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1. Introduction

In an ascending auction, the presence of a bidder with even a small advantage (i.e., a slightly

higher valuation than her opponents)1 is commonly believed to be deleterious for the seller�s

revenue. When the prize has a common-value component, a standard bidder competing

against an advantaged opponent bids especially cautiously to avoid the �winner�s curse�,

while the advantaged bidder bids especially aggressively.2 Various papers argue that, as a

consequence, the advantaged bidder should always win the auction (Bikhchandani, 1988, and

Klemperer, 1998).3 And with an arbitrarily small bidding cost, disadvantaged bidders do

not participate in the auction at all because they know they would lose.4 So even a slight

asymmetry between bidders should drive the seller�s revenue to zero.

We analyze a simple example of an auction where bidders receive both private and common

signals on the prize�s value, and we argue that the above extreme conclusion does not hold

when a bidder is advantaged ex-ante (i.e., before the auction), but does not necessarily have

the highest valuation ex-post (i.e., given the signals received by all bidders). We show that

an advantaged bidder does win the auction with relatively high probability and, when she

wins, pays a relatively low price. However, a disadvantaged bidder still wins the auction with

strictly positive (although small) probability, even if his opponent�s advantage is extremely

large. Hence, the presence of an advantaged bidder does harm her opponents, but not to

the extent that they never manage to overbid her. And since disadvantaged bidders have an

incentive to participate in the auction, the expected seller�s revenue is not reduced to zero.

This appears consistent with anecdotal evidence.

As an example, consider the FCC mobile-phone license auction in 1995, where incum-

bents and national bidders were considered advantaged with respect to their competitors

(Salant, 1997).5 In markets where the number of licenses on sale was equal to the num-
1We adopt the convention of using feminine pronouns for an advantaged bidder and masculine pronouns

for a disadvantaged bidder.
2Because of the winner�s curse, a bidder is most likely to win when he has overestimated the prize�s value.

But a disadvantaged bidder knows that, if he beats an opponent with an advantage, he may have overestimated
this value by even more, so he must bid very cautiously. Then the advantaged bidder can be less cautious,
since winning need not imply she has overestimated the prize�s value. And hence the disadvantaged bidder
will bid even more cautiously, since he knows he can only beat the advantaged bidder if she has extremely
bad information about the prize�s value.

3However, de Frutos and Pechlivanos (2006) argue otherwise. We discuss this paper below. Levin and
Kagel (2005) analyze the e¤ect of increasing the number of disadvantaged bidders.

4This point does not require common-value elements (but it is reinforced by them). In an ascending auction,
even if she is initially outbid, the bidder with the highest valuation will be the eventual winner because she
can, and will, eventually top any competitor. (However, as argued by Pagnozzi, 2004, if resale is permitted a
disadvantaged bidder can win against an opponent who is known to have a higher valuation.)

5 Incumbents provided mobile-phone services before the auction, and hence had a higher valuation because
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ber of advantaged bidders, fewer disadvantaged bidders participated, and those who did bid

very cautiously, thus yielding lower prices (Klemperer and Pagnozzi, 2004). But disadvan-

taged bidders still participated and advantaged bidders did not always outbid them � in

12 out of 48 markets, national bidders were outbid by disadvantaged rivals.6 Similarly, in

the Netherlands 3G mobile-phone license auction in 2000, the number of incumbent �rms,

which were advantaged over potential entrants, was exactly equal to the number of licenses

on sale. Nonetheless Versatel, a weak entrant that was believed to be strongly disadvantaged

compared to incumbents, participated in the auction, and then dropped out at a very low

price (Klemperer, 2002).

Auctions are typically analyzed assuming that bidders�valuations are either private or

common. In a private-value auction, each bidder knows his own valuation, which is indepen-

dent of other bidders�valuations; while in a common-value auction, the prize is worth the

same to all bidders, who have di¤erent estimates of its value. But, in the real world, bidders�

valuations are not exclusively private or common.7 So we assume valuations consist of both

a private- and a common-value component.8

We de�ne a bidder to be advantaged if ex-ante it is common knowledge that, on average,

her valuation has a higher private component than her competitor�s valuation and hence that,

before the auction, she is expected to have a higher actual valuation than her competitor.9

This allows us to analyze the e¤ects of the mere presence of an advantaged bidder on players�

bidding strategies, when the bidder�s ex-post advantage is not certain.

This paper is closely related to the analyses of auctions with common-value elements by

Bikhchandani (1988), Klemperer (1998) and de Frutos and Pechlivanos (2006). Bikhchandani

(1988) and Klemperer (1998) assume one bidder always has a (slightly) higher valuation than

of their brand-name advantages and their lower costs of building a network. National bidders competed for
licenses all over the United States and, hence, could bene�t of economies of scale and scope.

6 In particular, this happened in Atlanta, Tampa, Houston, Cincinnati, Puerto Rico, Memphis, Birmingham,
Portland, Des Moines, Columbus, Oklahoma and Honolulu where at least one of the strong national bidders
(AT&T, PCS PrimeCo or WirelessCo) lost to a disadvantaged opponent.

7For example, even if a painting is typically described as having a private value, its value also depends
on the price at which it can be resold, and this adds a common-value element. And even if the value of oil
drilling rights mainly depends on the quantity of oil contained in a �eld, which is the same for all �rms, a
�rm�s valuation is also a¤ected by its e¢ ciency, and this adds a private-value element.

8The literature on auctions with private and common values includes Milgrom and Weber (1982), Maskin
(1992), Jehiel and Moldovanu (2000), Goeree and O¤erman (2003), Compte and Jehiel (2002), Pagnozzi (2003)
and de Frutos and Pechlivanos (2006).

9The literature on auctions with asymmetric bidders includes Avery and Kagel (1997), Bikhchandani (1988),
Bulow et al. (1999), Bulow and Klemperer (2002), Cantillon (1999), Klemperer (1998), and Maskin and Riley
(2000). In general, these papers argue that the seller�s revenue is lower when bidders are asymmetric. Section
2 discusses the di¤erences between these papers and our model.
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her opponent, and prove that she always wins an ascending auction.

De Frutos and Pechlivanos (2006) prove that, when before the auction it is uncertain

which bidder has the highest actual valuation, there always exists a bidder who ex-post has

a lower actual valuation than his opponent and wins the auction with positive probability.10

However the authors do not determine whether or not this bidder could also have been

disadvantaged ex-ante (i.e., whether ex-ante he could have had a lower expected valuation

than his opponent). Moreover, in de Frutos and Pechlivanos (2006), a bidder with a large

disadvantage ex-ante (in fact, any bidder whose ex-ante probability of having a strictly lower

valuation than his opponent exceeds 1/2) never wins the auction when he also has the lowest

valuation ex-post. By contrast, we prove the much more extreme result that a disadvantaged

bidder may win an ascending auction even if ex-ante he has probability arbitrarily close to 1 of

having a lower valuation than his opponent and ex-post he actually has the lowest valuation.

So even very disadvantaged bidders are not doomed.

However, though our model can obtain this more extreme result, our quantitative results

support the general view of Bikhchandani (1988) and Klemperer (1998) that asymmetries in

auction with common-value elements have substantial e¤ects: an ex-ante advantaged bidder,

even if he does not necessarily have the highest valuation ex-post, wins the auction with

a probability much higher than the probability of her having the highest valuation, and

pays a relatively low price when she wins. Finally, our limit results are also consistent with

Bikhchandani (1988) and Klemperer (1998) because the probability of the advantaged bidder

winning tends to one as the probability of her having the actual highest valuation ex-post

tends to one.

Our analysis suggests that, if there are only negligible bidding costs, we should expect

a disadvantaged bidder to participate in the auction even against a bidder who has a large

advantage ex-ante. So, in this case, the e¤ect of asymmetries between bidders on the seller�s

revenue should not be dramatic. But if bidding costs are relatively high, a disadvantaged

bidders may choose not to participate because of his lower expected pro�t, and the seller�s

revenue may be reduced to zero � as Bikhchandani (1988) and Klemperer (1998) suggest.

Moreover, in addition to the strategic e¤ect on her competitors�behavior, the presence of

an advantaged bidder also has a direct e¤ect on the seller�s revenue. Indeed, the advantaged

bidder has a higher valuation of the auction prize, and so is willing to pay more for it. This

10De Frutos and Pechlivanos (2006) assume that a bidder�s valuation is given by the product between a
common value and a private-value signal drawn from a discrete distribution. The authors consider a bidder
to be ex-post disadvantaged if ex-post he has a low actual valuation, regardless of his opponent�s valuation.
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tends to increase the seller�s revenue. The net e¤ect of the presence of an advantaged bidder

depends on the magnitude of her advantage � we show that introducing a bidder with a

slightly higher valuation in an otherwise symmetric auction increases the seller�s revenue.

The next section presents the model and Section 3 derives equilibrium bidding strategies.

Sections 4 and Section 5 analyze the e¤ects of the presence of an advantaged bidder on

players�probability of winning the auction and on the seller�s revenue respectively. In order to

obtain closed form solutions and quantitative results, we assume bidders�signals are uniformly

distributed, but in Section 6 we prove that our qualitative results hold for any distribution.

The last section concludes. All proofs are contained in the Appendix.

2. The Model

A prize (e.g., a mobile-phone license) is sold by an ascending auction with two bidders, called

A and D. Bidder i�s valuations is given by:11

Vi = xi + xj + ti; i; j = A;D; i 6= j;

where xi, xj and ti are, respectively, the realizations of the random variables Xi, Xj and Ti.

We call xi the common signal and ti the private signal of bidder i. Both signals are private

information to bidder i.

So bidders�valuations are partly private and partly common: the signals xA and xD a¤ect

the valuations of both bidders alike, while the signal ti only a¤ects the valuation of bidder

i. We can interpret ti as expressing bidder i�s production cost (or e¢ ciency level); or the

�nancial cost that bidder i has to pay in order to raise money to bid, which depends on the

particular credit condition he can obtain from �nancial institutions. On the other hand, xA

and xD are signals of the intrinsic characteristic of the prize � for example the future level

of demand for mobile-phone services � which a¤ects the pro�tability of the license for all

bidders.

We assume that signals are independent and that XA; XD; and TD are uniformly dis-

tributed on [0; 1], while TA is uniformly distributed on [�; 1 + �], for 0 � � � 1. Therefore,

VA 2 [�; 3 + �] and VD 2 [0; 3]. So bidder A is advantaged with respect to bidder D since her

private signal is drawn from a �higher�support and, hence, it is common knowledge before

the auction that bidder A has a higher expected valuation than bidder D.12 Note, however,

11We use an additive value function as in the �wallet game�of Klemperer (1998) and Bulow and Klemperer
(2002), and as in Compte and Jehiel (2002).
12The valuation of bidder A ��rst-order stochastically dominates�the valuation of bidder B.
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that bidder A is not necessarily advantaged ex-post, because she may not actually have the

highest valuation.

The constant � captures the intensity of bidder A�s advantage. The higher is �, the higher

is bidder A�s ex-ante advantage over bidder D (because the higher is bidder A�s expected

valuation and the higher is the probability of bidder A having a higher actual valuation

than bidder D). When � = 1 bidder A always has the highest valuation, and so she is

also advantaged ex-post for sure. Notice that, by contrast with Klemperer (1998) where the

advantaged bidder�s valuation is only marginally higher than the disadvantaged bidder�s one,

in our model bidder A�s actual valuation can be much higher than bidder D�s one � even

for � = 0:5, bidder A�s expected private signal is twice bidder D�s one. On the other hand,

when � = 0 the auction is a purely symmetric one and no bidder has any advantage.

Our model di¤ers from other models in the literature that analyze the e¤ects of asymme-

tries in the distributions of bidders�signals. Cantillon (1999) and Maskin and Riley (2000)

consider the e¤ects of asymmetries in signals� distributions in private value auctions. By

avoiding any common-value element in bidders�valuation, the authors exclude the winner�s

curse e¤ects that we are instead interested in here. As argued above, de Frutos and Pech-

livanos (2006) de�ne a bidder to be advantaged from an ex-post point of view. Finally,

Bikhchandani (1988), Klemperer (1998) and Bulow et al. (1999) assume that one of the

bidders is always advantaged, both ex-ante and ex-post, and obtain results that can be in-

terpreted as a limit case of our model (see also Avery and Kagel, 1997).

3. Bidding Strategies

The next lemma describes equilibrium bidding strategies.13

Lemma 1. It is an equilibrium of the ascending auction for bidder A to bids up to:

�A (xA; tA; �) =
3

2
(xA + tA) +

�

2
; (3.1)

and for bidder D bids up to:

�D (xD; tD; �) =
3

2
(xD + tD)� �: (3.2)

If no bidder is advantage (i.e., if � = 0), then the symmetric equilibrium bidding function

is �i =
3
2 (xi + ti). For � > 0, bidderD bids up to a strictly lower price (than in the symmetric

13As it is standard in the literature on common-value auctions, there are multiple equilibria. The equilibrium
described in Lemma 1 is the unique equilibrium in linear strategies.
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equilibrium), while bidder A bids up to a strictly higher price. This depends on the enhanced

winner�s curse e¤ect: when bidder D wins against an advantaged competitor, he expects the

prize to be less valuable than in a symmetric context, because it is relatively more likely

that bidder A is bidding aggressively due to a high private signal rather than a high common

signal. Hence, bidder D has to bid less aggressively in order to avoid paying more than the

prize is worth. This, in turns, allows bidder A to bid more aggressively since, whenever she

wins, the prize is more valuable to her than in a symmetric context, and so on. Summing

up, we have the following result.

Proposition 1. Compared to an auction with symmetric bidders, when a bidders has a

higher expected valuation than her competitor, the disadvantaged bidder bids less aggres-

sively, and the advantaged bidder bids more aggressively.

Notice that @�A=@� > 0 and @�D=@� < 0: as � increases, bidder A can bid more ag-

gressively while bidder D needs to bid less aggressively. This depends on the common-value

element in bidders�valuations: the more aggressively a bidders bids in equilibrium, the less

aggressively the other bidder has to bid in order to avoid the winner�s curse. So the higher

the advantage of bidder A, the higher the winner�s curse su¤ered by bidder D (since, for a

given auction price, the expected common signal of bidder A is lower), and hence the lower

bidder D bids.

When � = 1, bidder D never bids more than 2 while bidder A never bids less than 2. So

when the advantaged bidder has a higher valuation for sure, she always wins the auction, and

this is consistent with the results in literature (Bikhchandani, 1988 and Klemperer, 1998).

However, even if bidder A is advantaged for sure ex-post and her expected valuation is much

higher than her competitor�s valuation, she does not always win at price 0. Indeed, even if

� = 1, a bidder D with signals xD + tD > 2
3 bids up to a strictly positive price.

4. Are Disadvantaged Bidders Doomed?14

Even if, in equilibrium, bidder D has to bid cautiously while bidder A can bid aggressively,

bidder D still wins the auction with strictly positive probability, regardless of bidder A�s

advantage (provided � 6= 1). In particular:

Pr [D wins the auction] =
�

1
6

�
3� 8� + 16�3 � 12�4

�
for � < 1

2 ;
2
3 (1� �)

4 for � > 1
2 :

(4.1)

14The Appendix contains the derivation of all the expressions in Sections 4 and 5.
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Figure 4.1: Probability of bidder A having the highest value and probability of bidder A
winning the auction.

When � = 0 bidders are symmetric and, as expected, bidder D wins the auction with proba-

bility 1=2. When � > 0, bidder D wins the auction with probability lower than 1=2. Hence,

when competing against an advantaged bidder, bidder D wins less often than in a symmetric

situation. Nonetheless, even for � = 0:25 (in which case bidder A�s private signal is on average

50% higher than bidder D�s private signal), bidder D still wins the auction about 20% of

times.15 Finally, as � ! 1, the probability of bidder D winning the auction tends to 0.

Figure 4.1 represents the probability of bidder A winning the auction and the probability

of her having the highest valuation, as a function of the intensity of A�s advantage.16 So

bidder A wins with a higher probability than bidder D, and also more often than she has the

highest valuation.17 (For example, when � = 0:4, bidder A has the highest valuation with

probability 0:82 but wins the auction with probability ' 0:914.) Summing up, we have the
following result, which is consistent with the anecdotal evidence presented in the introduction.

Proposition 2. The probability of the advantaged bidder winning the auction is higher than
15For � = 0:5, bidder A�s private signal is on average twice bidder D�s private signal and bidder D wins the

auction about 4% of times.
16The probability that bidder A has the highest valuation is Pr [tA > tB ] = 1

2
+ � � 1

2
�2:

17As argued by Maskin (1992), Jehiel and Moldovanu (2000), and Goeree and O¤erman (2003), if bidders
receive multi-dimensional signals auctions can be ex-post ine¢ cient.
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the probability of her having the highest valuation. However, the disadvantaged bidder still

wins with strictly positive probability (unless the advantaged bidder has the highest valuation

for sure).

Therefore, the presence of an advantaged competitor does reduce the probability of a

standard bidder winning the auction, but still leaves him with some chance of winning, and

hence an incentive to participate.

It may be expected that bidder D wins the auction only when he is not disadvantaged

ex-post, and hence he has the highest actual valuation. But this is not the case.

Lemma 2. If xD � xA � � > tA � tD > 0, then bidder D has the lowest valuation and wins

the auction.

So provided bidder D�s common signal is su¢ ciently higher than bidder A�s common

signal, he can win even if he has a lower private signal and, hence, a lower valuation than

bidder A (and even if he faces an enhanced winner�s curse). And this is true for every � and,

hence, even if the probability of bidder D having the lowest valuation is arbitrarily close to

1. Therefore, bidder D can beat an opponent who is advantaged both ex-ante and ex-post.

5. Seller�s Revenue

We now analyze the e¤ect on the seller�s revenue of the presence of an advantaged bidder in

the auction. Consider a symmetric benchmark, in which no bidder is advantaged (i.e., � = 0).

Then the expected auction price is equal to:

E [Revenue in symmetric auction] = 3
2E [Xi + Ti jXi + Ti > Xj + Tj ] (5.1)

= 3
2
23
30 = 1:15:

It is often argued that, with common-value elements, even a small asymmetry between bidders

drives the seller�s revenue to zero, because a disadvantaged bidder has no chance of winning

against an advantaged competitor and, hence, does not participate in the auction if there is an

arbitrarily small bidding cost. In our model, this does not happen, because the disadvantaged

bidder wins with strictly positive probability and, hence, has an incentive to participate.

Furthermore, as we are going to show, the presence of a bidder with only a slight advantaged

compared to her competitor actually increases the seller�s revenue.
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In the asymmetric case, when the advantaged bidder wins the auction, she expects to pay

a relatively low price since she wins against an opponent who is bidding cautiously:

E [pricejA wins] = E
�
max

�
3
2 (XD + TD)� �; 0

	
jA wins

�
(5.2)

=

8<:
432�5+2880�4�4240�3�360�2+1620�+621

180(12�4�16�3+8�+3)
for � < 1

2 ;

36�5+180�4�1100�3+1800�2�990��81
90(2�4�8�3+12�2�8��1)

for � > 1
2 :

This is lower than the expected price in a symmetric auction.

On the other hand, when the disadvantaged bidder wins the auction, he expects to pay a

relatively high price since he wins against an opponent who is bidding aggressively:18

E [price jD wins ] = E
�
3
2 (XA + TA) +

1
2� jD wins

�
(5.3)

=

(
192�5+80�4�480�3+200�2+120��69

20(12�4�16�3+8��3)
for � < 1

2 ;

2
5 (3 + 2�) for � > 1

2 :

This is higher than the expected price in a symmetric auction.

Whether the expected auction price, and hence the seller�s revenue, is lower or higher

than in the symmetric case depends on how large bidder A�s advantage is. Indeed, when

bidders A is advantaged, the expected seller�s revenue is:

E [Revenue] = E [price jA wins ] � Pr [A wins] + E [price jD wins ] � Pr [D wins] (5.4)

=

�
1
2� � 2�

2 + 2
27�

3 + 2�4 � 6
5�
5 + 23

20 for � < 1
2 ;

� � 4�2 + 110
27 �

3 � 2�4 + 2
5�
5 + 11

10 for � > 1
2 :

Figure 5.1 represents the expected seller�s revenue as a function of the intensity of bidder

A�s advantage. For � = 0, bidders are symmetric and, as expected, the expected revenue is

the same as in (5.1). For � = 1, bidder A is advantaged ex-post for sure and so the expected

revenue is much lower. And if � is su¢ ciently high, the larger the advantage of bidder A,

the lower the expected revenue, because the advantaged bidder wins the auction most of the

time and pays a lower price. Hence, an auction with very asymmetric bidders yields a very

low revenue.

However, for � close to 0, bidder D wins almost 50% of the time and, when he wins, pays

a high price because bidder A bids aggressively due to her higher valuation and her lower

winner�s curse.19 For a relatively low advantage, the higher price paid by bidder D when he
18Compared to a symmetric case, bidder A bids more aggressively for two reasons. Firstly, she competes

against a cautious bidder (and, hence, she increases her bid by �=2.) Secondly, on average she has a higher
valuation because E [TA] � 1

2
.

19Of course, the higher price partially depends on the advantaged bidder having a higher valuation and,
hence, being willing to pay more. (See also Levin and Kagel, 2005.) Nonetheless, the literature has argued
that the presence of a bidder with a higher valuation reduces the seller�s revenue, even though the advantaged
bidder is willing to pay a higher price.
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Figure 5.1: Expected seller�s revenue with an advantaged bidder

wins more than compensates for the lower price paid by bidder A when she wins (even if the

former event is less likely than the latter). Therefore, introducing in an otherwise symmetric

auction a bidder with a slightly higher expected valuation (and keeping the number of bidders

constant) increases the seller�s revenue. Summing up:

Proposition 3. Compared to an auction with symmetric bidders, in an auction with an

advantaged bidder: the advantaged bidder pays a lower price when she wins, and the dis-

advantaged bidder pays a higher price when he wins. The net e¤ect of the presence of an

advantaged bidder on the seller�s revenue depends on the intensity of the bidder�s advantage:

revenue is much lower than in a symmetric auction only if the bidder�s advantage is relatively

large.

Therefore, in line with what is argued in the literature, our model suggests that an auction

with very asymmetric bidders yields a very low revenue for the seller. So the seller should try

to reduce large asymmetries between bidders, for example favoring disadvantaged bidders, in

order to induce disadvantaged bidders to participate and bid aggressively.20

20For example, in the Italian 3G auction in 2000, the government o¤ered an additional block of spectrum at
a very favorable price to winning �rms that were new entrants in the Italian market, and hence disadvantaged
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However, our model also suggests that if a bidder�s advantage is relatively small and

not certain, the seller�s revenue is not dramatically reduced. Therefore, when bidders are

asymmetric, the seller should try to evaluate the type and intensity of a bidders�advantage

in order to choose the appropriate auction�s rules: the presence of a bidder with only a small

ex-ante advantage compared to her competitor (i.e., a slightly higher expected valuation)

may even increase, rather than reduce, the seller�s revenue.

6. Extension

We assumed bidders�signals to be uniformly distributed in order to be able to obtain quanti-

tative results by deriving closed form solutions for bidders�strategies and the seller�s revenue.

But our results are more general. In this section we show that, regardless of the distributions

of bidders�signals, in our model the disadvantaged bidder always wins with strictly positive

probability, because (as long as � < 1) there are always types of bidder D who win the

auction against some types of bidder A. And the disadvantaged bidder can win even if he

has a lower actual valuation than his opponent. Therefore, ex-ante, a disadvantaged bidder

always expects to win with strictly positive probability and has an incentive to participate

in the auction.

Restricting the analysis to undominated strategies (and absent bidding costs), a disad-

vantaged bidder always bids up to at least xD+tD (i.e., his lowest possible valuation), and an

advantaged bidder never bids more than xA + tA + 1 (i.e., her highest possible valuation).21

Therefore, a bidder D with signals xD = tD = 1 bids at least up to 2, and wins against a

bidder A with signals xA = 0 and tA = �, who does not bid above 1 + �. So a disadvantaged

bidder with the highest possible signals always wins against an advantaged bidder with the

lowest possible signals (and, hence, before the auction the disadvantaged bidder does not

expect to lose with probability 1).22

But the disadvantaged bidder does not win only when he has the highest valuation �

as the following lemma shows, bidder D may win the auction even if ex-post he has a lower

compared to incumbents. The government expected the higher auction price achieved thanks to increased
competition to more than compensate for the lower price paid by new entrants for the additional blocks. A
rule in favor of potential entrants was also adopted in the UK 3G auction in 2000 (Klemperer, 2004). Bidding
credits and set-asides were used to help weak bidders in the US FCC spectrum auctions (Ayres and Cramton,
1996).
21This argument is similar to the argument of Proposition 1 in de Frutos and Pechlivanos (2006), which

refers to bidders who are ex-post disadvantaged.
22Note also that all types of bidder D who bid more than 1+� (i.e., at least all types with signals xD+ tD >

1 + �), will surely win against at least a bidder A of the lowest type.
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valuation than bidder A.

Lemma 3. In any equilibrium in continuous strategies, there always exists a disadvantaged

bidder who ex-post has a lower valuation than the advantaged bidder and wins the auction.

7. Conclusions

In ascending auctions, an advantaged bidder, who on average has a higher valuation for the

prize than her competitor, wins most of the time and pays a relatively low price. However, a

disadvantaged bidder, even if he has to bid less aggressively to avoid an enhanced winner�s

curse, still expects to win with positive probability and, hence, has an incentive to participate

in the auction. So the seller�s revenue is reduced by the presence of the advantaged bidder, but

not to the extent sometimes argued in the literature � a small asymmetry between bidders

does not have a dramatic e¤ect on the seller�s revenue when bidding costs are negligible

(unless one bidder has a higher valuation than her opponent with absolute certainty).

We extend the analysis of de Frutos and Pechlivanos (2006) by showing that a disadvan-

taged bidder may win the auction even if his competitor has a very large and almost certain

advantage ex-ante and the disadvantaged bidder has the lowest valuation ex-post. Our results

also complement the analyses of Bikhchandani (1988) and Klemperer (1998) and suggest that

what really harms standard bidders and hence the seller is the presence of a bidder with an

ex-post certain, although small, advantage rather than an ex-ante large, but uncertain, one.
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Appendix

A. Proof of Lemma 1

We are going to prove that strategy (3.2) is a best response to (3.1), and vice-versa. First,

suppose bidder A bids according to (3.1). Then, if bidder D wins the auction at price p, he

expects A�s common signal to be equal to:23

E
�
XA

��3
2 (xA + tA) +

�
2 = p

�
= E

�
XA

��xA + tA = 2
3p�

�
3

�
= 1

3 (p� 2�) :

In an ascending auction, a bidder bids up to the expected value of the prize, conditional on

winning. Hence, bidder D bids up to price pD such that:

pD = E [VD jD wins at pD ] = xD + tD + 1
3 (pD � 2�)

, pD =
3
2

�
xD + tD � 2

3�
�
:

Notice that, when xD + tD < �, bidder D cannot obtain positive pro�t by winning the

auction. The reason is that, when bidder A bids according to (3.1), conditional on winning

at a price equal to or higher than 1
2� (which is bidder A�s lowest possible bid), bidder D�s

expected valuation is lower than the auction price. Therefore, any bid lower than 1
2� is a best

reply by bidder D when xD + tD < �. For simplicity, we allow a negative bid by bidder D

and we interpret it as a bid of 0.

Now assume bidder D bids according to (3.2). Then, if bidder A wins the auction at price

p, she expects D�s common signal to be equal to:

E
�
XD

��3
2 (xD + tD)� � = p

�
= E

�
XD

��xD + tD = 2
3p+

2
3�
�

= 1
3 (p+ �) :

Hence, bidder A bids up to price pA such that:

pA = E [VA jA wins at pA ] = xA + tA + 1
3 (pA + �)

, pA =
3
2

�
xA + tA +

1
3�
�
:

Notice that, when xA+ tA > 2��, bidder A always obtains positive pro�t by winning the
auction. The reason is that, when bidder D bids according to (3.2), conditional on winning

at a price equal to or lower than 3� � (which is bidder D�s highest possible bid), bidder A�s
expected valuation is higher than the auction price. Therefore, any bid higher than 3� � is
a best reply by bidder A when xA + tA > 2� �.

It is straightforward to show that the equilibrium described is the unique linear equilibrium.�
23Let X � U [0; 1] and T � U [�; 1 + �] and let k = x + t where x and t are realizations of the random

variables X and T respectively. Then E [X jk = x+ t ] = 1
2
(k � �).
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Figure 7.1: Densities of W and Y

B. Proof of Lemma 2

Bidder D wins the auction if �D (xD; tD; �) > �A (xA; tA; �) , xD + tD > xA + tA + �, and

bidder D has the lowest valuation if tA > tB. Rearranging yields the statement. �

C. Derivation of expressions (4.1), (5.2), (5.3), and (5.4)

Let W � XD + TD and Y � XA + TA + �.24 The two random variables W and Y have

densities (which are represented in Figure 7.1):

fW (w) =

�
w for 0 � w < 1;
2� w for 1 � w � 2;

and

fY (y) =

�
y � 2� for 2� � y < 1 + 2�;
2 + 2� � y for 1 + 2� � y � 2 + 2�;

and distributions:

FW (w) =

�
1
2w

2 for 0 � w < 1;
2w � 1

2w
2 � 1 for 1 � w � 2;

and

FY (y) =

�
1
2 (y � 2�)

2 for 2� � y < 1 + 2�;
2y � 1� 4� � 1

2 (y � 2�)
2 for 1 + 2� � y � 2 + 2�:

The probability of bidder D winning the auction is given by:

Pr [D wins] = Pr [xD + tD > xA + tA + �] (C.1)

= 1� Pr [w < y]

= 1�
Z 2+2�

2�
FW (y) fY (y) dy:

24W is the sum of two independent draws from a uniform distribution on [0; 1], while Y is the sum of two
draws from a uniform distribution on [0; 1] plus a constant equal to 2�.
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For � < 1
2 , (C.1) equals to:

1�
Z 1

2�

y2

2 (y � 2�) dy �
Z 1+2�

1

�
2y � y2

2 � 1
�
(y � 2�) dy +

�
Z 2

1+2�

�
2y � y2

2 � 1
�
(2 + 2� � y) dy �

Z 2+2�

2
(2 + 2� � y) dy

= 1
6

�
3� 8� + 16�3 � 12�4

�
:

For � > 1
2 , (C.1) equals to:

1�
Z 2

2�

�
2y � y2

2 � 1
�
(y � 2�) dy �

Z 1+2�

2
(y � 2�) dy � 1

2

= 2
3 (1� �)

4 :

This yields expression (4.1).

The expected auction price when bidder A wins the auction is given by:

E [price jA wins ] = E
�
max

�
3
2 (XD + TD)� �; 0

	
jA wins

�
(C.2)

= 3
2E
�
max

�
W ; 2

3�
	
jy > w

�
� �

= 3
2

24Z 2
3 �

0

2
3�
[1� FY (w)] fW (w)

Pr [y > w]
dw +

Z 2

2
3 �
w
[1� FY (w)] fW (w)

Pr [y > w]
dw

35� �
=

3

2Pr [y > w]

24 4
27�

3 � 2
3�
R 2
3 �

0 FY (w) fW (w) dw

+1� 8
81�

3 �
R 2
2
3 �
wFY (w) fW (w) dw

35� �:
For � < 1

2 , (C.2) equals to:

9

(3+8��16�3+12�4)

"
1 + 4

81�
3 �

R 1
2�
w
2 (w � 2�)

2wdw �
R 1+2�
1

w
2 (w � 2�)

2 (2� w) dw
�
R 2
1+2� w

�
2w � 1� 4� � 1

2 (w � 2�)
2
�
(2� w) dw

#
� �

=
432�5 + 2880�4 � 4240�3 � 360�2 + 1620� + 621

180
�
12�4 � 16�3 + 8� + 3

� :

For � > 1
2 , (C.2) equals to:

9
2[3�2(1��)]4

�
1 + 4

81�
3 �

Z 2

2�

w
2 (w � 2�)

2 (2� w) dw
�
� �

=
36�5 + 180�4 � 1100�3 + 1800�2 � 990� � 81

90
�
2�4 � 8�3 + 12�2 � 8� � 1

� :

This yields expression (5.2). For � = 0; this also yields expression (5.1).
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The expected auction price when bidder D wins the auction is given by:

E [price jD wins ] = E
�
3
2 (XA + TA) +

1
2� jD wins

�
(C.3)

= 3
2E [Y jw > y ]� �

= 3
2

Z 2+2�

2�
y
[1� FW (y)] fY (y)

Pr [w > y]
dy � �

=
3

2Pr [w > y]

�
1 + 2� �

Z 2+2�

2�
yFW (y) fY (y) dy

�
� �:

For � < 1
2 , (C.3) equals to:

9

(3�8�+16�3�12�4)

24 1 + 2� � R 12� y y22 (y � 2�) dy � R 1+2�1 y
�
2y � y2

2 � 1
�
(y � 2�) dy+

�
R 2
1+2� y

�
2y � y2

2 � 1
�
(2 + 2� � y) dy �

R 2+2�
2 y (2 + 2� � y) dy

35� �
=

192�5 + 80�4 � 480�3 + 200�2 + 120� � 69
20
�
12�4 � 16�3 + 8� � 3

� :

For � > 1
2 , (C.3) equals to:

9
4(1��)4

"
1 + 2� �

R 2
2� y

�
2y � y2

2 � 1
�
(y � 2�) dy+

�
R 1+2�
2 y (y � 2�) dy �

R 2+2�
1+2� y (2 + 2� � y) dy

#
� �

= 2
5 (3 + 2�) :

This yields expression (5.3).

Using the above results, the expected seller�s revenue is equal to:

E [Revenue] = E [price jA wins ] � Pr [A wins] + E [price jD wins ] � Pr [D wins]

=

�
1
2� � 2�

2 + 2
27�

3 + 2�4 � 6
5�
5 + 23

20 for � < 1
2 ;

� � 4�2 + 110
27 �

3 � 2�4 + 2
5�
5 + 11

10 for � > 1
2 :

This is expression (5.4).

D. Proof of Lemma 3

We will prove that there is always a bidder D who wins the auction against a bidder A when

tA > tD (regardless of the distributions of bidders�signals). In particular, we will show that,

in any equilibrium in continuous and undominated strategies, a bidder D who receives the

highest possible common signal wins against a bidder A who receives the lowest possible

common signal and a private signal only marginally higher than bidder D�s private signal.

First note that bidder D never bids less than xD+ tD (i.e., his lowest possible valuation).

It follows that, conditional on bidder A winning at price p < 2, her expectation of bidder D�s

private signal is strictly lower than 1, because this expectation can be equal to 1 only if any

bidder D with a private signal lower than 1 always drops out of the auction at a price lower

than p (which is impossible since a bidder D with signals xD + tD � p does not).
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Assume now bidder A has signals tA = t 2 (�; 1) and xA = 0. If bidder A wins the auction
at price 1 + t < 2, her expected valuation is lower than the price she pays because:

E [VA jA wins at price 1 + t ] = tA + E [tD jA wins at price 1 + t ]
< t+ 1:

Hence, bidder A wants to drop out at a price which is strictly lower than 1 + t.

Therefore, a bidder A with signals tA = t 2 (�; 1) and xA = 0 loses the auction against
a bidder D with the same private signal tD = t and common signal xD = 1, because this

bidder D bids at least up to 1+ t. But because of the continuity of bidders�strategies, there

is an " > 0 small enough such that bidder A�s bid when she has signals tA = t + " 2 (�; 1)
and xA = 0 is also lower than 1 + t. So a bidder D with signals tD = t and xD = 1 also wins

the auction against such a bidder A: �
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