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Abstract 
 
This paper relies on sectoral-level data to interpret aggregate fluctuations of labor productivity and employment 
in US as due to exogenous disturbances. A shock determining permanent effect on the real investment good 
price may reasonably be interpreted as an investment-specific technology shock, since it mainly produces long-
run effect on labor productivity in the durable goods producing sector. A transitory shock on the real investment 
price may instead be interpreted as a sectorneutral disturbance since it homogeneously affects the labor 
productivity across sectors. Finally, sectoral evidence suggests that the near-zero correlation between aggregate 
productivity and employment growth rates may be explained as the overall outcome of positive and negative 
correlations within, respectively, the durable and nondurable goods producing sectors. 
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1 Introduction

This paper investigates the cross-sectoral effects of economy-wide and sector-

specific efficiency disturbances by estimating a dynamic factor model (DFM) with

data on two-digit U.S. manufacturing industries. First, it is argued that the dy-

namic pattern of sectoral labor productivity is consistent with the assumption of

two sources of productivity disturbances, interpreted as investment-specific tech-

nical changes and sector-neutral innovations. Second, it is provided a novel inter-

pretation of the near-zero correlation between aggregate labor productivity and

employment growth rates. This emerges as the overall outcome of both positive

and negative correlations arising within the durable and nondurable goods pro-

ducing sectors, respectively. The former is due to the investment-specific technical

changes while the latter is traced to the sector-neutral productivity disturbances.

Following Blanchard and Quah (1989), economically motivated long-run re-

strictions and vector autoregression (VAR) have been usually exploited for inter-

preting economic fluctuations. A popular strategy recently put forward by Galí

(1999) allows to recover technology and nontechnology components of business

cycle under the assumption that any other source of fluctuations, but the tech-

nical change, has a merely transitory effect on labor productivity. Restricting to

a single permanent component, we make use of that long-run restriction to iden-

tify the cross-sectoral effects determined by two types of innovations: one which

influences permanently the aggregate (Manufacturing) labor productivity — the

technology shock — and the other which, by construction, has only transitory

effect on it — the nontechnology shock. As expected, we find that a technologi-

cal improvement induces positive and statistically significant long-run effects for

almost all industries considered. Thus, on this respect sectoral results appear to

be fully consistent with the aggregate one and support the modelling of techno-
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logical changes in terms of sector-neutral innovations. Looking at the effects of a

nontechnology shock, however, a drawback of such identifying approach emerges.

We find that this shock — which by construction does not influence the long-run

aggregate labor productivity — conversely does influence the labor productivity

of some industries, suggesting the possibility that the technology component of

the data has not been correctly disentangled. To check the robustness of this con-

clusion we also recover the nontechnology and technology components under the

identifying assumption that the former determines the minimum long-run impact

on a weighted average of the labor productivity across industries. We find again,

however, that for many industries the long-run effects of both types of shocks are

statistically significant.

Previous evidence can be rationalized admitting that two distinct sources of

innovations are relevant for the behavior of the labor productivity in the long-run.

Greenwood et al. (2000, 1997) argue that the investment-specific technological

change is a main source of growth and business cycle, and provide the theoretical

framework for identifying this type of technology. In particular, for an econ-

omy characterized by both exogenous sector-neutral innovations and investment-

specific technological changes, Fisher (2005) notes that the long-run behavior of

the relative price of equipment is solely affected by investment-specific shocks.

Under this long-run restriction our DFM suggests that a (positive) investment-

specific technical shock increases, both on impact and in the long-run, the labor

productivity of 7 out of 10 industries which are characterized by the production

of durable goods. Moreover, the effect of the shock is estimated positive and

statistically significant for both the durable goods producing sector and the Man-

ufacturing sector as a whole. Conversely, looking at the nondurable goods pro-

ducing sector we do not ascertain any effect. Arguably, these results support the
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identifying assumption. Finally, as concerns the second source of permanent in-

novations, we estimate widespread positive effects across sectors resembling those

of sector-neutral innovations.

Sectoral-level data allows a deep explanation of a well-known empirical finding,

that is the near-zero correlation between aggregate labor productivity and employ-

ment growth rates. Proponents of real business cycle (RBC) models explain it as

the outcome of a positive conditional correlation induced by a technology shock

and a conditional correlation of opposite sign due to a nontechnology shock. Galí

(1999), instead, provides evidence that a technology shock determines a nega-

tive correlation while the opposite is true for a nontechnology one. Hence, the

lack of aggregate unconditional correlation is explained by reversing the effects

of its sources respect to what predicted by standard RBC models.1 Assuming

sector-neutral and investment specific shocks, Fisher (2005) estimates an increase

of employment after an investment-specific technological improvement and a con-

traction after a positive neutral shock. In this paper we provide evidence that the

lack of aggregate correlation is due to the positive correlation between the two

variables in the durable goods producing sector — conditional to the investment-

specific innovation — and the negative correlation between the same variables in

the nondurable goods producing sector — conditional to the neutral shock. Thus,

the aggregate evidence may be interpreted as the overall outcome of different

sectoral dynamics after investment-specific and sector-neutral disturbances.

The rest of the paper is organized as follows. Section 2 presents the empirical

model and the estimation strategy. In section 3 we determine the number of
1A similar conclusion is provided by Kiley (1997), who identifies the Galí’s technology component

independently for each two-digit U.S. manufacturing industries, and by Francis and Ramey (2005),
who show the robustness of such conclusion to different ways of implementing the basic identifying
assumption. Conversely, Chang and Hong (2005) show that for a large number of four-digit U.S. manu-
facturing industries technological progress significantly increases hours in the short-run, if one looks at
the relationship between hours and total factor productivity.
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dynamic factors, while in sections 4 and 5 we examine the implications of the

two identifying strategies regarding the effect of a shock across sectors. Section

6 contains the sectoral interpretation of the near-zero correlation between growth

rates of labor productivity and employment. Finally, in section 7 we summarize

the main findings.

2 The econometric framework

The empirical framework we refer to is the generalized DFM developed by Forni

et al. (2000). Let X denotes the n-dimensional vector of variables relevant for

what we are going to study, that is the log-difference of labor productivity and

hours worked at both aggregate and sectoral levels. The starting point of our

investigation is the following moving average representation

Xt = X̃t + ξt = Γ(L)εt + ξt. (1)

where L denotes the lag operator, εt is an m-dimensional vector of orthogonal

shocks, which explain a substantial part of aggregate and sectoral fluctuations,

the matrix Γ(L) captures the mechanism through which the shocks propagate

over time and across sectors, and ξt is an n× 1 vector of transitory idiosyncratic

shocks — each one orthogonal to those in εt.2

A matter of importance of equation (1) is that each series is decomposed into

two orthogonal parts: the common component, Γ(L)εt, and the idiosyncratic com-

ponent, ξt. The common component captures global comovement, as it is explained

by common shocks with loadings specific to each variable. The idiosyncratic com-
2Equation (1) is based on the assumption that both productivity and hours are integrated of order

one. This assumption is in line with many other empirical investigations on the same topic (see, for
example, Galí, 1999).
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ponent, instead, would capture shocks the effects of which do not propagate widely

across sectors.3 We argue that a DFM is ideally suited to investigate the main

question of this paper for at least three reasons:

• The number of rows in the vector εt depends on the total number of relevant

shocks in the economy. Formally, this question is related to the rank of the

spectral density matrix of Xt. The implementation of the dynamic factor

analysis provides an estimate of the relevant stochastic dimension of the

sectoral economy. In other words, it makes possible to find out the number

of shocks, m, which emerge from the behavior of many sectors as responsible

for the business cycle features.

• When both the cross-section and the time-series dimensions of a panel tend

to infinity, the two orthogonal components Γ(L)εt and ξt are identifiable even

though the shocks in ξt are not mutually orthogonal. All we need is that the

idiosyncratic disturbances, although eventually shared by two or more units,

have their effects concentrated on a finite number of cross-sectional units

and tending to zero as the cross-sectional dimension of the data tends to

infinity. This feature of the DFM is of interest for our application. In fact, it

would be unrealistic to assume lack of cross correlation among idiosyncratic

components when a set of industries is involved with strong relationships. In

this case, it is reasonable to suppose that when an idiosyncratic shock hits

any industry it propagates its effect around. The DFM allows for such cross

correlations.

• The key point of our empirical model rests on the possibility of interpreting

the observed variations in labor productivity and employment across a large
3An alternative explanation for the term ξt involves the possibility of measurement errors in the data.
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number of sectors as originating in a low number of sources of exogenous

disturbances, εt. Starting from equation (1), it is possible to identify the

m common shocks εt and to estimate the n×m impulse response functions

Γ(L). As in the structural VAR literature, the common shocks are identified

up to a static rotation R, where R is an orthonormal matrix of dimension

m ×m. Hence, the identification consists in selecting R such that econom-

ically motivated restrictions on the matrix Γ(L)R are satisfied. In partic-

ular, as the matrix R is orthonormal m(m − 1)/2 restrictions are required.

Therefore, adopting a dynamic factor approach we can use information on n

variables to identify m shocks, with n much larger than m. Moreover, this

implies that even a small set of economically motivated restrictions gener-

ates testable over-identified restrictions. Indeed, the indeterminacy problem

of a structural factor model does not depend on n (as it is generated by an

m-dimensional rotation), while the impulse response functions estimated are

n. For example, exploiting just one economically motivated restriction on

a given variable which characterizes different sections of the panel, we can

obtain n responses for which such identification has to be valid. Therefore,

it is possible to test the restriction imposed on such a variable.

2.1 The estimation strategy

In order to estimate our empirical model we follow the procedure proposed by

Giannone et al. (2005). Thus, consider the following static version of equation

(1):

Xt = Fft + ξt (2)

ft = Aft−1 + Sεt
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where ft = (ε′t ε′t−1 . . . ε′t−s)
′ is the r × 1 vector of so-called static factors, F is

the n× r matrix of loadings, and S is an r ×m matrix.4

• First, we need to choose both the numbers of dynamic and static factors,

that is m and r.

To fix m, we look at how many common shocks explain most of the variance of

the data-panel. In particular, we exploit the circumstance that the variance

explained by the i-th dynamic factor, at each frequency ϑ, is given by

λi(ϑ)∑n
j=1 λj(ϑ)

for i = 1 . . . n

where λi(ϑ) denotes the i-th eigenvalue of the spectral density matrix of the

panel, ranked in descending order of magnitude.

A formal way of determining the number of static factors would be to apply

the testing-strategy proposed by Bai and Ng (2000). However, by means

of Monte Carlo simulations the authors show that the test is reliable when

both N and T are extremely large.5 As the dimension of our panel does not

fit this requirement, we prefer to investigate the sensitivity of the estimates

to different values of r. Results, however, will reveal to be not qualitatively

sensible to the choice of r.

• Second, principal component analysis is employed to estimate the parameters

of model (2). More precisely, by adopting the principal component estimator

proposed by Stock and Watson (1999, 2002), we estimate the static factor
4In the literature the number of static factors refers to the r = m(s + 1) entries of ft, while the

number of dynamic factors identifies the stochastic dimension m of the model.
5Technically, for our relatively small panel the algorithm proposed by Bai and Ng does not reach a

local minimum.
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space related to the first r principal components of our panel, that is

f̂t = W ′Xt

where W is the n × r matrix of the eigenvectors corresponding to the first

r largest eigenvalues of the sample covariance matrix of the panel, that is
1
T

∑T
t=1 XtX

′
t. Then, we regress Xt on the estimated factors to estimate the

factors loadings:

F̂ =
T∑

t=1

Xtf̂
′
t

(
T∑

t=1

f̂tf̂
′
t

)−1

.

Finally, in order to estimate the parameters of the second equation of model

(2) we run a VAR on the estimated factors. It follows

Â =
T∑

t=2

f̂tf̂
′
t−1

(
T∑

t=2

f̂t−1f̂
′
t−1

)−1

Σ̂ =
1

T − 1

T∑
t=2

f̂tf̂
′
t − Â

(
1

T − 1

T∑
t=2

f̂t−1f̂
′
t−1

)
Â′

Ŝ = BH−1

where H is the diagonal matrix having on the diagonal the square roots of

the first m largest eigenvalues of Σ̂ and B is the r×m matrix whose columns

are the eigenvectors corresponding to those eigenvalues.

• Third, estimated parameters are replaced into model (2):

Xt = F̂ft + ξt

ft = Âft−1 + Ŝεt.

Hence, by means of the Kalman filter we re-estimate the factors and we get
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the estimates of the common shocks:

f̂t = Proj[ft|X ′
1, . . . , X

′
T ], t = 0, 1, . . . , T

ε̂t = H−1B′(f̂t − Âf̂ ′t).

• Fourth, we recover the impulse response functions of the common component

by inverting the factor-VAR-representation and substituting out in the first

equation of model (2):

X̃t = F̂(I − ÃL)−1ŜRεt

= F̂(I + ÂL + Â2L2 + . . . )ŜRεt

= Γ̂(L)Rεt

(3)

where the entries of R depend on the identifying assumption. We will discuss

later this issue.

3 Sectoral comovements

In the following we deal with a panel of US annual data on labor productivity and

employment relative to the Manufacturing sector, the durable and nondurable

goods producing sectors, and the 2-digit SIC manufacturing industries. Employ-

ment is measured as hours worked while productivity is measured as deflated value

of production over employment; the time span is 1949-2000.

The first step of the empirical analysis consists in determining if labor produc-

tivity and hours worked comove across sectors, particularly at business cycle and

lower frequencies. If so, this would imply that few shocks can explain the dynamics

of the sectoral variables. As said before, one approach to measuring the degree of
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comovements is to determine the number of dynamic principal components which

are sufficient to explain the bulk of labor productivity and employment variances.

If the number is small, few shocks are relevant for sectoral dynamics.

Looking at hours worked, Figure 1 (Plot b) shows that the first principal com-

ponent explains about 75% of the sectoral variance at the business cycle frequen-

cies. Adding a second principal component substantially improves the explained

variance at the long-run horizon, which increases by almost 20%. Two princi-

pal components also explain most of the variance for labor productivity (Figure

1, Plot a), with the second principal component determining increments ranging

from 15% to 30%. Thus, in general two principal components are responsible for

large shares of total variances for each sets of time series, denoting strong comove-

ments across sectors for both labor productivity and employment. This conclusion

is reinforced if we merge the two sets of data and carry out the same analysis for a

single panel (Figure 1, Plot c). Now two principal components explain more than

60% of the variability at any frequency.

A complementary way to asses the commonality across sectors is to examine

the goodness of fit of the projection of the sectoral variables of interest onto the

first two principal components. By such analysis we show that, across industries,

the average variance explained for hours is about 80%, while for labor productivity

is about 62%. In particular, the common component almost always explains more

than 50% of the variance of the two variables for each industry (see Table 1).6

Resting on previous evidence, we assess that two shocks explain the main bulk

of variance at both short- and long-run horizons. Thus, in the following we will

settle m = 2.
6The only two exceptions concern the labor productivity for the Food and Kindred Products and

Furniture and Fixtures industries.
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4 One permanent shock and sectoral dynamics

Much of the recent empirical work on business fluctuations rests on the identify-

ing assumption that the long-run variability of labor productivity is traced to a

single shock source, generally interpreted as an aggregate, sector-neutral, technol-

ogy shock; any other disturbances recovered in the data are restricted to have a

purely transitory influence. In this framework, the empirical evidence about what

happens after a technology shock is related to the relevant issue of which class of

economic models correctly interpret the dynamic behavior of market economies.

For instance, by estimating a bivariate VAR with employment and labor pro-

ductivity data, the long-run restriction allows to readily estimate the sequence of

shocks — usually interpreted as aggregate demand shocks — which by construction

have transitory effects on the level of labor productivity and those shocks affecting

this variable permanently. The possibility that favorable technology shocks lead

to declines in employment, while demand shocks rise both output and hours, is

viewed as conflicting with the relevance of the technology-driven business cycle

idea.

4.1 Identification I: Aggregate variables

Results reported in section 3 suggest that two shocks appear to explain most of the

variance for both labor productivity and employment for the US, so focusing on

two shocks with aggregate data does seem to be plausible. Hence, as a first instance

we exploit the Galí’s identifying assumption and interpret as technology shock the

only shock with long-run effect on the aggregate productivity.7 Technically, this
7Note that for aggregate we refer to the Manufacturing sector.
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identification can be imposed by choosing ϑ̂ such that

Dvec[Γ̂(1)R(ϑ̂)] = 0

where Γ̂(1) is the matrix of estimated long-run impulse responses.8

Figure 2 reports the effects of the technology and nontechnology shocks on

aggregate employment and labor productivity for r = 2. It is noteworthy that our

results look quite similar to those of Galí (1999) and others, despite the fact that we

have applied a very different econometric technique and used annual rather than

quarterly data. In particular, we find that just after the technology shock hours

worked declines, supporting the theoretical predictions of both new keynesian

models and less orthodox versions of flexible price models.

If the technology (permanent) component of the data has been correctly disen-

tangled then the technology shock should determine positive widespread long-run

effects on the labor productivity at sectors level while, more important, the non-

technology (transitory) shock should not have any long-run effect on that variable

across sectors. Hence, this argument suggests that we can question the reliability

of the aggregate long-run restriction looking at the dynamic effects of the shocks

across sectors.9 Figure 3 reports the responses of the labor productivity after a

(positive) technology shock for the 18 manufacturing industries, the durable and

nondurable goods producing sectors, and the Manufacturing sector as a whole.

The figure shows that for 16 out of 18 industries the shock produces a positively

and statistically significant effect in the long-run. In particular, a technology shock
8The D matrix, of dimension 1× 84, is such that it selects only the response of the aggregate labor

productivity to the transitory shock, that is all the elements but one are equal to zero.
9Exploiting the Galí’s assumptions, Kiley (1997) also investigates the dynamic effects of technology

and nontechnology disturbances at sectoral level. However, differently from the present paper, the two
components of the data are recovered looking at each sector separately. Hence, the potential impact of
cross-sectoral linkages are not taken into account.
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determines quantitatively relevant increments of the labor productivity mainly

for Chemicals and Allied Products, Rubber and Miscellaneous Plastic Products,

Transportation Equipment, and Electrical Machinery. At a more aggregate level,

the figure suggests that the impact of a technology shock is quantitatively more

relevant for the durable goods sector than the nondurable goods one: The labor

productivity increment of the former (latter) is estimated higher (lower) than that

of the Manufacturing. Food and Kindred Products and Primary Metal industries

are the only two industries which do not appear to be affected by a technology

shock neither in the short-run nor in the long-run. Overall, our results would

suggest that the identifying strategy correctly isolated the effect of a shock which

can be labelled as a neutral technology shock.

The support of the Galí methodology weakens, however, when we look at

the effects of the shock which by construction does not influence the aggregate

labor productivity in the long-run. The impulse responses reported in Figure 4

clearly shows that for many industries such shock has a statistically-significant

long-run impact. This is mainly true for 4 industries out of 8 caracterised by the

production of nondurable goods (Paper and Allied Products; Printing, Publishing,

and Allied Industries; Chemicals and Allied Products; Petroleum Refining and

Related Products) and for 5 durable goods industries out of 10 (Stone, Clay, Glass,

and Concrete Products; Primary Metal Industries; Fabricated Metal Products;

Machinery; Transportation Equipment). In those cases the shock determines a

positive and statistically significative effect both on impact and in the long-run.

At a more aggregate level, it happens that after a nontechnology shock the labor

productivity in the durable goods producing sector rises on impact and settles on

a positive and statistically significant value in the long-run; consistently with the

assumption the nondurable goods producing sector, instead, does not appear to
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be affected by the shock at all.

Previous results are based on estimates of equation (1) under the assumption

of two static factors, that is r = 2. As showed before, this choice is appealing

because it determines, on aggregate, results qualitatively similar to those reported

in previous studies on the same topic. In principle, however, a different parameter-

ization could undermine the main conclusions we achieved. Thus, we re-estimate

our DFM for values of r up to 7 and replicate, for each value of r, exactly the

same analysis presented before. Overall we corroborate previous findings; again,

the main message is that after a transitory-nontechnology shock the labor produc-

tivity of some manufacturing industries is permanently affected. To give a flavor

of the results we achieved, Figure 5 reports the effects of a nontechnology shock on

the labor productivity for 4 manufacturing industries — the left-hand side is rela-

tive to r = 4 while the right-hand side is relative to r = 7. The impulse responses

confirm that looking at the long-run behavior of aggregate labor productivity to

identify the technology and nontechnology components of the data may neglect a

relevant piece of information.10

4.2 Identification II: Sectoral variables

The empirical approach proposed above rests on the view that if we identify the

effect of a shock by imposing a long-run restriction on a given aggregate variable,

then the same restriction should characterize that variable for each sector. This ar-

gument appears to be quite plausible if one interpret, as usual, the transitory shock

as nontechnology shock. It can be argued, however, that the long-run-neutrality

across sectors is a too strong requirement to question the assumption that a single

source of permanent innovations is responsible for the long-run behavior of labor
10Erceg et al. (2005) find a substantial bias in the estimated technology shock responses under the

Galí assumption and show that such bias is related to the difficulty of identifying the technology schocks.
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productivity. Now we follow a different route. We define the nontechnology shock

for a sectoral economy as the one with the minimum impact on the weighted av-

erage across industries of the long-run labor productivity responses. Technically,

this identifying assumption implies a value of ̂̂
ϑ such that

̂̂
ϑ = argmin

ϑ

{
vec[Γ̂(1)R(ϑ)]′D̃′

}{
V̂ar

(
D̃vec[Γ̂(1)R(ϑ)]

)}−1 {
D̃vec[Γ̂(1)R(ϑ)]

}

where Var(.) denotes the variance operator.11

The main message of Figure 6 is that such nontechnology shock affects the

long-run labor productivity. In particular, a shock determining a positive long-

run effect for Manufacturing induces a similar effect for the nondurable goods

producing sector. Moreover, results for different values of r, not reported, confirm

the evidence of Figure 6.12 These findings reinforce our main conclusion that

the dynamic behavior of the labor productivity across US sectors does not fully

support the single-source permanent shock hypothesis.

5 Neutral and sector-specific innovations

By estimating a DFM under the assumption that just sector-neutral technology

shock determines persistence in aggregate (Manufacturing) labor productivity, we

showed that: (a) some key features which characterize previous work with ag-

gregate data and VAR methodology can be replicated; (b) sectoral responses to

the identified shocks provide evidence which questions the identifying assumption.

Thus, in the following we assume two distinct and potentially important sources

of business fluctuations and long-run persistence. One source of fluctuations con-
11Note that we estimate the matrix Var( eDvec[bΓ(1)R(bϑ)]), of dimension 18 × 18, by means of the

variance-covariance matrix of the long-run impulse responses of the bootstrapped time series.
12Results for different values of r are available upon request.
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sists of shocks which originate in the investment goods producing industries and

propagate through the entire economy, possibly via the adoption of new equip-

ment. The second source of fluctuations consists of sector-neutral shocks, which

can be interpreted as economy-wide efficiency disturbances.13 Greenwood et al.

(1997) and Fisher (2005) provide, respectively, the theoretical framework for mod-

elling the investment-specific technical change and the empirical assumptions to

identify variables’ dynamic responses to exogenous neutral and investment-specific

technology shocks. The latter are summarized as follows.14

Assumption 1. Only investment-specific technology shocks affect the real

investment price in the long-run.

Assumption 2. Only neutral or investment-specific technology shocks affect

labor productivity in the long run.

Assumption 3. Exogenous investment-specific technology shocks which lower

(raise) the real investment good price by an amount x, raise (lower) labor produc-

tivity in a known fixed proportion to x.

In order to identify the DFM in terms of the above assumptions we add to the

data-panel the price of equipment series constructed by Cummins and Violante

(2002), entered as a ratio to the consumption goods deflator. First, consider the

aggregate responses to the investment-specific shock, reported on the right-hand

side of Figure 7. For both labor productivity and hours, the effect of the shock is

positive and statistically significant on impact and in the long-run. These results

agree with those of Fisher (2005). Consider now the effects of the sector-neutral

shock, reported on the left-hand side of the figure. The labor productivity re-
13For a systematic analysis of the role of sector-specific shocks when comovements across sectors are

related to the economy’s input output structure see, for example, Long and Plosser (1983); Hornstein
and Praschnik (1997); Horvath and Verbrugge (1997); Horvath (2000). In particular, Horvath and
Verbrugge (1997) provide an investigation of the sources of US fluctuations allowing for both aggregate
and sector-specific shocks and conclude that at medium term independent sectoral shocks are prominent
to explain forecast error variance for aggregate output.

14We refer to Fisher (2005) for further details.
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sponds positively both on impact and in the long-run; the effects of the shock

are always statistically significant. Hours, instead, responds negatively on impact

before returning slowly back towards zero. The behavior of hours and labor pro-

ductivity after a neutral shock are very similar to those we recovered as due to

a technology shock under the Galí assumption (see Figure 2) as well as to those

that Galí (1999) and Fisher (2005) estimated as due to, respectively, a technology

shock and a neutral shock.15

Now, look at the sectoral responses. Figure 8 documents statistically signif-

icant positive effects in the long-run after a positive neutral shock for 15 labor

productivities out of 18. Of course, the effect of the shock is estimated positive for

the durable and non durable goods producing sectors and the Manufacturing sec-

tor, too. The main exception relates to Primary Metal Industries which appears

to be not affected at all by the shock.16 Hence, sectoral results confirm that this

shock can be reasonably labelled as a sector-neutral shock.

The investment-specific shock determines heterogeneous effects across sectors

(Figure 9). After a positive shock, 12 out of 18 industries document an increase

of the labor productivity in the short- as well as in the long-run. The shock per-

manently affects the labor productivity of 5 industries which are part of the non-

durable goods producing sector and of 7 industries which are part of the durable

goods producing sector. At a more aggregate level, however, a significant effect

is only estimated for the durable goods producing sector. Actually, this sector

is responsible for the positive effect displayed on impact and in the long-run by

Manufacturing. Thus, sectoral results validate the interpretation of this shock as

an investment-specific technological improvement.17

15Note that the responses of the relative price of investment are in line with what expected.
16It is interesting to note that we previously estimated no effect at all for the labor productivity of

Primary Metal Industries after a technology shock of the Galí type. In general the present results are
qualitatively very similar to those we recovered under the Galí’s identifying assumption.

17Results for hours, not reported, show that the investment shock determines positive and statistically
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6 Sectors and the productivity-employment correlation

Many authors locate evidence for a strong positive correlation between aggregate

hours and output, and a near-zero correlation between aggregate hours and la-

bor productivity. Advocates of RBC models suggest that technology shocks are

the main driving force behind aggregate fluctuations and that business cycles in

market economies are consistent with the competitive neoclassical equilibrium.18

In particular, a standard RBC model predicts a high positive correlation between

employment and labor productivity conditional to technology shocks; thus, the

nearly zero unconditional correlation between the two variables calls for another

set of shocks which produce a conditional correlation of negative sign. Some pro-

ponents of the new keynesian paradigm suggest, instead, models based on nominal

rigidities and variable labor effort, and focus on aggregate demand shocks, mainly

monetary and public spending shocks, as the main source of macroeconomic fluc-

tuations. For instance, under the assumption that just one type of shock can have

permanent effects on labor productivity, Galí (1999) — who interprets this shock

as technological — argues that the nearly zero unconditional correlation can be

interpreted as the outcome, respectively, of the negative correlation due to tech-

nology shocks and the positive correlation due to demand shocks. Thus, the lack

of unconditional correlation between productivity and employment is explained

by reversing the effects of its sources respect to what predicted by standard RBC

models.19 Moreover, Francis and Ramey (2005) argue that the labor-productivity-

permanent-shock can be plausibly interpreted as technological and confirm Galí’s

significant impacts on employment across sectors at any horizons. At the same time, sectoral responses
of hours to the neutral shock are often negative.

18King and Rebelo (2000) argue that a standard RBC model augmented with persistent exogenous
technological shocks implies unconditional dynamic patterns for aggregate variables similar to those
exhibited by actual time series.

19Blanchard (1989) and Blanchard and Quah (1989) also provide such empirical findings which they
interpret as consistent with the traditional keynesian framework.
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findings.20 Christiano et al. (2003) and Chang and Hong (2005) challenge, how-

ever, previous conclusion showing that such negative conditional correlation is not

robust, respectively, to the way one models the low frequency component of em-

ployment and to different measures of productivity.21 All previous work departs

from assuming a single source of permanent innovations in labor productivity in-

terpreted as sector-neutral technology disturbances. Allowing also for investment-

specific technological improvement, Fisher (2005) shows that the latter determines

an increase of employment.

Conditional on the sector-neutral and investment-specific sources of business

cycle, we now offer a new interpretation of the low correlation between productivity

and hours worked which arises looking at sectoral data. In fact, Table 2 offers a

way to interpret the aggregate unconditional correlation in terms of strong sectoral

correlations. In particular, the table shows the unconditional correlations and the

correlations conditional on, respectively, the investment and neutral shocks, for

Manufacturing and for the durable and nondurable goods producing sectors.22 For

Manufacturing, we replicate the well-known near-zero unconditonal correlation

between the two variables. However, looking at the second and third rows of

the table it appears that the lack of aggregate unconditonal correlation is the

net effect of, respectively, the positive correlation in the durable goods producing

sector and the negative correlation in the nondurable goods one. In particular, the

conditional estimates suggest that behind the lack of correlation between the two

variables, on aggregate, hides a strong positive correlation in the durable goods
20Francis and Ramey (2005) note, however, that some variants of a standard dynamic general equi-

librium model, with habit formation in consumption and adjustment costs in investment or with a
high degree of complementarity between inputs in the short run, can produce the negative conditional
correlation.

21By assuming that per capita hours worked is a stationary process Christiano et al. (2003) find that
employment rises after a positive technology shock, while the converse is true if one assume that per
capita hours is a difference stationary process. By looking at the total factor productivity sector by
sector, Chang and Hong (2005) also show that employment rises after a positive technology shock.

22For technical details on how to compute conditional correlations see Galí (1999).
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producing sector, conditional to the investment shock, and a negative correlation

in the nondurable goods producing sector, conditional to the neutral shock. This

result highlights that sectoral fluctuations provide a relevant piece of information

to properly interpret aggregate evidence and suggests to look at sectoral models

in order to improve our understanding of business cycle.

7 Conclusions

A very popular strategy to identify VAR models aimed at explaining business

fluctuations rests on the assumption that a single source of shocks, usually in-

terpreted as efficiency gains neutral across sectors, is responsible for the long-run

persistence of labor productivity. Any other shock is restricted to just have tran-

sitory effect on this variable. An alternative strategy departs from assuming two

potentially important sources of business fluctuations, one sector-neutral and the

other sector-specific. The latter is usually interpreted as investment-specific tech-

nological change. By estimating a DFM with data referring to the US two-digit

manufacturing industries we investigate on the reliability of the two identifying

strategies. Overall our results seems to be more consistent with a framework char-

acterized by two sources of innovations determining long-lasting effects on labor

productivity. At a more general level, we argue that sectors do provide useful in-

formation in explaining the business cycle. In particular, sectoral data allows for

a more deep explanation of an important empirical puzzle, namely the near-zero

correlation between aggregate labor productivity and employment.

When we recover the thechnology vs nontechnology components of the data

under the assumption that a single source of shocks — usually interpreted as ef-

ficiency gains neutral across sectors — is responsible for the long-run persistence

of labor productivity, we find that a nontechnology shock permanently affects the
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labor productivity of some industries, mainly those caracterised by the production

of durable goods. We argue that this result is at odds with the spirit of the iden-

tifying assumption. Of course, the aggregate transitory shock may be interpreted

as a sectoral-shift shock such that it improves the labor productivity of one sector

and lowers the productivity in an other one; to be consistent with the identifying

assumption, however, we should assume that the effects of sectoral-shift shock

across sectors are such that they exactly cancel out on aggregate. When we iden-

tify, instead, the DFM by recovering the sector-neutral and investment-specific

shocks we find that, as expected, the investment shock permanently affects the

labor productivity of the durable goods producing sector. Conversely, the effect

of the shock is estimated not statistically significant in the nondurable goods pro-

ducing sector. Finally, resting on the assumption of two potentially sources of

permanent innovations we show that the near-zero correlation between aggregate

productivity and employment growth rates can be interpreted as due to the posi-

tive correlation between the two variables, in the durable goods producing sector,

and the negative correlation between the same variables in the nondurable goods

producing sector. The positive correlation is determined by investment-specific

shocks while the negative correlation is mainly traced to sector-neutral shocks.
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A Data Description

Labor is measured as the hours worked by all persons engaged in a sector. The

sources for employment and average weekly hours data are the BLS Current Em-

ployment Statistics program and Current Population Survey. Sectoral output is

based on the deflated value of production, less that portion which is consumed in

the same industry. This treatment is consistent with a production function which

represents the industry as if it were a single process. Real production equals

the deflated value of shipments and miscellaneous receipts plus inventory change.

Intra-industry transactions are removed from all output and material input series

used in this study, using transactions data contained in the various input-output

tables for the U.S. economy prepared by the U.S. Bureau of Economic Analysis

(BEA). It should be noted that this intra-sector transaction for total manufactur-

ing is greater than the sum of intra-sector transactions for two-digit industries.

For each two-digit industry, intra-sector transactions are those between establish-

ments in the same industry; for total manufacturing, the intra-sector transaction

consists of all shipments between domestic manufacturers, regardless of industry.23

It follows the list of sectors for which we have collected the above variables:

• Manufacturing

• Nondurable Goods

• Food and Kindred Products

• Textile Mill Products

• Apparel

• Paper and Allied Products

• Printing, Publishing, and Allied Industries

• Chemicals and Allied Products
23The definitions are taken from Bureau of Labor Statistics, US Department of Labor, sept. 2000,

Measurement Framework and Methods.
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• Petroleum Refining and Related Products

• Rubber and Miscellaneous Plastic Products

• Durable Goods

• Lumber and Wood Products (except furniture)

• Furniture and Fixtures

• Stone, Clay, Glass, and Concrete Products

• Primary Metal Industries

• Fabricated Metal Products (except machinery)

• Machinery (except electrical)

• Electrical and Electronic Machinery, Equipment, and Supplies

• Transportation Equipment

• Measuring and Controlling Instruments

• Miscellaneous Manufacturing Industries

The series of price is the price of equipment, as a ratio to the consumption

goods deflator, constructed by Cummins and Violante (2002).

B A model with neutral and investment-specific shocks

In this appendix we solve the two-sector model. The economy is characterized by

the following equations:

U(C, N) = θ ln Ct + (1− θ) ln(1−Nt) (B.1)

Ct = ZtK
αc
c,tN

1−αc
c,t (B.2)

It = QtZtK
αk
I,t N

1−αk
I,t (B.3)

Kt+1 = (1− δ)Kt + It (B.4)

ln Zt = gz + ln Zt−1 + εz,t (B.5)

ln Qt = gq + ln Qt−1 + εq,t (B.6)
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Equation (B.1) is the instantaneous utility function of the representative house-

hold, where C and N denote consumption and labor respectively. The durable, I,

and the non-durable, C, goods are produced using capital and labor accordingly

to the equations (B.2)-(B.3). Total factor productivity is affected by technological

changes. In particular, changes in Z affect both sectors in a direct way, while

changes in Q are investment specifics. Finally, equation (B.4) represents the accu-

mulation law for total capital, while equations (B.5) and (B.6) model the evolution

of technological change.

Competitive equilibrium With W , R, and P we denote respectively the wage,

the rental price of capital, and the relative price of investment goods.

1. Representative agent. – She maximizes the expected present value of

lifetime utility as given by

E0

[ ∞∑
t=0

βtU (Ct, Nt)

]

subject to

Kt+1Pt −
(

Rt

Pt

+ 1− δ

)
KtPt −WtNt + Ct = 0

and equations (B.5)-(B.6).

2. Firm. – The maximization problems of the firm in the two sectors are:

max
Kc,t,Nc,t

πc,t = ZtK
αc
c,tN

1−αc
c,t −RtKc,t −WtNc,t

max
KI,t,NI,t

πI,t = PtQtZtK
αk
I,t N

1−αk
I,t −RtKI,t −WtNI,t

3. Equilibrium. – Defining with ς = (K, Z, Q) the aggregate state of the
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economy, a competitive equilibrium is a set of allocation rules C = C(ς), I =

I(ς), and N = N (ς), a set of pricing functions W = W(ς), R = R(ς), and

Pt = P(ς), and an aggregate law of motion for the capital stock K ′ = K(ς)

such that:

(a) The agent solve the problem taking as given the aggregate state of world

and the form of pricing functions, with the equilibrium solution to this

problem satisfying the allocation rules.

(b) Firms solve the problem given the aggregate state of world and the

form of pricing functions, with the equilibrium solution to this problem

satisfying Kc + KI = K, and Nc + NI = N .

Balance growth We seek a balanced growth path where all endogenous variables

grow at constant rates. Dividing equation (B.4) by Kt+1, we have that gI = gk,

where with gy we refer to the mean rate of growth of a generic variable y. Then,

using the above results and the production functions (B.2) - (B.3), it is possible

to show that gI = gk = 1
1−αk

(gq + gz) and gc = 1−αk+αc

1−αk
gz + αc

1−αk
gq. Finally,

considering that R = R(ς) is by definition the same for the two sectors, we have

that gp = αc−αk

1−αk
gz − 1−αc

1−αk
gq.

Stationary economy We transform our economy in a no-growth economy. For

this task, we take the ratio of each non stationary variable with respect to the

relative stochastic trend. By studying the balance growth we know that the sto-

chastic component for consumption is Z
1−αk+αc

1−αk
t Q

αc
1−αk
t , for capital and investment

is (QtZt)
1

1−αk , while for the relative price of the investment goods is Z
αc−αk
1−αk

t Q
− 1−αc

1−αk
t .
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Indicating such ratio with lower case letter, we rewrite (B.1) - (B.4) as follow:

U(c,N) =θ ln ct + (1− θ) ln(1−Nc −NI)+

θ
1− αk + αc

1− αk

ln Zt +
θαc

1− αk

ln Qt

(B.1’)

(egz+gq+εz,t+1+εq,t+1)
1

1−αk kt+1 = (1− δ)kt + it (B.4’)

Efficiency Condition We solve the transformed consumer problem maximizing

the following Lagrangian:

L =E0

{ ∞∑
t=0

βtU(ct, (1−Nt))

}

+E0

{ ∞∑
t=0

Λt

[
−(egz+gq+εz,t+1+εq,t+1)

1
1−αk kt+1pt +

(
rt

pt

+ 1− δ

)
ktpt + wtNt − ct

]}

The first order conditions are as follow

θc−1
t − λt = 0 (B.7)

(1− θ)(1−Nt)
−1 − λtwt = 0 (B.8)

Et

{
−λt(gzgq)

1
1−αk pt + βλt+1

(
rt+1

pt+1

+ 1− δ

)
pt+1

}
= 0 (B.9)

− (egz+gq+εz,t+1+εq,t+1)
1

1−αk kt+1pt +

(
rt

pt

+ 1− δ

)
ktpt + wtNt − ct = 0 (B.10)

where λt = Λt/β. The solutions of the firm problem are:

MPkc,t = rt = pt ×MPkI,t (B.11)

MPNc,t = wt = pt ×MPNI,t (B.12)

where with MPΥ we indicate the marginal productivity of the generic variable Υ.
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Log-linearization We now linearize our economy taking the log-deviation from

the steady-state path (let’s denote witĥ the variable in log-deviation). Following

King et al. (1988) we can represent our economy by the following two equations

systems:

Mcc




k̂I,t

N̂I,t

N̂t


 = Mcs


k̂t

λ̂t


 (B.13a)

Mss(L)


k̂t+1

λ̂t+1


 = Msc(L)




k̂I,t+1

N̂I,t+1

N̂t+1


 + Mse


εz,t+1

εq,t+1


 (B.13b)

where the matrices are functions of the deep parameters of the model, and Mss(L)

and Msc(L) are polynomials in the lag operator of order one. Inverting Mcc, the

combination of (B.13a) - (B.13b) implies:

M∗
ss(L)


k̂t+1

λ̂t+1


 = Mse


εz,t+1

εq,t+1


 . (B.14)

Premultiplying by the inverse of M∗
ss0 the previous system, we write the fun-

damental dynamic system of our two-sectors economy


k̂t+1

λ̂t+1


 = V1


k̂t

λ̂t


 + V2


εz,t+1

εq,t+1


 (B.15)

where V1 = − [M∗
ss0]

−1 M∗
ss1 and V2 = [M∗

ss0]
−1 Mse. Defining with µ the stable

eigenvalues of the matrix V1, and partitioning the matrix V2 as
( − 1

1−αk
− 1

1−αk
vλ,z vλ,q

)
we
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can express the dynamic process for the capital in the following way:

k̂t+1 = µk̂t − 1

1− αk

εz,t+1 − 1

1− αk

εq,t+1 (B.16)

While the endogenous variables can be expressed as functions of the deviation of

the capital from the stochastic trend, that is

k̂I,t = ωkI ,k k̂t

N̂I,t = ωNI ,k k̂t

N̂t = ωN,k k̂t. (B.17)

State-Space Representation The task of this appendix is to recover the state-

space representation of our model. In particular, we want to show how the en-

dogenous variables can be expressed as a function of a vector of state variables.

We take advantage of equations (B.16) - (B.17) and the definition of log-deviation

from the steady state of the transformed variables, that is

ln Υt = ln Υp
t + ln Υ + Υ̂t

where with Υp
t we indicate the permanent component of a generic variable Υ.

Taking the first differences of the previous equation and plugging in equations

(B.16) - (B.17), we have:

X∗
t = Fft (B.18)

where f ′t = [k̂t−1, εz,t, εq,t], X∗
t is a vector composed by the centralized first differ-

ences of ln Ct, ln It, and ln Yt and by the centralized level of ln Nc,t, ln NI,t, and
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ln Nt, and the matrix F is as follows

F =




ωc,k(µ−1)
1−αk+αc−ωc,k

1−αk

αc−ωc,k
1−αk

ωI,k(µ−1)
1−ωI,k
1−αk

1−ωI,k
1−αk

ωy,k(µ−1)
1−αk+αc−ωy,k

1−αk

αc−ωy,k
1−αk

ωNc,k(µ−1) −ωNc,k
1−αk

−ωNc,k
1−αk

ωNI,k(µ−1) −ωNI,k

1−αk
−ωNI,k

1−αk

ωN,k(µ−1) − ωN,k
1−αk

− ωN,k
1−αk




For the vector ft the following VAR holds:

ft = Aft−1 + Sεt (B.19)

where A =
(

µ 0 0
0 0 0
0 0 0

)
, S =

(
− 1

1−αk
− 1

1−αk
1 0
0 1

)
, and εt = [εz,t, εq,t]. Finally, by inverting

equation (B.19) and substituting for ft in (B.18) it follows the MA representation:

X∗
t = F [I − AL]−1Sεt = Γ(L)εt. (B.20)

30



References

Bai, J., Ng, S., 2000. Determing the number of factors in approximate factor

models. Econometrica 70, 191–221.

Blanchard, O. J., 1989. A traditional interpretation of macroeconomic fluctuations.

American Economic Review 79, 1146–64.

Blanchard, O. J., Quah, D., 1989. The dynamic effect of aggregate demand and

supply disturbances. American Economic Review 79, 655–673.

Chang, Y., Hong, J. H., 2005. Do technological improvements in the manufacturing

sector raise or lower employment? American Economic Review 96, 352–368.

Christiano, L. J., Eichenbaum, M., Vigfusson, R., 2003. What happens after a

technology shock? NBER Working Paper No. 9819.

Cummins, J. G., Violante, G. L., 2002. Investment-specific technical change in

the us (1947-2000): Measurement and macroeconomic consequences. Review of

Economic Dynamics 5, 243–284.

Erceg, C., Guerrieri, L., Gust, C., 2005. Can long-run restrictions identify tech-

nology shocks? Journal of the European Economic Association 3, 1237-1278.

Fisher, J. D. M., 2005. The dynamic effects of neutral and investment-specific

technology shocks. Mimeo.

Forni, M., Hallin, M., Lippi, M., Reichlin, L., 2000. The generalized dynamic

factor model: Identification and estimation. Review of Economics and Statistics

82, 540–554.

31



Francis, N., Ramey, V. A., 2005. Is the technology-driven real business cycle hy-

pothesis dead? Shocks and aggregate fluctuations revisited. Journal of Mone-

tary Economics 52, 1379–1399.

Galí, J., 1999. Technology, employment, and the business cycle: Do technology

shocks explain aggregate fluctuations? American Economic Review 89, 249–71.

Giannone, D., Reichlin, L., Sala, L., 2005. Monetary Policy in Real Time. In

Gertler, M., Rogoff, K. (Eds.) NBER Macroeconomics Annual 2004. The MIT

Press, Boston, pp. 161-224

Greenwood, J., Hercowitz, Z., Krusell, P., 1997. Long-run implications of

investment-specific technological change. American Economic Review 87, 342–

362.

Greenwood, J., Hercowitz, Z., Krusell, P., 2000. The role of investment-specific

technological change in the business cycle. European Economic Review 44, 91–

115.

Hornstein, A., Praschnik, J., 1997. Intermediate inputs and sectoral comovement

in the business cycle. Journal of Monetary Economics 40, 573–595.

Horvath, M., 2000. Sectoral shocks and aggregate fluctuations. Journal of Mone-

tary Economics 45, 69–106.

Horvath, M., Verbrugge, R., 1997. Shocks and sectoral interactions: an empirical

investigation. Mimeo.

Kiley, M. T., 1997. Labor productivity in u.s. manufacturing: Does sectoral co-

movement reflect technology shocks. Mimeo.

King, R. G., Rebelo, S. T., 2000. Resuscitating real business cycles. NBER Work-

ing Paper No. 7534.

32



King, R., Plosser, C., Rebelo, S., 1988. Production, growth and business cycles ii:

New directions. Journal of Monetary Economics 21, 309–341.

Long, J. B., Plosser, C. I., 1983. Real business cycles. Journal of Political Economy

91, 39–69.

Stock, J. H., Watson, M. W., 1999. Forecasting inflation. Journal of Monetary

Economics 44, 293–335.

Stock, J. H. and Watson, M. W., 2002. Macroeconomic forecasting using diffusion

indexes. Journal of Business and Economic Statistics 40, 147–162.

33



Table 1: Percentage of Variance Explained by the First Two Dynamic Prin-
cipal Components

INDUSTRY Labor Productivity Hours
Manufacturing 0.78 0.91
Nondurable Goods 0.54 0.91
Food and Kindred Products 0.46 0.57
Textile Mill Products 0.60 0.83
Apparel 0.64 0.81
Paper and Allied Products 0.54 0.82
Printing, Publishing, and Allied Industries 0.64 0.58
Chemicals and Allied Products 0.76 0.75
Petroleum Refining and Related Products 0.63 0.55
Rubber and Miscellaneous Plastic Products 0.67 0.91
Durable Goods 0.76 0.90
Lumber and Wood Products 0.57 0.87
Furniture and Fixtures 0.48 0.91
Stone, Clay, Glass, and Concrete Products 0.60 0.90
Primary Metal Industries 0.77 0.86
Fabricated Metal Products 0.58 0.86
Machinery (except electrical) 0.70 0.78
Electrical and Electronic Machinery 0.69 0.79
Transportation Equipment 0.61 0.77
Measuring and Controlling Instruments 0.57 0.78
Miscellaneous Manufacturing Industries 0.59 0.77

Note. The table describes the share of the variance of the growth rates of labor
productivity and hours worked explained by the common component.
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Table 2: Conditional Correlation Estimates

Unconditional Conditional
Investment Neutral

Manufacturing -0.16 0.52** -0.63**
Nondurable goods -0.32** 0.18 -0.74**
Durable goods 0.20 0.73** -0.22

Note. The table reports estimates of unconditional (data)
and conditional correlations between the growth rates of la-
bor productivity and hours for Manufacturing, Nondurable
and Durable goods producing sectors. Significance is indi-
cated by one asterisk (10-percent level) or two asterisks (5-
percent level).
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Figure 1: Shares of total variance of growth rates of labor productivity (Plot a), hours worked
(Plot b), and both labor productivity as well as hours worked (Plot c) explained by the first
component (dashed line) and the first two components (solid line) at each frequency.
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Figure 2: Impulse response functions relative to the Manufacturing sector under the Galí as-
sumption. Plots on the left hand-side report the effects of a technology shock while plots on
the right hand-side report the effects of a nontechnology shock, that is a shock with transitory
effects on aggregate labor productivity.
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Figure 3: Response functions of the labor productivity across manufacturing sectors after a
technology shock, under the Galí assumption (r = 2).

38



−0.5

0

0.5

1
Manufacturing

−1

−0.5

0

0.5
Non−durable (SIC 20−23, 26−30)

−1

−0.5

0

0.5
Food & Kindred Prod. (SIC 20)

−1.5

−1

−0.5

0

0.5
Textile Mill Prod. (SIC 22)

−3

−2

−1

0

1
Apparel (SIC 23)

0

0.5

1

1.5

2
Paper & Allied Prod. (SIC 26)

0

0.5

1

1.5
Printing & Publishing (SIC 27)

0

1

2

3

4
Chemicals  (SIC 28)

0

0.5

1

1.5

2

2.5
Petroleum Refining (SIC29)

−0.5

0

0.5

1

1.5

2
Rubber & Plastic Prod. (SIC30)

0

0.5

1

1.5

2
Durable (SIC 24−25, 32−39)

−3

−2

−1

0

1
Lumber & Wood Prod.(SIC 24)

−1

−0.5

0

0.5

1
Furniture & Fixtures (SIC 25)

0

0.5

1

1.5
Stone, Clay & Glass (SIC 32)

0

1

2

3

4
Primary Metal Ind. (SIC 33)

0

0.5

1

1.5

2
Fabricated Metal Prod. (SIC 34)

0

1

2

3
Machinery (SIC35)

−1

0

1

2

3
Electrical Machinery (SIC 36)

0 5 10
0

1

2

3

4
Transportation Equip. (SIC 37)

0 5 10
−1.5

−1

−0.5

0

0.5

1
Instruments (SIC38)

0 5 10
−1

0

1

2
Miscellaneous Ind. (SIC 39)

Figure 4: Response functions of the labor productivity across manufacturing sectors after a
nontechnology shock, under the Galí assumption (r = 2).
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Figure 5: Response functions of the labor productivity to a nontechnology shock, under the
Galí assumption, for r = 4 (left-side) and r = 7 (right-side).
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Figure 6: Response functions of the labor productivity to a shock determining the minimum
long-run impact on sectoral labor productivities (r = 2).
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Figure 7: Response functions of relative price, aggregate labor productivity, and aggregate
hours. On the right-hand side we report the effects of an investment-specific shock while on the
left-hand side those of a sector-neutral shock.
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Figure 8: Response functions of the labor productivity across sectors to a sector-neutral shock
(r = 2).
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Figure 9: Response functions of the labor productivity across sectors to an investment-specific
shock (r = 2).
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