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1. Introduction

Consider a von Neumann-Morgenstern utility function u : O → <, where O ⊂ < is

the sets of outcomes. Let ∆(O) be the set of all probability measures (also called lotteries)

on O. u is said to be risk averse (Pratt 1964, Arrow 1971) if it always rejects every

non-degenerate fair lottery, i.e.,

u

(∫

O

µ(dy) y

)
>

∫

O

µ(dy)u(y) (1.1)

for every non-degenerate lottery µ ∈ ∆(O). By Jensen’s inequality, this property is equiv-

alent to u being strictly concave.

The salient formalizations of the notion that “a risk averse utility function u is more

risk averse than a risk averse utility function v” are:

(a) every lottery accepted by u is accepted by v (Yaari 1969),

(b) the lottery dependent risk premia associated with u are weakly larger than the

corresponding risk premia associated with v (Pratt 1964),

(c) u = f ◦ v, where f is concave (Pratt 1964), and

(d) the Arrow-Pratt coefficient of absolute risk aversion is everywhere weakly larger

for u than for v (Pratt 1964).

It is well-known (Pratt 1964, Yaari 1969) that, given appropriate regularity assump-

tions, these criteria yield the same partial ordering of the set of risk averse utility functions.

The classical theory described above has been extended to vector space settings with

O ⊂ <n (Stiglitz 1969, Kihlstrom and Mirman 1974, Duncan 1977, Karni 1979, 1989),

where n is a positive integer.1 As in the classical setting, Jensen’s inequality is used to

characterize a risk averse utility function as strictly concave. The essential difference

between the setting with n = 1 and the setting with n > 1 is that, in the former setting all

increasing utility functions induce the same ordering on O, while in the latter setting this

coincidence of orderings induced by increasing utility functions does not obtain. Kihlstrom

and Mirman (1974) show that, if n > 1 and the risk aversion of utility functions u and

v is comparable using definitions analogous to the above-mentioned notions, then u and

v must induce the same ordering on O. This property, which we shall refer to as ordinal

congruence, amounts to saying that in the vector outcome setting utility functions with

comparable risk aversion must have the same level sets.

The technical approach used in Kihlstrom and Mirman (1974) to extend the classical

theory to the setting with n > 1 is to reduce the problem to the classical setting and then
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exploit the classical results. Given a utility function, risk premia are defined for lotteries

with ‘skinny’ supports, i.e., lotteries whose supports are contained in 1-dimensional affine

subspaces intersecting O. They also construct Yaari-type acceptance sets using simple

lotteries, i.e., lotteries with finite supports. Propositions 1 and 2 in Kihlstrom and Mirman

(1974) demonstrate that the partial ordering of risk averse utility functions generated by

(b) is equivalent to the partial ordering generated by (c) when the lotteries whose risk

premia are considered belong to the ‘skinny’ class described above. Proposition 6 in that

paper demonstrates that the partial ordering of risk averse utility functions generated by

(a) is equivalent to the partial ordering generated by (c) when the lotteries considered for

inclusion in the acceptance sets are simple. Some of these results have been generalized to

arbitrary real vector spaces by Peters and Wakker (1987).

Our aim in this paper is to stretch the above-described theory in two directions. First,

we wish to incorporate in our theory all lotteries in ∆(O), not only the simple lotteries and

lotteries with skinny supports. Secondly, we wish to consider outcome spaces O that are

more general than those considered in Kihlstrom and Mirman (1974). These objectives

create the following dilemma. On the one hand, we wish to embed O in as general a

vector space as possible, like in Peters and Wakker (1987). On the other hand, we need

to compute expectations with respect to general lotteries over O, not only of real-valued

utility functions, e.g., the integral on the right-hand-side of (1.1), but also of vector-

valued mappings, e.g., the integral on the left-hand-side of (1.1). In the case of simple

lotteries, computing these expectations is a straightforward matter of computing finite

convex combinations of real numbers or vectors. For general lotteries, computing these

expectations requires the outcome space to support the approximation and continuity

arguments involved in the relevant method of integration. Another technical requirement

of the theory is that the outcome space must be (partially) ordered so that the vector-

valued risk premia generated by characterization (b) can be compared.

Our proposal for satisfying the above-listed desiderata is to embed O in a partially

ordered real locally convex topological vector space. Given this setting, the integral on

the right-hand-side of (1.1) will be the abstract Lebesgue integral, while the integral on

the left-hand-side of (1.1) will be the Pettis integral. Using this setting, we show that

characterizations (a), (b) and (c) are equivalent, with the definition of (b) modified to deal

with the set-valued nature of risk premia in the vector outcome setting. Unlike in the

proofs of analogous results in Kihlstrom and Mirman (1974), differentiability of the utility

function is not required, and unlike the results in Peters and Wakker, our utility functions
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are real-valued, i.e., not allowed the values ∞ or −∞.

In Duncan (1977), the definition of a risk premium vector is the first step in the

derivation of a vector analogue of the Arrow-Pratt coefficient of absolute risk aversion.

We generalize the definition of an Arrow-Pratt coefficient of absolute risk aversion to the

setting of an ordered Hilbert space. In this setting, we show that characterizations (c) and

(d) are equivalent.

Our generalization of the theory of comparative risk aversion suggests some natural

applications which were hitherto beyond the scope of the formal theory. For instance,

consider O = C(<+,<), with an outcome x ∈ O interpreted as the continuous sample

path of a security’s value. A lottery in this setting is a probability measure over the

set of continuous sample paths. With appropriate assumptions, such measures describe

diffusions, which are the formal elements of much of modern asset pricing theory.2

We begin our analysis by stating some preliminary definitions and results in Section 2.

These results are used in Section 3 to establish a generalized version of Jensen’s inequality

that is appropriate for our setting and purposes. This inequality is used to characterize

risk averse utility functions as strictly concave functions in our setting. In Section 4,

Definitions 4.5, 4.9 and 4.10 define binary relations º1, º2 and º3 respectively on U ,

which is the set of risk averse utility functions; these relations correspond to the classical

notions of comparative risk aversion (a), (b) and (c) respectively. Theorem 4.15 is the

first substantive result of this paper. It shows that, in an appropriate setting, º1, º2

and º3 are equivalent. In Section 5, we consider a more restrictive setting that allows the

notion of differentiability to be used. In this context, we define a generalized notion of the

Arrow-Pratt coefficient of absolute risk aversion. Using this notion, we define relation º4

on U corresponding to the classical notion (d) of comparative risk aversion. Theorem 5.5

is the second substantive result of this paper. It shows that, in an appropriate setting, º3

and º4 are equivalent.

2. Technical preliminaries

We start with two versions of the supporting hyperplane theorem tailored for our pur-

poses. First, a convex set with nonempty interior is supported by a non-trivial hyperplane

at any point in its frontier.

Lemma 2.1. If

(a) C is a convex subset of a topological vector space L with IntC 6= ∅, and
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(b) x ∈ C − IntC,

then there exists a non-zero continuous linear functional p : L → < such that p(x) ≥ p(y)

for every y ∈ C.

We use this result to generate a supporting (resp. strictly supporting) hyperplane at

any given point in the graph of a concave (resp. strictly concave) function.

Lemma 2.2. If

(a) C is a convex subset of a topological vector space L,

(b) u : C → <+ is concave, and

(c) x ∈ IntC,

then

(A) There exists a ∈ < and a continuous linear functional b : L → < such that

a + b(x) = u(x) and a + b(y) ≥ u(y) for every y ∈ C − {x}.
(B) If, in addition, u is strictly concave, then the inequality in (A) is strict.

We shall employ, without explicit comment, the following conventions throughout this

paper. First, a subset of a topological space is given the subspace topology. Secondly, a

topological space is given the Borel σ-algebra, with B(Y ) denoting the Borel σ-algebra of

a topological space Y . Thirdly, the set of real numbers < is given the Euclidean topology.

We endow the outcome space O with mathematical structure by making it a subset

of a space X with the features described in the following assumption. This assumption

applies throughout the rest of this paper with additional restrictions stated explicitly when

required.

Assumption 2.3. O is a nonempty subset of a real locally convex topological vector space

X. X∗ is the space of continuous real-valued linear functionals on X.

∆(O) is the set of probability measures on (O,B(O)). µ ∈ ∆(O) is said to be non-

degenerate if there exists B ∈ B(O) such that µ(B) ∈ (0, 1). We wish to define the mean

of µ ∈ ∆(O), i.e., give meaning to the integral
∫

O
µ(dy) y. This will be done using the

notion of a Pettis integral.

Definition 2.4. Consider a probability space (Ω,F , P ) and an F/B(X) measurable func-

tion x : Ω → X. x is Pettis integrable3 over Ω if

(a)
∫
Ω

P (dω) x∗ ◦ x(ω) exists for every x∗ ∈ X∗, and

(b) there exists xΩ ∈ X such that x∗(xΩ) =
∫
Ω

P (dω)x∗ ◦ x(ω) for every x∗ ∈ X∗.
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If x is Pettis integrable over Ω and xΩ is unique, then we refer to xΩ as the Pettis integral

of x over Ω and denote it by
∫
Ω

P (dω)x(ω).

Remark 2.5. X∗ is a total space of linear functionals on X (Dunford and Schwartz 1988,

Corollary V.2.13), i.e., if x ∈ X is such that x∗(x) = 0 for every x∗ ∈ X∗, then x = 0.

Therefore, if x is Pettis integrable over Ω, then xΩ is uniquely determined.

We shall use the Pettis integral to define
∫

O
µ(dy) I(y), where µ ∈ ∆(O) and I : O →

X is the identity function. This entails the following problem: find xO ∈ X such that

x∗(xO) =
∫

O
µ(dz) x∗(z) for every x∗ ∈ X∗. Although this problem is a special case of

Definition 2.4, the general problem of Definition 2.4 can be reduced to the problem of

solving the special problem. To see the reason for this, note that
∫
Ω

P (dω) x∗ ◦ x(ω) =∫
x(Ω)

P ◦ x−1(dz)x∗(z) for every x∗ ∈ X∗. Thus, the integrals characterizing xΩ can be

calculated by integrating the identity function over x(Ω) using the image measure P ◦x−1.

We provide the details in Remark A.1 in the Appendix.

A second issue is whether there are general settings in which functions are Pettis

integrable. In Remark A.2 of the Appendix, we identify a general class of settings in which

Pettis integrals exist.

The following is a generalized version of the classical Jensen’s inequality. We shall use

it to characterize risk averse utility functions. The proof is an application of Lemma 2.2.

Theorem 2.6. (Jensen’s inequality)4 If

(a) O is convex,

(b) µ ∈ ∆(O) is such that, given (O,B(O), µ), the identity function I : O → X is

Pettis integrable over O and
∫

O
µ(dy) y ∈ IntO, and

(c) u : O → < is concave, bounded below and B(O)/B(<) measurable,

then

(A)
∫

O
µ(dy)u(y) exists and u(

∫
O

µ(dy) y) ≥ ∫
O

µ(dy)u(y).

(B) If u is strictly concave and µ is non-degenerate, then the inequality in (A) is strict.

If X = <, then the Pettis integral in (A) reduces to the generalized Lebesgue integral,

thereby yielding the classical Jensen’s inequality.

3. Risk averse utility functions

Definition 3.1. ∆(O)0 is the set of µ ∈ ∆(O) such that mµ =
∫

O
µ(dy) y exists and

mµ ∈ O.
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A preference is risk averse if it strictly prefers the mean mµ of a non-degenerate lottery

µ to the lottery itself. More formally, we have the following definition.

Definition 3.2. u : O → < is said to be risk averse if

(a) u is B(O)/B(<) measurable, and

for every non-degenerate µ ∈ ∆(O)0,

(b)
∫

O
µ(dy) u(y) exists, and

(c) u(mµ) >
∫

O
µ(dy)u(y).

Note that the property of being risk averse is invariant across equivalent von Neumann-

Morgenstern utility representations of the same preference.

Remark 3.3. If u : O → < is risk averse and v = a + bu, with a ∈ < and b ∈ <++, then

v is risk averse.

The following result provides sufficient conditions for a utility function to be risk

averse.

Theorem 3.4. If

(a) O is open and convex, and

(b) u : O → < is B(O)/B(<) measurable, bounded below and strictly concave,

then

(A)
∫

O
µ(dy)u(y) exists for every µ ∈ ∆(O)0, and

(B) u is risk averse.

Proof. (A) Consider µ ∈ ∆(O)0. By definition and (a),
∫

O
µ(dy) y exists and

∫
O

µ(dy) y ∈
O = IntO. By Theorem 2.6(A),

∫
O

µ(dy)u(y) exists.

(B) Condition 3.2(a) is satisfied by hypothesis. Consider a non-degenerate µ ∈
∆(O)0. By (A), condition 3.2(b) is satisfied. Moreover, Theorem 2.6(B) implies u(mµ) >∫

O
µ(dy) u(y), thereby satisfying condition 3.2(c).

4. Comparing risk aversion without differentiability

We start by imposing an ordering structure on X.

Assumption 4.1. ≥ is a partial order on X (i.e., ≥ is reflexive, transitive and antisym-

metric) such that

(a) x ≥ y implies x + z ≥ y + z for every z ∈ X, and

(b) x ≥ y implies tx ≥ ty for every t ∈ <++.

6



Let x > y if and only if x ≥ y and x 6= y. Let X+ = {x ∈ X | x > 0}. There exists e ∈ X+

such that, for every x ∈ X, there exists t ∈ <++ such that te > x.

We say that u : O → < is increasing if for all x, y ∈ O, x > y implies u(x) > u(y). Let

U be the set of functions u : O → < that are continuous, increasing, bounded below and

strictly concave.

Lemma 4.2. If u ∈ U and O is open and convex, then
∫

O
µ(dy)u(y) exists for every

µ ∈ ∆(O)0 and u is risk averse.

Proof. The result follows from Theorem 3.4.

In this section, we shall study various methods of ordering the elements of U . Given

Lemma 4.2, these orderings can legitimately be interpreted as comparisons of risk aversion

of the elements of U if O is open and convex.

Definition 4.3. Given x ∈ O and u ∈ U , A(x, u) = {µ ∈ ∆(O)0 | u(x) ≤ ∫
O

µ(dy)u(y)}
is called the acceptance set associated with x and u.

A(x, u) may be interpreted as the set of lotteries that utility function u would accept

(i.e., not reject) given the status quo outcome x. Note that acceptance sets are deter-

mined by the preference and are invariant across equivalent von Neumann-Morgenstern

representations of that preference.

Remark 4.4. If u ∈ U and v = a + bu, where a ∈ < and b ∈ <++, then v ∈ U and

A(x, u) = A(x, v) for every x ∈ O.

Our first notion of comparative risk aversion labels a risk averse von Neumann-

Morgenstern utility u as more risk averse than a risk averse von Neumann-Morgenstern

utility v if every lottery accepted by u is accepted by v. In the light of Remark 4.4, this

amounts to comparing the risk aversion of the underlying preferences.

Definition 4.5. For all u, v ∈ U , u º1 v if and only if A(x, u) ⊂ A(x, v) for every x ∈ O.

We now define the notion of risk premia associated with a lottery µ.

Definition 4.6. Given u ∈ U and µ ∈ ∆(O)0,

π(u, µ) =
{

π ∈ X
∣∣∣ mµ − π ∈ O ∧ u(mµ − π) =

∫

O

µ(dy) u(y)
}

Unlike in the case of scalar outcomes, the set of risk premia, π(u, µ), is generally not a

singleton set. Nor is it necessary that they be positive vectors. We note a simple condition

on O that guarantees the non-emptiness of the set of risk premia.
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Lemma 4.7. If O is nonempty, convex and open in X, u ∈ U and µ ∈ ∆(O)0, then

π(u, µ) 6= ∅.

Proof. As O is convex, it is connected. As O is nonempty and connected, and u is

continuous, u(O) ⊂ < is nonempty and connected. Therefore, u(mµ) >
∫

O
µ(dy) u(y) ∈

u(O), i.e., there exists x(u, µ) ∈ O such that u ◦ x(u, µ) =
∫

O
µ(dy) u(y). Therefore,

π(u, µ) 6= ∅ as mµ − x(u, µ) ∈ π(u, µ).

We also note that risk premia are determined by preferences over lotteries, i.e., they are

invariant with respect to increasing affine transformations of a von Neumann-Morgenstern

representation of the preference.

Remark 4.8. Suppose u ∈ U and v = a + bu, where a ∈ < and b ∈ <++. Then, v ∈ U
and π(u, µ) = π(v, µ) for every µ ∈ ∆(O)0.

Our second notion of comparative risk aversion labels a risk averse von Neumann-

Morgenstern utility u as more risk averse than a risk averse von Neumann-Morgenstern

utility v if a risk premium for v can never exceed a risk premium for u. In the light of

Remark 4.8, this amounts to comparing the risk aversion of the underlying preferences. In

order to formalize this notion, define the binary relation ≥∗ on 2X by: for all A,B ∈ 2X ,

A ≥∗ B ⇔ ¬y > x, ∀x ∈ A ∀y ∈ B

Definition 4.9. For all u, v ∈ U , u º2 v if and only if π(u, µ) ≥∗ π(v, µ) for every

µ ∈ ∆(O)0.

Our third notion of comparative risk aversion labels a risk averse von Neumann-

Morgenstern utility u as more risk averse than a risk averse von Neumann-Morgenstern

utility v if u is an increasing concave transformation of v. Given B ⊂ <, we say that

f : B → < is increasing if x, y ∈ B and x < y implies f(x) < f(y).

Definition 4.10. For all u, v ∈ U , u º3 v if and only if u = f ◦ v for some f : v(O) → <
that is increasing and concave.

Theorem 4.15 is the first substantive result of this paper. It shows that in a very

general setting, the three notions of comparative risk aversion listed above are equivalent.

We start with a definition and some preliminary lemmas.
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Definition 4.11. u : O → < and v : O → < are said to be ordinally congruent if, for all

x, y ∈ O, u(x) ≥ u(y) if and only if v(x) ≥ v(y).

Lemma 4.12. If

(a) u, v ∈ U are ordinally congruent, and

(b) x, y ∈ O such that v(x) 6= v(y),

then there exists a ∈ < and b ∈ <++ such that a + bv(x) = u(x) and a + bv(y) = u(y).

Define w ∈ U by w = a+bv. Then, A(x,w) = A(x, v) for every x ∈ O and π(w, µ) = π(v, µ)

for every µ ∈ ∆(O)0.

Proof. Set

a = u(x)− bv(x) and b =
u(x)− u(y)
v(x)− v(y)

As u and v are ordinally congruent by (a), we have b > 0. The other claims follow from

Remarks 4.4 and 4.8.

Lemma 4.13. If u, v ∈ U are ordinally congruent, then there exists a unique function

f : v(O) → < such that u = f ◦ v; moreover, f is increasing.

Proof. For r ∈ v(O), let f(r) = u ◦ v−1({r}); by ordinal congruence, u is constant over

v−1({r}). It follows that f ◦ v(x) = u ◦ v−1({v(x)}) = u(x) for every x ∈ O. It is routine

to show that f is unique and increasing on v(O).

Lemma 4.14. If

(a) O is connected,

(b) u : O → < is continuous and v : O → <, and

(c) f : v(O) → < is an increasing function such that u = f ◦ v,

then f is continuous.

Proof. Suppose f is discontinuous at v∗ ∈ v(O). Let A = {f(r) | r ∈ v(O)∩(−∞, v∗)} and

B = {f(r) | r ∈ v(O) ∩ (v∗,∞)}. If v∗ ∈ (inf v(O), sup v(O)), then A 6= ∅ 6= B and either

f(v∗) < inf B or f(v∗) > supA. If v∗ = inf v(O), then A = ∅, B 6= ∅ and f(v∗) < inf B. If

v∗ = sup v(O), then A 6= ∅, B = ∅ and f(v∗) > sup A. So, there can be two cases: either

f(v∗) < inf B and B 6= ∅, or f(v∗) > sup A and A 6= ∅. We show a contradiction in the

first case. A contradiction can be derived for the second case in analogous fashion.

As f(v∗) < inf B, there exists α ∈ < such that f(v∗) < α < inf B. Consider the

sets f ◦ v(O) ∩ (−∞, α) and f ◦ v(O) ∩ (α,∞). Clearly, these sets are disjoint. As f is

increasing, their union equals f ◦ v(O). Clearly, f(v∗) ∈ f ◦ v(O) ∩ (−∞, α). Moreover,

9



∅ 6= B ⊂ f ◦ v(O) ∩ (α,∞). Thus, these sets form a disconnection of f ◦ v(O) = u(O),

contradicting the facts that u is continuous and O is connected.

We are now ready to prove our first main result.

Theorem 4.15. If

(a) O is nonempty, convex and open in X,

(b) x + X+ ⊂ O for every x ∈ O, and

(c) u, v ∈ U are ordinally congruent,

then u º1 v ⇔ u º2 v ⇔ u º3 v.

Proof. We start with some general observations. First, by Lemma 4.2,
∫

O
µ(dy)u(y) and∫

O
µ(dy) v(y) exist for every µ ∈ ∆(O)0; moreover, u and v are risk averse. Secondly, by

Lemma 4.7, π(u, µ) 6= ∅ 6= π(v, µ) for µ ∈ ∆(O)0. Thirdly, as O is convex, it is connected.

(i) Suppose ¬u º2 v. Then, ¬π(u, µ) ≥∗ π(v, µ) for some µ ∈ ∆(O)0. This

means πv > πu for some πu ∈ π(u, µ) and πv ∈ π(v, µ). As u is risk averse, u(mµ) >∫
O

µ(dy) u(y) = u(mµ − πu); clearly, mµ 6= mµ − πu. Using Lemma 4.12, we assume

without loss of generality that v(mµ − πu) = u(mµ − πu). As µ ∈ ∆(O)0,

∫

O

µ(dy) v(y) = v(mµ − πv) < v(mµ − πu) = u(mµ − πu) =
∫

O

µ(dy) u(y)

where the inequality follows from Assumption 4.1 and the fact that v is increasing. It

follows that µ ∈ A(mµ − πu, u) and µ 6∈ A(mµ − πu, v). It follows that ¬u º1 v. Thus,

u º1 v implies u º2 v.

(ii) Suppose u º2 v. This means π(u, µ) ≥∗ π(v, µ) for every µ ∈ ∆(O)0. Let x ∈ O

and µ ∈ A(x, u). Let πu ∈ π(u, µ) and πv ∈ π(v, µ).

Suppose v(x) = v(mµ − πv) =
∫

O
µ(dy) v(y). Then, µ ∈ A(x, v).

Suppose v(x) 6= v(mµ−πv). Using Lemma 4.12, we assume without loss of generality

that v(x) = u(x) and v(mµ − πv) = u(mµ − πv).

Suppose u(mµ − πu) > u(mµ − πv) and there exists r ∈ X+ such that u(mµ − πu) =

u(mµ − πv + r). By definition,
∫

O
µ(dy)u(y) = u(mµ − πu) = u(mµ − πv + r). Thus,

πv ∈ π(v, µ) and πv − r ∈ π(u, µ). As πv > πv − r, we have ¬π(u, µ) ≥∗ π(v, µ), a

contradiction.

Suppose u(mµ − πu) > u(mµ − πv) and there does not exist r ∈ X+ such that

u(mµ − πu) = u(mµ − πv + r). By Assumption 4.1, A = {t ∈ <+ | u(mµ − πu) <

u(mµ−πv+te)} 6= ∅, and by hypothesis, 0 ∈ B = {t ∈ <+ | u(mµ−πu) > u(mµ−πv+te)}.
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Thus, A and B are nonempty, A ∩ B = ∅ and A ∪ B = <+. As u is continuous, A and B

are open in <+. Thus, A and B are a disconnection of <+, a contradiction.

Therefore, u(mµ−πu) ≤ u(mµ−πv), and it follows that v(x) = u(x) ≤ ∫
O

µ(dy)u(y) =

u(mµ−πu) ≤ u(mµ−πv) = v(mµ−πv) =
∫

O
µ(dy) v(y). Thus, µ ∈ A(x, v). Consequently,

A(x, u) ⊂ A(x, v) for every x ∈ O. It follows that u º1 v.

(iii) By Lemma 4.13, there exists a unique function f : v(O) → < such that u = f ◦v;

moreover, f is increasing. By Lemma 4.14, f is continuous, and therefore, B(v(O))/B(<)

measurable. Suppose u º3 v. It follows that f is concave.

Consider x ∈ O and µ ∈ A(x, u). By definition, µ ∈ ∆(O)0. It follows that mµ

exists, mµ ∈ O,
∫

O
µ(dy) u(y) exists and u is risk averse. By definition,

∫
O

µ(dy) f ◦v(y) =∫
O

µ(dy) u(y) ≥ u(x) = f ◦ v(x).

Suppose there exists v∗ ∈ < such that v(y) = v∗ µ-a.s. Then,

f

(∫

O

µ(dy) v(y)
)

= f(v∗) =
∫

O

µ(dy) f(v∗) =
∫

O

µ(dy) f ◦ v(y) ≥ f ◦ v(x)

As f is increasing, we have
∫

O
µ(dy) v(y) ≥ v(x). Thus, µ ∈ A(x, v).

Suppose there does not exist v∗ ∈ < such that v(y) = v∗ µ-a.s. As v is continuous and

O is connected, v(O) is a connected subset of <, i.e., v(O) is an interval. Let v̄ = sup v(O)

and v
¯

= inf v(O). Clearly,
∫

O
µ(dy) v(y) =

∫
v(O)

µ ◦ v−1(dz) z ≤ v̄. If v̄ 6∈ v(O), then

v̄ > v(y) for every y ∈ O and
∫

O
µ(dy) v(y) =

∫
v(O)

µ ◦ v−1(dz) z < v̄. If v̄ ∈ v(O)

and
∫

O
µ(dy) v(y) =

∫
v(O)

µ ◦ v−1(dz) z = v̄, then v = v̄ µ-a.s., a contradiction. Thus,∫
v(O)

µ ◦ v−1(dz) z < v̄. By an analogous argument,
∫

v(O)
µ ◦ v−1(dz) z > v

¯
. Thus,∫

v(O)
µ ◦ v−1(dz) z ∈ Int v(O). As u is bounded below, so is f . As f is concave, Theorem

2.6 implies

f

(∫

O

µ(dy) v(y)
)

= f

(∫

v(O)

µ ◦ v−1(dz) z

)
≥

∫

v(O)

µ ◦ v−1(dz) f(z)

=
∫

O

µ(dy) f ◦ v(y)

=
∫

O

µ(dy)u(y)

≥ f ◦ v(x)

As f is increasing,
∫

O
µ(dy) v(y) ≥ v(x), which implies µ ∈ A(x, v). It follows that u º1 v.

(iv) By Lemma 4.13, there exists a unique function f : v(O) → < such that u = f ◦ v;

moreover, f is increasing. By Lemma 4.14, f is continuous. Suppose ¬u º3 v. Thus, f is

not concave.
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Then, there exist v1, v2 ∈ v(O) and t ∈ (0, 1) such that f(tv1 + (1− t)v2) < tf(v1) +

(1−t)f(v2). As v(O) ⊂ < is connected, tv1+(1−t)v2 ∈ v(O); moreover, as f is continuous,

f ◦ v(O) is connected. Without loss of generality, suppose v1 < v2. As f is increasing,

f(v1) < f(v2). Thus, f(tv1 + (1− t)v2) < tf(v1) + (1− t)f(v2) < f(v2).

As tv1 + (1− t)v2 ∈ v(O) and v2 ∈ v(O), we have

[f(tv1 + (1− t)v2), f(v2)] ⊂ f ◦ v(O)

Consequently, there exists v∗ ∈ v(O) such that

f(tv1 + (1− t)v2) < f(v∗) < tf(v1) + (1− t)f(v2)

By definition, there exist x1, x2, y ∈ O such that v(x1) = v1, v(x2) = v2 and v(y) = v∗.

Thus,
u(y) = f ◦ v(y) = f(v∗) < tf(v1) + (1− t)f(v2)

= tf ◦ v(x1) + (1− t)f ◦ v(x2)

= tu(x1) + (1− t)u(x2)

As f is increasing, we have

tv(x1) + (1− t)v(x2) = tv1 + (1− t)v2 < v∗ = v(y)

Define µ ∈ ∆(O) by µ = tδx1 + (1 − t)δx2 , where δxi is the Dirac delta measure at xi.

Then,
∫

O
µ(dx)u(x) = tu(x1) + (1 − t)u(x2) > u(y). Consequently, µ ∈ A(y, u). Also,∫

O
µ(dx) v(x) = tv(x1) + (1 − t)v(x2) < v(y), i.e., µ 6∈ A(y, v). It follows that ¬u º1 v.

Thus, u º1 v implies u º3 v.

In Theorem 4.15 and the lemmas leading up to it, we have used the notion of ordinal

congruence. The following result formalizes in our setting the observation, Proposition 5

of Kihlstrom and Mirman (1974), that ordinal congruence is necessary in order to compare

the risk aversion of utility functions.

Theorem 4.16. If

(a) O is convex,

(b) x + X+ ⊂ O for every x ∈ O, and

(c) u, v ∈ U are not ordinally congruent,

then ¬u º1 v and ¬v º1 u.

Proof. As u and v are not ordinally congruent, there exist x, y ∈ O such that u(x) ≥ u(y)

and v(x) < v(y). Using (b) and (c), we may, without loss of generality, assume that
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u(x) > u(y) and v(x) < v(y). Consider µ = δx/2 + δy/2. Clearly, µ ∈ Av(x) and

µ 6∈ Au(x). Thus, ¬v º1 u. Similarly, µ 6∈ Av(y) and µ ∈ Au(y). Thus, ¬u º1 v.

5. Comparing risk aversion with differentiability

The fourth notion of comparative risk aversion, which is the most important from the

point of view of applications and computations, is in terms of the size of the Arrow-Pratt

coefficient of absolute risk aversion. As this notion involves differentiable utilities, it cannot

be defined in as general a setting as that of Section 4. However, the Arrow-Pratt coefficient

defined for X = < and the generalized measure of Duncan defined for X = <n can be

generalized to the setting where X is a Hilbert space with appropriate ordering structure.

Once this is done, the classical result can be re-formulated. We specialize Assumptions 2.3

and 4.1 by giving X and ≥ more specific forms.

Assumption 5.1. (X, 〈., .〉) is a real Hilbert space with X 6= {0}, inner product 〈., .〉, and

a Hilbert basis {bi | i ∈ I}.5 For x ∈ X, we say that x ≥ 0 if 〈x, bi〉 ≥ 0 for every i ∈ I; we

say that x > 0 if x ≥ 0 and x 6= 0. Let X+ = {x ∈ X | x > 0}. For x, y ∈ X, we say that

x ≥ y if x − y ≥ 0. Finally, there exists e ∈ X+ such that, for every x ∈ X, there exists

t ∈ <++ such that te > x.

Note that {bi | i ∈ I} ⊂ X+ as the family is orthonormal. Therefore, ‖bi‖ =

〈bi, bi〉1/2 = 1 for every i ∈ I. It is also trivial to check that ≥ is a partial order on

(X, 〈., .〉) that satisfies Assumption 4.1; the antisymmetry of ≥ follows immediately from

the fact that {bi | i ∈ I} is a total family in (X, 〈., .〉). Also, it is easily confirmed that

X+ ∪ {0} is a convex cone.

Consider a twice differentiable u ∈ U . The (Fréchet) derivative of u is a mapping

Du : O → L(X,<), where L(X,<) is the space of continuous linear real-valued functionals

on X. The second derivative of u is the derivative of Du, i.e., D2u : O → L(X,L(X,<)),

where L(X,L(X,<)) is the space of continuous linear maps from X to L(X,<). As X is

a Hilbert space, L(X,<) is isomorphic to X (Lang 1993, Theorem V.2.1). Thus, we may

set D2u : O → L(X, X).

We define the generalized Arrow-Pratt coefficient of absolute risk aversion of u ∈ U
by

au(x) =
−D2u(x)Du(x)
‖Du(x)‖2

In the case X = <, this formula reduces to the classical Arrow-Pratt coefficient. As

D2u(x) ∈ L(X, X) and Du(x) ∈ X, it follows that au(x) ∈ X.
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Definition 5.2. For all u, v ∈ U , u º4 v if and only if au(x) ≥ av(x) for every x ∈ O.

Consider u, v ∈ U that are ordinally congruent. By Lemma 4.13, there exists a unique

function f : v(O) → < such that u = f ◦ v; moreover, f is increasing. By Lemma 4.14, f

is continuous. We now establish some other regularity properties of f .

Lemma 5.3. If

(a) O ⊂ X is nonempty and open,

(b) x + X+ ⊂ O for every x ∈ O, and

(c) u, v ∈ U are twice differentiable and ordinally congruent,

then there exists a unique function f : v(O) → < such that u = f ◦ v; moreover, f is

increasing and twice differentiable.

Proof. By Lemma 4.13, there exists a unique function f : v(O) → < such that u = f ◦ v.

Moreover, f is increasing and by Lemma 4.14, f is continuous. We show that f is twice

differentiable.

Fix x ∈ O. As O is open, there exists t ∈ (0, 1] such that x − te ∈ O; otherwise,

x − e/n ∈ X − O for every n ∈ N , which implies x ∈ X − O as X − O is closed, a

contradiction. Define ē = te > 0. Let E = {y ∈ O | x − ē < y < x + ē}. Define

w : (0, 2) → < by w(r) = v(x− ē + rē). As ē > 0 and v is increasing, w is increasing. As

v is continuous, w is continuous. Moreover, (c) implies that w is twice differentiable. Let

w−1 be the function inverse of w. Clearly, w−1 is increasing, and by the inverse function

theorem, twice differentiable.

Also note that w((0, 2)) = v(E). Clearly, w((0, 2)) ⊂ v(E). Suppose there exists

r ∈ v(E)−w((0, 2)). Consider the sets w−1((−∞, r)) and w−1((r,∞)). Clearly, these sets

are nonempty and disjoint. As w is continuous, these sets are open subsets of (0, 2). As

r 6∈ w((0, 2)), we have (0, 2) ⊂ w−1((−∞, r)) ∪ w−1((r,∞)). Thus, (0, 2) is disconnected,

a contradiction.

Define φ : v(E) → < by φ(r) = u(x−ē+w−1(r)ē). Consider y ∈ E. Then, v(y) ∈ v(E)

and φ ◦ v(y) = u(x − ē + w−1 ◦ v(y)ē). As w((0, 2)) = v(E), there exists r ∈ (0, 2) such

that v(y) = w(r) = v(x− ē + rē). Consequently,

φ ◦ v(y) = u(x− ē + w−1 ◦ w(r)ē) = u(x− ē + rē) = u(y)

where the last equality follows from ordinal congruence of u and v and the fact that

v(y) = v(x − ē + rē). Thus, f coincides with φ on v(E). As u and w−1 are twice

differentiable, so is φ, and therefore, f .
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Lemma 5.4. If

(a) (X, 〈., .〉,≥) satisfies Assumption 5.1,

(b) O ⊂ X is nonempty and open,

(c) x + X+ ⊂ O for every x ∈ O, and

(d) u ∈ U is differentiable,

then Du(x) > 0 for every x ∈ O.

Proof. Let {bi | i ∈ I} be the Hilbert basis used to define ≥. Then, {bi | i ∈ I} ⊂ X+.

Consider x ∈ O, t ∈ (0, 1) and i ∈ I. Using (c), x + bi ∈ O. As bi > 0 and ≥ is a partial

order, tbi > 0. Using (c), x+ tbi ∈ O. As u ∈ U , u(x+ bi) > u(x) and u is strictly concave.

Therefore, u(x + tbi) − u(x) > t[u(x + bi) − u(x)] for every t ∈ (0, 1). Therefore, (b), (d)

and the fact that ‖bi‖ = 1 imply

t[u(x + bi)− u(x)] < u(x + tbi)− u(x) = t〈Du(x), bi〉+ t‖bi‖r(t‖bi‖) = t〈Du(x), bi〉+ tr(t)

where limt↓0 r(t) = 0. Dividing by t and taking limits as t ↓ 0, we have 〈Du(x), bi〉 ≥
u(x + bi) − u(x) > 0. As this holds for every i ∈ I, (a) implies Du(x) ≥ 0. Clearly,

Du(x) 6= 0. Thus, Du(x) > 0.

Theorem 5.5. If

(a) (X, 〈., .〉,≥) satisfies Assumption 5.1,

(b) O ⊂ X is nonempty, convex and open in X,

(c) x + X+ ⊂ O for every x ∈ O, and

(d) u, v ∈ U are twice differentiable and ordinally congruent,

then u º3 v ⇔ u º4 v.

Proof. As the conditions of Lemma 5.3 are satisfied, there exists a unique function f :

v(O) → < such that u = f ◦ v. Moreover, f is increasing and twice differentiable.

Using the chain rule, we have Du(x) = Df(v(x)) ◦Dv(x) for every x ∈ O, i.e.,

〈Du(x), y〉 = Df(v(x))〈Dv(x), y〉 = 〈Df(v(x))Dv(x), y〉

for every x ∈ O and y ∈ X. Thus, Du(x) = Df(v(x))Dv(x) for every x ∈ O. By Lemma

5.4, Du(x) > 0 and Dv(x) > 0 for every x ∈ O. Thus, Df(v(x)) > 0 for every x ∈ O. By

an analogous argument,

D[Df(v(x))] = D[Df ◦ v(x)] = D2f(v(x))Dv(x)
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Using the product formula to differentiate the identity Du(x) = Df(v(x))Dv(x), we have

D2u(x)y = 〈D[Df(v(x))], y〉Dv(x) + Df(v(x))D2v(x)y

= 〈D2f(v(x))Dv(x), y〉Dv(x) + Df(v(x))D2v(x)y

= D2f(v(x))〈Dv(x), y〉Dv(x) + Df(v(x))D2v(x)y

for every y ∈ X. By Lemma 5.4, ‖Du(x)‖ > 0 and ‖Dv(x)‖ > 0. Setting y = Du(x),

dividing both sides by ‖Du(x)‖2, and using the formula Du(x) = Df(v(x))Dv(x), we have

D2u(x)Du(x)
‖Du(x)‖2 =

D2f(v(x))Df(v(x))‖Dv(x)‖2Dv(x)
Df(v(x))2‖Dv(x)‖2 +

Df(v(x))2D2v(x)Dv(x)
Df(v(x))2‖Dv(x)‖2

which simplifies to

D2u(x)Du(x)
‖Du(x)‖2 =

D2f(v(x))Dv(x)
Df(v(x))

+
D2v(x)Dv(x)
‖Dv(x)‖2

Re-arranging and using the definition of the generalized Arrow-Pratt coefficient, we have

av(x)− au(x) =
D2f(v(x))Dv(x)

Df(v(x))
(5.6)

Suppose u, v ∈ U and u º3 v. By definition, there exists an increasing and concave

function f : v(O) → < such that u = f ◦ v. By Lemma 5.3, f is twice differentiable. By

the above argument, Df > 0. By Lemma 5.4, Dv(x) > 0. As f is concave and twice

differentiable, D2f ≤ 0. Thus, (5.6) implies that av(x) − au(x) ≤ 0 for every x ∈ O, i.e.,

u º4 v.

Conversely, suppose u º4 v. Then, av(x) − au(x) ≤ 0 for every x ∈ O. By Lemma

5.3, there exists a unique function f : v(O) → < such that u = f ◦ v, and f is increasing

and twice differentiable. As Df > 0 and Dv > 0, it follows from (5.6) that D2f(v(x)) ≤ 0

for every x ∈ O. Thus, f is concave on v(O) and u º3 v.
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Appendix

Proof of Lemma 2.1. By hypothesis, {x} and IntC are nonempty and disjoint sets.

Theorem V.2.1 in Dunford and Schwartz (1988) implies that IntC is convex and C ⊂ IntC.

By the separating hyperplane theorem (Dunford and Schwartz 1988, Theorem V.2.8), there

exists a non-zero continuous linear functional p : L → < such that p(x) ≥ p(y) for every

y ∈ IntC. Consider y ∈ C − IntC. As C ⊂ IntC, we have y ∈ IntC; consequently, there

exists a net (yi)i∈I ⊂ IntC converging to y. As yi ∈ IntC, we have p(x) ≥ p(yi). As

limi yi = y and p is continuous, we have p(x) ≥ p(y), as required.

Proof of Lemma 2.2. (A) Given the product topology, L×< is a topological vector space.

(a) and (b) imply that H = {(y, z) ∈ C×< | z ≤ u(y)} is a convex set. (x, u(x)) ∈ H−IntH

as (x, u(x) + 1/n) ∈ (C × <) −H for every n ∈ N . As (b) implies that (x,−1) ∈ IntH,

we have IntH 6= ∅.
Lemma 2.1 implies that there exists a non-zero continuous linear functional p : L×< →

< and γ ∈ < such that p(x, u(x)) = γ ≥ p(y, z) for every (y, z) ∈ H. Linearity of p implies

that p(y, z) = p(y, 0)+ p(0, z) for every (y, z) ∈ L×<. Define α : L → < by α(y) = p(y, 0)

for y ∈ L, and let β ∈ < be such that p(0, z) = βz for z ∈ <. Clearly, α is a continuous

linear functional on L. It follows from the definitions of α and β that

α(x) + βu(x) = γ ≥ α(y) + βz

for every (y, z) ∈ H. In particular, γ ≥ α(y) + βu(y) for every y ∈ C.

Suppose β = 0. As p is non-zero, α is non-zero and α(x) = γ ≥ α(y) for every

y ∈ C − {x}. As α is non-zero, there exists x′ ∈ L such that α(x′) > 0. Consequently,

x′ 6= 0. By (c), x is an interior point of C. Therefore, x is an internal point of C (Dunford

and Schwartz 1988, Theorem V.2.1). Then there exists r > 0 such that x+ rx′ ∈ C −{x}.
Therefore, γ ≥ α(x + rx′) = α(x) + rα(x′) > α(x) = γ, which is a contradiction.

Suppose β < 0. Then (x,−n) ∈ H for every n ∈ N . As β < 0, there exists N ∈ N
such that −βN > γ − α(x). Thus, α(x)− βN > γ, which contradicts (x,−N) ∈ H.

Thus, β > 0. Set a = γ/β and b = −α/β. The result follows.

(B) Suppose there exists y ∈ C−{x} such that a+ b(y) = u(y). Then, x/2+ y/2 ∈ C

and a+ b(x/2+y/2) = [a+ b(x)]/2+ [a+ b(y)]/2 = u(x)/2+u(y)/2 < u(x/2+y/2), which

is a contradiction.
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Remark A.1. Consider a probability space (Ω,F , P ) and an F/B(X) measurable func-

tion x : Ω → X. Set O = x(Ω). If the identity function I : O → X is Pettis integrable

over O with respect to the probability space (O,B(O), P ◦x−1), then x is Pettis integrable

over Ω with respect to (Ω,F , P ).

Proof. Suppose I : O → X is Pettis integrable over O with respect to the probability

space (O,B(O), P ◦ x−1). Consider x∗ ∈ X∗. By definition, x∗ ◦ I : O → < is B(O)/B(<)

measurable. Therefore, x∗ ◦ x = x∗ ◦ I ◦ x is F/B(<) measurable. By definition,
∫

O
P ◦

x−1(dz) x∗(z) exists. Consequently,
∫
Ω

P (dω)x∗ ◦ x(ω) =
∫

O
P ◦ x−1(dz)x∗(z) exists.

Finally, there exists xO ∈ X such that x∗(xO) =
∫

O
P ◦x−1(dz)x∗(z) =

∫
Ω

P (dω) x∗ ◦x(ω)

for every x∗ ∈ X∗. Set xΩ = xO. It follows that x is Pettis integrable over Ω.

Remark A.2. Let Y be a separable Banach space with closed unit sphere S. Let X = Y ∗

and endow it with the Y topology. Let O be the closed unit sphere of X, i.e., O = {x ∈
X | supy∈S |x(y)| ≤ 1}. We show that the identity function I : O → X is Pettis integrable

with respect to the probability space (O,B(O), µ).

Proof. It is easily confirmed that O is convex. By Alaoglu’s theorem (Dunford and

Schwartz 1988, Theorem V.4.2), O is compact. As Y is separable, O is metrizable (Dunford

and Schwartz 1988, Theorem V.5.1). Consequently, O is separable.

Define the evaluation mapping e : X × Y → < by e(x, y) = x(y). Clearly, {e(., y) |
y ∈ Y } is a total space of linear functionals on X. As this is the space of linear functionals

used to define the Y topology on X, {e(., y) | y ∈ Y } is the set of continuous linear

functionals on X (Dunford and Schwartz 1988, Theorem V.3.9). Consider y ∈ Y . As

e(., y) is continuous, e(., y) is B(X)/B(<) measurable. Also, I is B(O)/B(X) measurable.

Therefore, e(., y) ◦ I is B(O)/B(<) measurable. Moreover, I and e(., y) are continuous. As

O is compact, e(., y) ◦ I is bounded. Therefore,
∫

O
µ(dz) e(., y) ◦ I(z) =

∫
O

µ(dz) e(z, y)

exists.

Finally, we show that there exists x ∈ O such that e(x, .) =
∫

O
µ(dz) e(z, .). Define

F : O → <Y by F (x) = e(x, .), where <Y is given the product topology. Thus, our problem

is to show that F (x) =
∫

O
µ(dz) e(z, .) for some x ∈ O.

As F is linear and continuous, F (O) is convex and compact. As < is Hausdorff, so

is <Y , and therefore F (O) is closed. First, consider µ ∈ ∆(O) with suppµ < ∞. It

follows that
∫

O
µ(dz) e(z, .) = e(

∫
O

µ(dz) z, .). As O is convex,
∫

O
µ(dz) z ∈ O. Thus,∫

O
µ(dz) e(z, .) = F (

∫
O

µ(dz) z) ∈ F (O). Now consider an arbitrary µ ∈ ∆(O). Endow

∆(O) with the weak∗ topology. As O is separable metric, {µ ∈ ∆(O) | supp µ < ∞}
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is dense in ∆(O) (Parthasarathy 1967, Theorem II.6.3). It follows that there exists a

net (µj)j∈J ⊂ ∆(O) such that suppµj < ∞ for each j ∈ J and limj µj = µ. By the

definition of weak∗ convergence,
∫

O
µ(dz) e(z, .) = limj

∫
O

µj(dz) e(z, .). By the above

argument,
∫

O
µj(dz) e(z, .) ∈ F (O) for every j ∈ J . As F (O) is closed,

∫
O

µ(dz) e(z, .) =

limj

∫
O

µj(dz) e(z, .) ∈ F (O).

Proof of Theorem 2.6. (A) Let u
¯
∈ < be a lower bound for u(O). Define v : O → <

by v(y) = u(y) − u
¯
. Clearly, v is concave, B(O)/B(<) measurable and v(y) ≥ 0 for every

y ∈ O. Clearly, it suffices to show that (A) and (B) hold for v instead of u.

Let
∫

O
µ(dy) y = x. Assumptions (a), (b) and (c) ensure that the assumptions of

Lemma 2.2 are satisfied. Applying Lemma 2.2, there exists a ∈ < and x∗ ∈ X∗ such that

a + x∗(x) = v(x) and a + x∗(y) ≥ v(y) for y ∈ O − {x}. As v is B(O)/B(<) measurable,

and a + x∗(.) ≥ v(.) ≥ 0, and
∫

O
µ(dy) [a + x∗(y)] = a +

∫
O

µ(dy) x∗(y) exists by (b), it

follows that
∫

O
µ(dy) v(y) exists. It follows that

v(x) = a + x∗(x) = a +
∫

O

µ(dy)x∗(y) =
∫

O

µ(dy) [a + x∗(y)] ≥
∫

O

µ(dy) v(y)

The second equality follows from (b).

(B) As µ is non-degenerate, there exists B ∈ B(O) such that µ(B) ∈ (0, 1). Without

loss of generality, let x ∈ O−B. By Lemma 2.2(B), a + x∗(y) > u(y) for every y ∈ B. As

µ(B) > 0, we have

aµ(B) +
∫

B

µ(dy) x∗(y) =
∫

B

µ(dy) [a + x∗(y)] >

∫

B

µ(dy) v(y)

and

aµ(O −B) +
∫

O−B

µ(dy)x∗(y) =
∫

O−B

µ(dy) [a + x∗(y)] ≥
∫

O−B

µ(dy) v(y)

Adding these inequalities, we have v(x) = a + x∗(x) = a +
∫

O
µ(dy)x∗(y) >

∫
O

µ(dy) v(y).

The second equality follows from (b).
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Notes

1. A distinct line of research (Grant, Kajii and Polak 1992a and 1992b, Spence and

Zeckhauser 1972) studies the relationship between multivariate risk (lotteries over com-

modity bundles) and univariate risks (lotteries over wealth) when the two are linked by

a budget constraint. It considers questions such as: In what ways can preferences over

multivariate lotteries generate preferences over univariate lotteries? How do the proper-

ties of preferences in the multivariate setting map to the properties of preferences in the

univariate setting? What can be inferred about preferences in the multivariate setting if

we know the properties of preferences in the univariate setting?

2. For instance, the Wiener measure on the sample space of continuous real-valued

functions defined on the non-negative real numbers results in the coordinate process be-

coming the Wiener process. This process is the building-block for geometric Brownian

motion, a process routinely used to model price movements in the theory of asset-pricing.

Itô and McKean (1965) is a classic reference for the mathematics of diffusions. For an

introduction to the economic applications, see Duffie (1988).

3. See Pettis (1938) for the original statement of the theory. We are using a less

restrictive version of the original definition.

4. For other general variants of this inequality, see for instance, Perlman (1974).

5. See Lang (1993) for details. Existence of a Hilbert basis follows from Corollary

V.1.7 in Lang (1993).
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