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AND TECHNOLOGY SHOCKS 

 
 
 
 

I. INTRODUCTION 
 

Learning models have been used for many macroeconomic applications (Sargent, 
2007).1 We focus, in this paper, on yet another application in the context of a 
standard real business cycle model in which rational expectations are replaced by 
adaptive expectations. The stability of rational expectations under learning in real 
business cycle (RBC) models has been studied in the literature (Evans and 
Honkapohja, 2001; Bullard and Duffy, 2004; Carceles-Poveda and Giannitsarou, 
2007; Eusepi and Preston, 2008). In a closely related paper, Williams (2003) 
considers a variety of standard learning rules in a RBC model. The learning rules that 
he considers do not separate agents' beliefs and their decision making. Agents are 
learning about the structural parameters in the reduced form of the model and the 
learning does not influence optimizing decisions. Under this type of learning, 
Williams (2003) finds that learning dynamics differ very little from rational 
expectations dynamics. Consequently, one would have concluded that learning 
dynamics do not teach us anything new, as compared to the rational expectations 
version of the RBC model. 
 
 
 
 
 
 
 
 
 
_______________ 
 1To give a few examples, Lucas (1986), Marcet and Sargent (1989), and Evans and Honkapohja 
(2001) recommend selecting rational expectations equilibria that are stable under least squares 
learning; Primiceri (2006), Sargent, Williams, and Zha (2006b), and Carboni and Ellison (2008) use 
learning mechanisms to explain the rise and fall of American inflation; Adam, Marcet, and Nicolini 
(2008) show how learning helps improve the fit of the model of asset pricing. 
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In this paper, we reexamine this conclusion in the standard RBC model with both 
neutral and investment-specific technology shocks. Following the commonly-used 
learning mechanism studied by Marcet and Nicolini (2003) and Sargent, Williams, 
and Zha (2006a), we examine the implications of misspecified (i.e., under-
parameterized) learning rules by separating agents' beliefs and their decision rules.2 
Rational expectations are simply replaced by adaptive expectations, while all decision 
equations under rational expectations remain intact. We show that this slight 
departure from rational expectations has important ramifications. Specifically, we 
address the following questions: 
 

● Does there exist a self-confirming equilibrium (SCE) in our learning 
environment? Is it unique? 

● Are there strong escape dynamics away from the domain of attraction of the 
SCE? 

● How does learning amplify the effects of technology shocks compared to 
rational expectations? 

● How does learning affect the transmission mechanisms of technology shocks, 
especially in the labor market? 

  
To answer these questions, we obtain closed form solutions for both the log-

linearized rational expectations model and the corresponding learning model. These 
analytical solutions enable us to prove the existence and uniqueness of the SCE 
under all admissible parameterizations in our learning model. We further prove that 
the SCE coincides with the steady state rational expectations equilibrium (REE), but 
that learning dynamics are substantially different from rational expectations 
dynamics. 
 
 
 
_______________ 
 2Williams (2003) studies another misspecified learning in which agents do not know the true 
parameters of the production function. By assuming full depreciation of the capital stock, an i.i.d. 
technology process, and inelastic labor, he shows that learning leads to occasional, but recurrent, large 
deviations away from an SCE, called “escape dynamics.” For other studies of escape dynamics, see 
Sargent (1999), Cho, Williams, and Sargent (2002), Kasa (2004), and Adam, Evans, and Honkapohja 
(in press). 
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Unlike Marcet and Nicolini (2003), Williams (2003), and Sargent, Williams, and Zha
(2006a), however, we show that learning dynamics are stationary and that the di�er-
ences between learning dynamics and rational-expectations dynamics are not driven
by escape dynamics.

These theoretical results enable one to draw macroeconomic implications from our
learning model. The dynamic responses of output, consumption, investment, and
labor hours, following a neutral technology shock, are substantially larger in the
adaptive expectations model than in the rational expectations model. In the rational
expectations equilibrium, hours change too little and the real wage �uctuates too
much compared to the data. In contrast, learning ampli�es the response of hours
and dampens the response of the real wage. In our adaptive expectations model,
agents form forecasts of future capital stock based on the past observations. Thus,
introducing learning dampens the wealth e�ect of the neutral technology shock and
strengthens the intertemporal substitution e�ect. Consequently, it helps amplify the
e�ects of the neutral technology shock on output and investment and improve the
model's predictions on the labor market dynamics. Introducing learning also helps
amplify the e�ects of a biased technology shock.

The responses of hours to both types of technology shocks can be negative after
initial periods in the learning model, whereas the hours responses to each of the two
shocks are positive in the rational expectations model. The less persistent the shocks
are, the more pronounced the negative responses of hours under learning can become.
Furthermore, the learning model is more likely to generate hump-shaped responses of
consumption, investment, real wage, and hours, the less persistent the shocks are.

To relate our work to a broader literature on learning, we also examine a so-
phisticated nonlinear learning rule that has a correct speci�cation of the rational
expectations solution. Consistent with the results reported by Carceles-Poveda and
Giannitsarou (2007), we �nd that the transmission and propagation mechanisms of
technology shocks depend crucially on initial conditions, the size of the shocks, and
the size of the gain. We illustrate some cases where learning generates strong ampli�-
cation e�ects of the technology shocks. In particular, we show that adaptive learning,
acting as a friction, is capable of generating negative responses of hours to a neutral
technology shock, as documented by some recent empirical studies (e.g., Galí (1999),
Basu, Fernald, and Kimball (2006), Gambetti (2006)).

Overall, our results suggest that introducing adaptive expectations in the stan-
dard stochastic growth model can assign a more important role for technology shocks
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to generate �uctuations in key macroeconomic variables than under rational expec-
tations. Introducing learning can be particular helpful in improving the model's
predictions in the labor market.

II. The Model

In this section, we describe the standard growth model with both neutral and
biased technologies. The economy is populated by a continuum of in�nitely lived and
identical households. The representative household is endowed with a unit of time.
The household derives utility from consumption and leisure, with the utility function

E0

∞∑
t=0

βt

{
ln Ct − ξ

L1+η
t

1 + η

}
, (1)

where Ct denotes consumption, Lt denotes labor hours, β ∈ (0, 1) denotes the sub-
jective discount factor, and E0 denotes an expectation at the initial time 0.

The economy is also populated by a continuum of identical, perfectly competitive
�rms. The representative �rm has access to a constant returns to scale technology
represented by the production function

Yt = K1−α
t−1 (ZtLt)

α , (2)

where Yt denotes output, Kt−1 denotes capital input, and Lt denotes labor input. The
term Zt denotes the neutral technological change and follows the stochastic process

Zt = λt
zνt, (3)

where λz is the trend component and νt is the stationary component that follows the
AR(1) process

ln νt = ρν ln νt−1 + ενt. (4)

The persistence parameter ρν ∈ (0, 1] and the shock ενt is a white noise process with
mean zero and variance σ2

ν . The shock process speci�ed in (3)-(4) implies that, if
0 < ρν < 1, then the neutral technology follows a stationary stochastic process with
a deterministic trend; if ρν = 1, then the neutral technology follows a random walk
process with a drift.3

The economy has an initial stock of capital denoted by K−1. Capital stock evolves
over time according to the law of motion

Kt = (1− δ)Kt−1 + QtIt, (5)
3In the case with ρν = 1, we have Zt = λt

zνt and νt = νt−1exp(ενt), or equivalently, Zt =

Zt−1λzexp(ενt).
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where Kt denotes the period-t capital stock, It denotes investment, Qt denotes the
investment-speci�c technological change (the inverse of the relative price of investment
goods, and the parameter δ ∈ (0, 1) denotes the capital depreciation rate. As argued
in Greenwood, Hercowitz, and Krusell (1997), the investment-speci�c technological
change is an important driving force of the U.S. growth in the post-war period. Similar
to the neutral technology, we assume that the investment-speci�c technology shock
Qt follows the stochastic process

Qt = λt
qµt, (6)

where λq is the trend component and µt is the stationary component that follows the
AR(1) process

ln µt = ρµ ln µt−1 + εµt. (7)

The persistence parameter ρµ ∈ (0, 1) and the innovation term εµt is white-noise
process with mean zero and variance σ2

µ. Again, our speci�cation of the Qt process
here nests the random-walk process as a special case with ρµ = 1.

The aggregate resource constraint is given by

Ct + It = Yt. (8)

III. Equilibrium Allocation and Balanced Growth

Since the model economy has perfect competition and no externality, the First
Welfare Theorem applies. Thus, the equilibrium allocations are Pareto e�cient and
can be found by solving a social planner's problem.

The social planner maximizes the representative household's utility (1) subject
to the resource constraint (8) and the capital law of motion (5). The �rst order
conditions imply that

ξL1+η
t = αYt/Ct, (9)

1 = βEt

{
Qt

Qt+1

Ct

Ct+1

[
1− δ + Qt+1(1− α)

Yt+1

Kt

]}
. (10)

On the balanced growth path, Ct, It, and Yt grow at the same rate of λzλ
(1−α)/α
q

while the capital stock Kt grows at a faster rate of λzλ
1/α
q . We de�ne the following
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stationary variables4

Ỹt =
Yt

ZtQ
(1−α)/α
t

, C̃t =
Ct

ZtQ
(1−α)/α
t

, Ĩt =
It

ZtQ
(1−α)/α
t

, K̃t =
Kt

ZtQ
1/α
t

.

Given these stationary variables, we can rewrite the equilibrium conditions (2), (5),
(8), (9), and (10) as

Ỹt

(
Zt

Zt−1

)1−α (
Qt

Qt−1

)(1−α)/α

= K̃1−α
t−1 Lα

t , (11)

K̃t
Zt

Zt−1

(
Qt

Qt−1

)1/α

= (1− δ)K̃t−1 + Ĩt
Zt

Zt−1

(
Qt

Qt−1

)1/α

, (12)

C̃t + Ĩt = Ỹt, (13)

ξL1+η
t = αỸt/C̃t, (14)

1 = βEt

[
(1− δ)

C̃t

C̃t+1

Zt

Zt+1

(
Qt

Qt+1

)1/α

+ (1− α)
C̃t

C̃t+1

Ỹt+1

K̃t

]
. (15)

Denote λk ≡ λzλ
1/α
q . It follows from the above conditions that the steady state

equilibrium can be described by the following equations

λ1−α
k Ỹ = K̃1−αLα, (16)

ik =
Ĩ

K̃
= 1− 1− δ

λk

, (17)

C̃ + Ĩ = Ỹ , (18)

ξL1+η = αỸ /C̃, (19)

yk =
Ỹ

K̃
=

1

β(1− α)

[
1− β(1− δ)

λk

]
, (20)

where Ỹ , C̃, Ĩ, and K̃ are the steady state values of Ỹt, C̃t, Ĩt, and K̃t. The consumption-
output and investment-output ratios can derived from the above steady state condi-
tions:

iy =
Ĩ

Ỹ
= β(1− α)

λk − (1− δ)

λk − β(1− δ)
, (21)

cy =
C̃

Ỹ
= 1− iy. (22)

4An alternative approach to induce stationarity in the model is to detrend the variable by its
deterministic trend. For instance, one can de�ne X̃t = Xt

λt
x
, where Xt ∈ {Yt, Ct, It,Kt} and λx is a

function of λz and λq. Our approach has an advantage in that it nests the model with stochastic
trends (e.g., random walk processes) as a special case while the other approach does not.
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Log-linearizing the equilibrium conditions (11), (12), (13), (14), and (15) and rear-
ranging the terms, we obtain the following �ve equations describing the production
function, the law of motion for capital accumulation, the resource constraint, the
optimal consumption-labor-supply decision, and the optimal investment decision:

ŷt − αl̂t + (1− α)

(
1

α
∆µ̂t + ∆ν̂t

)
= (1− α)k̂t−1, (23)

k̂t − ik ît + (1− ik)
(
α−1∆µ̂t + ∆ν̂t

)
= (1− ik)k̂t−1, (24)

cy ĉt + iy ît = ŷt, (25)

ŷt = ĉt + (1 + η)l̂t, (26)

β(1− α)ykk̂t − ĉt + [1− β(1− α)yk]

(
ρµ − 1

α
µ̂t + (ρν − 1)ν̂t

)
=

[β(1− α)ck − 1]Etĉt+1 + β(1− α)ikEtît+1,

(27)

where ∆ is the �rst di�erence operator (e.g., ∆zt = zt−zt−1), the notation x̂t denotes
ln X̃t − ln X̃ for X = C, I, Y, K or ln Xt − ln X for X = L, ik, cy, iy, and yk are
steady-state ratios de�ned in (17), (22), (21), (20), and ck = C̃

K̃
is derived as

β(1− α)(ck + 1) = 1− αβ(1− δ)

λk

. (28)

De�nition 1. Admissible values of the deep parameters are β ∈ (0, 1), η ≥ 0, α ∈
(0, 1), δ ∈ [0, 1], λz ≥ 1, and λq ≥ 1.

In the literature, dynamics are often simulated for a particular set of admissible
values of the deep parameters by numerically solving the rational-expectations equi-
librium system given by the above conditions. We shall show, however, that the
equilibrium characterized by (23)-(27) can be solved analytically for all admissible
values of the deep parameters. The crucial step is to derive a stochastic process for
capital, as stated in the following proposition.

Proposition 1. The equilibrium solution for capital satis�es the following second-order
stochastic di�erence equation:

k̂t = γ1Etk̂t+1 + γ2k̂t−1 + γµ1µ̂t + γν1ν̂t + γµ2µ̂t−1 + γν2ν̂t−1, (29)

where the coe�cients γ1, γ2, γµ1, γν1, γµ2, and γν2 are reported in Appendix A.
Further, as we show in the Appendix, the structural parameters (which are functions
of the deep parameters) satisfy the restrictions that γ1 > 0, γ2 > 0, and γ1 + γ2 < 1.

Proof. See Appendix B. ¤
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Proposition 1 is the key to obtaining all of our theoretical results, as is shown in
the next section.

IV. REE vs. SCE: Theoretic Results

In this section, we derive the closed-form solutions for both the REE and the SCE.
The key is to solve (29); the solution depends on how agents form expectations of
the endogenous accumulation process of capital. Once this solution is obtained, it is
relatively straightforward to derive the closed-form solutions for the other variables,
which are reported in Appendix A.

For the REE solution, we have the following result.

Proposition 2. The solution to the second-order di�erential equation (29) under the
rational expectations assumption is

k̂t = ak̂t−1 + bν̂t + cµ̂t + dν̂t−1 + eµ̂t−1, (30)

where

a =
1−√1− 4γ1γ2

2γ1

, b =
γ1d + γν1

1− (ρν + a)γ1

, c =
γ1e + γµ1

1− (ρµ + a)γ1

,

d =
γν2

1− γ1a
, e =

γµ2

1− γ1a
.

Furthermore, this solution is stationary and unique.

Proof. See Appendix C. ¤

If we replace the capital-accumulation Euler equation (27) by the closed-form ex-
pression (30), the system of equations (23)-(26) and (30) constitutes a reduced-form
solution to the rational-expectations model.

Given the shock processes and an initial condition for capital (30) gives the dynamic
solution for capital. For a comparison with the SCE solution, this dynamic solution
can be expressed as

k̂t = bεν,t + cεµ,t +
∞∑
i=1

(bbi + dbi−1) εν,t−i +
∞∑
i=1

(cci + eci−1) εµ,t−i, (31)

where for all i ≥ 0,

bi =
i∑

j=0

ai−jρj
ν , while if ρν 6= a then bi =

ai+1 − ρi+1
ν

a− ρν

;
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ci =
i∑

j=0

ai−jρj
µ, while if ρµ 6= a then ci =

ai+1 − ρi+1
µ

a− ρµ

;

We now assume that agents have adaptive expectations. We follow Marcet and
Nicolini (2003) and Sargent, Williams, and Zha (2006a) to replace Etk̂t+1 by Êtk̂t+1

such that
Êtk̂t+1 = β̂t.

Agents update their beliefs β̂t using the following constant-gain learning (CGL) algo-
rithm:

β̂t = β̂t−1 + g(k̂t−1 − β̂t−1), (32)

where 0 < g < 1 is a gain representing how fast past observations are discounted in
the learning regression.

The dynamics of k̂t produced by (29) under the above learning algorithm (32) follow
the process

k̂t = γ1β̂t + γ2k̂t−1 + γν1ν̂t + γµ1µ̂t + γν2ν̂t−1 + γµ2µ̂t−1. (33)

In self-con�rming equilibrium, beliefs are not contradicted by observations along
the equilibrium path (Sargent, 1999). To �nd an SCE is to solve a �xed-point problem.
For our model, the solution to the SCE is to �nd the �xed point β̂ that solves the
orthogonality condition

E
[
k̂t(β̂)− β̂

]
= 0, (34)

where E( ) is a mathematical unconditional expectation operator and k̂t itself is a
function of the belief β̂ in self-con�rming equilibrium such that

k̂t(β̂) = γ1β̂ + γ2k̂t−1(β̂) + γν1ν̂t + γµ1µ̂t + γν2ν̂t−1 + γµ2µ̂t−1.

Proposition 3. As g → 0, the belief sequence {β̂t} in (32) converges weakly to the
unique and stationary SCE given by β̂ = 0 for all admissible values of the deep
parameters.

Proof. From (33) one can see that k̂t is a function of current and past beliefs and
fundamental shocks. We denote this function as κ( ) such that

k̂t = κ(β̂t, β̂t−1, . . . , νt, νt−1, . . . , µt, µt−1, . . . ).

Denote
κ̃(β̂t, β̂t−1, . . . ,νt, νt−1, . . . , µt, µt−1, . . . )

= κ(β̂t, β̂t−1, . . . , νt, νt−1, . . . , µt, µt−1, . . . )− β̂t.
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We can then rewrite the CGL algorithm (32) as

β̂t = β̂t−1 + gκ̃(β̂t, β̂t−1, . . . , νt, νt−1, . . . , µt, µt−1, . . . ). (35)

To prove that (34) holds at β̂ = 0 and the �xed point β̂ = 0 is unique, we denote the
left-hand-side term in (34) by

G(β̂) = Eκ̃(β̂, β̂, . . . , νt, νt−1, . . . , µt, µt−1, . . . ).

Under our assumptions, it follows from Kushner and Yin (1997) that as g → 0, the
beliefs β̂t in (35) converge weakly to the solution of the ordinary di�erential equation
(ODE)

˙̂
β = G(β̂).

One can further show that

G(β̂) =

(
γ2 + γ1 − 1

1− γ2

)
β̂.

Since γ1 > 0, γ2 > 0, and γ2 + γ1 < 1, the ODE has a unique �xed point at β̂ = 0.
The ODE is stable since (γ2 + γ1 − 1)/(1− γ2) < 0. ¤

As one can see from Proposition 3, the SCE is exactly the same as the rational
expectations steady state. Since an SCE is a limit of adaptive (learning) dynamics,
it is important to characterize these dynamics and to study whether they are signi�-
cantly di�erent from dynamics under rational expectations. We rewrite the stochastic
processes (32) and (33) as

[
β̂t

k̂t

]
=

[
1− g g

(1− g)γ1 γ2 + gγ1

][
β̂t−1

k̂t−1

]
+

[
0 0

γν1 γµ1

][
ν̂t

µ̂t

]
+

[
0 0

γν2 γµ2

] [
ν̂t−1

µ̂t−1

]
. (36)

Given the initial belief β̂−1, the initial capital stock k̂−1, and the shock processes,
the bivariate autoregressive process (36) determines the belief and capital dynamics
jointly; then, (23)-(26) in Section III, or (A1)-(A4) in Appendix A, determine the dy-
namics of investment, labor, output, and consumption. Clearly this learning model is
linear and consequently the impulse responses do not depend on initial conditions. In
Section VI, we discuss an alternative learning rule that nests the rational-expectations
solution and show that the results do depend on initial conditions and the size of the
gain.

We now provide a result showing that the linear system represented by the above
learning model is stationary.
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Proposition 4. The learning dynamics, described by (23)-(26) and (36) for g ∈ (0, 1),
are stationary for all admissible values of the deep parameters.

Proof. Given (A1)-(A4) in Appendix A that characterize the dynamics of investment,
labor, output, and consumption as a function of k̂t, it su�ces to show that (36) is a
stationary process. The two characteristic roots of the 2×2 coe�cient matrix of β̂t−1

and k̂t−1 on the right-hand side of (36) are

λ1 =
(1− g + γ2 + gγ1)−

√
(1− g + γ2 + gγ1)2 − 4(1− g)γ2

2
,

λ2 =
(1− g + γ2 + gγ1)+

√
(1− g + γ2 + gγ1)2 − 4(1− g)γ2

2
.

Since γ1 > 0, γ2 > 0, and γ1+γ2 < 1 for all admissible values of the deep parameters,
it follows that both λ1 and λ2 are real numbers and for any g ∈ (0, 1), 0 < λ1 < λ2 < 1.
Hence, the adaptive process for {β̂t, k̂t}, given by (36), is stationary. ¤

Proposition 4 implies that the learning dynamics studied in this paper remain in
the domain of attraction of the SCE (the rational expectations steady state) and thus
the probability of escapes from the SCE is very small.

To assess how di�erent the learning dynamics di�er from dynamics under rational
expectations, we derive the belief and capital dynamics under the CGL as

(1− λ1L) (1− λ2L) β̂t = g (γν1ν̂t−1 + γµ1µ̂t−1 + γν2ν̂t−2 + γµ2µ̂t−2) , (37)

(1− λ1L) (1− λ2L) k̂t = [1− (1− g) L] (γν1ν̂t + γµ1µ̂t + γν2ν̂t−1 + γµ2µ̂t−1) , (38)

where L is the lag operator. It follows from (37) that

β̂t = g

∞∑
i=1

i∑
j=1

λj
1 − λj

2

λ1 − λ2

(
γν1ρ

i−j
ν εν,t−i + γµ1ρ

i−j
µ εµ,t−i

+γν2ρ
i−j
ν εν,t−1−i + γµ2ρ

i−j
µ εµ,t−1−i

)
.

(39)

This can be simpli�ed to

β̂t = gγν1εν,t−1 + g

∞∑
i=2

[
γν1

λi
1 − λi

2

λ1 − λ2

+
(
γν1 + γν2ρ

−1
ν

) i−1∑
j=1

λj
1 − λj

2

λ1 − λ2

ρi−j
ν

]
εν,t−i

+ gγµ1εµ,t−1 + g

∞∑
i=2

[
γµ1

λi
1 − λi

2

λ1 − λ2

+
(
γµ1 + γµ2ρ

−1
µ

) i−1∑
j=1

λj
1 − λj

2

λ1 − λ2

ρi−j
µ

]
εµ,t−i.
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If ρν 6= λ1 or λ2, and ρµ 6= λ1 or λ2, then it simpli�es further to

β̂t = gγν1εν,t−1 + g

∞∑
i=1

[
γν1

λi+1
1 − λi+1

2

λ1 − λ2

+ (ρνγν1 + γν2)

(
λ1

λ1 − λ2

λi
1 − ρi

ν

λ1 − ρν

− λ2

λ1 − λ2

λi
2 − ρi

ν

λ2 − ρν

)]
εν,t−1−i

+ gγµ1εµ,t−1 + g

∞∑
i=1

[
γµ1

λi+1
1 − λi+1

2

λ1 − λ2

+ (ρµγµ1 + γµ2)

(
λ1

λ1 − λ2

λi
1 − ρi

µ

λ1 − ρµ

− λ2

λ1 − λ2

λi
2 − ρi

µ

λ2 − ρµ

)]
εµ,t−1−i. (40)

On the other hand, we can compute the rational expectations from (31) as

Etk̂t+1 = [b (a + ρν) + d] εν,t + [c (a + ρµ) + e] εµ,t

+
∞∑
i=1

(bbi+1 + dbi) εν,t−i +
∞∑
i=1

(cci+1 + eci) εµ,t−i.
(41)

A comparison of (40) and (41) shows that, although the SCE is the same as the steady
state REE, the dynamics of the beliefs β̂t can be di�erent from the dynamics of the
expectations Etk̂t+1. These di�erences lead to quantitatively important di�erences in
the dynamics of other macroeconomic variables, as we show in the next section.

V. REE vs. SCE: Transmission of Technology Shocks

We now analyze the transmission mechanisms of the model under both rational and
adaptive expectations. We discuss simulated results based on a few sets of parameter
values, but the quantitative di�erences between learning and rational expectations
dynamics exist for a wide range of values. The model parameters include β, the
subjective discount factor; α, the labor share of income; δ, the capital depreciation
rate; η, the inverse Frisch elasticity of labor supply; λz and λq, the average growth
rate of the neutral and biased technologies; ξ, the weight parameter in the preferences
for leisure; ρν , ρµ, σν , and σµ, the parameters controlling the shock processes, and g,
the constant gain in the learning process.

V.1. Benchmark parameter values. Table 1 summarizes the benchmark param-
eter values that we use for our simulations. The model that we have in mind has a
quarterly frequency. We set α = 0.7, corresponding to a labor income share of 70%.
We set λq = 1.008 such that the investment-speci�c technology grows at an annual
rate of 3.2%, as suggested by Greenwood, Hercowitz, and Krusell (1997). We set
λz = 1.0016 such that, given our value of λq and α, real per capita GDP grows at
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an annual rate of 2% on the path of balanced growth.5 We set δ = 0.03, so that the
annual depreciation rate of capital is 12%. We follow the business cycle literature
and set β = 0.99. We use a value of ξ = 3.17 so that the steady state working
hours are about 1/3 of the representative agent's time endowment. We follow Hansen
(1985) and Rogerson (1988) and assume that labor is indivisible, implying that η = 0.
For the parameters in the shock processes, we set ρν = ρµ = 0.95, σν = 0.01, and
σµ = 0.005. These standard-deviation values are consistent with the estimates in the
empirical literature (e.g., Liu, Waggoner, and Zha (2008)). Finally, we set the gain
g = 0.05 in the learning process. This value is in the range of empirical estimates
found in Sargent, Williams, and Zha (2006a). We have also experimented with other
gain values and �nd that, under our benchmark learning rule (32), the results do not
change much.

V.2. Ampli�cation e�ects. To understand the role of introducing learning in trans-
mitting the two types of technology shocks, we examine the impulse responses of
macroeconomic variables in the model to each shock.

V.2.1. Neutral technology shock. Figure 1 displays the impulse responses of several
key macroeconomic variables, including output, consumption, investment, the real
interest rate, labor hours, the real wage, the expectation (or the belief) of the next-
period capital, and the current-period capital stock, following a positive one-standard-
deviation shock to the neutral technology under our benchmark parameter values.
The solid lines represent the responses under rational expectations and the dashed
lines represent the responses under adaptive expectations.

The responses of aggregate variables to a neutral technology shock in the rational
expectations model should be familiar to a student of real business cycle studies.
As the solid line in the �gure shows, output rises on impact and declines gradually.
Consumption, investment, hours, the real wage, and the real interest rate all co-
move with output. In the impact period, consumption responds less and investment
responds more than does output. These patterns of responses are consistent with the
stylized facts about business cycles.

A well documented di�culty facing the standard RBC model with rational expec-
tations lies in the labor market dynamics (Christiano and Eichenbaum, 1992). The
RBC model typically fails to generate the observed large responses of labor hours and
small responses of the real wage following a neutral technology shock. In the RBC
model, a positive neutral technology shock raises the demand for labor at any given

5The average growth rate for output in the model is given by λzλ
(1−α)/α
q .
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real wage so that the labor demand schedule shifts out, creating a substitution e�ect.
Thus, holding the labor supply schedule unchanged, the substitution e�ect drives
up both hours and the real wage. In the mean time, since the shock is persistent
and therefore raises future productivity, it creates a wealth e�ect that raises current
consumption and thus shifts the labor supply curve up. The wealth e�ect partially
cancels out the substitution e�ect on hours, rendering the responses of equilibrium
hours small; meanwhile, the wealth e�ect reinforces the substitution e�ect on the real
wage, pushing up the equilibrium wage sharply. As shown by Hansen (1985) and
Rogerson (1988), labor indivisibility �attens the labor supply curve and thus magni-
�es the substitution e�ect following the positive neutral technology shock, although
the wealth e�ect still makes the real wage rise sharply.6 As is evident in Figure 1 and
in Table 2, the model with rational expectations implies that the initial response of
hours is about 67% of that of output and the magnitude of the real wage response
about 33% of that of output response. Indeed, as shown in Table 2, in the rational
expectations model, the cumulative responses of hours at longer forecasting horizons
(from 4 quarter through 24 quarters) are less than 58% and those of the real wages
are more than 42% relative to the output responses.

Introducing learning helps alleviate some of the problems for the RBC model,
especially for the labor market variables. The dashed lines in Figure 1 display the
impulse responses of the aggregate variables in the model with adaptive expectations
following a positive neutral technology shock. As in the rational expectations model,
the shock raises the demand for labor at any given wage and this substitution e�ect
leads to a rise in both hours and the real wage. Unlike the rational expectations
model, however, the wealth e�ect is dampened because agents form expectations
about future productivity and capital based on past observations. Consequently, on
impact, consumption does not rise as much and thus the labor supply curve does not
shift as much as in the rational expectations model. By dampening the wealth e�ect
of the shock, the learning mechanism leads to a greater response of equilibrium hours
and a smaller response of equilibrium real wage than those in the rational expectations
model. Table 2 con�rms these �ndings: in the model with adaptive expectations, the
cumulative responses of hours relative to output for all forecasting horizons (up to 24
quarters) are much larger while the cumulative responses of the real wage relative to

6If the Frisch elasticity of labor supply is small (i.e., if η is large), as the micro evidence suggests,
the labor supply curve would be steep and the substitution e�ect would be small. Consequently, the
response of hours would be smaller and the response of the real wage would be even larger than in
the model with indivisible labor.
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output are, at least in the short run (up to 4 quarters), much smaller than those in
the rational expectations model .

To the extent that some other frictions such as habit formation can also slow down
the adjustment in consumption, one might wonder whether or not habit formation can
help alleviate the labor market puzzle as does our learning mechanism. Lettau and
Uhlig (2000) show that habit formation slows down the adjustments of consumption
for all periods, not just for the current period. As the agent desires slow adjustments
of consumption in all future periods, he does not want to work hard in the current
period to accumulate capital. Thus, a positive neutral technology shock leads to a
small increase in hours and a large increase in the marginal product of labor and the
real wage. In this sense, introducing habit formation can actually deepen the labor
market puzzle. In contrast, the model with adaptive expectations that we consider
here contains a very di�erent propagation mechanism and helps alleviate the labor
market puzzle.

Introducing adaptive expectations in the model also helps amplify the responses of
other aggregate variables. As shown in Figure 1, under adaptive expectations, the
sharp rise in hours following the positive productivity shock leads to a sharp rise in
output. As consumption does not change much on impact, investment rises sharply.
The ampli�ed response of investment implies ampli�ed responses of the capital stock
and the beliefs of future capital stocks relative to the rational expectations model.

In summary, following a neutral technology shock, introducing learning ampli�es
the response of hours and dampens the responses of the real wage. Furthermore,
learning helps amplify the e�ects of the neutral technology shock on output, invest-
ment, and capital.

V.2.2. Biased technology shock. There is a large literature on the macroeconomic ef-
fects of investment-speci�c technology shocks in the context of rational-expectations.
Examples include Greenwood, Hercowitz, and Krusell (2000), Krusell, Ohanian, Ríos-
Rull, and Violante (2000), Fisher (2006), and He and Liu (2008). In this section, we
examine the e�ects of biased technology shocks in the context of adaptive expecta-
tions.

In Figure 2, we plot the impulse responses of the same set of macroeconomic vari-
ables following a positive one-standard-deviation shock to the biased technology. In
both the rational expectations model (solid lines) and the adaptive expectations model
(dashed lines), the shock leads to a rise in output, investment, hours, capital stock,
and the real interest rate, and a short-run decline in consumption and the real wage.
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As the biased shock raises the e�ciency of investment, current investment becomes
cheaper relative to consumption. Thus, this type of shock, unlike the neutral tech-
nology shock, shifts resources from consumption to investment. Consequently, invest-
ment rises and consumption declines for several periods. The decline in consumption
shifts the labor supply curve down. Since the neutral technology stays unchanged
and aggregate capital stock is predetermined, the labor demand curve does not shift.
Thus, the downward shift of the labor supply curve lowers the real wage and raises
equilibrium hours. The rise in labor hours helps produce more output and raise the
marginal product of capital, so that the real interest rate rises as well. This mecha-
nism operates under both rational expectations and adaptive expectations.

The patterns of the impulse responses following a positive biased technology shock
are broadly consistent with the empirical evidence provided by Altig, Christiano,
Eichenbaum, and Linde (2004), except that consumption and the real wage in the
model do not comove with output whereas consumption is weakly procyclical and the
real wage is acyclical in the data based on VAR studies. The lack of comovement in the
model is not surprising since Barro and King (1984) show that the standard one-sector
growth model can generate comovement only in the presence of contemporaneous total
factor productivity shocks (i.e., the neutral technology shocks in our model). It is
possible to �x the comovement problem by introducing several sources of frictions in
the model (see, for example, Jaimovich and Rebelo (2008)). We do not introduce
other frictions because we would like to isolate the role of learning, which itself acts
as a friction, in propagating technology shocks.

The main di�erence between the learning model and the rational expectations
model is that, with learning in place of full rationality, agents do not perfectly fore-
see the increase in the future level of investment technology. They respond to the
persistent shock as though it had only a temporary e�ect. The wealth e�ect is thus
dampened and the intertemporal substitution e�ect strengthened. Consequently, in
the learning model, the biased technology shock leads to a greater rise in investment
and a greater decline in consumption than that in the rational expectations model.
The sharp decline in consumption ampli�es the decline in the real wage and the rise
in hours. The ampli�ed increase in hours in turn leads to a sharp rise in output and
thus in the real interest rate. These patterns are shown in Figure 2.

In summary, introducing learning can substantially amplify the responses of all
the aggregate variables following a biased technology shock. Overall, relaxing the
assumption of perfect rationality helps give a larger role to both neutral and biased
technology shocks in shaping business cycles.
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V.3. Less persistent shocks. Since the transmission of the shocks in the model
with adaptive expectations works through the muted wealth e�ect, the quantitative
importance of learning should depend on the persistence of the shock. To understand
to what extent the propagation mechanism in the learning model depends on the per-
sistence of the shocks, we consider the case with less persistent shocks. In particular,
we set ρν = ρµ = 0.7 (instead of 0.95) and compute the impulse responses following
each of the two types of technology shocks.

Figure 3 displays the impulse responses of the key macroeconomic variables to a
positive one-standard-deviation shock to the neutral technology.7 The responses un-
der rational expectations are denoted by the solid lines and those under adaptive
expectations are denoted by the dashed lines. Since the shock is less persistent, the
wealth e�ect is weaker so that, in the rational expectations model, the rise in con-
sumption is smaller and the rise in hours is larger than that under the benchmark
parameter values. With the less persistent shock and the weaker wealth e�ect, in-
troducing adaptive learning dampens the response of the real wage and ampli�es the
responses of other aggregate variables, but to a lesser extent than in the benchmark
case. These results are evident by comparing Figure 3 with Figure 1.

Moreover, with the less persistent shock, the responses of both consumption and
the real wage display a clear hump shape; the responses of investment, hours, and
the real interest rate all display an inverted hump shape; and output rises in the
impact period and declines monotonically thereafter. Under adaptive expectations,
the representative agent is backward looking when forming expectations. In the
impact period, the wealth e�ect of the shock is muted; the intertemporal substitution
e�ect induced by the rise in the real interest rate makes consumption more expensive
and saving more attractive. Thus, in the short run, consumption rises by less and
investment rises by more than in the rational expectations model. Overtime, however,
the agent learns about the wealth e�ect of the positive technology shock while the
intertemporal substitution e�ect becomes weaker as the real interest rate goes back
to its steady state. Thus, consumption rises further before it begins to decline back
to the steady state. The rise in consumption shifts the labor supply curve up and
thus lowers labor hours and raises the real wage. As consumption climbs to its peak
over time, hours and investment fall to the trough and the real wage rises to the peak.

7To conserve space, we do not report the impulse responses following the biased technology
shock here. The responses are qualitatively similar to those in the benchmark model, although
the ampli�cation e�ects of learning become smaller as the shock is less persistent than that in the
benchmark model.
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Since output falls back to the steady state over time, consumption, investment, and
hours return gradually to the steady state.

In summary, with less persistent shocks, the wealth e�ect in the rational expec-
tations model becomes weaker and accordingly the ampli�cation e�ect of adaptive
expectations become weaker as well. The adaptive expectations model generates
pronounced hump-shaped responses while the rational expectations model does not.

VI. An Alternative Learning Rule

One interesting question is whether our main �ndings hinge on the particular learn-
ing rule (32). There are many alternative learning mechanisms, such as least-square
learning (Evans and Honkapohja, 2001), Bayesian updating through Kalman �lter-
ing (Sargent and Williams, 2005), and signal extraction when agents are confused
between shocks to the level or to the growth rate of the technology (Edge, Laubach,
and Williams, 2007). We focus on one particular constant-gain learning rule that
has the same speci�cation as the rational expectations solution (30). Speci�cally, we
replace Etk̂t+1 by Êtk̂t+1 such that

Êtk̂t+1 = x̂′tαt|t−1,

where

x̂t =




k̂t

ν̂t

µ̂t


 .

Agents update their beliefs αt+1|t using the following recursive algorithm:

αt+1|t = αt|t−1 + gHtx̂t−1

(
k̂t − x̂′t−1αt|t−1

)
, (42)

H−1
t = H−1

t−1 + g
(
x̂t−1x̂

′
t−1 −H−1

t−1

)
. (43)

As g → 0, the equilibrium under this adaptive learning approaches the rational
expectations equilibrium and is therefore E-stable in the usual sense of Evans and
Honkapohja (2001). Unlike the benchmark learning rule studied in Section IV, this
alternative rule is updated nonlinearly and thus short-run dynamic results can be
quite di�erent for di�erent initial conditions. This point is discussed in Carceles-
Poveda and Giannitsarou (2007). One particular type of initial conditions studied by
Carceles-Poveda and Giannitsarou (2007) is to generate the initial data, {x̂0, . . . , x̂t0},
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from the equilibrium solution to the rational-expectations model.8 The initial condi-
tions can then be computed as

αt0+1|t0 = Ht0g

t0−1∑
s=0

(1− g)t0−1−sx̂sk̂s+1,

H−1
t0

= g

t0−1∑
s=0

(1− g)t0−1−sx̂sx̂
′
s.

With these initial conditions, one can update the beliefs recursively according to (42)
and (43). We simulate the model under the benchmark parameter values summarized
in Table 1 and we also examine the sensitivity of the learning equilibrium to changes
in the initial conditions and the size of the gain parameter.

When the gain is small and the initial data set is large, the di�erences between the
dynamics under learning and those under rational expectations tend to be very small.
Figure 4 displays an example of impulse responses to one-standard-deviation neutral
technology shock with g = 0.001 and t0 = 10000. As the �gure shows, the learning
model and the rational expectations model generate quantitatively similar responses.
This result is consistent with the �ndings in Williams (2003) and Carceles-Poveda
and Giannitsarou (2007). In a recent paper, Eusepi and Preston (2008) show that
learning can nonetheless amplify the dynamic responses if one relaxes the standard
assumption that agents use only one-period ahead forecasts to form their beliefs.

We argue that even with the standard learning mechanism (42)-(43), di�erent gain
values or di�erent initial conditions can produce qualitatively di�erent impulse re-
sponses. In this section we focus on cases where adaptive learning under this so-
phisticated rule can amplify the dynamic responses of aggregate variables to a neu-
tral technology shock, generate negative responses of hours, and produce procyclical
movements of consumption and output.9

As the gain parameter increases, the sophisticated learning rule can amplify the
dynamic responses to a technology shock in the same magnitude as does the simple
learning mechanism studied in Section V. Figure 5 displays such an example, where
we set g = 0.05 and t0 = 10000. As one can see, the impulse responses under our
alternative learning are qualitatively similar to those under the benchmark learning
rule shown in Figure 1.

8With imperfectly rational agents, it seems logically incoherent to generate the initial data.
Nonetheless, we follow this approach in the literature to make our work comparable.

9To conserve space, we do not present the impulse responses following the biased technology shock
under the alternative learning rule. These results are similar to those displayed in Figure 2
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It is important to note that the dynamics under nonlinear learning are in general
sensitive not only to changes in initial conditions and the size of the gain, as found
by Carceles-Poveda and Giannitsarou (2007), but also to changes in some of the
deep parameters.10 Consider a case with a smaller sample of initial data (t0 = 100

instead of 10000) and with a smaller Frisch elasticity of labor supply (η = 2 instead
of 0). Figure 6 shows the impulse responses to a positive neutral technology shock
in this case. The results reveal that the learning model is capable of generating
negative responses of labor hours following a neutral technology shock even in this
one-sector growth model that abstracts from other frictions such as habit formation
and investment adjustment costs considered by, for example, Francies and Ramey
(2005). In response to the neutral technology shock, consumption rises more and
output rises less in the learning model than in the rational-expectations model. The
sharp rise in consumption shifts the labor supply curve up so much that the real wage
rises sharply and the hours fall. In the mean time, the sharp rise in consumption and
the modest rise in output leads to a smaller rise in investment than that in the rational
expectations model.

The most interesting result is that hours can decline following a positive neutral
technology shock in the learning model, whereas the responses of hours are always
positive under rational expectations. Recent empirical work has documented evidence
in favor of negative responses of hours to a positive neutral technology shock (e.g.,
Galí (1999) and Basu, Fernald, and Kimball (2006)). Learning, serving as a friction,
is capable of generating the responses of investment and hours similar to Francies
and Ramey (2005), where investment-adjustment costs and habit are introduced into
a standard real-business-cycle model as alternative frictions.

In summary, the exercise in this section shows that the sophisticated learning rule
has much �exibility to amplify the e�ects of technology shocks and produce qualita-
tively di�erent transmission mechanisms than does the rational-expectations model.
Since this learning mechanism is nonlinear, not only changes in initial conditions
and the size of the gain can alter the equilibrium dynamics, changes in the size of
shock variance can also a�ect the dynamics considerably. In future work, therefore,

10Our sophisticated learning rule is similar to the one studied by Carceles-Poveda and Giannit-
sarou (2007), who also examine the role of learning in a stochastic growth model. As in Carceles-
Poveda and Giannitsarou (2007), we �nd that the dynamics are sensitive to changes in the initial
conditions and the size of the gain. Di�erent from Carceles-Poveda and Giannitsarou (2007), we
focus on the model's ability to generate plausible labor market dynamics, whereas Carceles-Poveda
and Giannitsarou (2007) assumes inelastically supplied labor.
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we would like to estimate the initial conditions, the variances, and the gain parame-
ters along with other model parameters, as proposed in Sargent, Williams, and Zha
(2006b).

VII. Conclusion

We have studied a standard stochastic growth model with adaptive expectations
in which beliefs are decoupled from decision rules. For the benchmark learning rule
studied in Marcet and Nicolini (2003) and Sargent, Williams, and Zha (2006a), we
have established that there exists a unique, stable SCE in our learning model and that
the SCE is the same as the steady state REE. In contrast to the existing literature,
however, we have shown that the learning model can generate substantially di�erent
dynamics from those implied by the rational expectations model. These di�erences
are not driven by escape dynamics.

It is known that technology shocks in the standard growth model do not gener-
ate enough �uctuations in key macroeconomic variables such as hours and output.
Introducing learning in the growth model dampens the wealth e�ect. This muted
wealth e�ect, coupled with the strong intertemporal substitution e�ect, ampli�es the
responses of macroeconomic variables and can make dynamic responses hump-shaped.
These results hold true with a more sophisticated learning rule under certain initial
conditions.

Our results suggest that the learning mechanism is �exible enough to generate some
realistic features in a simple one-sector growth model. Our �ndings also suggest that,
to gauge the full potential of the learning mechanism in propagating the shocks in
the growth model, one would need to jointly estimate the initial conditions with the
gain parameter and other deep parameters. We hope our work helps motivate future
empirical studies on the importance of learning.
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Appendix A. Analytical Solution

The coe�cients in (29) in Proposition 1 are de�ned as:

γ1,com = β(1− α)(ck + 1) [1 + (1 + η)ck] + η(1− αik) + (1− α + η),

γ2,com = [β(1− α)(ck + 1)− 1] [(1 + η)ck + 1] + (1 + η)(1− αik),

γ1 =
β(1− α)(ck + 1) + η

γ1,com
,

γ2 =
(1− α)(1 + η)yk + (1− α + η)(1− ik)

γ1,com
,

γν1 =
(ρν − 1) γ2,com + αηyk − (1− α + η)(ck + 1)

γ1,com
,

γµ1 =
(ρµ − 1) γ2,com + αηyk − (1− α + η)(ck + 1)

αγ1,com
,

γν2 =
(1− α + η)(ck + 1)− αηyk

γ1,com
,

γµ2 =
(1− α + η)(ck + 1)− αηyk

αγ1,com
.

The steady state ratios such as ck and ik have been derived in Section III. One
can verify that, for all admissible values of the deep parameters, that is, for any
β ∈ (0, 1), η ≥ 0, α ∈ (0, 1), δ ∈ [0, 1], λz ≥ 1, and λq ≥ 1, all the steady-state ratios
are well-de�ned and positive, and so are γ1 and γ2.

The closed-form solutions for investment, hours, output, and consumption are de-
rived as the the following system of equations under either rational or adaptive ex-
pectations:

ît = kik̂t + (1− ki)k̂t−1 + (ki − 1)∆ν̂t +

(
ki − 1

α

)
∆µ̂t, (A1)

l̂t =
1

[(1 + η)ck + αik]
k̂t − [1− αik]

[(1 + η)ck + αik]
k̂t−1

+
(1− αik)

[(1 + η)ck + αik]
∆ν̂t +

(α−1 − ik)

[(1 + η)ck + αik]
∆µ̂t,

(A2)

ŷt =
α

[(1 + η)ck + αik]
k̂t +

[(1− α)(1 + η)ck − α(1− ik)]

[(1 + η)ck + αik]
k̂t−1

+
α (1− ik)− (1− α)(1 + η)ck

[(1 + η)ck + αik]
∆ν̂t

+
(1− ik)− α−1(1− α)(1 + η)ck

[(1 + η)ck + αik]
∆µ̂t,

(A3)
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ĉt =
α− 1− η

[(1 + η)ck + αik]
k̂t +

[(1− α)(1 + η)yk + (1 + η − α)(1− ik)]

[(1 + η)ck + αik]
k̂t−1

+
α (1 + ηik)− (1 + η) [1 + (1− α)ck]

[(1 + η)ck + αik]
∆ν̂t

+
(1 + ηik)− α−1(1 + η) [1 + (1− α)ck]

[(1 + η)ck + αik]
∆µ̂t.

(A4)

It is clear how the equilibrium can be solved. Once the solution for capital is
obtained, as shown in Section IV, Equation (A1) can be used to solve for investment,
(A2) for labor, (A3) for output, and (A4) for consumption.

Appendix B. Proof of Proposition 1

By successive substitutions in (23)-(27), one can derive (29). Speci�c steps are
described below.

We begin by �rst deriving the following two relations from (25) and (26):

ŷt = ît − (1 + η)cil̂t, (A5)

ĉt = ît − (1 + η)yil̂t. (A6)

Substituting (A5) into (23), we get:

ît = [(1 + η)ci + α] l̂t + (1− α)k̂t−1 − (1− α)∆ν̂t −
(

1− α

α

)
∆µ̂t. (A7)

Substituting (A7) into (24) yields

k̂t = [(1 + η)ck + αik] l̂t + (1− αik)k̂t−1 − (1− αik)∆ν̂t −
(

1− αik
α

)
∆µ̂t. (A8)

Substituting (A6) and (A7) into (27) yields
[
1− αβ(1− δ)

λzλ
1/α
q

+ η

]
Etl̂t+1 −

[
1− αβ(1− δ)

λzλ
1/α
q

]
k̂t

= (1− α + η)l̂t − (1− α)k̂t−1

+ (1− α)∆ν̂t +
αβ(1− δ)

λzλ
1/α
q

Et∆ν̂t+1

+
1− α

α
∆µ̂t +

β(1− δ)

λzλ
1/α
q

Et∆µ̂t+1.

(A9)
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Rewrite (A8) as

l̂t =
1

(1 + η)ck + αik
k̂t

− 1− αik
(1 + η)ck + αik

k̂t−1

+
1− αik

(1 + η)ck + αik
∆ν̂t

+
{1− αik}

(
1
α

)

(1 + η)ck + αik
∆µ̂t.

(A10)

It follows that
[
1− αβ(1− δ)

λzλ
1/α
q

+ η

]
Etl̂t+1 =

[
1− αβ(1−δ)

λzλ
1/α
q

+ η
]

(
1− 1−δ

λzλ
1/α
q

)(
1−cy

iy

) [
cy(1+η)

1−cy
+ α

]Etk̂t+1

−

[
1− αβ(1−δ)

λzλ
1/α
q

+ η
]
{1− αik}

(
1− 1−δ

λzλ
1/α
q

)(
1−cy

iy

) [
cy(1+η)

1−cy
+ α

] k̂t

+

[
1− αβ(1−δ)

λzλ
1/α
q

+ η
]{(

1− 1−δ

λzλ
1/α
q

) [
(1−cy)(1−α)

iy

]
+ 1−δ

λzλ
1/α
q

}

(
1− 1−δ

λzλ
1/α
q

)(
1−cy

iy

) [
cy(1+η)

1−cy
+ α

] Et∆ν̂t+1

+

[
1− αβ(1−δ)

λzλ
1/α
q

+ η
]{(

1− 1−δ

λzλ
1/α
q

) [
(1−cy)(1−α)

iy

]
+ 1−δ

λzλ
1/α
q

} (
1
α

)
(
1− 1−δ

λzλ
1/α
q

)(
1−cy

iy

) [
cy(1+η)

1−cy
+ α

] Et∆µ̂t+1. (A11)

Substituting (A10) and (A11) into (A9), and rearranging, we get

χk,1Etk̂t+1 + χk,0k̂t + χk,−1k̂t−1 + χν,1Et∆ν̂t+1

+ χν,0∆ν̂t + χµ,1Et∆µ̂t+1 + χµ,0∆µ̂t = 0,

where

χk,1 =

[
1− αβ(1−δ)

λzλ
1/α
q

+ η
]

(
1− 1−δ

λzλ
1/α
q

)(
1−cy

iy

) [
cy(1+η)

1−cy
+ α

]

χk,0 = −

[
1− αβ(1−δ)

λzλ
1/α
q

+ η
]
{1− αik}+ (1− α + η)

(
1− 1−δ

λzλ
1/α
q

)(
1−cy

iy

) [
cy(1+η)

1−cy
+ α

] −
[
1− αβ(1− δ)

λzλ
1/α
q

]

χk,−1 =
(1− α + η) {1− αik}(

1− 1−δ

λzλ
1/α
q

)(
1−cy

iy

) [
cy(1+η)

1−cy
+ α

] + (1− α)
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χν,1 =

[
1− αβ(1−δ)

λzλ
1/α
q

+ η
]{(

1− 1−δ

λzλ
1/α
q

) [
(1−cy)(1−α)

iy

]
+ 1−δ

λzλ
1/α
q

}

(
1− 1−δ

λzλ
1/α
q

)(
1−cy

iy

) [
cy(1+η)

1−cy
+ α

] − αβ(1− δ)

λzλ
1/α
q

χν,0 = −
(1− α + η)

{(
1− 1−δ

λzλ
1/α
q

) [
(1−cy)(1−α)

iy

]
+ 1−δ

λzλ
1/α
q

}

(
1− 1−δ

λzλ
1/α
q

)(
1−cy

iy

) [
cy(1+η)

1−cy
+ α

] − (1− α)

χµ,1 =

[
1− αβ(1−δ)

λzλ
1/α
q

+ η
]{(

1− 1−δ

λzλ
1/α
q

) [
(1−cy)(1−α)

iy

]
+ 1−δ

λzλ
1/α
q

} (
1
α

)
(
1− 1−δ

λzλ
1/α
q

)(
1−cy

iy

) [
cy(1+η)

1−cy
+ α

] − β(1− δ)

λzλ
1/α
q

χµ,0 = −
(1− α + η)

{(
1− 1−δ

λzλ
1/α
q

) [
(1−cy)(1−α)

iy

]
+ 1−δ

λzλ
1/α
q

} (
1
α

)
(
1− 1−δ

λzλ
1/α
q

)(
1−cy

iy

) [
cy(1+η)

1−cy
+ α

] − 1− α

α
.

Further simplifying, we get

k̂t = γ1Etk̂t+1 + γ2k̂t−1 + χk
ν,1Et∆ν̂t+1 + χk

ν,0∆ν̂t + χk
µ,1Et∆µ̂t+1 + χk

µ,0∆µ̂t,

where

γ1 =
β(1− α)(ck + 1) + η

β(1− α)(ck + 1) [1 + (1 + η)ck] + η(1− αik) + (1− α + η)

γ2 =
(1− α)(1 + η)yk + (1− α + η)(1− ik)

β(1− α)(ck + 1) [1 + (1 + η)ck] + η(1− αik) + (1− α + η)

χk
ν,1 =

[β(1− α)(ck + 1)− 1] [(1 + η)ck + 1] + (1 + η)(1− αik)

β(1− α)(ck + 1) [1 + (1 + η)ck] + η(1− αik) + (1− α + η)

χk
ν,0 = − (1− α + η)(ck + 1)− αηyk

β(1− α)(ck + 1) [1 + (1 + η)ck] + η(1− αik) + (1− α + η)

χk
µ,1 =

[β(1− α)(ck + 1)− 1] [(1 + η)ck + 1] + (1 + η)(1− αik)

β(1− α)(ck + 1) [1 + (1 + η)ck] + η(1− αik) + (1− α + η)

(
1

α

)

χk
µ,0 = − (1− α + η)(ck + 1)− αηyk

β(1− α)(ck + 1) [1 + (1 + η)ck] + η(1− αik) + (1− α + η)

(
1

α

)
.

Simplifying further, we have

k̂t = γ1Etk̂t+1 + γ2k̂t−1 − χk
ν,0ν̂t−1 +

[
(ρν − 1) χk

ν,1 + χk
ν,0

]
ν̂t

− χk
µ,0µ̂t−1 +

[
(ρµ − 1) χk

µ,1 + χk
µ,0

]
µ̂t,

which gives the results in Appendix A.
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Appendix C. Proof of Proposition 2

Because (29) is a second-order di�erential equation, there are only two solutions.
We will show, next, that one solution is stationary and the other explosive. Thus,
there is a unique stationary solution.

The coe�cient a in (30) takes on one of the following two values:

a1 =
1−√1− 4γ1γ2

2γ1

, a2 =
1 +

√
1− 4γ1γ2

2γ1

.

We can verify that γ1 > 0 and γ2 > 0 for all admissible values of the deep parameters.
We can further show that γ1 + γ2 < 1 if and only if β(1 − δ) < λzλ

1/α
q , which holds

too for all admissible values of the deep parameters.
Since γ1 > 0, γ2 > 0, γ1 + γ2 < 1, we have γ1 ∈ (0, 1), γ2 ∈ (0, 1), and 4γ1γ2 < 1. It

follows that a1 and a2 are real numbers. Knowing the above ranges for γ1 and γ2, we
can in fact show that a1 ∈ (0, 1) and a2 > 1. We can then verify that (ρν + a1)γ1 < 1

and (ρµ + a1)γ1 < 1, which imply that γ1a1 < 1, and so the solution prescribed by
a = a1 above corresponds to a (unique) stationary rational expectations equilibrium.11

Given the initial condition k̂−1 and the driving processes, (30) completely pins down
capital, and then (A1), (A2), (A3), and (A4) determine investment, labor, output,
and consumption, respectively. From now on, whenever we mention REE, we refer to
this stationary REE, where we also write a1 simply as a.

11We can also show that, provided ρν 6= a1 and ρµ 6= a1, the solution prescribed by a = a2 above
corresponds to an explosive path.
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Table 1. Benchmark parameter values

Preference β = 0.99 η = 0 ξ = 3.17

Labor share α = 0.7

Capital Depreciation δ = 0.03

Neutral Technology λz = 1.0016 ρν = 0.95 σν = 0.01

Biased Technology λq = 1.008 ρµ = 0.95 σµ = 0.005

Learning Gain g = 0.05

Table 2. Cumulative responses of labor market varialbes relative to
output following the neutral technology shock: benchmark parameters

Rational expectations Adaptive expectations
Forecast Horizon Hours Real wage Hours Real wage
1 quarter 0.67 0.33 1.05 0.05
4 quarters 0.58 0.42 0.71 0.36
8 quarters 0.49 0.51 0.58 0.61
16 quarters 0.35 0.65 0.53 0.83
24 quarters 0.30 0.74 0.52 0.93
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Figure 1. Benchmark model: Impulse responses to a one-standard
deviation neutral technology shock. The solid line represents the re-
sponses under rational expectations. The dashed line represents the
responses under adaptive expectations.
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Figure 2. Benchmark model: Impulse responses to a one-standard de-
viation biased technology shock. The solid line represents the responses
under rational expectations. The dashed line represents the responses
under adaptive expectations.
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Figure 3. Benchmark model with low persistence of the shock: Im-
pulse responses to a neutral technology shock. The solid line represents
the responses under rational expectations. The dashed line represents
the responses under adaptive expectations.
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Figure 4. Model with alternative learning rule (g = 0.001 and t0 =

10000): Impulse responses to a neutral technology shock. The solid line
represents the responses under rational expectations. The dashed line
represents the responses under adaptive expectations.



LEARNING AND TECHNOLOGY SHOCKS 32

4 8 16 25

0.005

0.01

0.015

0.02

Output

4 8 16 25

2

4

6

8
x 10

−3 Consumption

4 8 16 25
0

0.02

0.04

0.06

0.08

Investment

4 8 16 25

0

10

20
x 10

−3 Real interest rate

4 8 16 25
0

5

10

15

20
x 10

−3 Hours

4 8 16 25

2

4

6

8
x 10

−3 Real wage

4 8 16 25

5

10

15
x 10

−3 Expected capital

4 8 16 25

5

10

15
x 10

−3 Capital stock

Responses to a Neutral Technology Shock: RE vs. Learning

Figure 5. Model with alternative learning rule (g = 0.05 and t0 =

10000): Impulse responses to a neutral technology shock. The solid
line represents the responses under rational expectations. The dashed
line represents the responses under adaptive expectations.
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Figure 6. Model with alternative learning rule (g = 0.05 and t0 =

100) and low Frisch elasticity (η = 2): Impulse responses to a neutral
technology shock. The solid line represents the responses under rational
expectations. The dashed line represents the responses under adaptive
expectations.
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