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Abstract 

In a model where agents use their labour/education choice to adjust their 

consumption profile over time, I show that the impact of uncertainty on 

growth depends, critically, on agents’ attitudes towards risk, reflected by the 

coefficient of relative risk aversion. In this respect, the well known result 

from the literature on ‘saving under uncertainty’ can be extended into a 

broader context, whereby the intertemporal profile of consumption is 

determined via human capital accumulation rather than saving and physical 

capital investment. 
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1   Introduction 

During the late 1960s and early 1970s, a variety of theoretical analyses began exploring the 

impact of aggregate uncertainty on saving decisions (e.g., Levhari and Srinivasan, 1969; 

Sandmo, 1970; Mirman, 1971; Rothschild and Stiglitz, 1971). Under different settings, all 

these analyses seemed to reach a consensus on the importance of attitudes towards risk on 

determining the reaction of saving rates to higher degrees of future uncertainty. Specifically, 

the main conclusion derived from the aforementioned analyses is that, in response to higher 

degrees of uncertainty, saving rates increase (decrease) if the coefficient of relative risk 

aversion is above (below) unity. When the coefficient of relative risk aversion is equal to one 

(i.e., the case of logarithmic utility) saving is unresponsive to aggregate uncertainty. 

   More recently, the work of Romer (1986) revived an important idea (originally proposed 

by Frankel, 1962) within a context of a production economy with intertemporal consumer 

maximisation. He showed that if the investment activity that adds to the aggregate stock of 

capital can generate and spread additional knowledge, and if the relative importance of 

knowledge on productivity is sufficiently high, then the economy can reach an equilibrium 

with ever increasing levels of output (or, equivalently, a sustainable and endogenously determined 

growth rate of output). The upshot from Romer’s analysis was that the factors normally 

impinging on saving rates (and, therefore, aggregate investment) can improve our 

understanding of the differences in growth rates and, to some extent, potential standards of 

living across economies. 

   Of course, it was not long before theorists made the apparent connection and understood 

that, as long as uncertainty is an important consideration behind saving motives and 

behaviour, higher degrees of uncertainty may have significant long-term implications in 

terms of output growth trends. In particular, the theoretical analyses by Smith (1996), de 

Hek (1999) and Jones et al. (2005) addressed the issue of the interaction between uncertainty 

and long-run output growth within the context of dynamic, general equilibrium models with 

endogenous mechanisms for productivity improvements and stochastic elements arising 

from the presence of technology (or productivity) shocks. Their results verify the importance 

of the coefficient of relative risk aversion as this was described within the various analytical 
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frameworks of the literature on optimal savings under uncertainty – a literature to which I 

alluded earlier.1   

   The models constructed by Smith (1996), de Hek (1999) and Jones et al. (2005), despite 

being different in terms of their overall structure, share one common future: all types of 

capital accumulate through savings – that is, agents decide to sacrifice their current 

consumption and devote a certain fraction of their produced output with the purpose 

building up some capital stock that will facilitate future production and consumption. 

Nevertheless, pecuniary elements need not be the only ones to serve in the accumulation of 

capital. As the work of Uzawa (1968), Razin (1972) and Lucas (1988) suggested, another 

important aspect in the formation of capital (especially human capital), the accumulation of 

knowledge and, therefore, the driving force behind long-run growth involves the various 

human resources, like time or effort, that individuals devote with the purpose of improving 

their future productive capacity.  

   Naturally, in such scenarios the nature of the trade-offs between current and/or future 

benefits are slightly different from the standard consumption-saving choice. For example,  

we devote more time towards human capital accumulation in order to improve our future 

consumption possibilities, rather than working in order to achieve more current 

consumption. We may even choose to devote more time/effort towards both labour and 

(human capital) investment at the expense of our leisure. The question emerging is the 

following: to what extent do the aforementioned results on saving and growth under 

uncertainty survive within a framework in which the endogenous process behind sustainable 

growth resembles the one put forward by Uzawa (1968), Razin (1972) and Lucas (1988)? In 

this paper I construct a simple model in which I show that, indeed, the main implication of 

the papers comprising the literature on ‘growth under uncertainty’ is not just a mere 

extension of the conclusions reached from the literature on ‘optimal saving under 

uncertainty’. My model shows that the basic premise of uncertainty promoting (impeding) 

trend growth whenever the coefficient of relative risk aversion is above (below) unity may 

still emerge in an environment where there is no actual saving involved and growth is driven 

through purposeful time/effort devoted towards human capital accumulation.  

                                                 
1 In the same paper, de Hek (1999) analyses a second model with human capital. However, he restricts his 

attention to logarithmic utility. 
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   The rest of the paper is organised as follows: Section 2 presents the basic model. In section 

3 I define and derive the dynamic equilibrium and in Section 4 I show the impact of 

uncertainty on economic growth. Section 5 discusses and concludes. 

 

2   The Model 

The framework belongs to the ‘representative agent’ class of models. Imagine an artificial 

economy populated by a single producer/consumer of a perishable commodity. At the 

beginning of each period, the representative agent is endowed with a unit of time or effort 

and she produces ty  units of the good according to 

 (1 )t t ty ω χ= − , (1) 

where 1 tχ−  indicates the amount of time allocated to output production and tω  is the 

agent’s productivity in transforming her labour into consumable output.  

   Productivity growth is the driving force behind a sustainable growth rate of output. I shall 

assume that productivity has two components – an exogenous, stochastic component and an 

endogenous element allowing the agent to devote resources as to improve her future 

productivity. This idea can be captured by assuming that tω  takes the form  

 Α ,  (0,1]ψ
t t tω h ψ= ∈ . (2) 

   In equation (2), Α t  captures the stochastic component of productivity. I assume that it 

grows exogenously according to  

 1Α Αt t tα −= , (3) 

where { } 1t t
α ∞

=
 is a sequence of positively valued and bounded, independently and identically 

distributed random variables with constant mean, denoted by α , and constant variance.   

The endogenous component of productivity is captured by the variable th , in equation (2), 

which grows according to  

 1 Η ,  (0,1]η
t t th χ h η+ = ∈ . (4) 

Given the specification in (4), th  can be narrowly defined as human capital but may also be 

defined in a broader sense if tχ  is thought as including all types of activities that the 
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individual undertakes as to improve her efficiency in producing output (e.g., R&D, training 

etc.).2  

   The representative agent’s preferences are described by a lifetime expected utility function 

of the CRRA form. That is,  

 
1

0
0

1
,  >0, (0,1)

1

ρ
t t

t

c
U E β ρ β

ρ

−∞

=

 −
= ∈ − 

∑ , (5) 

where tc  denotes consumption, 0E  is the conditional expectations operator, β  is a discount 

factor and ρ  is the coefficient of relative risk aversion.  

   The agent can consume only out of her available income/output. Therefore, her per-

period budget constraint  has the simple form   

 (1 )t t tc ω χ≤ − . (6) 

   Having described the underlying characteristics of the artificial economy, my next step is 

the solution of the model. This is done in the following Section.   

 

3   Equilibrium 

In this section, I provide the analytical derivation the model’s equilibrium which is 

characterised by the following 

 

Definition. Given the initial value 0 0h > , the dynamic, general equilibrium is a sequence of quantities 

{ }1, 1 0
, , ,Α ,t t t t t t t

c y χ α h
∞

+ + =
 such that: 

(i) Given { }1 0
Α ,t t t

α ∞
+ =

, the quantities { }1 0
, ,t t t t

c χ h ∞
+ =

 solve the representative agent’s 

optimisation problem. 

(ii) tχ  is stationary. 

(iii) The goods market clears every period, i.e., t tc y=  ∀ ≥ 0t . 

(iv) The transversality condition holds. 

 
                                                 
2 Sustainable output growth is feasible because productivity can sustain its growth rate in the long-run. To see 

this, use (2)-(4) to write productivity as 1 1(Η )η ψ
t t t tω α χ ω− −= . The presence of the variable 1tχ −  justifies the 

labeling of the growth model as ‘endogenous’.   
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   Denoting the Lagrange multipliers associated with (6) and (4) by tλ  and tξ  respectively, 

the first order conditions for the agent’s maximisation problem are  

 − =ρ
t tc λ , (7) 

 −= 1Α Ηψ η
t t t t t tλ h ξ η χ h , (8) 

 −
+ + + + += + −1

1 1 1 1 1(Η ) [ Α (1 )]η ψ
t t t t t t t tξ βE χ βE λ ψ h χ . (9) 

   The condition in (7) equates the marginal utility of consumption with the shadow value of 

foregone wealth. The condition in (8) equates the marginal benefits from devoting more 

time/effort towards output production and the accumulation of capital. The marginal 

benefit from increased labour effort corresponds to the utility benefit of higher current 

consumption. Given the condition in (9), the marginal benefit for devoting more time to 

human capital accumulation is associated with the discounted expected utility value of future 

consumption (resulting from the corresponding increase of future output) and with the 

further evolution of the capital stock in the future.  

   Let us embark on the solution of the model by using (1), (2) and (4) in (8) to derive  

 +=
−

1

1
t t t t

t t

λ y ηξ h
χ χ

. (10) 

Multiplying both sides of (9) by +1th  and taking account of (1), (2) and (4) yields 

 + + + + += +1 1 2 1 1( ) ( )t t t t t t t tξ h βE ξ h βψE λ y . (11) 

Next, define + ≡1t t tξ h J  and substitute it together with (7) and the equilibrium condition 

=t tc y  in (9) to derive  

 −
+ += + 1

1 1( ) ( )ρt t t t tJ βE J βψE y . (12) 

We can use (12) to substitute recursively for T  times and apply the law of iterated 

expectations. Eventually, this procedure yields 

 − − − −
+ + + + += + + + + +1 2 1 3 1 1

1 2 3( ) ( ) ( ) ( ) ... ( )T ρ ρ ρ T ρ
t t t T t t t t t t t t TJ β E J βψE y β ψE y β ψE y β ψE y . (13) 

   The next step involves the derivation of a solution for (13). Taking account of (1) and (2) 

we get  

 + + + +

+ − + − + − + −

  −
=   − 1 1 1 1

Α 1
Α 1

ψ

t T t T t T t T

t T t T t T t T

y h χ
y h χ

. (14) 
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At this point we can make a guess concerning the form of time allocation decisions in 

equilibrium. Specifically, we may conjecture that  = ∀tχ χ t .3 Consequently, taking account 

of (3) and (4), we can rewrite (14) as 

 + + + −= 1t T t T t Ty vα y , (15) 

where = (Η )η ψv χ . Substituting recursively in (15) yields 

 
+

+
+

=

= ∏0
1

t T
t T

t T i
i

y y v α . (16) 

Recall that the realisations of the shock for all periods 0,1...i t=  are part of the agent’s 

information set available at period t . We can take account of this when substituting (16) in 

(13). Doing so, and factorising with 
1

1 1 1 1
0 1

1

( ) ( )
ρt

ρ t ρ ρ
i t t

i

βψy v α E α
−

− + − −
+

=

 
 
 
∏ , yields   

 

[

( )
( )
( )

1
1 1 1 1
0 1

1

21 1 1 1 1
2 3 2

31 1 1 1
4 3 2

11

( ) ( ) ( ) 1 ...

       ... ( ) ( ) ( ) ...

       ... ( ) ( ) ( ) ...

       ... (

ρt
T ρ t ρ ρ

t t t T i t t
i

ρ ρ ρ ρ ρ
t t t t t t

ρ ρ ρ ρ
t t t t t t

t Tρ
t

J β E J βψy v α E α

βv E α βv E α E α

βv E α E α E α

βv E

−
− + − −

+ +
=

− − − − −
+ + +

− − − −
+ + +

+ −−

 
= + + 

 

+ + +

+ +

+

∏

1 1 1
1 2) ( ) ( ) .ρ ρ ρ

t T t t T t tα E α E α− − −
+ + − +

⋅ ⋅ ⋅ 

 (17) 

Given that shocks are iid and generate constant mean and variance, we can define 

 1( ) Θ 1ρ
t t sE α s−

+ = ∀ ≥ . (18) 

Substituting (18) in (17) and considering the limiting case of T →∞  yields 

 

1
1 1 1 1
0 1

1

1 1 2 1 3 1 4

lim ( ) ( ) ( )[1 ...

       ... Θ ( Θ) ( Θ) ( Θ) ... .

ρt
T ρ t ρ ρ

t t t T i t tT
i

ρ ρ ρ ρ

J β E J βψy v α E α

βv βv βv βv

−
− + − −

+ +→∞
=

− − − −

 
= + + 

 
+ + + + 

∏  (19) 

Equation (15) implies that  

 ( )
1

1

1

ρ
ρt s

t s
t s

y
vα

y

−
−+

+
+ −

 
= 

 
.  

Taking expectations on both sides and using (18), we derive 

                                                 
3 This will be true because the equilibrium solution for tχ  will depend on the current expectation made about 
the future value for 1tα + . The equilibrium value for tχ  will be time invariant, given that this random variable 
generates constant mean and variance. 
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1

1 1 1

1

( ) Θ
ρ

ρ ρ ρt s
t t t s

t s

y
E v E α v g

y

−

− − −+
+

+ −

  
  = = ≡ 
   

. (20) 

Furthermore, we can use (16) to derive  

 
1 11

1 1 1 1 1 1 1 1
0 1 0 1

1 1

( ) ( ) ( ) ( )
ρ ρt t

ρ t ρ ρ ρ t ρ ρ
i t t t i t t

i i

y v α E α E y v α E y
− −+

− + − − − + − −
+ +

= =

    
= =    

     
∏ ∏ . (21) 

Substituting (20) and (21) in (19) yields 

 1 2 3
1lim ( ) ( )[1 ( ) ( ) ...]T ρ

t t t T t tT
J β E J βψE y βg βg βg−

+ +→∞
= + + + + + . (22) 

Assuming 1βg <  and imposing the transversality condition lim 0T
t TT

β J +→∞
= , we can get a 

solution for (22) as 4 

 
1

1
1

( )
1

ρ
t t

t t t
βψE y

J ξ h
βg

−
+

+≡ =
−

. (23) 

Substituting (23) and (7) in (10), using tχ χ= , multiplying both sides by 1/ ρ
tχ y −  and taking 

account of (20) yields  

 
1

1( / )

1 1 1

ρ
t t tE y yχ ηψβgηψβ

χ βg βg

−
+  = =

− − −
, (24) 

which solving for χ  leads us to  

 
1 (1 )

ηψβgχ
βg ηψ

=
− −

. (25) 

   Before I proceed to the derivation of the growth rate, there is the issue of identifying the 

characteristics of the solution for χ . A useful initial step comes in the form of  

 

Lemma 1. Define (1 ) (1 )( ) ΘΗψ ρ ηψ ρP χ βg β χ− −= =  and ( ) /[ (1 ) ]Q χ χ χ ηψ ηψ= − + . Then 

(0) 0P =  for (0,1)ρ∈ , (0)P →∞  for 1ρ > , (1) 1P < , (0) 0Q =  and (1) 1Q = . Furthermore,  

( ) 0P χ′ >  and ( ) 0P χ′′ <  if (0,1)ρ∈  and ( ) 0P χ′ <  and ( ) 0P χ′′ >  if 1ρ > . Also ( ) 0Q χ′ >  

and ( ) 0Q χ′′ < . 

 

                                                 
4 Some slightly tedious algebra can verify the solution in (23) after direct substitution back in (12). 
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Proof. After appropriate substitution, it is obvious that (0) 0Q = , (1) 1Q = , (0) 0P =  and 

(1) 1P <  because 1βg <  must hold by assumption. Differentiating, we get 
2( ) /[ (1 ) ] 0Q χ ηψ χ ηψ ηψ′ = − + >  and 3( ) 2 (1 )/[ (1 ) ] 0Q χ ηψ ηψ χ ηψ ηψ′′ = − − − + < , as well 

as (1 ) (1 ) 1( ) (1 ) ΘΗψ ρ ηψ ρP χ ηψ ρ β χ− − −′ = −  and (1 ) (1 ) 2( ) [ (1 ) 1] (1 ) ΘΗψ ρ ηψ ρP χ ηψ ρ ηψ ρ β χ− − −′′ = − − − . 

Obviously, for (0,1)ρ∈  we have ( ) 0P χ′ >  and ( ) 0P χ′′ < , while for 1ρ >  we have 

( ) 0P χ′ <  and ( ) 0P χ′′ > .  ■  

 

Given the above, the characterisation of the solution for χ  comes in the form of  

 

Lemma 2. As long as the optimal time allocation decisions are characterised by an interior solution for χ , 

then this solution is unique. 

 

Proof. Rearrange equation (25) to get (1 ) (1 )ΘΗ /[ (1 ) ]ψ ρ ηψ ρβg β χ χ χ ηψ ηψ− −= = − +  or, 

equivalently, ( ) ( )P χ Q χ= . According to the result in Lemma 1, both functions are 

continuous. Additionally, notice that (0)P ′ → ∞  for (0,1)ρ∈ . Thus, (0) (0) 1/P Q ηψ′ ′> =  

for (0,1)ρ∈ . Consequently, taking account of Lemma 1, we can conclude that 0ρ∀ >  there 

exists some (0,1)χ ∈  such that ( ) ( )P χ Q χ>  for (0, )χ χ∈  and ( ) ( )P χ Q χ<  for 

( ,1]χ χ∈ .  ■   

    

   The only situation where the solution for χ  is explicit, is when 1η ψ= = . In that case, we 

can use (25) to get 1 1Θ Θ(Η )ρ ρχ βg β v β χ− −= = =  which, solving for χ , yields 

 (1 )/ 1/Η ( Θ)ρ ρ ρχ β−= . (26) 

Nonetheless, despite the fact that, in most cases, we get the solution for χ  implicitly, its 

response to uncertainty (which also determines the impact of uncertainty on output growth) 

is clear-cut. This is an issue to which I turn in the subsequent Section.  
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4    Output Growth Under Uncertainty 

Prior to illustrating how uncertainty impinges on economic growth, I shall utilise a result that 

will facilitate us on understanding the mechanism involved behind the response of growth to 

higher degrees of aggregate uncertainty. This result is given as 

 

Theorem 1. Let x  be a random variable and ( )f x  a continuous function. A mean-preserving spread in 

the distribution of x  increases (decreases) [ ( )]Mean f x  if the function ( )f x  is strictly convex (strictly 

concave). If ( )f x  is linear then a mean-preserving spread in the distribution of x  does not affect 

[ ( )]Mean f x . 

 

Proof. This is a well known result that can be proven through a variety of approaches. One 

formal proof appears in Rothschild and Stiglitz (1970) among others.  ■ 

 

A corollary  derived from Theorem 1 takes the form of  

 

Lemma 3. Denote a mean-preserving spread in the distribution of { } 1t t
α ∞

=
 by σ . Then Θ ( )θ σ≡  such 

that ( ) 0θ ′ ⋅ <  iff (0,1)ρ∈  and ( ) 0θ ′ ⋅ >  iff 1ρ > . If 1ρ =  then Θ 1= .  

 

Proof. Revisit equation (18) and observe that the function 1 ρ
t sα −
+  is strictly concave for 

(0,1)ρ∈ , equal to unity for 1ρ =  and strictly convex for 1ρ > . Consequently, application 

of Theorem 1 leads to the conclusion that a mean-preserving spread in the distribution of 

1iα i∀ ≥  either reduces, increases or leaves Θ  unaffected depending on whether (0,1)ρ∈ , 

1ρ >  or 1ρ =  respectively.  ■   

 

   Now, I am ready to derive the main result from my analysis. This can be illustrated 

through 

 

Theorem 2. An increase in uncertainty, measured by a mean-preserving spread in the distribution of 

1iα i∀ ≥ , leads to a decrease (increase) in output growth, γ , iff (0,1)ρ∈  ( 1ρ > ). If 1ρ =  an increase 

in uncertainty does not have any effect on long-run growth.  
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Proof. The growth rate is defined as 1 /t ty y+ . Given (1), (3) and (4), then  

 1 1
1

1
Η

1
ψ ηψt t

t t
t t

y χ
α χ

y χ
+ +

+

−
=

−
. 

In Lemma 2, I established that tχ χ t= ∀ . Consequently, the average rate of output growth 

is  

 1 Ηψ ηψt

t

y
γ Mean α χ

y
+ 

≡ = 
 

, (27) 

which means that, since output growth is monotonically increasing in the time devoted to 

human capital accumulation, the qualitative effects of uncertainty on growth will correspond 

to the qualitative effects of uncertainty on χ .  

   Let us begin with the case in which (0,1)ρ∈ . From Lemma 3, we know that a mean-

preserving spread will reduce Θ , thus causing a reduction in the value of the function ( )P χ . 

Given that the function ( )Q χ  remains unaffected, it is true that the difference ( ) ( )Q χ P χ−  

increases. Now, suppose that, following the mean-preserving spread, the equilibrium value 

for χ  increases to χ̂ χ> . According to Lemma 2, ( ) ( )P χ Q χ>  for ˆ(0, )χ χ∈  therefore 

( ) ( )P χ Q χ>  given that χ̂ χ> . However, taking account that χ  was the original 

equilibrium at which ( ) ( )P χ Q χ= , this analysis indicates that the difference ( ) ( )Q χ P χ−  

has actually fallen. Of course, this is a contradiction. As a result, we conclude that following 

a mean-preserving spread, the new equilibrium value should satisfy χ̂ χ< . Hence, when 

(0,1)ρ∈ , uncertainty inhibits output growth.  

   Next, I shall consider the case where 1ρ > . In that case, the formal proof can be derived 

by means of simple implicit differentiation. Define ( ,Θ) ( ) ( ) 0Z χ P χ Q χ≡ − = . Of course, 

Θ/ Θ [ ( )/ ( )]χdχ d Z Z= − ⋅ ⋅ . Using the definitions from Lemma 1 and differentiating yields, 

(1 ) (1 )
Θ ( ) Η 0ψ ρ ηψ ρZ β χ− −⋅ = > , (1 ) (1 ) 1 2( ) (1 ) ΘΗ { /[ (1 ) ] } 0ψ ρ ηψ ρ

χZ ηψ ρ β χ ηψ χ ηψ ηψ− − −⋅ = − − − + < . 

Thus, / Θ 0dχ d > . Combining with Lemma 3, we draw the conclusion that for 1ρ > , 

uncertainty enhances output growth.             

   Finally, given Lemma 3, it is obvious that uncertainty does not bear any effect on output 

growth when 1ρ = . Obviously, the optimal time allocation decisions are not affected by the 

degree of uncertainty when utility is logarithmic.   ■   
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Figure 1. An increase in uncertainty when (0,1)ρ∈   
 

 
 

Figure 2. An increase in uncertainty when 1ρ >   
 

 

)(),( χQχP  

)( χQ

)( χP

)( χP

χ  
χ̂ 1χ  0 

)(),( χQχP  

)( χQ

)( χP
)( χP

χ  
χ̂ 1χ0 
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   Once more, we can get an explicit solution for the growth rate in the scenario where both 

η  and ψ  are equal to unity. Substituting (26) in (27) and using Lemma 3 we derive  

 1/1 [ Η ( )] ρt

t

y
γ Mean α β θ σ

y
+ 

≡ = 
 

. (28) 

Obviously, the impact of uncertainty on growth is determined by the effect of σ (i.e., a 

mean-preserving spread) on γ . Clearly, 1/ (1/ ) 1/ (1/ ) ( Η) [ ( )] ( )ρ ργ σ ρ α β θ σ θ σ− ′∂ ∂ =  which is 

negative if (0,1)ρ∈ , positive if 1ρ >  and equal to zero if ρ  is equal to one.   

 

5   Discussion 

In this paper I have recovered a well known result – that is, the outcome whereby the 

preference parameter indicating relative risk aversion is crucial in determining the impact of 

uncertainty on output growth – within a context of an economy where the trade-off between 

labour and education is crucial for the evolution of human capital (and therefore sustainable 

growth). To complete the analysis, there is a need to provide sufficient intuition on why 

uncertainty impinges on the optimal human capital investment decisions, in the first place, 

and on why such investments may either be enhanced or inhibited by uncertainty, hence 

determining the impact that the latter bears on economic growth. 

   In general, the expectation of higher future productivity has two conflicting effects on the 

equilibrium allocation of time/effort between different activities. On the one hand, it 

induces agents to provide more effort towards learning activities, permanently, at the 

expense of labour, as they try to reap the relatively higher expected future benefits by 

accumulating human capital – i.e., the substitution effect. On the other hand, the expectation 

of enhanced future productivity raises lifetime income, thus generating an incentive for 

increasing the pattern of consumption in all periods, including the current one – i.e., the 

income effect. This can be achieved by a permanent increase in labour effort brought about 

at the expense of learning activities. 

   When (0,1)ρ∈  ( 1ρ > ) the substitution (income) effect dominates. Furthermore, the 

concavity (convexity) of Θ  in (18) indicates that the rise (fall) in χ  as a result of an expected 

increase in 1tα +  is less pronounced than the fall (rise) in χ  resulting from an expected 



 

 14

decrease in 1tα +  of equal magnitude. As a result, greater uncertainty (measured by a mean-

preserving spread in the distribution of 1tα + ) reduces (increases) the benefits from 

accumulating human capital and ultimately impedes (enhances) output growth, following a 

fall (rise) in χ . Obviously, as long as 1ρ =  income and substitution effects cancel each other 

out, therefore uncertainty has no effect on the growth rate of output.     

 

References 
 

1. de Hek, P.A. 1999. ‘On endogenous growth under uncertainty’, International Economic 

Review, 40, 727-744 

2. Frankel, M. 1962. ‘The production function in allocation and growth: a synthesis’, 

American Economic Review, 52, 995-1022  

3. Jones, L.E., Manuelli, R. E., Siu, H.E., and Stacchetti, E. 2005. ‘Fluctuations in 

convex models of endogenous growth I: growth effects’ , Review of Economic Dynamics, 

8, 780-804   

4. Levhari, D., and Srinivasan, T.N. 1969. ‘Optimal savings under uncertainty’, Review of 

Economic Studies, 36, 153-163  

5. Lucas, R.E. Jr. 1988. ‘On the mechanics of economic development’, Journal of 

Monetary Economics, 22, 3-42 

6. Mirman, L.J. 1971. ‘Uncertainty and optimal consumption decisions’, Econometrica, 

39, 179-185 

7. Razin, A. 1972. ‘Optimum investment in human capital’, Review of Economic Studies, 39, 

455-460 

8. Romer, P.M. 1986. ‘Increasing returns and long-run growth’, Journal of Political 

Economy, 94, 1002-1037 

9. Rothschild, M., and Stiglitz, J. 1970. ‘Increasing risk I: a definition’, Journal of Economic 

Theory, 2, 225--243 

10. Rothschild, M., and Stiglitz, J. 1971. ‘Increasing risk II: its economic consequences’, 

Journal of Economic Theory, 3, 66-84 

11. Sandmo, A. 1970. ‘The effect of uncertainty on saving decisions’, Review of Economic 

Studies, 37, 353-360 



 

 15

12. Smith, T.R. 1996. ‘Cyclical uncertainty, precautionary saving and economic growth’, 

Economica, 63, 477-494 

13. Uzawa, H. 1965. ‘Optimum technical change in an aggregative model of economic 

growth’, International Economic Review, 6, 18-31 

          

 
 

 
     

 
 
 
  


