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Abstract  
This paper explores the ability of common risk factors to predict the dynamics of US and UK 
interest rate swap spreads within a linear and a non-linear framework.  We reject linearity for 
the US and UK swap spreads in favour of a regime-switching smooth transition vector 
autoregressive (STVAR) model, where the switching between regimes is controlled by the slope 
of the US term structure of interest rates.  The first regime is characterised by a "flat" term 
structure of US interest rates, while the alternative is characterised by an "upward" sloping US 
term structure.  We compare the ability of the STVAR model to predict swap spreads with that 
of a non-linear nearest-neighbours model as well as that of linear AR and VAR models.  We 
find some evidence that the nearest-neighbours and STVAR models predict better than the 
linear AR and VAR models.  However, the evidence is not overwhelming as it is sensitive to 
swap spread maturity.  We also find that within the non-linear class of models, the nearest-
neighbours model predicts better than the STVAR model US swap spreads in periods of 
increasing risk conditions and UK swap spreads in periods of decreasing risk conditions. 
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1. Introduction 

 

Determination of the risk factors that affect the dynamics of the spread between fixed-for-
floating interest rate swaps and the underlying government bond yields is important for both 
market participants and policy makers.  Relative movements in interest rate swap spreads are 
nowadays widely used by policy makers as indicators for credit and liquidity conditions in the 
economy.  Kocic and Quintos (2001) point out that practitioners have also interest in identifying 
the risk factors driving the evolution of swap spreads in order to perform “rich-cheap” analysis 
and construct relative value trades.  A clear understanding of the dynamics of the risk factors in 
swap markets will allow market participants to construct more accurate swap pricing models 
and policy makers to extract more accurate information on credit and liquidity conditions in the 
economy.  Previous work (discussed below) has already examined whether different proxies for 
liquidity and credit risk as well as proxies for market structure can account for the variability of 
interest rate swap spreads.   
 
The current paper contributes to the existing literature by focusing on the interlinkages between 
the international interest rate swap markets.  Previous work by Smith, Smithson and Wakeman 
(1988) showed that under the assumption of no default and liquidity risk, the fixed rate of an 
interest rate swap can be considered as the yield of an identical maturity that trades at par.  
Subsequent contributions have shown that swap spreads represent a reward for the investors 
above government bond yields for bearing either liquidity risk in the interbank market, e.g. 
Grinblatt (1995), or both liquidity and default risk in swap markets, e.g. Duffie and Singleton 
(1997).  Brown, Harlow and Smith (1994) have argued that swap spreads can also be used to 
cover hedging costs for swap market deals.  Sorensen and Bollier (1994) argue that the swap 
spreads reflect the price of a series of European options to default implicitly held by the 
counterparty that is in-the-money during the initial stages of the swap contract.  Lang, 
Litzenberger and Liu (1998) and Fehle (2000) examine how the swap market structure can 
affect spreads through the supply and demand for swaps. 
 
The theory of swap-pricing models has been accompanied by substantial empirical work.  Sun, 
Sundaresan and Wang (1993) look at the relationship between swap rates and Treasury yields as 
well as yields on interbank par bonds.  They find that although swap rates are highly correlated 
with treasury yields, the swap rates are significantly higher than treasury yields, irrespective of 
the shape of the treasury yield curve.  Minton (1997) looks at the relationship between swap 
rates and Eurodollar futures rates as well as yields on portfolios of non-callable corporate 
bonds.  Minton’s (1997) work identifies the shape of the term structure of default-free interest 
rates, the level of interest rates and the volatility of short-term interest rates as additional factors 
affecting swap spreads.  Brown, Harlow and Smith (1994) model swap spreads as a function of 
the difference between Eurodollar LIBOR rates and the corresponding maturity Treasury bill 
rates (TED) and various measures for credit risk and hedging costs for swap market dealers.  
They find that while all of these factors are significant, their explanatory power is low.  Eom, 
Subrahmanyam and Uno (2001) report that the slope and curvature of the default-free interest 
rates and the corporate bond yields are significant factors in the determination of the Japanese 
swap spreads, while factors like the TED spreads and short-term interest rates play only a minor 
role. 
 
The above studies estimate single linear swap spread regressions.  Duffie and Singleton (1997) 
and Lekkos and Milas (2001) extend the analysis of swap spreads to a multivariate vector 
autoregression (VAR) framework.  Duffie and Singleton (1997) find that default risk is 
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significant in affecting longer maturity swap spreads.  Lekkos and Milas (2001) examine the 
ability of factors such as the level, volatility and slope of the zero-coupon government bond 
yield curve, the TED spread and the corporate bond spread to describe the term structure of the 
US and UK swap spreads.  They find that the slope of the term structure has a significant 
countercyclical effect across maturities, whereas the TED and corporate spreads play a smaller 
role and their significance varies across maturities.  
 
More recently, Lekkos and Milas (2004) and In (2005) examine in detail the issue of 
international linkages between interest rate swap markets.1  These links can be due to common 
variations in the business cycles across economies.2 Lekkos and Milas (2004) employ non-
linear smooth transition vector autoregressive (STVAR) models to show that the slope of the 
US term structure affects significantly swap spread dynamics in the UK. Similar findings are 
reported by In (2005) who employs multivariate VAR-EGARCH models to show that the slope 
of the US term structure has a significant effect on the Japanese and U.K. swap markets. 
 
The papers discussed above have looked at the availability of risk factors to explain the 
dynamics of swap spreads within sample.  To the best of our knowledge, no previous study has 
attempted to forecast swap spreads out-of-sample.  The current paper explores the out-of-
sample ability of a number of risk factors to predict the dynamics of the term structure of swap 
spreads.  The risk factors we employ are: estimates of the corporate bond spreads of the two 
countries, the interest rate differentials between the US and UK government bonds, and the 
slopes of the term structures of zero-coupon government bonds of the two countries.  The 
interest rate differentials are used to provide evidence of arbitrage trades between the two 
markets.  The corporate bond spreads are used as proxies for credit risk.  The slopes of the term 
structure can be used to test whether the option to default is priced in swap markets; increases in 
the long-term interest rates imply that, during the first stages of the swap contract, the fixed rate 
will be higher than the expected short-term LIBOR. Therefore, the fixed-rate payer will be 
exposed to the possibility of default of the floating-rate payer during the later stages of the 
contract. This exposure is priced in a higher swap spread.  
 
We assess the ability of the risk factors above to predict swap rates by employing two types of 
non-linear models: a smooth transition vector autoregressive (STVAR) model and a nearest-
neighbours (NN) model.  A STVAR model is a regime switching model where the transition 
from one regime to the other occurs in a smooth way.  The switching between regimes is 
controlled by an observed state variable.  This feature of the STVAR model, that the transition 
from one regime to the other is a function of the underlying variables, allows us to test the 
ability of the different economic variables to best describe the non-linear dynamics of the term 
structure swap spreads.3  In particular, we find that the slope of the US term structure of interest 
rates best describes the transition between the two regimes in both the US and UK swap spreads 
across maturities.  The second type of non-linear models we examine is a nearest-neighbours 
                                                 
1 Lekkos and Milas (2001) have provided some preliminary evidence on the impact of US factors on UK swap 
markets and Eom, Subrahmanyam and Uno (2001) on the links between US and Japanese swap markets. Fehle 
(2000) examines the impact that US swap spreads have on British, German, French, Japanese, Spanish and Dutch 
swap markets. 
2 Lumsdaine and Prasad (1997) show that business cycles in each economy are not independent; instead they are 
affected, in different degrees, by a "world business cycle".  Harvey (1991) finds that the correlation between the 
world and US business cycles is 87%. 
3 Among other studies, Ang and Bekaert (2002), Bekaert, Hodrick and Marshall (2001), Hamilton (1988) and Gray 
(1996) use Hamilton’s (1989) Markov regime switching (MRS) model to explain the dynamics of short and long-
term interest rates. In contrast to STVAR models, MRS models assume that an unobserved Markov state variable 
drives the switching between regimes. 
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(NN) model.  Contrary to the STAR model, which relies on global information in order to 
predict swap spreads, the NN model is a non-parametric local information model that uses a 
number of nearest neighbours to compute a weighted average estimate of swap spreads.4  The 
ability of the non-linear STVAR and NN models to predict swap spreads is compared with that 
of linear AR and VAR models.  There is some evidence (although not overwhelming) of 
forecasting superiority of the non-linear models over the linear ones.  Further, the NN model 
does better than the STVAR model in predicting US swap spreads during periods of increasing 
risk conditions.  For the UK, the NN model forecasts swap spreads better than the STVAR 
model during periods of decreasing risk conditions.   
 
The structure of the paper is organised as follows.  The next section describes the data. Sections 
3 and 4 discuss the STVAR and NN models, respectively. Section 5 reports the forecasting 
results.  Finally, section 6 concludes. 
 
2. The data 
 
The data set consists of weekly observations from June 1991 to June 2001.  We proxy the slope 
of the term structure of interest rates (denoted by USslope and UKslope, respectively) with the 
difference between the yields of the 10-year default-free zero-coupon bonds and the 3-month T-
Bill rates.  The US and UK zero-coupon yields are provided by the Bank of England.  They are 
estimated by fitting a set of cubic splines to the prices of observed coupon-paying government 
bonds.  The quality of the fit is controlled by a penalty function that restricts the curvature of the 
implied forward rates (see Anderson and Sleath (1999)).  Zero-coupon yields are also used to 
estimate the difference between the 3-year, 7-year and 10-year US and UK interest rates, 
denoted by dif_3, dif_7 and dif_10, respectively.  The US corporate spreads (denoted by 
UScorp) are estimated as the difference between Moody's AAA corporate bond yield index and 
the yields of the 10-year Treasury bonds.  The UK corporate spread (denoted by UKcorp) is 
estimated as the difference between the corporate bond yield index provided by Datastream and 
the 10-year UK government bond yield.  Finally, the US and UK swap spreads (denoted by 
USsp_i and UKsp_i, respectively, with i = 3, 7 and 10 years) are estimated as the difference 
between the bootstrapped zero-coupon swap rates and the corresponding maturity default-free 
zero-coupon rates. 
 
Figure 1 plots the US and UK swap spreads across maturities, whereas Table 1 reports the 
descriptive statistics for the US and UK swap spreads and the relevant risk factors.  In both 
markets, swap spreads increase, on average, with maturity.  Same maturity US and UK swap 
spreads are roughly equal but UK swap spreads are more volatile.  The UK slope is also more 
volatile compared to the US slope.  This can be explained by the fact that UK rates are, on 
average, higher than US rates over the sample period.  Finally, the mean spread between US 
corporate and US treasury yields is 119 basis points and the corresponding UK corporate spread 
is 92 basis points. 

                                                 
4 Recent applications of NN models in finance include e.g. Diebold and Nason (1990), Meese and Rose (1990), 
Gençay (1999), Jaditz and Riddick (2000), and Pérez-Rodríguez, Torra and Andrada-Félix (2005).  
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3. The Smooth Transition Vector Autoregressive (STVAR) model 
 
3.1 The theoretical STVAR model 
 
We define a vector of state variables; one for each maturity we examine.  For each maturity, this 
vector contains the relevant swap spreads as well as the US and UK term structure slopes, the 
difference between US and UK interest rates and the US and UK corporate spreads.  We focus 
on the 3-year, 7-year and 10-year maturity swap spreads.  For each of these maturities the 
vector of state variables is given by: 
 

ty  = [USslope, UKslope, dif_i, UScorp, UKcorp, USsp_i, UKsp_i]′   (1) 
 
where i = 3, 7 and 10 years.  The corresponding STVAR model can be specified as: 
 
 
 
 
 
 
 
where yt is the (k x 1) time series vector defined above, Φ1,j and Φ2,j, j = 1,…, p, are (k x k) 
matrices, µ1 and µ2 are ( 1×k ) vectors, and εt ~ iid (0, Σ).  G(st) is the transition function that 
controls the regime switching dynamics of yt.  The STVAR model is a regime switching model 
where the transition between the two alternative regimes is controlled by a transition function 
G(.) which is continuous and bounded between 0 and 1.  Values of zero by the transition 
function identify the one regime and values of 1 identify the alternative and the transition 
between the two regimes occurs in a smooth way, i.e. the model does not allow jumps from one 
regime to the other.  The regime that occurs at any time t is not probabilistic.  Instead, it is 
determined but the transition variable ts  and the functional form of the transition function 

)( tsG .  We focus our attention on the ‘logistic’ function:  
 
      
 
where σ (st) is the sample standard deviation of st.  Model (3) allows for asymmetric adjustment 
to positive and negative deviations of st relative to c.  The parameter c is the threshold between 
the two regimes, in the sense that G(st) changes monotonically from 0 to 1 as st increases, and 
takes the value of G(st) = 0.5 at cst = .  The parameter γ determines the smoothness of the 
change in the value of the logistic function and thus the speed of the transition from one regime 
to the other.  When γ → 0, the ‘logistic’ function equals a constant (i.e. 0.5), and when γ → + ∞, 
the transition from G(st) = 0 to G(st) = 1 is almost instantaneous at st = c.   
 
 
3.2 Linearity testing in a STVAR model 
 
Testing for linearity in the STVAR model (2) using the ‘logistic’ transition model (3) is 
equivalent to testing the null hypothesis H0: γ = 0 against the alternative H1: γ > 0.  To do this, 
define  wt = (y1t-1,…, y1t-p, y2t-1,…, y2t-p,…, ykt-1,…, ykt-p)  and assume that the transition variable 
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(denoted by st) is known. Following Luukkonen, Saikkonen and Teräsvirta (1988), linearity 
testing equation by equation is based on a first-order Taylor approximation of the transition 

function around γ = 0.  We first estimate ∑
=

++=
pk

j
itjtijiit wy

1
0 εββ  and then use the estimated 

residuals ite  to run the following regression: ∑ ∑
= =

+++=
pk

j
it

pk

j
jttijtijiit wswe

1 1
0 ηδαα .  Denote the 

estimated residuals by vit.  A Lagrange Multiplier (LM) test can be constructed as: 
LM = T (SSR0 – SSR1) / SSR0, where ∑= 2

0 iteSSR and ∑= 2
1 itvSSR .  Under the null hypothesis 

of linearity the LM statistic is distributed as a χ2(pk).  In small samples, the χ2 test may be 
heavily oversized.  Therefore, it is preferable to use the equivalent F version of the LM test 
statistic, which is given by F = [(SSR0 – SSR1) / pk] / [SSR1 / (T – (2pk + 1))].  It is well known 
that neglected heteroskedasticity may lead to spurious rejection of linearity.  To tackle this 
problem, we use Wooldridge’s (1990, 1991) heteroskedasticity-robust versions of the tests. 
These tests can be used without having to specify the exact form of heteroskedasticity (see 
Granger and Teräsvirta, 1993).  To compute a heteroskedasticity robust version of the LM test 

statistic reported above, first we estimate ∑
=

++=
pk

j
itjtijiit wy

1
0 εββ  and save the estimated 

residuals ite .  We then regress the auxiliary regressors stwjt on wjt and save the residuals rjt.  
Finally, we regress 1 on ite rjt.  The explained sum of squares from this last regression is the 
heteroskedasticity robust LM test statistic. 
 
Both the χ2 and F versions of the LM statistic are equation specific tests for linearity.  To test 
the null hypothesis H0: γ = 0 in all equations simultaneously, we need a system-wide test.  
Following Weise (1999), define Tee tt /0 ∑ ′=Ω  and Tvv tt /1 ∑ ′=Ω  as the estimated variance-
covariance residual matrices from the restricted and the unrestricted estimated equations, 
respectively.  The appropriate log-likelihood system-wide test statistic is given by 
LR = T{ 10 loglog Ω−Ω }, which, under the null hypothesis of linearity is asymptotically 
distributed as χ2(pk2).   
 
3.3 Empirical STVAR models  
 
3.3.1 Linear VAR models and linearity testing 
 
We begin by estimating a benchmark linear VAR (one for each maturity) over “rolling” fixed-
length windows of data, where the first data window runs from June 1991 until December 1998, 
and each successive data window is constructed by shifting the preceding window ahead by one 
week.5  Bearing in mind that a high-order VAR may cause over-fitting and make it more 
difficult to get converging estimates for the non-linear models, we use p = 2 lags in models (1).  
For each data window, we test for non-linearities and select the best candidate for the transition 
variable ts .  To account for the presence of autocorrelation and heteroskedasticity in our 
models of weekly swap spreads, we use the Generalised Method of Moments (GMM; see 
Hansen, 1982) estimation technique, which is robust to heteroskedasticity and autocorrelation of 
unknown form.  

                                                 
5 After estimating our models for each “rolling” data window, we forecast one week ahead as discussed in more 
detail in section 5 below. 
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We use all lagged variables in (1), as possible transition candidates st.  To save space, Table 2 
reports (for the first data window from June 1991 to December 1998) equation specific LM tests 
and system-wide LR linearity tests for the different transition variable candidates only in the 
case of the 3-year US and UK swap spread equations. 6  The common approach is to select the 
appropriate transition variable associated with the smallest p-value.  The LM tests identify the 
first lag of the slope of the US term structure of interest rates as the most appropriate transition 
variable.  The LR system tests indicate that all VAR equations react in a non-linear way not 
only to USslopet-1, but also to all other lagged variables in the system.  However, the LR tests 
are less informative than the LM tests as the corresponding p-values are almost always equal to 
zero.  Therefore, we proceed by using USslopet-1 as the transition variable across all equations. 7  
The intuitive reason for this choice is related to the ability of the slope of the term structure to 
predict economic expansions and recessions; in particular, steep slopes tend to precede periods 
of economic expansion, whereas flat or negative slopes tend to indicate recessions (for more 
details see e.g. the recent survey by Stock and Watson, 2003, and references therein).  Our 
empirical choice is also consistent with the findings of Harvey (1991) who found that the US 
term structure is able to forecast real economic growth in the UK whereas Ang and Bekaert 
(2002) provided evidence that the US slope Granger-causes the UK term structure.  
 
3.3.2 Estimation of STVAR models and regime identification 
 
As for the linear models, we estimate STVAR models for each “rolling” data window.  In order 
to estimate the STVAR models, we follow Granger and Teräsvirta (1993) and Teräsvirta (1994) 
in scaling the ‘logistic’ function (3) by dividing it by the standard deviation of the transition 
variable σ(st), so that γ becomes a scale-free parameter.  Doing so, avoids slow convergence or 
overestimation associated with estimates of γ.  Following from the above scaling, we set γ = 1 
as a starting value and the sample mean of st as a starting value for the threshold c.  At the same 
time, the estimates of the linear VAR equations for the USsp_i and UKsp_i, (i = 3, 7, and 10) 
provide the starting values for the parameters in the STVAR model (2).  
 
The regime identification of our models is reported in Figure 2, which plots (for the first data 
window from June 1991 to December 1998) the value of the transition function estimated for 
the 3-year swap spreads system over time.  The periods from June 1991 to December 1991 and 
from January 1995 to December 1998 are classified into the first regime, while the periods from 
June 1992 to June 1993 and from March 1994 to August 1994 are classified into the second 
regime.  Notice, however, that the economic interpretation of the two regimes is not 
straightforward because they do not always coincide with periods of economic expansion and 
recession.  Recall that the first regime that corresponds to a flat term structure should identify 
periods of economic recession, while the alternative regime should identify periods of economic 
expansion. 
 
Our regime classification captures the recession that ended in December 1991 and the 
subsequent recovery of the US economy.  Nevertheless, the years from 1995 to 1998, which are 
classified into the first regime, were periods of significant economic expansion.  This period is 
identified with the first regime because the US slope (see figure 2) started disinvesting by the 
end of 1994 and continued to move downwards between 1995 and 1998 despite the fact that 
                                                 
6 Detailed Tables with linearity tests for the remaining US and UK swap maturities are available on request. As for 
the 3-year swap maturities, these select USslopet-1 as the appropriate transition variable. See the discussion below. 
7 Linearity test results for each successive data window are consistent with those reported here in the sense that 
USslopet-1 is chosen as the most appropriate transition variable. 
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these were periods of robust economic growth.  Bearing in mind that the relationship between 
changes in the term structure and subsequent changes in economic activity is probabilistic and 
that our sample does not contain a significant number of changes from expansion to recession 
(and vice versa), we cannot explore further the reasons for this apparent broken link between 
the term structure and economic activity.  That said, the ability of our model to classify 
correctly the recession ending in 1991 is consistent with Estrella, Rodrigues and Schich, (2000) 
who find that models using the US slope are stable in predicting recessions but become unstable 
when predicting output growth. 
 
4. Nearest-neighbours (NN) model 
 
We only give a very brief summary of the nearest-neighbours model; for a detailed discussion 
see e.g. the recent papers by Gençay (1999) and Jaditz and Riddick (2000).  In order to estimate 
yt conditional on its history (yt-1,…,yt-n), convert the time series process T

tty 1}{ =  into n past 
history components of the form ),...,,( 11 +−−= nttt

n
t yyyy .  The idea here is to take the most recent 

history available and then retrieve the k nearest neighbours by searching over the set of all n 
histories.  That is, in order to estimate yt conditional on the information available at t–1, 
compute the distance between the vector ),...,,( 211 nttt

n
t yyyy −−−− =  and its k nearest neighbours 

to derive the estimator iti

k

i
y∑

=1
λ , where tiλ  are the k nearest-neighbour weights.  These are 

calculated using the sup norm  ii
yxmay = . 8  The optimal number of nearest-neighbours is 

determined by the minimum Mean Squared Prediction Error (MSPE) achieved by regressing yt 
on all possible nearest neighbours.  Relying on optimally chosen local information as opposed 
to the global information used by the rest of the models employed in our paper, may prevent 
overfitting (see e.g. Gençay, 1999).  It should also be pointed out that the optimal number of 
nearest-neighbours changes as we estimate nearest-neighbours models for each “rolling” data 
window. 
 
5. Forecasting analysis 
 
5.1 Some theoretical issues on forecasting  
 
In order to assess the usefulness of the non-linear models, we carry out our forecasting exercise 
over “rolling” fixed-length windows of data, where the first data window runs from June 1991 
until December 1998, and each successive data window is constructed by shifting the preceding 
window ahead by one week. Therefore, we re-estimate our models for each data window and 
then produce out-of-sample forecasts for the US and UK swap spreads over h = 1 week ahead.  
 
We compute out-of-sample forecasts from STVAR models, univariate NN (NN) models, linear 
VAR models and univariate autoregressive (AR) swap spread models.9 Forecasting 
performance is evaluated using the Mean Squared Prediction Error (MSPE) and the Mean 
Absolute Prediction Error (MAPE) criteria.  Further, in order to see whether the non-linear 
models outperform the AR and VAR models, we employ the Diebold and Mariano (1995) test.  

                                                 
8 Alternatively, one can use Euclidean distances. We use the sup norm because it is computationally less intensive.  
Jaditz and Riddick (2000) point out that the sup norm is not worse than the Euclidean one. 
9 We use two lags for all AR swap spread equations except for the USsp_7 and USsp_10 equations where three lags 
are used; lags are selected based on the Akaike Information Criterion.   
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This is computed by weighting the forecast loss differentials between two competing models 
equally, where the loss differential for observation t is given by dt ≡ [g(eit|t-h) – g(ejt|t-h)], where 
g (.) is a general function of forecast errors (e.g. MSPE or MAPE). The null hypothesis of equal 
accuracy of the forecasts of two competing models can be expressed in terms of their 
corresponding loss functions, E[g(eit|t-h)] = E[g(ejt|t-h)], or equivalently in terms of their loss 

differential, E[dt] = 0.  Let ∑
−++

+=

=
11 hPR

hRt
td

P
d  denote the sample mean loss differential over t 

observations, such that there are P out-of-sample point forecasts and R observations have been 
used for estimation. The Diebold-Mariano test statistic follows asymptotically the standard 
normal distribution: 
 

)1,0(
)0(ˆ2

N

P
f

dDM d

d

⎯→⎯
π

= ,       (4) 

 
where N (.) is the normal distribution and )0(ˆ

df  is a consistent estimate of the spectral density 
of the loss differential at frequency 0.   
 
To counteract the tendency of the DM test statistic to reject the null too often when it is true in 
cases where the forecast errors are not bivariate normal, Harvey, Leybourne and Newbold 
(1997) propose a modified Diebold-Mariano test statistic: 
 

 ( )1

2/11
* )1(21

−

−

⎯→⎯⎥
⎦

⎤
⎢
⎣

⎡ −+−+
= P

d tDM
P

hhPhPDM ,     (5) 

 
where DM is the original Diebold and Mariano (1995) test statistic for h-steps ahead forecasts 
and t(P – 1) refers to Student’s t distribution with P – 1 degrees of freedom. 
 
Recently, van Dijk and Franses (2003) argue that the uniform weighting scheme employed by 
the DM and DM* tests may be unsatisfactory for frequently encountered situations in which 
some observations are more important than others. For example, in a swap spread forecasting 
exercise, large positive swap spread observations generally signal periods of increasing risk 
conditions in the economy.  
 
van Dijk and Franses (2003) modify the test statistic by weighting more heavily the loss 
differentials for observations that are deemed to be of greater substantive interest. In their 

approach, the weighted mean loss differential is given by ∑
−++

+=

ω=
1

)(1 hPR

hRt
ttw dw

P
d , where w(ωt) is 

the information set available at time t. Letting yt be the variable to be forecast, two particular 
cases van Dijk and Franses (2003) study are: 
 

wLT(ωt) = 1 – Φ(yt),          (6) 
 
where Φ (.) is the cumulative distribution function of yt, to focus on the left tail of the 
distribution of yt, and: 
 

wRT(ωt) = Φ(yt),          (7) 
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to focus on the right tail of the distribution of yt. A necessary condition for the associated test 
statistic to have an asymptotic standard normal distribution under the null hypothesis of equal 
forecast accuracy is that the weight function w(ωt) be a twice continuously differentiable 
mapping to the [0,1] interval. The weighted DM statistic is computed as: 
 

P
f

dDMW
dw

w

)0(ˆ2π
=−         (8) 

 
where )0(d̂wf  is a consistent estimate of the spectral density of the loss differential at frequency 
0. The weighted DM* test statistic is given by: 
 

 DMW
P

hhPhPDMW −⎥
⎦

⎤
⎢
⎣

⎡ −+−+
=−

− 2/11
* )1(21      (9) 

 
Once again following Harvey et al. (1997), van Dijk and Franses propose using the Student's 
t distribution with P – 1 degrees of freedom to obtain critical values for the W–DM* test.  In our 
forecasting exercise, the Left-tailed W-DM* statistic focuses on the ability of the competing 
models to forecast small swap spread values which is interpreted as evidence of decreasing risk 
conditions in the economy.  On the other hand, the Right-tailed W-DM* statistic focuses on the 
ability to forecast large spread values which is interpreted as evidence of periods of increasing 
risk conditions in the economy. 
 
5.2 Empirical results  
 
The results of our forecasting exercise are reported in Tables 3 and 4.  We report the MSPE 
criteria for the different US and UK swap spread models (results using MAPE criteria led to 
very similar conclusions and are available on request).  The statistical significance of the 
forecasting performance of the non-linear STVAR and NN models relative to the linear VAR 
and AR models is examined using the modified DM*, Left-tailed W-DM* and Right-tailed W-
DM* criteria.  For both Tables 3 and 4, the top entry in [.] contains the p-values for the 
modified DM* statistic against the one-sided alternative that the MSPE of the competing model 
is lower.  The middle entry in [.] contains the p-values for the modified Left-tailed W-DM* 
statistic whereas the bottom entry in [.] contains the p-values for the modified Right-tailed W-
DM*.   
 
From Table 3, the NN model produces the lower MSPE for two out of three US swap spread 
maturities.  In particular, our results suggest forecasting superiority of the NN model over the 
AR, VAR and STVAR models for short and long US swap spread maturities (i.e. USsp_3 and 
USsp_10).  However, the ability of the NN model to predict small spread values at the long end 
(i.e. USsp_10) is not better than that of the VAR model (i.e. p-value for the Left-tailed W-DM* 
equals 0.589) or that of the STVAR model (i.e. p-value for the Left-tailed W-DM* equals 
0.144).  The STVAR model does not beat the VAR model at any maturity, but it outperforms 
the AR model at the short maturity (i.e. USsp_3).  For the 7-year US swap spread, the non-
linear NN and STVAR models do not outperform the linear models.  On the other hand, for the 
7-year US swap spread, the NN model seems to outperform the STVAR model in predicting 
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large swap spreads (i.e. p-value for the Right-tailed W-DM* equals 0.041). 
 
The NN model produces the lower MSPE for two out of three UK swap spread maturities (see 
Table 4).  In statistical terms, however, the NN model does not beat the AR model at any 
maturity.  On the other hand, the NN model outperforms the linear VAR model at all maturities.  
Further, it outperforms the STVAR model at the 3-year and 7-year swap spread maturities.  The 
NN model predicts small swap spread values better than the STVAR model at all maturities.  
The STVAR model outperforms the VAR model for short and long maturities.  For the 
medium-to-long maturity swap spreads (i.e. the UKsp_7 swap spread), the STVAR model is 
able to predict better than the VAR model only small swap spread values (i.e. p-value for the 
Left-tailed W- DM* equals 0.004). 
 
Overall, our forecasting exercise for the US and UK swap spreads suggests some forecasting 
superiority of the non-linear models against the linear ones.  This is more the case for the NN 
non-linear model, which seems to occasionally predict better than the rest of the non-linear and 
linear models.  Another interesting finding of our forecasting exercise is that for all maturities, 
the NN model is able to predict better than the STVAR model US swap spreads during periods 
of increasing risk conditions and UK swap spreads during periods of decreasing risk conditions.  
The ability of the STVAR models to do better than linear AR and VAR models appears 
sensitive to swap spread maturity.  Previous studies also find some superiority of NN relative to 
other models.  Gençay (1999) finds that NN models outperform other linear and non-linear 
models for a number of exchange rates, whereas Pérez-Rodríguez, Torra and Andrada-Félix 
(2005) find some evidence that NN models outperform linear AR and STAR models in 
predicting Spanish stock returns.  On the other hand, Teräsvirta, van Dijk and Medeiros (2005) 
use a number of G7 macroeconomic time series to show that STAR models forecast better 
compared to linear models whereas the forecasting performance of NN models is more mixed.  
 
6. Conclusions 
 
This paper explores the ability of common risk factors to predict US and UK interest rate swap 
spreads within a linear and a non-linear framework.  We reject linearity in favour of a regime-
switching STVAR model for the US and UK swap spread dynamics and we show that the 
switching between regimes is controlled by the slope of the US term structure of interest rates.  
The first regime is characterised by a "flat" term structure of US interest rates, while the 
alternative is characterised by an "upward" sloping US term structure.  In economic terms, the 
two regimes do not always coincide with periods of economic expansion and recession.  This 
can be interpreted as evidence of a break in the relationship between US real output growth and 
the slope of the US term structure. We do not explicitly test for a break but possible reasons 
include the shift in US monetary policy from reactive to proactive as a response to the Asian 
and Russian financial crises and the Long-Term Capital Management (LTCM) collapse in 1998. 
 
The ability of the non-linear STVAR model to predict swap spreads is compared with that of a 
non-linear NN model as well as that of linear AR and VAR models.  We find evidence that the 
NN and STVAR models predict better than the linear AR and VAR models.  However, the 
evidence is not overwhelming as it is sensitive to swap spread maturity.  Within the non-linear 
class of models, the NN model predicts US swap spreads better than the STVAR model during 
periods of increasing risk conditions.  Further, the NN model forecasts UK swap spreads better 
than the STVAR model during periods of decreasing risk conditions.  Encouraged by these 
findings, it seems promising to compare the forecasting performance of a broader variety of 
non-linear swap spread models in future research. 
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Table 1 

 
Descriptive statistics 

 
             

 
 

 Mean Max Min Std. Dev Skewness Kurtosis 
       

USsp_3 0.353 0.958 0.014 0.193 0.779 2.872 
USsp_7 0.433 1.141 0.088 0.237 1.167 3.313 
USsp_10 0.440 1.227 0.093 0.249 1.255 3.792 

       
UKsp_3 0.333 1.010 0.002 0.217 0.634 2.358 
UKsp_7 0.413 1.198 0.002 0.277 0.775 2.306 
UKsp_10 0.466 1.280 0.003 0.302 0.910 2.635 

       
USslope 1.581 4.141 0.690 1.182 0.382 2.139 
UKslope 0.463 3.976 -2.669 1.619 0.196 1.704 

Dif_3 -1.100 0.699 -5.294 1.097 -0.996 3.986 
Dif_7 -0.813 1.087 -3.064 0.965 0.106 1.916 
Dif_10 -0.591 1.323 -2.157 0.991 0.338 1.781 
UScorp  1.196 2.150 0.630 0.346 0.759 2.804 
UKcorp  0.920 2.068 0.015 0.418 0.257 2.422 

 
Notes: The Table reports descriptive statistics for the swap spreads and the risk factors defined in section 2.  The 
sample refers to weekly data from June 1991 to June 2001. 
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Table 2 

 
Linearity tests for: ty  = [USslope, UKslope, dif_3, UScorp, UKcorp, USsp_3, UKsp_3]′  

 
             

  
Transition 
variable 

USsp_3 
equation 

UKsp_3 
equation 

System 
test 

USslopet-1 0.001 0.029 0.000 
USslopet-2 0.006 0.039 0.000 
UKslopet-1 0.037 0.497 0.000 
UKslopet-2 0.093 0.585 0.002 
Dif_3t-1 0.173 0.164 0.000 
Dif_3t-2 0.155 0.107 0.000 
UScorpt-1 0.382 0.092 0.000 
UScorpt-2 0.401 0.054 0.001 
UKcorpt-1 0.023 0.105 0.001 
UKcorpt-2 0.030 0.206 0.000 
USsp_3t-1 0.021 0.108 0.000 
USsp_3t-2 0.037 0.266 0.000 
UKsp_3t-1 0.288 0.197 0.000 
Uksp_3t-2 0.334 0.088 0.000 
 
Notes: The Table reports p-values of equation specific 
Lagrange Multiplier F statistics and system-wide LR test 
statistics for the USsp_3 and UKsp_3 equations. These are 
based on Wooldridge’s (1990, 1991) heteroskedasticity-
robust versions of the tests. The null hypothesis is 
linearity. The alternative hypothesis is the STVAR model. 
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Table 3 

 
Mean Squared Prediction Error (MSPE) for the US spreads using modified DM*, Left-tailed W-

DM* and Right-tailed W-DM* 
             

 
MSPE p-values in [.] 

STVAR  NN VAR AR  AR vs.  
STVAR  

AR vs.  
NN 

VAR vs. 
STVAR 

VAR vs. NN STVAR vs. 
NN 

         
USsp_3 

         
0.160 0.049 0.135 0.166 [0.001] 

[0.011] 
[0.000] 

[0.000] 
[0.000] 
[0.000] 

[0.999] 
[0.999] 
[0.999] 

[0.000] 
[0.000] 
[0.000] 

[0.000] 
[0.000] 
[0.000] 

         
USsp_7 

         
0.095 0.090 0.089 0.084 [0.997] 

[0.995] 
[0.996] 

[0.893] 
[0.974] 
[0.678] 

[0.935] 
[0.996] 
[0.654] 

[0.566] 
[0.970] 
[0.136] 

[0.118] 
[0.515] 
[0.041] 
 

         
USsp_10 

         
0.105 0.077 0.095 0.085 [1.000] 

[0.996] 
[1.000] 

[0.048] 
[0.010] 
[0.001] 

[0.999] 
[0.990] 
[0.999] 

[0.000] 
[0.589] 
[0.000] 

[0.000] 
[0.144] 
[0.000] 

 
Notes: MSPE for rolling window one step ahead out-of sample forecasts from 1999:1 to 2001:26. The top entry 
in [.] contains the p-values for the modified DM* statistic of Harvey, Leybourne and Newbold (1997) against 
the one-sided alternative that the MSPE of the competing model is lower. The middle entry in [.] contains the 
p-values for the modified Left-tailed W-DM* statistic of van Dijk and Franses (2003). The bottom entry in [.] 
contains the p-values for the modified Right-tailed W-DM* statistic of van Dijk and Franses (2003). 
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Table 4 

Mean Squared Prediction Error (MSPE) for the UK spreads using modified DM*, Left-tailed 
W-DM* and Right-tailed W-DM* 

 
             

 
MSPE p-values in [.] 

STVAR  NN VAR AR AR vs. 
STVAR 

AR vs. 
NN 

VAR vs. 
STVAR 

VAR vs. 
NN 

STVAR vs. 
NN 

         
UKsp_3 

         
0.053 0.049 0.068 0.048 [0.998] 

[0.999] 
[0.878] 
 

[0.752] 
[0.990] 
[0.400] 
 

[0.000] 
[0.000] 
[0.000] 

[0.000] 
[0.000] 
[0.000] 

[0.018] 
[0.021] 
[0.110] 

         
UKsp_7 

         
0.075 0.050 0.070 0.051 [1.000] 

[0.999] 
[0.999] 

[0.421] 
[0.384] 
[0.463] 

[0.376] 
[0.004] 
[0.999] 

[0.000] 
[0.000] 
[0.001] 

[0.000] 
[0.000] 
[0.000] 

         
UKsp_10 

         
0.053 0.052 0.067 0.053 [0.549] 

[0.923] 
[0.225] 

[0.320] 
[0.369] 
[0.305] 
 

[0.000] 
[0.000] 
[0.000] 

[0.000] 
[0.000] 
[0.016] 

[0.362] 
[0.043] 
[0.722] 

 
Notes: MSPE for rolling window one step ahead out-of sample forecasts from 1999:1 to 2001:26. The top entry 
in [.] contains the p-values for the modified DM* statistic of Harvey, Leybourne and Newbold (1997) against 
the one-sided alternative that the MSPE of the competing model is lower. The middle entry in [.] contains the 
p-values for the modified Left-tailed W-DM* statistic of van Dijk and Franses (2003). The bottom entry in [.] 
contains the p-values for the modified Right-tailed W-DM* statistic of van Dijk and Franses (2003). 
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Figure 1: 3, 7, and 10-year US and UK swap spreads 
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Figure 2: Regime classification and the slope of the US term structure of interest rates 
 

             
Notes: 
The figure plots the slope of the US term structure (solid line, right-hand axis, in percent) and 
the transition function for the 3-year swap spreads system (line with blocks, left-hand axis) over 
time.  The transition function is estimated as:  
G(USslopet-1; γ, c) = {1 + exp−10.528(USslopet-1 − 2.837) /σ(USslopet-1)]}-1.  Values of the 
transition function close to zero identify a period with the first regime while values of the 
transition function close to one identify a period with the second regime. 
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