Theotoky, 2005; Wong and Yang, 1999). We depart from

this assumption by letting the same place be part of the catchment area of di¤erent �rms

(Anderson and de Palma, 2000; Drezner and Drezner, 1996)

The remainder of this paper is organized as follows. In Section 2 introduces the model:

Sections 2.1 and 2.2 show its short- and long-term solution under the assumptions of spatial

price discrimination and uniform pricing, respectively. Section 3 derives the condition for

which the previous equilibria are a constrained optimum from a social point of view. Finally,

Section 4 concludes.

2 The Model

Market area. Let M be the number of �rms and si 2 Si � [0; 1] denotes the size of

the market area, or reach, that �rm i 2 M wants to serve. Each �rm can decide to sell its

product on the entire market (i.e., si = 1) or to focus on a portion of the market (i.e., si < 1).

Consumers have unitary mass and each is indexed by ! 2 
 � [0; 1]. However, consumers are
heterogeneous for each �rm, in the sense that each �rm i ranks each consumer di¤erently.

That is, each consumer�s position is de�ned in accordance to a �rm-speci�c permutation

function that randomly determines �rm i�s rank of consumer !. I.e., Ti : 
 ! Si, or,
~si = Ti(!). This implies that for any ~si � si, consumer ! = T�1i (~si) belongs to �rm i�s

market area Si := [0; si]. Furthermore, for each pair of �rm i and k, the distributions of

consumers generated by Ti and Tk are perfectly independent, implying that consumers are

randomly positioned across the �rms�market areas. However, all the �rms compete with

each other even when they do not serve the entire market.2 The following example clari�es

2This formulation is similar to Hart (1985), where the focus is however on consumers and not on �rms. In
fact, Hart (1985) assumes that consumers like only a �nite subset of brands which are potentially available,
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this set-up.

Example 1 There are 12 consumers labeled 
 � fa; b; c; d; e; f; g; h; i; j; k; lg and M = 4

�rms. Assume si = 3=4. Applying Ti : 
! Si yields the following market areas:

S1 = fa; b; c; d; e; f; g; h; ig S3 = fk; f; c; a; j; d; l; b; eg
S2 = fg; h; e; l; f; i; k; d; jg S4 = fi; b; l; g; a; k; c; h; jg

The position in Si denotes a decreasing position in the ranking of �rm i�s preferences.

Moreover, note that despite the limited market areas, all �rms compete among each other.

Consumer demand. Let qi 2 [0; 1] be the quality o¤ered by �rm i and pi > 0 be

the monetary price paid by the consumer. Each consumer ! has preferences for all brands

described by a constant elasticity of substitution (CES) utility function:

u! =

 
MX
i=1

IfTi(!)2Sig (xitiqi)
�

!1=�
=

 
NX
j=1

(xjtjqj)
�

!1=�
, (1)

where IfTi(!)2Sig is the indicator function, which assumes 1 when Ti (!) 2 Si and 0 otherwise,
� 2 (0; 1) is such that � = 1= (1� �) is the elasticity of substitution between any two
products, N is the number of varieties that consumer ! can buy, j 2 N refers to a �rm

whose market area includes consumer !, and xj and qj are, respectively, the quantity and

the quality provided by �rm j to consumer !. Consumers�transport costs will be assumed

to be of the �iceberg�type; that is, only a fraction tj � 1 of the goods shipped by �rm j

arrives to consumer !. Note that tj depends on the position of consumer ! in �rm j�s market

area. That is tj = t (Tj (!)) = t (~s) with t0 � 0, i.e., the more the customer is preferred by
the �rm, the lower the transport costs.3

Note that we can interpret the market size area si as the probability for consumer !

of belonging to the market area of �rm i, hence N =
PM

i=1 si. (For simplicity, the integer

number problem is omitted). The consumer budget constraint is:
PN

j=1 pjxj = I, where

I is the expenditure for the goods. The demanded quantity (gross of shipping costs) by

consumer ! from �rm j, namely xj, is:

xj (qj; pj; tj) = (qj)
�

1�� � p�
1

1��
j �XP

1
1�� � (tj)

�
1�� = x̂j (qj; pj) � � j (2)

and that this subset is generally di¤erent for di¤erent consumers.
3For instance, on eBay many retailers di¤erentiate the delivery cost depending on the postal code of the

buyers.
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where X :=
�PN

j=1 (xjtjqj)
�
�1=�

and P :=
�PN

j=1 (pj=tjqj)
�1=�

���
are respectively the

quantity index and the price index and � := (1� �) =� is inversely related to the elasticity of
substitution.4 Consumer�s demand is the result of two factors: x̂j (qj; pj) = (qj)

�
1�� � p�

1
1��

j �
XP

1
1�� , that captures the quantity demanded as a function of prices and quality but not

of transport costs and � j := t
�=(1��)
j � 1 which represents the negative impact of transport

costs on quantity demanded.

Variable costs. Unit variable costs are c (~si; qi) = q�i g (~si), g > 0, g0, g00 � 0. They

include the cost of producing, customizing, and delivering one unit of good of quality qi to

a generic consumer ~si 2 Si. The elasticity of variable costs with respect to quality is given
by � 2 [0; 1). Because @2c=@q2i < 0, then the unit variable costs increase proportionally less
than the quality perceived by consumers. This modelling choice is similar to that of Shaked

and Sutton (1987), where �the costs of quality improvement involve at most only a modest

rate of increase in unit variable cost. (p. 136)�. Summing up, total variable costs are:

C (si; qi) =

Z si

0

c (~si; qi)xi (~si; qi; ti) d~si. (3)

Fixed costs. Fixed costs, denoted by h (si; qi) are unrelated to the production level, but
depend on the choice of reach and quality. They account for costs accruing from acquiring

information on foreign markets, understanding export procedures and foreign business prac-

tices, advertising, post-sale and return policy, R&D expenditures as well as costs involving

product design to meet foreign safety and health standards. Let h > 0 and hs; hq; hss; hqq � 0.
Economies of size. Denote �h (si; qi) = h (si; qi) =si as the �xed costs divided by the size

of the market area, or, simply, average �xed costs.

De�nition 1 The function �h (si; qi) exhibits (dis)economies of size when, by expanding the
reach si, the average �xed costs decrease (increase), i.e.

@�h (si; qi)

@si
=
h (si; qi)

si
� @h (si; qi)

@si
> (<) 0. (4)

Note that equation (4) is analogous to the de�nition of economies of scale in standard

microeconomic analysis. Let sm be the market size that minimizes the average �xed cost

for a given quality q, that is, sm = argmins �h (s; q). Figure 1 depicts the two only possible

occurrences: in panel (a), there are economies of size in the range [0; sm) and diseconomies

4On how to derive and interpret equation (2), see Dixit and Stiglitz (1977).
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of size in the range (sm; 1]; in panel (b), there are only economies of size. Since h > 0 and

continuous, there are no situations where there are diseconomies of size for all s.

Insert Figure 1 about here

In the two following sections, we solve the model under two di¤erent pricing schemes:

spatial price discrimination and uniform pricing. In either cases the market equilibrium in

a monopolistic competitive structure is derived using the zero-pro�t entry condition.

2.1 Firm supply under spatial price discrimination

Recall how Ti de�nes �rm i�s ranking of consumers in its market area. Spatial price discrim-

ination entails that the �rm can charge each consumer di¤erently depending on the latter�s

position in the ranking.

The pro�t of �rm i is given by the following expression:

�i (si; qi; pi) =

Z si

0

(pi (~s)� c (~s; qi)) � x̂i (qi; pi (~s)) � � (~s) d~s� h (si; qi) (5)

Firm i maximizes (5) by simultaneously choosing three strategic variables: price, quality

and size of the market area. First order conditions imply that:

pi (~si; qi) =
c (~si; qi)

�
for each ~si 2 Si, (6)

(pi (si; qi)� c (si; qi)) � x̂i (qi; pi (si)) � � (si) = hsi (si; qi) , if si 2 (0; 1) , and (7)Z si

0

�
pi (~si; qi)� c (~si; qi)

�qi
� � c (~si; qi)

qi

�
�x̂i (qi; pi (~si; qi))�� (~si) d~si = hqi (si; qi) , if qi 2 (0; 1) ,

(8)

Each of these conditions implies that at the margin, the bene�t from increasing each deci-

sion variable equals its cost. More importantly, to be consistent with the assumptions of

monopolistic competition, we have to check that the impact of a change of price, quality and

size of the market area on the demand is negligible (Dixit and Stiglitz, 1977). Hence we look

at the impact of a change in the choice variables on the price index P . The independence

of market areas allows us to evaluate the elasticity @ logP=@ log pi and @ logP=@ log qi that

are of the order 1=M , and the elasticity of @ logP=@ log si that is of the order �=M . Hence,

assuming M is reasonably large we can neglect the e¤ect of pi, qi and si on P .
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Substituting (6) into (7) and (8), and using (3) in (8), we obtain:

� � c (si; qi) � x̂i (qi; c (si; qi) =�) � � (si) = hsi (si; qi) , if si 2 (0; 1) (9)

(1� �)C (si; qi) =qi = hqi (si; qi) , if qi 2 (0; 1) , (10)

From (9), �rm i�s per-unit variable pro�t (pi (si; qi)� c (si; qi)) is equal to �c (si; qi) and,
by the same token, its total variable pro�t is �C (si; qi). Similarly, using (10),

(1� �) = (@Ri=@qi � @Ci=@qi) = (Ci=qi) (11)

where Ri indicates �rm i�s total revenues. Therefore, in both equations the left-hand

side represents the percentage markup over variable costs, i.e., the marginal bene�t from

a change in si and qi, while the right-hand side denotes the respective marginal costs.

Equations (9) and (10) suggest that the solution is interior only if hsi (si; qi) > 0 and

hqi (si; qi) > 0.
5

Proposition 1 Under spatial price discrimination, when hsi (si; qi) = 0, a �rm serves the

entire market; when hsi (si; qi) > 0, it can be pro�table for the �rm to limit the size of the

market area. When the solution is internal, a �rm�s optimal choice is described by equations

(6), (9) and (10).

Market equilibrium. Monopolistic competition implies that �rms enter the market
until pro�ts go to zero. Zero-pro�t condition assures that variable pro�ts equal �xed costs.

Hence:

�C (si; qi) = h (si; qi) . (12)

We look for an internal, unique and symmetric solution where xi = x�, pi = p�, si = s�

and qi = q�.

Lemma 1 For each optimizing �rm, C (s�; q�) is weakly concave in s�, that is, C (s�; q�) =s� �
@C (s�; q�) =@s.

Combining (9), (10) and (12), we obtain:

h (s�; q�) = s+hs (s
�; q�) = q+hq (s

�; q�) (13)

5Throughout the paper, we assume that second order conditions are satis�ed. A discussion on the second
order su¢ cient conditions for a local maximum is in the working paper version of the paper, which is available
on request.
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where s+ := s� (C=s�) = (@C=@s) � s� according to Lemma 1 and q+ = q��= (1� �) T q� if
� T (1� �).

Proposition 2 Let s� and q� be internal, symmetric and unique solution, then the equilib-
rium condition is provided by equation (13). In equilibrium, s� � sm := argmins �h (s; q).

Figure 1 shows that the �rms optimally choose to operate below the average cost min-

imizing size. Although this is a reminescent of the excess capacity equilibrium outcome in

monopolistically competitive markets, Proposition 2 emphasizes the importance of transport

costs in our setting, as the following corollary shows.

Corollary 1 When g0 = 0 and t0 = 0, then the size of the market area, s� coincides with

the average �xed cost minimizing size, sm.

Thus, transport costs play a crucial role in limiting the market size. Furthermore, in-

creasing the market size entails serving more distant consumers, thereby increasing the �rms�

average unit costs: hence the result in Proposition 2.6 We now turn to the analysis of the

optimal quality level.

Proposition 3 Let s� and q� be internal, symmetric and unique solution, then the equilib-
rium condition is provided by equation (13). In equilibrium, q� � qm := argminq h (s; q) =q
when � � 1� � and q� � qm when � � 1� �.

The choice of quality is driven by the interplay between its impact on costs and consumers�

preferences indicated by �. Recalling both (11) and that � denotes the percentage markup

on unit costs of production, the interpretation of Proposition 3 hinges around the trade-o¤

between quality and quantity. When � > 1 � � (i.e. when it is more pro�table to enlarge
production), each �rm choose a level of quality below the cost minimizing level qm while the

opposite holds when � < 1� �. Proposition 3 is illustrated in Figure 2.

Insert Figure 2 about here

6Notice that most of the literature on logistics has as its objective the minimisation of logistic costs (see,
for example: Burns et al. 1985, Campbell, 1993, McCann, 1998, and Hsu and Tsai, 1999), despite the results
in Proposition 2 that s� < sm.
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When � is large, products are highly di¤erentiated, i.e. consumers strongly appreciated

varieties, �rms enjoy greater markup on unit costs and choose to produce a lower quality.

When products are highly substitutable, �rms relax price competition by enhancing their

product quality.

To identify the equilibrium number of �rms and varieties in the long run, using the

expression for the budget constraint, we can write:

Z 1

0

NX
j=1

pjxjd! =M

Z s

0

p (~s) � x̂ (q; p (~s)) � � (~s) d~s = I. (14)

Noting that the zero-pro�t condition (12) can be written as (1� �)
R s
0
p (~s) � x̂ (q; p (~s)) �

� (~s) d~s = h, and exploiting symmetry, we have:

M� =
(1� �) I
h (s�; q�)

, N� = s�M� =
(1� �) I

h (s�; q�) =s�
. (15)

As expected, the number of �rms is increasing in the consumer income I and is decreasing

in the elasticity of substitution � = 1= (1� �) and �xed costs h.

2.2 Firm supply under uniform price

In this section, �rms charge the same price to the consumers in their market areas. The

pro�t function is the same of equation (5) but the �rst order condition for price now yields:

�pi =
�c (si; qi)

�
(16)

where �c (si; qi) =
R si
0
c (~s; qi) � (~s) d~s=

R si
0
� (~s) d~s is the average unit cost weighted by trans-

port costs.

The remaining �rst order conditions are:

(�pi � c (si; qi)) � x̂i (qi; �pi) � � (si) =
@h (si; qi)

@si
, and (17)

si�� (si)

�qi
(�pi � �c (si; qi) � (1� ��)) � x̂i (qi; �pi) =

@h (si; qi)

@qi
, (18)

where �� (si) = 1
si

R si
0
� (~s) d~s. Consider the zero-pro�t condition:

si � (�pi � �c (si; qi)) � x̂i (qi; �pi) �� (si) = h (si; qi) . (19)
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Now, substituting equation (16) into (17), (18) and (19), and after some simpli�cations, we

obtain that: �
�c (si; qi)

�
� c (si; qi)

�
� x̂i (qi; �pi) � � (si) = hsi (si; qi) , if si 2 (0; 1) (20)

si (1� �) �c (si; qi) x̂i (qi; �pi) �� (si) = qihqi (si; qi) , if qi 2 (0; 1) (21)

si��c (si; qi) x̂i (qi; �pi) �� (si) = h (si; qi) (22)

In spatial price discrimination, hsi (si; qi) > 0 is a necessary condition for �rms to limit

their reach. This is no longer necessary under uniform pricing. Assume that hsi (si; qi) = 0.

Thus, �rst order condition (20) is satis�ed when �c (qi; si) = � c (si; qi). Under uniform prices,

�rms may decide to limit their coverage when their unit costs are increasing in the reach.

Notice that if hsi (si; qi) = 0, and unit variable costs c (si; qi) are independent of si, then the

�rm chooses not limit its market coverage and � (si) does not a¤ect such a decision.

Proposition 4 Under uniform prices, it can be pro�table for the �rm to limit the size of

the market area when:

� hsi (si; qi) > 0 or

� hsi (si; qi) = 0 and unit variable costs, c (si; qi), are increasing in the reach.

When the solution is internal, the �rm�s optimal choice is described by (16), (20) and

(21).

To obtain the market equilibrium outcome under symmetry �pu, su, qu, Mu and Nu,

combine the �rst order and zero-pro�t conditions (16), (20), (21) and (19):

h (su; qu) = su �
�
�� (su)

� (su)

@h (su; qu)

@s
+ (c (su; qu)� �c (su; qu)) � �� (su) � x̂ (su; �pu)

�
(23)

= q+u
@h (su; qu)

@q
.

The quality condition is exactly the same as in the spatial price discrimination case.

Furthermore, Corollary 1 still holds. In the more general case, the convexity of � (s) and

c (s; q) yields �� (s) =� (s) > 1 and c (s; q) � �c (s; q) > 0. Both e¤ects lead to the equilibrium
outcome that it is optimal to limit the size of the market area, in addition to the role played

by economies of size in h. That is, relative to the spatial price discrimination case, transport
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costs and unit variable costs of production a¤ect the optimal market size when the �rms can

only charge a uniform price. Moreover, the �rst e¤ect is relevant only if hs (s; q) > 0, while

the second one plays a role even if hs (s; q) = 0. The contrasting outcome arising under

the two di¤erent pricing schemes is due to the possibility that spatial price discrimination

enables the �rms to pass the increases in production costs on to the consumers. The number

of varieties and the number of �rms are expressed as in (15) with s�, q�, M� and N�replaced

by su, qu, Mu and Nu. It follows that M� S Mu if h (s�; q�) T h (su; qu) and N� S Nu if

h (s�; q�) =s� T h (su; qu) =su.

3 Social Optimum, Market Area and Quality

To study the circumstances under which the previous analysis yields a social optimum,

we follow Dixit and Stiglitz (1977) who consider �.. a rather surprising case where the

monopolistic competition equilibrium is identical to the optimum constrained by the lack of

lump sum subsidies (p. 301)�. In the constrained socially optimum outcome they derive,

the impossibility to use taxation and lump sum transfers to and from consumers and �rms,

suggests that the social planner is an industry regulator whose power does not extend beyond

the industry. However, such a regulator can decide upon the relevant market variables,

thereby achieving a constrained social optimum.

In the present setting, in order to maximize utility (and therefore social welfare), the

regulator chooses each �rm�s price pr, reach sr, quality or standard qr, the number of �rms

on the marketM r, having the consumer budget and the zero-pro�t condition as constraints.

We solve the regulator�s problem for the case in which c does not depend on s. Thus,

spatial price discrimination and uniform pricing coincide due to the fact that consumers�

transport costs are of the iceberg type (Fujita and Thisse, 2002, Ch. 9; Hsu, 1979). We

assume that
PN

j=1 � j is constant among consumers, i.e. they have on average identical

transport costs.

Proposition 5 When g0 (s) = 0 8s, Mu = M� = M r, pu = p� = pr, su = s� = sr and

qu = q� = qr.

Proof. The regulator chooses quantities to maximize q
�PN

j=1 (tjxj)
�
�1=�

subject toPN
j=1 xj = I=p, yielding xj=� j = xg=� g =: k. After replacing this in the utility function,

it emerges that u = kq
�PN

j=1 � j

�1=�
. The total welfare function is obtained by integrating

12



over consumers:

W = kq

Z 1

0

�XN

j=1
� j

� 1
�

d! = kq

�
M

Z s

0

� (~s) d~s

� 1
�

(24)

where the last equality holds because
PN

j=1 � j is constant.

Aggregating over consumers yields the budget constraint
R 1
0

PN
j=1 pjxjd! =Mp

R s
0
x (~s) d~s =

I, while the zero-pro�t condition requires that: (p� c)
R s
0
x (~s) d~s = h. Combining previous

equations we have the regulator�s constraint:Z s

0

x (~s) d~s =
I �Mh
cM

(25)

Noting that k = xj=� j is constant for every j, replacing (25) into (24) yields:

W = q

R s
0
x (~s) d~sR s

0
� (~s) d~s

�
M

Z s

0

� (~s) d~s

� 1
�

=
q

c
(I �Mh)

�
M

Z s

0

� (~s) d~s

��
. (26)

Finally, taking the �rst order conditions with respect toM , S and q, we obtain equivalent

solutions to (15), (13) and (23):

M r =
(1� �) I
h (sr; qr)

,
h (sr; qr)

sr
=
��

�

@h (sr; qr)

@s
,

h (sr; qr)

qr
=

�

1� �
@h (sr; qr)

@q
. (27)

4 Concluding Remarks

In this paper, we have derived the conditions under which a �rm chooses to limit its market

size, for the case of two di¤erent pricing rules. Under spatial price discrimination, we �nd

that a �rm limits the size of its market area only when �xed costs are increasing in the reach.

Alternatively, in the case of uniform prices, it emerges that increasing variable costs may

be su¢ cient to induce �rms to limit their reach, even if �xed costs are not a¤ected by the

spatial coverage. Finally, we have shown that the monopolistic competitive equilibrium is

constrained socially optimal; i.e., it yields a level of price, quality and market reach which

is equivalent to the solution to the problem solved by an industry regulator.

With regards to the literature on international trade, our framework can provide an ad-

ditional explanation to the overestimation of the trade �ows obtained by gravity models, as

13



in McCallum (1995). These models usually estimate a demand function where the quantity

demanded is a decreasing function of transport costs. From the present theoretical perspec-

tive, a lack of trade is not only due to increasing variable transport costs induced by the

presence of borders, but, also, to increasing �xed costs, which induce �rms to limit their

market coverage and not to o¤er their products internationally.

More generally our �ndings could be usefully extended to formally introduce trade areas

into international trade models. Our set-up hinges on the hypothesis that all �rms prefer-

ences are independent; however, it is possible to identify some main geographical, cultural

and linguistic areas within which groups of �rms prefer to operate. When limiting the reach

is a pro�table option, our �ndings imply that removing the trade area is unlikely to yield

any bene�ts if the size of the area is larger than the optimal reach. Thus, our model suggests

that policy intervention should focus on the causes that lead �rms to limit their reach, that

is, on the factors a¤ecting the transport costs on both the �rms�and the consumers�sides.
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Appendix

Proof of Lemma 1. From (6) and (2), C (s�; q�) =
R s�
0
c (~s; q�) � x̂ (q�; c (~s; q�) =�) � � (~s) d~s

= k
R s�
0
[t (~s) =g (~s)]1=� d~s , where k = q(1��)=�X (�P )1=(1��). Being, t=g weakly decreasing in

s and positive, C is weakly concave in s�. For the mean theorem,
R s�
0
(t (~s) =g (~s)) d~s=s� �

(t (s�) =g (s�)).

Proof of Corollary 1. Note that s+ = s�. From (13), h (s�; q�) =s� = hs (s�; q�) and

hence s� = sm.
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Figures

Figure 1. In Panel (a), there are diseconomies of size in the range [0; sm] and economies of size in

the range, [sm; 1]. In Panel (b), there are only economies of size. In equilibrium, s� � sm.
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Figure 2. Quality choice. There are two situations: q� � qm when � � 1� � and q� � qm when
� � 1� �.
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Second order conditions.

We present the second order su¢ cient conditions for a local maximum, under spatial price discrim-

ination and under uniform pricing.

Spatial price discrimination. The Hessian of the spatial price discrimination problem has

in�nite uncountable dimention as it includes the derivatives with respect to p� (~s), ~s 2 S = [0; s].

To compute the second order conditions, we divide the interval S into L sub-intervals indixed by

l = 1::L, each of length s=L = ds. Let be ~sl := s (l � 1=2) =L and p�l := p� (~sl). Notice that

for L ! 1, the function
PL
l=1 I[(l�1)�ds;l�ds)p�l converges to p� (~s). The Hessian evaluated at the

stationary point is:

H (q�; s�; p�) =

0BBBB@
�Ahq

q�
� hqq

hs
q+
� hqs vT

hs
q+
� hqs �hs � hss 0

v 0 �

1CCCCA , (A1)

where  = 1
�
d
ds

�
c
t

�
t
c � 0, A =

(1��)+(1��)�2+(3��2)�
(1��)(1��) , � = diag

�
d2�=dp2l = �

x(1+�)
�c(sl;q�)

� ds; l = 1; ::; L
�

is a diagonal matrix, which is de�nite negative and v =
�
d2�=dqdpl = x�= (�q) � ds; l = 1; ::; L

�T is
a column-vector. Being satis�ed the second order su¢ cient conditions is required that the determi-

nants of the principal minors present alternate signs. In this case, we have to analyse the following

conditions:(a) H11 < 0, (b) H11H22 � (H12)2 > 0, and (c) the elements on that diagonal matrix,

d2�=dp2l , be negative. In fact, we can disregard to check principal minors of order higher than 2,

i.e.
�
H11H22 � (H12)2

�
p�1 � � � p�l (ds)

l + o
�
dsl
�
as they all present the exact sign when (b) and (c)

simultaneously hold.7

Condition (a) is satis�ed if h is su¢ ciently convex, i.e.: hqqq=hq > �A or when A > 0, i.e.

� < 1��+�2
(1��)(2��) , � small or � large. Condition (b) is satis�ed when:

(Ahq=q
� + hqq) (hs + hss) >

�
hs=q

+ � hqs
�2 . (A2)

To provide an economic interpretation, we assume a speci�c functional form for h, i.e.:

h = h0 + e
sq�, h0 > 0 and � � 1. (A3)

7Note that o
�
dsl
�
captures all the terms order dsl+1 deriving from the multiplications including two

elements of the vector v.
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Replacing (A3) into (A2), we have:

� (1� �)
�
� (1� �)2 + �2

�
� �2 (1� �)3 +A� �  > 0, (A4)

where A� = �2 (A� + � (� � 1)) > 0 if A > 0 or � is large; and the �rst part of the expression is

positive when � and � are large, or � is small.

Summing up, under perfect price discrimination, conditions (a)-(c) hold if �, � and  are large,

or � is small.

Uniform pricing. The Hessian evaluated at the stationary point is:

H (qu; su; pu) =

0BBBBB@
�Ahq

q
� hqq �

hs
q
� hqs

1

1� �
�

1� �
hq
p

�
hs
q
� hqs �hsu � hss

1

1� �
(c� �p)
(p� c)

hs
p

1

1� �
�

1� �
hq
p

1

1� �
(c� �p)
(p� c)

hs
p

� 1

1� �
1

1� �
qhq
p2

1CCCCCA , (A5)

where u =
�

1
p�c

dc
ds �

1
�
d�
ds

�
� 0 and � = �

1��

�
1� 1��

�
�c
p�c

�
. We have to test the following inequal-

ities: (a�) H11 < 0, (b�) H11H22 � (H12)2 > 0, and (c�) 2H12H13H23 + H11H22H33 � H11H2
23 �

H22H
2
13 �H33H2

12 < 0.

Conditions (a�) is the same of (a). To provide an economic interpretation of (b�) and (c�), we

assume that h follows (A3). For condition (b�), this yields to the following inequality:

� (A+ � � 1) (u + 1)� (� � �)2 > 0. (A6)

Notice that in order to be satis�ed, it is su¢ cient that: � (A+ 2�� 1) > �2. In addition, notice

that �c
p�c � 1 and

�c
p�c = 1 when

dc
ds = 0. When u = 0, (A6) simpli�es in:

�
(� � �)2 + �

�
�2 + 1� �

�
(1� �) (1� �) �

�
(1� �) �
1� �

�2
> 0 (A7)

Hence, when � and � are large and � is small, the equation is certainly satis�ed. Using (A3),

after some simpli�cations, condition (c�) is satis�ed when

(� (1� �)� � (1� �))
�
u� (p� c)2 + (1� �)

�
�p2 � c2

��
> 0
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or when � is small, or u and � large.

Summing up, under uniform pricing, conditions (a�)-(c�) hold if �, � and u are large, and � is

small.
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