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Abstract

This paper models interaction between groups of agents by means of a graph

where each node represents a group of agents and an arc represents bilateral

interaction. It departs from the standard Katz-Shapiro framework by assuming

that network benefits are restricted only amongst groups of linked agents. It

shows that even if rival firms engage in Bertrand competition, this form of

network externalities permits strong market segmentation in which firms divide up

the market and earn positive profits.
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1 Introduction

It has long been known that some goods and services (for example, telecom-

munications, computer software and hardware) generate network effects or

externalities. The seminal paper by Katz and Shapiro (1985) defines a net-

work effect to exist when the utility that a user derives from consuming

a product depends on the number of other agents who consume either the

same brand of the product, or another brand which is compatible. This way

of modelling of the network effect is found throughout the large literature

that has developed.1 While this is reasonable in many contexts, we feel that

in other instances it overlooks the fact that such positive externalities arise

from the specific patterns of interaction between groups of users.

The examples we have in mind are primarily of software packages with

specific functions such as word processing, accounting, data analysis and so

on. The use of such packages have local network effects. Thus the utility to a

user (say, a researcher in a University) of a word processing or data analysis

package depends at least partly on the number of her research collaborators

who use the same package, rather than on the total number of users of the

package. A main advantage to two collaborators using the same package is

sharing files. In many of these markets, there is a degree of incompatibility

between brands. Two users using incompatible brands find it difficult if not

impossible to share files; a program written on one software package cannot

be read, or worked on, using a competing brand. Patterns of interaction and

the generation of such local network effects can be observed in other kinds of

1There is by now a large literature analyzing important issues in markets subject to network effects.

See, for instance Katz and Shapiro (1985, 1986), Farrell and Saloner (1985, 1986), Economides and Salop

(1992), Farrell and Katz (2000), Matutes and Regibeau (1992), Choi (1994), Ellison and Fudenberg (2000),

Waldman (1993). Economides (1996) provides an insightful overview.
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economic activity as well. For example, in an environment where back office

activities are outsourced, firms which manage outsourcing operations benefit

from having systems and software compatible with clients’ software.

We use the formal network structure proposed in the important recent pa-

per of Jackson and Wolinsky (1996) to model the interaction between groups

of users. In particular, the set of all consumers is partitioned into different

groups or nodes, and two nodes are connected to each other if they “interact”2.

Our main interest is in analysing whether the precise pattern of interactions

- that is, the specific network structure- has any influence on market out-

comes. For instance, suppose the overall “market” is the academic market

for software. Does the fact that economists typically do not collaborate with

physicists (that is, economists are not “linked” to physicists) matter in this

market?

Since our model is motivated by examples such as software packages, ca-

pacity constraints are unimportant. It seems natural to assume that firms

have unlimited capacity, and hence compete in prices. If firms produce com-

peting, incompatible brands of the same intrinsic quality, and have the same

constant marginal cost of production, existing models of network externali-

ties would yield the Bertrand zero profit outcome. This is so for the Katz

and Shapiro (1985) model as well, if it is modified to analyze price, rather

than quantity competition. The main result in this paper is that if network

effects are generated from patterns of interaction among users, then there

exist outcomes in which firms do make positive profits, and there is market

segmentation in the sense that rival firms divide or partition the overall mar-

2Although this kind of modelling has not been used so far in the literature on network externalities, the

use of such network structures in other areas of economics is becoming increasingly popular. Dutta and

Jackson (2003) contains several interesting papers in this genre.
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ket into separate segments, with each firm selling to different segments. This

accords well with casual observation, which suggests positive profit outcomes

arise even when firms compete in prices and capacity is essentially unlimited.

Furthermore, we show that the graph (or interaction) structure graph (or

interaction) structure matters; for some graphs, market segmentation can

be ruled out in equilibrium. Thus, one way of interpreting our results is to

say that there are interaction structures which convert the industry into a

differentiated goods industry. However, there are other interaction structures

- for instance, the complete graph where all users are linked to each other

- where the goods remain homogeneous, and so firms do not earn positive

profits. The discussion also shows that when positive profit equilibria exist, if

firms could choose whether or not to make their brands mutually compatible,

they would choose not to do so.

Recently, work on intermediation in two-sided markets (for example, mar-

kets for matchmaking services)has begun to analyze the consequences of the

network benefit that one side of the market confers on the other.3 The ex-

amples we cite show that patterns of interaction between groups of users can

be more general. In this paper we make a beginning in attempting to under-

stand how such interaction, and local network effects, affect market outcomes

under oligopoly.

2 A Model of Network Externalities

Our model of network externalities in the context of a partial equilibrium

duopoly has similarities to that of Katz and Shapiro (1985). A major differ-

ence is in the way in which we model network externalities. Another difference

3Armstrong (2002) provides a very interesting survey.
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is that in our model firms compete in prices, in contrast to Katz and Shapiro

(1985) who assumed that firms behaved a la Cournot.

Consumers

Consumers are partitioned into groups, and each group “interacts” with

some but not necessarily all groups. For instance, consider the set of all

faculty members in a university. Each department then constitutes a group.

Economists may collaborate with political scientists and mathematicians, but

perhaps not with physicists or other scientists. Similarly, members of the

science departments may interact with each other, but not with sociologists.

The pattern of such interactions is modeled as an undirected graph or network

(I, g) where I is a set of n nodes and g ⊂ I× I is a set of arcs. Each group of

consumers is located at a different node i ∈ I, and ij ∈ g if consumers located

at node i interact with consumers located at j. We assume that consumers

within each group interact with each other and that if some consumers at

node i interact with some consumers at j, then all consumers located at i

interact with all consumers at j.4

We will say that the network (I, g) is complete if g = {ij|ij ∈ I×I}. That

is, all groups interact with all other groups in a complete network - this would

correspond to the original Katz-Shapiro model of network externalities.

For each node i, let L(i) = {j ∈ I|ij ∈ g}. That is, L(i) is the set of nodes

that are linked to node i.

Let αi denote the measure of consumers located at node i.5 Each consumer

wishes to consume at most one unit of a good. There are two brands of the

4This is without loss of generality since we can define the set of nodes appropriately in order to represent

any pattern of interaction.
5Any single consumer has zero measure.
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good - for example, different types of software. The two brands differ in

inessential ways in the sense that each brand is functionally identical as far

as consumers are concerned. Let ri denote the basic willingness to pay for

the good of a consumer who is located at node i. However, the total utility

or surplus that a consumer gets from a particular brand of the good also

depends on the number of other consumers with whom she interacts and who

consume the same brand. Let pj be the price of a unit of brand j, and αsj be

the measure of consumers at node s who consume brand j. Then the utility

of a consumer at node i from buying a unit of brand j is

ui(j, pj) = ri − pj + αij +
∑

s∈L(i)
αsj.

So, by consuming brand j, a consumer at node i gets a gross benefit ri

and a network benefit of αij +
∑

s∈L(i)
αsj. We will refer to pj − αij − ∑

s∈L(i)
αsj

as the hedonic price of brand j at node i.

Given any vector of prices, each consumer purchases the brand whose

hedonic price is lower or abstains from buying either brand if both hedonic

prices exceed her basic willingness to pay. Of course, each consumer has to

have some expectation about other consumers’ consumption decisions in order

to estimate the network benefits. Following Katz and Shapiro(1985), we will

assume that expectations are fufilled in equilibrium. We elaborate on this

shortly.

Allocations

An allocation describes the pattern of consumption at each node corre-

sponding to each vector of prices. More formally,

Definition 1 An allocation a is a function a : <2
+ → <2n

+ , such that for all

(p1, p2) and for all i ∈ I, ai1(p1, p2) + ai2(p1, p2) ≤ αi.
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Here, aij(p1, p2) is the amount of brand j consumed at node i corresponding

to prices (p1, p2).

Consumers’ decisions about which brand to purchase will determine which

allocation is “observed” in the market. Since such allocations are the outcome

of utility-maximising behaviour, it makes sense to impose some restrictions

on “permissible” allocations.

Definition 2 Let a be an allocation. Choose any non-negative prices (p1, p2),

and any node i ∈ I. Then, a satisfies

(i) Individual Rationality if for j = 1, 2, aij(p1, p2) > 0 implies that pj −
aij(p1, p2)− ∑

s∈L(i) asj(p1, p2) ≤ ri

(ii) Incentive Compatibility if for j = 1, 2, aij(p1, p2) > 0 implies that pj −
aij(p1, p2)−∑

s∈L(i) asj(p1, p2) ≤ pk−aik(p1, p2)−∑
s∈L(i) ask(p1, p2) where

k 6= j.

Individual Rationality expresses the requirement that consumers will not

purchase any commodity whose hedonic price exceeds their basic willingness

to pay, while Incentive Compatibility incorporates the idea that consumers

purchase the good with the lower hedonic price.

Throughout this paper, we assume that all allocations satisfy Incentive

Compatibility and Individual Rationality. These are minimal requirements

which arise straightaway from utility-maximising behaviour. Since the pat-

tern of consumption also depends on consumers’ expectations, it may be

possible to justify or rationalise allocations which satisfy these restrictions,

but are nevertheless non-intuitive simply because of the self-fulfilling nature

of expectations. Suppose, for instance that “initial” prices of the two brands

are p1 and p2. Now, let there be an increase in the price of brand 1, with p2
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remaining constant. If all consumers now expect everyone to switch to brand

1, then this may turn out to be self-fulfilling because the network externali-

ties associated with brand 1 are now much larger and so the hedonic price of

brand 1 is correspondingly lower at all nodes. The following assumption is

imposed to bring about some regularity on how the pattern of consumption

changes with changes in prices.

Assumption 1: An allocation a is non-perverse in prices if for all i ∈ I and

j = 1, 2, aij(pj, pk) is non-increasing in pj and non-decreasing in pk.

By itself, Assumption 1 imposes a very weak restriction on how allocations

change with respect to a change in prices. In particular, Assumption 1 still

allows for allocations which seem somewhat counterintuitive. Consider, for

example, a network structure in which nodes i and j are linked, and such that

at prices (p1, p2), all consumers at node i are consuming say brand 1 because

the hedonic price of brand 1 is smaller than the hedonic price of brand 2 by

αi. Suppose there is an arbitrarily small reduction in the price of p2. Then,

Assumption 1 allows for the possibility that all consumers at node i will

switch brands and consume only brand 2. Of course, if all consumers expect

this to happen, then the self-fulfilling nature of expectations guarantees that

the allocation will satisfy Incentive Compatibility and Assumption 1. In order

to rule out such changes, we impose the following assumption.

Assumption 2: For every i ∈ I, the component ai of an allocation a is

continuous except possibly at any (p1, p2) where the hedonic prices are equal.

Definition 3 An allocation is admissible if it satisfies Assumptions 1 and 2.

Since an individual’s net utility depends on the actions of other consumers,

the optimal decisions of consumers may depend on whether consumers can
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coordinate their actions. Consider, for example, a situation where node i is

not linked to any other node, p1 − αi < ri < p1 < p2. Then, consumers at

node i can derive some net utility if all consumers consume brand 1. On

the other hand, no consumer on her own will want to consume either brand.

In one subsequent result, we will assume that consumers at each node can

coordinate their actions when this is mutually profitable.

Assumption C: At any node i and prices (p1, p2),if minj∈{1,2}(pj − αi −
∑

s∈L(i)
asj(p1, p2)) < ri, then ai1(p1, p2) + ai2(p1, p2) = αi.

Assumption C states that if consumers at any node can coordinate their

consumption decisions and attain strictly positive utility, then no consumer

will abstain from consumption.

Firms

There are two firms, each producing a different brand. For expositional

purposes, let brand j refer to output produced by firm j, j = 1, 2. For

simplicity, we assume that firms have zero cost of production.

Both firms anticipate the same allocation, and choose prices simultane-

ously to maximise profits. Given any allocation a, firm j’s profit correspond-

ing to prices (pi, pj) is

πj(pi, pj; a) = pj

∑

i∈I

aij(pi, pj)

Equilibrium

An equilibrium will be a set of prices (p1, p2) and an admissible alloca-

tion such that each firm j maximises profit given the other firm’s price and

the allocation rule, while the allocation a satisfies individual rationality and

incentive compatibility. Notice that the restrictions on a ensure that con-

sumers’ expectations are fulfilled in equilibrium.
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Definition 4 A vector (p∗1, p
∗
2, a

∗) constitutes an equilibrium if

(i) The allocation a∗ is admissible, and satisfies Individual Rationality and

Incentive Compatibility

(ii) For each i = 1, 2, πi(p
∗
i , p

∗
j ; a

∗) ≥ πi(pi, p
∗
j ; a

∗) for all pi.

We first show that an equilibrium always exists.

Theorem 1 For all graphs g, the vector (p∗1, p
∗
2, a

∗) is an equilibrium where

p∗1 = p∗2 = 0 and a∗ is an admissible allocation with a∗i1(p1, p2) = a∗i2(p1, p2) =

αi

2 for each i ∈ I whenever p1 = p2.

Proof: Consider any node i. Since p∗1 = p∗2, and the allocation divides

consumers equally between the two brands, the two hedonic prices must be

equal at each node. Since the hedonic prices are also negative, the allocation

satisfies incentive compatibility and individual rationality.

So, we only need to check that both firms are maximising profits. Notice

that for each firm i, πi(p
∗
1, p

∗
2; a

∗) = 0. Clearly, neither firm has an incentive

to lower price. Suppose firm i raises price to pi > 0. Since a∗ is admissible,

a∗si(pi, p
∗
j) ≤ a∗si(p

∗
i , p

∗
j) at each node s ∈ I. But, this implies that the hedonic

price of brand i is higher than that of brand j at each node. From incentive

compatibility, a∗si(pi, p
∗
j) = 0 at each node s. Hence, firm i does not gain by

increasing price.

This completes the proof that (p∗1, p
∗
2, a

∗) is an equilibrium.

Notice that in the equilibrium described in Theorem 1, the two hedonic

prices are equal at each node. The pair of prices remain in equilibrium

because neither firm wants to deviate by quoting a lower price since the

“current” level is already zero. The lemma below shows that this is the only
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case when hedonic prices can be equal at any node. That is, if hedonic prices

are equal at any node i, and brand j is consumed at this node, then the price

of brand k (k 6= j) must be zero - the latter condition ensures that firm k

has no incentive to lower price any further in order to capture a larger share

of the market.

Lemma 1 Suppose (p1, p2, a) is an equilibrium. Then, at all nodes i ∈ I, if

p1− ai1(p1, p2)− ∑
s∈L(i)

as1(p1, p2) = p2− ai2(p1, p2)− ∑
s∈L(i)

as2(p1, p2), then for

j = 1, 2 and k 6= j, either aij(p1, p2) = 0 or pk = 0.

Proof. Suppose (p1, p2, a) is an equilibrium, and the two hedonic prices are

equal at node i. Without loss of generality, let ai1(p1, p2) > 0 and p2 >

0. Suppose firm 2 lowers its price to p′2 = p2 − ε. Since a is admissible,

ai1(p1, p
′
2) ≤ ai1(p1, p2) and ai2(p1, p

′
2) ≥ ai2(p1, p2). Since p′2 < p2, the hedonic

price of brand 2 is lower than that of brand 1 at node i for all permissible

values of ai1(p1, p
′
2). Since a satisfies incentive compatibility, it must be the

case that ai1(p1, p2) = 0 and ai2(p1, p
′
2) = αi.

6 So, firm 2 can capture the entire

market at node i by lowering price. So, this increases profit by ai1(p1, p2)(p2−
ε). The loss of profit at other nodes can be made arbitrarily small by choosing

an appropriately small ε.

Hence, firm 2 cannot be maximising profit at (p1, p2). This contradiction

establishes the result.

3 Market Segmentation

Both firms had positive market share at each node in the equilibrium con-

structed in Theorem 1. However, this was not surprising since neither firm
6The latter follows because consumers at node i were purchasing at prices (p1, p2), and so had non-negative

utility. Hence, they must be purchasing at price p′2 since the hedonic price of brand 2 is now lower.
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had any incentive to cut into the other firm’s market share as prices were

driven down to zero. The purpose of this section is to show that some net-

work structure(s) representing interactions between consumer groups may

result in segmented markets with both firms earning strictly positive prof-

its although firms are competing in prices. A formal definition of market

segmentation follows.

Definition 5 : An equilibrium (p1, p2, a) exhibits strong market segmentation

if there are nodes i and j such that ai1(p1, p2) = αi, aj2(p1, p2) = αj and pk > 0

for k = 1, 2.

Proposition 1 : There exists a network with strong market segmentation.

Proof: Consider a network (I, g) where I = {1, 2, 3} and g = {12, 13}. That

is, there are three consumer groups with group one connected to groups two

and three. Note that nodes 2 and 3 are not connected. The description of

the “market” is completed with the following specification and population

shares and basic willingness to pay for each node.

(i) r1 = 10, α1 = 1.

(ii) r2 = 60, α2 = 19.

(iii) r3 = 5, α3 = 80.

Consider an admissible allocation a∗ which satisfies the following restric-

tions.

(i) a∗11(p1, p2) = α1 if p1 − α1 − α3 ≤ min(p2 − α2, r1).

(ii) a∗22(p1, p2) = α2 if p2 − α2 ≤ min(p1 − α1, r2).

(iii) a∗31(p1, p2) = α3 if p1−α1−α3 ≤ min(p2, r3) or if p1−α3 ≤ min(p2−α1, r3).
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Consider prices p∗1 = 86, p∗2 = 79. Then, we claim that (p∗1, p
∗
2, a

∗) is an

equilibrium with strong market segmentation.

To check our claim, we first observe that a∗31(p
∗
1, p

∗
2) = α3, a∗22(p

∗
1, p

∗
2) = α2,

and a∗11(p
∗
1, p

∗
2) = α1. It is easy to check that a∗ satisfies individual rationality

and incentive compatibility.

Now, we show that neither firm i has any incentive to deviate from p∗i .

First, if firm 1 raises its price, then consumers at node 3 will drop out of the

market. So, firm 1 will not raise price. Next, in order to cut into firm 2’s

market share at node 2, firm 1 will have to reduce price to just below 61 from

(ii) above. But, then firm 1’s profit will be at most 6100, whereas its current

profit is 6966. So, firm 1 has no incentive to change price if p∗2 = 79.

Finally, we check firm 2’s incentives. It cannot raise price above 79 because

consumers at node 2 will then drop out of the market. From (i) above, it

would have to lower price to just below 24 in order to attract consumers at

node 1. But, this gives it a profit of at most 480. It can capture the entire

market if it charges a price less than 7. But, that would yield a profit of less

than 700, whereas its current profit is 1501.

So, neither firm has any incentive to deviate from p∗i . Hence, (p∗1, p
∗
2, a

∗) is

indeed an equilibrium.

How is it that both firms are earning positive profits despite being Bertrand

duopolists? If prices are strictly positive, then lemma 1 implies that at each

node, all consumers buy only one brand.7 In particular, the incentive com-

patibility constraint cannot be binding. So, each firm i will have to lower its

price by an amount εi strictly bounded away from zero in order to eat into its

rival’s market share. So, strong market segmentation can be sustained if εi is

sufficiently large so as to make the revenue loss from its existing customers

7In general, consumers at some node may also refrain from buying either brand.
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larger than the gain in revenue from new customers.

There is nothing pathological about the network structure used in the

proof of the previous proposition. So, this suggests that market segmentation

of this kind can arise quite generally, although we have not been able to derive

any sufficient conditions.

In the remainder of this section, we show that there are types of network

structures which cannot give rise to market segmentation. The first such

structure is when all customers are linked to each other, while the second is

when the network structure exhibits a specific type of symmetry: nodes can

be ordered so that node i is connected only to nodes i− 1 and i + 1,8 and all

nodes have the same measure of consumers (say) α, while consumers at all

nodes also derive the same gross benefit, say r.

Theorem 2 : If (I, g) is a complete network, then there cannot be strong

market segmentation.

Proof: Suppose to the contrary that an equilibrium with strong market

segmentation exists. Let (p1, p2) be the equilibrium prices. Since (I, g) is

complete, the hedonic price of each brand is the same at all nodes. So, let

(h1, h2) denote the hedonic prices corresponding to (p1, p2). Consider any

node i where consumers buy brand 1. Incentive compatibility requires that

h1 ≤ h2. Similarly, by considering any node j where consumers buy only

brand 2, we get h2 ≤ h1.

Hence, h1 = h2. But,this contradicts Lemma 1.

The following lemma will be used in the proof of the next theorem.

8That is, g is a circle.
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Lemma 2 Suppose (p1, p2, a) is an equilibrium with strong market segmen-

tation, and a satisfies Assumptions 1 and 2. Then for each brand j, there

exists a node i such that aij(p1, p2) > 0 and ui(j, pj) = 0.

Proof: Suppose that for every node i with aij(p1, p2) > 0, we have ui(j, pj) >

0. Since there is strong market segmentation, pj > 0. Therefore, by Lemma

1,

pj − aij(pj, pk)−
∑

s∈L(i)
asj(pj, pk) < pk − aik(pj, pk)−

∑

s∈L(i)
ask(pj, pk)

By continuity of a, firm j can raise price pj slightly - Incentive Compati-

bility and Individual Rationality of a ensure that consumption of brand j at

each node remains as before. So, firm j′s profit is higher. This contradicts

the assumption that (p1, p2, a) is an equilibrium.

Theorem 3 Suppose (I, g) is a circle such that all consumers have the same

basic willingness to pay r, and all nodes have the same measure of consumers

α. Then there cannot be strong market segmentation if Assumption C is

satisfied.

Proof: Suppose to the contrary that (p1, p2, a) is an equilibrium with strong

market segmentation. If |I| ≤ 3, this is ruled out by Theorem 2. So let

|I| > 3. We proceed in steps.

Step 1: At all nodes i, either ai1(p1, p2) = α or ai2(p1, p2) = α. That is, all

consumers at each node buy one of the two brands.

Proof of Step 1: We already know from lemma 1 that consumers at each

node will completely specialise in one brand if they buy at all. So, we only

need to prove that no consumer abstains from consumption.
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Since there is market segmentation, there must be some node i where

all consumers buy say brand 1. We want to show that no consumer at node

(i−1) abstains from consumption. Either consumers at node (i+1) purchase

brand 1 or they do not do so. In either case, from Individual Rationality,

p1 − 2α ≤ r

Notice that if firm 1 lowers price slightly, then the hedonic price of brand

1 at node (i − 1) will be strictly lower if all consumers at node i buy 1.

Assumption C ensures that no consumer abstains from consumption.

Step 2: If brand j is consumed at node i, then it is consumed at either node

(i− 1) or node (i + 1).

Proof of Step 2: In view of Step 1, assume that brand k is consumed at

nodes (i− 1) and (i + 1). By Incentive Compatibility at i, we have

pj − α < pk − 2α (1)

The smallest possible hedonic price of brand k at node (i − 1) is pk − 2α

- this happens when consumers at (i − 2) consume k. The biggest possible

hedonic price of brand j at (i−1) is pj−α. Equation (1) shows that Incentive

Compatibility is violated at node (i− 1).

Step 3: p1 = p2 = r + 2α.

Proof of Step 3: Since g is a circle, Steps 1 and 2 imply that there exist

nodes i and (i+1) such that consumers at nodes i and (i−1) consume brand

j, while consumers at nodes (i + 1) and (i + 2) consume brand k. So, the

hedonic prices of brands j and k at nodes i and (i+1) respectively are pj−2α

and pk − 2α. Also, if brand j is consumed at some node p, then its hedonic

price at p cannot exceed pj− 2α.9 Lemma 2 now completes the proof of Step

9It could be pj − 3α if j is consumed at both nodes (p− 1) and (p + 1).
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Step 4: Suppose N1 is the set of nodes where brand 1 is consumed. Without

loss of generality, let #N1 = n1 ≤ n
2 . Firm 1’s profit is

π1(p1, p2) = p1n1α

Let firm 1 lower price to p′1 = p1−α−ε. It is easy to check that at (p′1, p2),

firm 1 captures the entire market. Its profit is now

π1(p
′
1, p2) = (p1 − α− ε)nα

Since n1 ≤ n
2 , firm 1 can choose ε sufficiently small so that π1(p

′
1, p2) >

π1(p1, p2).

Hence, (p1, p2, a) cannot be an equilibrium. This completes the proof of

the theorem.

Remark 1 : Assumption C plays a crucial role in the theorem. If Assump-

tion C does not hold, then even when the network is a symmetric circle, one

can have market segmentation of the following kind : p1 = p2 = r + α, and

consumers at nodes i, i + 2, i + 4, . . . abstain from consumption, while con-

sumers at nodes i + 1, i + 3, . . . consume either of the two brands.

Remark 2 Even if Assumption C holds, it is not in general true that strong

market segmentation can occur at an equilibrium in all symmetric graphs.

4 Discussion

We comment below on possible extensions of the basic model outlined in this

paper.

We have assumed that the two firms produce incompatible brands. Sup-

pose instead that the two brands are fully compatible. For a consumer at any
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node i, the network benefit from consuming either brand is then the same:

it is the total measure of consumers of brands 1 and 2 at all adjacent nodes.

Therefore, Incentive Compatibility implies that at any node i, consumers

will simply buy the cheaper brand. The only equilibrium outcome possible

then has zero prices and profits; strong market segmentation is ruled out.

However, with partial compatibility, strong market segmentation can exist

for exactly the same reason as in the basic model of this paper.

This has an obvious implication if the choice of compatibility is endoge-

nous. Consider a network structure that permits equilibria with strong mar-

ket segmentation when brands are incompatible. Suppose that before the

firms compete in prices, they decide whether or not to make their brands

compatible with each other, say, by providing a two way converter. Assume

that if both play “Yes”, then the brands are compatible, whereas if at least

one plays “No”, they are incompatible. Following this, there is price compe-

tition. If both play “Yes”, price competition leads to zero profits. This is not

an equilibrium, since if even a single firm plays “No”, the firms can then co-

ordinate on a positive profit, strong market segmentation equilibrium. This

provides a justification for observing the existence of incompatible brands,

even under price competition with unlimited capacities, and no differences in

intrinsic product quality.

Addition of a link or edge to a graph increases the network effect at least on

the nodes that are incident on the new edge. This can increase willingness to

pay at these nodes, if they were consuming the same brand. However, whether

profits increase in equilibrium depends crucially on the graph structure. For

example, the equilibrium in Proposition 1 exhibits positive profits for the

firms; however, if we add a link between nodes 2 and 3, we get a complete

graph, which, by Theorem 2, implies a zero profit equilibrium. Similarly, one
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can show that if one starts with a graph for which strong market segmentation

does not exist, and adds links/nodes to it, strong market segmentation can

appear in the resulting graph. Thus it is not necessarily the case that if

consumers are ‘more connected’, then the market tends to be less segmented

- although the complete graph does not allow market segmentation and hence

positive profits.

We note briefly that if consumers’ expectations regarding network size, as

captured in the allocation rule, are skewed enough, then a monopoly outcome

is possible. In general, there can be multiple equilibria. This is a well known

problem in network externalities models, arising from the possibility of mul-

tiple admissible network size expectations . A useful extension would be to

consider reasonable restrictions on allocation rules to prune the number of

equilibria. While Theorem 1 gives us the lowest profit equilibrium, it remains

to characterize the highest profit equilibrium for a given network structure.

There can be various other context specific extensions to the model. One

extension could be to study competition when brands may differ in intrinsic

quality. Another could be to study models in which the different nodes have

different physical interpretations. For instance, in several models of compe-

tition in two-sided markets (see Armstrong (2002)), agents on the two sides

of a market have different roles, (e.g., consumers and retailers, with shopping

malls as intermediaries) and it is reasonable to study the possibility that

a firm such as a mall owner would charge different prices from consumers

and retailers. The model in the present paper studies multilateral, rather

than bilateral relationships; in applications where different nodes have dis-

tinct physical interpretations or roles, one can study the possibility of price

discrimination by firms.
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