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Redistribution and Fiscal Policy

1. Introduction

The main concern of this paper is to assess the optimal behavior of a democratic government

in its use of fiscal policies to redistribute income. This problem, and similar issues, has been

studied recently in the literature by Perotti(1993), Persson and Tabellini(1994), Krusell,

Rios-Rull and Quadrini(1997), and Krusell and Rios-Rull (1999).

Perotti (1993) has used a non-overlapping generations model to study the effects of income

distribution on growth when agents vote over the degree of redistribution and an externality

on human capital is the source of growth. Persson and Tabellini (1994) have used an over-

lapping generations model to study the same problem when the driving force of growth is

an externality in physical capital. Krusell, Rios-Rull and Quadrini(1997) and Krusell and

Rios-Rull (1999) have worked on the effects of inequality on fiscal policies in a recursive

framework.

It is important to note that Perotti(1993) and Persson and Tabellini(1994) were interested

in the effects of inequality on growth through the fiscal channel, while Krusell, Rios-Rull and

Quadrini(1997) and Krusell and Rios-Rull (1999) studied the effects of inequality on policies.

This paper follows the second approach.

One limitation of these models is that they only calculate the non-stochastic stationary

equilibrium. This restriction limits the analysis in, at least, two dimensions. It is not possible

to study the difference between the effects of permanent and non-permanent perturbations.

In addition, the consequences of the initial conditions on both the steady-state and transition

policies cannot be analyzed.

Concerning the first limitation, Hall (1988) has shown that permanent and non-permanent

shocks have very different implications on the intertemporal substitution of consumption.

However, it remains unclear whether this result holds in an optimal taxation environment

with heterogenous agents.

Moreover, the study of convergence issues has become an important aspect of economic

theory. However, previous research in optimal distribution has ignored the effects of initial

inequality on steady-state policies and income distribution.

In order to examine these effects, this paper presents a stochastic dynamic equilibrium

model with heterogenous agents to analyze both the differences between the effects of perma-

nent and non-permanent perturbations on the optimal tax rate and the relationship between

initial inequality and steady-state variables. In addition, the optimal fiscal policy for the

transition will be calculated.
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Model and Solution Method Description The environment is a stochastic dynamic

general equilibrium model with three agents: two infinitely lived consumers with different

skill levels and a government that maximizes the median voter utility1. We assume that the

fraction of each consumer in the economy is constant over time and that the fraction of low

skill level households is bigger than the fraction of high skill level households. Consumers

make decisions over consumption and leisure, thus there is neither capital nor endogenous

growth. The government sets proportional income taxes and transfers, both equal between

consumers, and is able to borrow and lend in a complete markets environment. Technology

is linear and separable on agent’s labor. There is also a random shock that affects consumer

skill level.

Two versions of the model will be presented. In the first version, the perturbations will

affect aggregate productivity in a classical RBC way; the skill ratio will be constant. This

version will be called the Symmetric Shock Model. In the second one, the shock will only

affect the lower ratio skill level; the skill ratio will not be constant. This case will be labeled

as the Asymmetric Shock Model.

Since the identity of the median voter does not change over time and a full commitment

technology is assumed, a Ramsey problem in the Arrow-Debreu sense will be defined. The

most numerous consumer will play the role of the planner and he/she will optimize overall

possible sequences of future variables.

Given the model and the definition of equilibrium, which is discussed later, it is not

possible to get a closed form solution for the different policy functions. For this reason, We

will use a numerical method that will be described in the appendix.

Results The analysis of the stochastic equilibrium leads us to three main conclusions.

First, tax responses to both permanent and non-permanent perturbations are very similar.

Second, the initial skills inequality has a huge effect on both actual levy and actual income

distribution. And finally, the Chari, Christiano, Kehoe (1992) result- i.e. taxes on labor are

roughly constant over the business cycle- holds only if the productivity ratio is constant. In

addition, the model implies positive correlation between inequality and tax rate, just as in

the basic literature.

The rest of the paper is organized as follows. Section 2 presents the two versions of the

model. There we will define and characterize both the equilibrium and the Ramsey problem.

Section 3 presents the results, and Section 4 the final remarks.

1We will see that we do not need to speak about the median voter, since we will assume one of the types

of consumers is majoritarian. However, I will call this one the median voter in order to compare our results

with Persson and Tabellini.
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2. The Model

The rest of this section is as follows. First, we introduce the Symmetric Shock Model

and both the equilibrium and the Ramsey problem are defined and characterized. Second,

the same is done for the Asymmetric Shock Model. Finally, we highlight the differences

between the two models.

2.1. The Symmetric Shock Model

We study a dynamic stochastic general equilibrium model with two types of households,

household type “h” and household type “l”, and a government that maximizes the utility

of the median voter. Household type h has measure γ and household type l has measure

1− γ, where γ ∈ (0, 0.5). This fact implies that a type l household is the median voter. We

consider and economy without capital and with a single final good, yt, that is produced using

elastically suplied labor in the following way:

yt = (γ(1− xh,t)φh + (1− γ)(1− xl,t)φl)θt (1)

where (1− xi,t) is the amount of labor supplied by a household of type i ∈ I ≡ {h, l}, θtφi is

its marginal product and θt is a aggregate productivity shock following a Markov process:

ln θt = ρ ln θt−1 + εt |ρ| < 1 εt ∼ N
(
0, σ2ε

)
As the reader can observe, in this environment the aggregate productivity shocks, θt, have

not effect on the ratio between household type l and household h marginal products, θtφl

θtφh

.

This is why we call this set up the Symmetric Shock Model.

Households Consumers derive utility from consumption and leisure. The household’s type

i ∈ I objective function is:

E0

∞∑
t=0

βtU(ci,t, xi,t) (2)

where U is strictly increasing and concave on its two arguments. Consumer type i is endowed

with an unit of time which is devoted to work and leisure. Besides, the household can lent

to or borrow from other households or the government using a full array of contigent one

period bonds that complete the markets. Thus, a type i household faces the following budget

constraint every period:

ci,t +

∫
pt(θ)bi,t(θ)dθ = (1− τ t)ωi,t(1− xi,t) + bi,t−1 (θt) + Tt (3)
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taking as given θ0 and bi,−1. Where ci,t denotes the consumption level of the type i consumer

at t, ωi,t denotes the hourly wage rate of household type i at t, xi,t denotes leisure of household

type i at t, pt(θ) is the price at t of a bond that pays a unit of the final good at t + 1 if

the aggregate productivity shock is θ, bi,t(θ) is the type i consumer demand at t for bonds

that pay a unit of the final good at t + 1 if the aggregate productivity shock is θ, Tt is the

level of transfers fixed by the government at t, τ t is the level of labor taxes fixed by the

government at t. In addtion, there are upper and lower bounds for bi,t large enough not to

bind in equilibrium but finite to avoid Ponzi games.

Government Government maximizes median voter’s utility, i.e. consumer’s of type l util-

ity, subject to the following sequence of budget constraints:

Tt + bt−1 (θt) = τ t(γ(1− xh,t)ωh,t + (1− γ)(1− xl,t)ωl,t) +

∫
pt(θ)bt(θ)dθ (4)

taking as given θ0 and b−1. Where bt(θ) is the government demand at t for bonds that pay

a unit of the final good at t + 1 if the aggregate productivity shock is θ. In addtion, there

are upper and lower bounds for bt large enough not to bind in equilibrium but finite to avoid

Ponzi games.

Market clearing conditions The clearing condition in the bond market is:

(1− γ)bl,t(θ) + γbh,t(θ) = bt(θ) (5)

and this same condition for t = −1 implies that:

(1− γ)bl,−1 + γbh,−1 = b−1 (6)

Since there is not capital, the final good clearing market condition is:

(1− γ)cl,t + γch,t = yt (7)

Therefore, given the production function (1) and the final good clearing market condition

(7), we can write the economy resource constraint:

γch,t + (1− γ)cl,t = (γ(1− xh,t)φh + (1− γ)(1− xl,t)φl)θt (8)
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2.1.1. Competitive Equilibrium

In this section we first describe which is the households’ problem and then define a competitive

equilibrium.

Household’s type i problem is to choose {ci,t, xi,t, bi,t (θ)} that maximizes the objective

function (2) subject to the sequence of budget constraints (3) and taking the sequence of

wages, taxes, transeferences, prices {ωi,t, τ t, Tt, pt (θ)}, the initial stock of bonds and shock

bi,−1 and θ0 as given. The first order conditions with respect to bonds holdings and leisure

requiere:

pt(θ) = β
Uc,i,t+1 (θ)

Uc,i,t

Pr(θt+1 = θ/θt) (9)

Ux,i,t

Uc,i,t

= (1− τ t)ωt (10)

where Uc,i,t and Ux,i,t are the marginal utilities with respect to consumption and labor respec-

tively.

In this envoirenment a competitive equilibrium is defined as follows:

Definition 1 (Competitive Equilibrium Definition). Given {θ0, bl,−1, bh,−1, b−1} such that

(6) holds, a competitive equilibrium is a process for allocations {(ci,t)i∈I , (xi,t)i∈I , (bi,t(θ))i∈I , bt(θ)},

taxes and transfers {τ t, Tt} and prices
{
pt(θ), (ωi,t)i∈I

}
such that:

1. For each i ∈ I, {ci,t, xi,t, bi,t(θ)} maximizes household’s utility function (2) subject to

the budget constraint (3) given {τ t, Tt}, {pt(θ), ωi,t}, bi,−1 and θ0.

2. For each i ∈ I

ωi,t = φiθt (11)

3. The goverment budget constraint (4), the bonds market clearing condition (5) and

economy resource constraint (8) hold.

2.1.2. The Ramsey Problem

As mentioned before, government maximizes consumer of type l’s utility. The government is

aware of consumers answer to policy announcements and takes this reaction into account when

its solve its maximitation problem. This is what has been called a Ramsey problem. Hence,

the Ramsey problem consists on choosing taxes and transfers that maximize the utility of a

household type l over the set of competitive equilibriums defined above. When doing so, the

government faces various trade-offs. Consumers of type l derive utitlity from higher transfers

but those transfers has to be finance throught taxes or government debt. Taxes affect both

consumers symmetrically and they distort labor supply decisions. Higher governmet debt
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today increases taxes tomorrow. Since the government solves an intertemporal problem it

will try to smooth taxes throught time and states of nature.

As widely noticed in the literature, this problem is not time consistent. To avoid dealing

with this issue, we assume that the government has some device such it can commit itself to

the Ramsey outcome.

Techinically the Ramsey problem consists of maximizing consumer of type l’s utility over

the set of competetive equilibria. This is equivalent to choose the allocations, taxes, transfers

and prices that maximizes consumer of type l’s utility over the set of allocations, taxes,

transfers and prices that define a competetive equilibria. In general this problem can be very

complicated. Thus, the next step it is to define the minimal set of equations that characterize

the set of allocations, taxes, transfers and prices that define a competetive equilibria. We do

this in the next proposition.

Proposition 1 (Competitive Equilibrium Charaterization). Given {θ0, bl,−1, bh,−1, b−1}

such that (6) holds, if the equilibrium is interior and unique, then the equilibrium process for

{(ci,t)i∈I , (xi,t)i∈I , (bi,t(θ))i∈I , bt(θ)}, {τ t, Tt} and
{
pt(θ), (ωi,t)i∈I

}
is uniquely determined by

the following conditions:

• ∃ λ such that
Uc,l,t

Uc,h,t

= λ (12)

and
Ux,l,tφh

Ux,h,tφl

= λ (13)

holds.

• The next restriction is satisfied

bh,−1 − b−1 = E0

∞∑
t=0

βtUc,h,t

Uc,h,0
(Φh,t −Φt) (14)

where

Φi,t = ci,t − (1− xi,t)
Ux,i,t

Uc,i,t

∀i ∈ I

Φt = (1−
Ux,h,t

Uc,h,tθtφh

)(γ(1− xh,t)φh + (1− γ)(1− xl,t)φl)θt

• The economy resource constraint (8) holds.

Proof. The proof will be as follows. First, we are going to show that given a sequence

for consumption and leisure allocations for both types of consumers {(ci,t)i∈I , (xi,t)i∈I} such
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that the resource constraint (8), the restrictions (12) and (13) and (14) hold for some λ,

we can find a sequence for bonds {(bi,t(θ))i∈I , bt(θ)}, taxes and transfers {τ t, Tt} and prices{
pt(θ), (ωi,t)i∈I

}
such that consumers’ budget constraint (3) for ∀i ∈ I, the equilibrium wage

(11) for ∀i ∈ I, the government budget constraint (4), the bonds market clearing condition

(5), the resource constraint (8) and the households’ first order conditions (9) and (10) ∀i ∈ I

hold.

At this point, it is important to notice that with concave utility function, and if the

equilibrium is interior and unique (as assumed), the solution to the maximization problem of

the consumer is uniquely determined by the consumer’s budget constraint (3) and the first

order conditions (9) and (10), so that the consumer’s budget constraint (3) for ∀i ∈ I, the

equilibrium wage (11) for ∀i ∈ I, the government budget constraint (4), the bonds market

clearing condition (5), the resource constraint (8) and the households’ first order conditions

(9) and (10) ∀i ∈ I are necessary and sufficient for competitive equilibrium.

Assume that {(ci,t)i∈I , (xi,t)i∈I} and λ are such the resource constraint (8), the restrictions

(12) and (13) and (14) hold. Now, we are going to find {pt(θ)}
∞
t=0 such that the first order

condition (9) holds for ∀i ∈ I.

First, define wages as ωi,t = φiθt ∀i ∈ I and ∀t, which is (11) for ∀i ∈ I.

Define {pt(θ)}
∞
t=0 as:

pt(θ) = β
Uc,l,t+1 (θ)

Uc,l,t

Pr(θt+1 = θ/θt) = β
Uc,h,t+1 (θ)

Uc,h,t

Pr(θt+1 = θ/θt) (15)

(which is (9) for i = l) then, (12) implies (9) for i = h.

Let us now probe that exists {τ t}
∞
t=0 such that the first order condition (10) holds for

∀i ∈ I.

Define {τ t}
∞
t=0 as:

1− τ t =
Ux,l,t

Uc,l,tθtφl

=
Ux,h,t

Uc,h,tθtφh

(16)

then, using (11) for ∀i ∈ I we can write

Ux,l,t

Uc,l,tθtφl

=
Ux,h,t

Uc,h,tθtφh

= ωi,t (1− τ t)

(which is (10) for i = l) then (12) and (13) imply that is equal to (10) for i = h.

Define {Tt}
∞
t=0 as:

E0

∞∑
t=0

βtUc,h,t

Uc,h,0
Tt = −b−1 + E0

∞∑
t=0

βtUc,h,t

Uc,h,0
Φt (17)
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Then, restriction (14) implies

bh,−1 = E0

∞∑
t=0

βtUc,h,t

Uc,h,0
(Φh,t − Tt) (18)

and the initial bonds market clearing condition, (6), implies

bl,−1 = E0

∞∑
t=0

βtUc,h,t

Uc,h,0
(Φl,t − Tt) (19)

Define household type h demand for bonds {bh,t}
∞
t=0 as:

bh,t = Et+1

∞∑
j=0

βjUc,h,t+1+j

Uc,h,t+1
(Φh,t+j+1 − Tt+j+1) (20)

household type l demand for bonds {bl,t}
∞
t=0 as:

bl,t = Et+1

∞∑
j=0

βjUc,h,t+1+j

Uc,h,t+1
(Φl,t+j+1 − Tt+j+1) (21)

and government demand for bonds {bt}
∞
t=0 as:

bt = Et+1

∞∑
j=0

βjUc,h,t+1+j

Uc,h,t+1
(Φt+j+1 − Tt+j+1) (22)

Notice that the three bonds demand definitions (20), (21) and (22) are such that bonds

market clearing condition (5) holds. Now, using the definition of prices (15) and taxes (16),

the condition (18) and the definition of bonds demand (20) we can write:

bh,t = wh,t+1+Et+1

[
β
Uc,h,t+2

Uc,h,t+1
Et+2

∞∑
t=1

βt−1Uc,h,t+2+j

Uc,h,t+2
Φh,t+j+2

]
= wh,t+1+

∫
pt+1(θ)bh,t+1 (θ) dθ

for t ≥ −1, what it means that the household’s type h budget constraint (3) (the sequence

of budget constraints for consumer type h) holds. Using a similar procedure with (17) and

(19) we can show that the household’s type l budget constraint (3) for i = l (the sequence

of budget constraints for consumer type l) and the government budget constraint (4) (the

sequence of government budget constraints) also hold.

Second, we are going to probe that given a sequence for consumption, leisure and bonds

{(ci,t)i∈I , (xi,t)i∈I , (bi,t(θ))i∈I , bt(θ)}, taxes and transfers {τ t, Tt} and prices
{
pt(θ), (ωi,t)i∈I

}
such that consumers’ budget constraint (3) for ∀i ∈ I, the equilibrium wage (11) for ∀i ∈ I,
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the government budget constraint (4), the bonds market clearing condition (5), the resource

constraint (8) and the households’ first order conditions (9) and (10) ∀i ∈ I hold we can find

a λ such that the restrictions (12), (13) and (14) hold.

From (9) for ∀i ∈ I, we obtain that

Uc,l,t

Uc,h,t

=
Uc,l,t+1 (θ)

Uc,h,t+1 (θ)
∀t, θ

i.e. the ratio marginal utilities of consumption at t is equal to the ratio at t+1 with probability

one. By induction,
Uc,l,0

Uc,h,0

=
Uc,l,t

Uc,h,t

∀t

but, since bh,−1, bl,−1 and θ0 are given, we can define λ to be

λ ≡
Uc,l,0

Uc,h,0

such that (12) holds.

Then, note that from (10) and (11) for ∀i ∈ I we have

Ux,l,tφh

Ux,h,tφl

=
Uc,l,t

Uc,h,t

that together with (12) imply (13).

Finally, using (9) and (11) for i = h in the consumer type h budget constraint (3) and in

the government budget constraint (4) and solving recursively both restrictions we get

bh,−1 =
∞

E0

∑
t=0

βtUc,h,t

Uc,h,0
(ch,t − (1− τ t)(1− xh,t)φhθt − Tt)

b−1 = E0

∞∑
t=0

βtUc,h,t

Uc,h,0
(τ tθt (γ(1− xh,t)φh + (1− γ)(1− xl,t)φl)− Tt)

If we convine these two equations with (10) for i = h we get (14).

Proposition 1 implies two important features of a competitive equilibrium. First, if we

assume separable between consumption and leisure utility function, (12) and (13) imply that

both consumption and hours worked ratios between the two types of households are constant

through time and realizations of the productivity shock. Second, λ, and, consequently, the two

mentioned ratios, depend on the whole productivity shock sequence, and not only its actual

realization. As we will see in the numerical exercice to be presented in the next section,

this implies the intial conditions, i.e. θ0, b−1, bl,−1 and bh,−1, are going to very important
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on today’s households consumption and hours worked optimal choices and, therefore, on the

optimal fiscal policy.

But the most important implication of proposition 1 is the following: The economy re-

source constraint (8) and the restrictions (12), (13) and (14) are necesary and sufficient for

competitive equilibrium. Hence, for each sequence of {(ci,t)i∈I , (xi,t)i∈I} and λ, such that (8)

and the restrictions (12), (13) and (14) hold, there exists allocations, taxes, transfers and

prices such that they define a competitive equilibria. Therefore, the Ramsey Problem will be

to choose {(ci,t)i∈I , (xi,t)i∈I} and λ such that maximize type l consumer’s utility subject to

(8), (12), (13) and (14).

Formally, the Ramsey problem becomes:

Max
{(ci,t)i∈I ,(xi,t)i∈I},λ

E0

∞∑
t=0

βtU(cl,t, xl,t)

subject to:
Uc,l,t

Uc,h,t

= λ

Ux,l,tφh

Ux,h,tφl

= λ

bh,−1 − b−1 = E0

∞∑
t=0

βtUc,h,t

Uc,h,0
(Φh,t −Φt)

γch,t + (1− γ)cl,t = (γ(1− xh,t) + (1− γ)(1− xl,t)φl)θt

where θ0, bh,−1 and b−1 are given.

At this point, we would like to remark that we are not aware of any paper that has charac-

terized and solved this problem in the way we have done here. Garcia-Milà et. al. (2001) have

a similar Ramsey problem but they do not solve for the optimal Ramsey allocation. Instead,

they calibrate λ to some data features. In what follows, first we are going to solve for the

optimal Ramsey allocation. Then, we will perform some numerical exercices to understand

which are the main features of the optimal Ramsey allocation.

To do that we assume some functional form for preferences:

U(ci,t, xi,t) =
c1−σ
i,t

1− σ
+

x1−σ
i,t

1− σ

If this is the case, we can use the resource constraint (8), and the restrictions (12), (13) to

write cl,t, xl,t and xh,t as a function of ch,t, θt and λ, in the following way:

cl,t (ch,t, λ) = ch,tλ
− 1

σ

10



xl,t (ch,t, λ, θt) =
(γφh + (1− γ)φl)−

(
γ+(1−γ)λ−

1
σ

)

θt
ch,t(

γφh

(
φh

λφl

)− 1

σ

+ (1− γ)φl

)

xh,t (ch,t, λ, θt) =

(
φh

λφl

)− 1

σ (γφh + (1− γ)φl)−

(
γ+(1−γ)λ−

1
σ

)

θt
ch,t(

γφh

(
φh

λφl

)− 1

σ

+ (1− γ)φl

)
at the same time, and since taxes, τ t, are a function of λ and ch,t we can use (10) for i = h

to write:

τ t (ch,t, λ, θt) = 1−
xh,t (ch,t, λ, θt)

−σ

c−σ
h,t θtφh

so, we can write

τ t (ch,t, λ, θt) = 1−

(
φh

λφl

)
(γφh+(1−γ)φl)

θ
−
1
σ

t φ
−
1
σ

h
ch,t

−
(
γ + (1− γ)λ−

1

σ

)
θ
1

σ
−1

t φ
1

σ

h

γφh

(
φh

λφl

)− 1

σ

+ (1− γ)φl


−σ

(23)

This is going to be the most important object of study in this work. Now onwards, this

function will be referred to as the policy function.

At this point, it is important to note that the assumption of separability between con-

sumption and leisure decisions allows us to relate λ to the equilibrium income distribution.

From (12) we have:

λ =
cσh,t
cσl,t

Thus, if λ > 1, higher λ implies more income inequality. From this point, λ will be referred

to as the income distribution parameter.

We can simplify the Ramsey problem as:

Max
{ch,t},λ

E0

∞∑
t=0

βtU(cl,t (ch,t, λ) , xl,t (ch,t, λ, θt))

subject to:

bh,−1 − b−1 = E0

∞∑
t=0

βtUc,h,t

Uc,h,0

(Φh,t (ch,t, λ, θt)−Φt (ch,t, λ, θt)) (24)

where θ0, bh,−1 and b−1 are given.

If an optimal policy exists and it is interior, the optimal allocations must satisfy the

government’s first order conditions with respect to ch,t and λ and the restriction (24).

Let η be the langrangian multiplier of (24). Then, the first order conditions of the Ramsey

11



Problem are with respect to ch,t and λ are:

c−σ
l,t

∂cl,t
∂ch,t

+ x−σ
l,t

∂xl,t

∂ch,t
+ ηβt

c−σ−1
l,t

c−σ
h,0

(
∂Φt

∂ch,t
−

∂Φh,t

∂ch,t
) = 0 (25)

E0

∞∑
t=0

βt

[(
c−σ
l,t

∂cl,t
∂λ

+ x−σ
l,t

∂xl,t

∂λ

)
+ η

c−σ
h,t

c−σ
h,0

(
∂Φt

∂λ
−

∂Φh,t

∂λ
)

]
= 0 (26)

Thus, given the optimal λ and η, ch,t only depends on the contemporaneous shock θt and it

has the same correlation properties as the former.

Given (25), (26) and (24) the solution to the Ramsey problem can be written as:

η = η(φl, θ0)

λ = λ(φl, θ0)

ch,t = ch(φl, θt, θ0)

2.2. The Asymmetric Shock Model

Now we are going to introduce some asymmetry in the way the aggregate productivity shock,

θt, affects agents marginal productivity (or wage), ωi,t. In the model described in section 2.1

the ratio of hourly wages was not affected by the aggregate productivity shock, θt. In this

new version of the model, the aggregate productivity shock, θt, only affects type l consumer’s

marginal productivity (or wage), ωl,t, so it affects the ratio of marginal productivities, or

wages. This is the reason why we call this set up the Asymmetric shock model. The

arising differences are:

1. The production function

yt = γ(1− xh,t)φh + (1− γ)(1− xl,t)φlθt (27)

2. Consumers’ type i problem

Max
{ci,t,xi,t}∞t=0

E0

∞∑
t=0

βtU(ci,t, xi,t) (28)

subject to

ci,t +

∫
pt(θ)bi,t(θ)dθ = (1− τ t)ωi,t(1− xi,t) + bi,t−1 (θt) + Tt (29)

12



given bi,−1 and θ0.

3. Government’s restriction

Tt + bt−1 (θt) = τ t(γ(1− xh,t)ωh,t + (1− γ)(1− xl,t)ωl,t) +

∫
pt(θ)bt(θ)dθ (30)

4. The bonds market clearing conditions are as in the symmetric shock model.

5. The economy resource constraint

γch,t + (1− γ)cl,t = γ(1− xh,t)φh + (1− γ)(1− xl,t)φlθt (31)

In this case a competitive equilibrium is defined as:

Definition 2. Given {θ0, bl,−1, bh,−1, b−1} such that (6) holds, a competitive equilibrium is a

process for allocations {(ci,t)i∈I , (xi,t)i∈I , (bi,t(θ))i∈I , bt(θ)}, taxes and transfers {τ t, Tt} and

prices
{
pt(θ), (ωi,t)i∈I

}
such that:

1. For each i ∈ I, {ci,t, xi,t, bi,t(θ)} maximizes household’s utility function (28) subject to

the budget constraint (29) given {τ t, Tt}, {pt(θ), ωi,t}, bi,−1 and θ0.

2. The equilibrium wages are as follows

ωl,t = φlθt

ωh,t = φh

3. The goverment budget constraint (30), the bonds market clearing condition (5) and the

economy resource constraint (31) hold.

Two are the main differences with the symmetric shock model. First, the equilibrium

wages. As noted, in the symmetric shock model, the productivity shock affects both

households’ wages simmetrically. In the asymmetric shock model that is not the case

anymore and the productivity shock only affects household’s l wage. Second, both the pro-

duction function (27) and the economy resource constraint (31) reflect this same fact, since

the productivity shock only affects household’s l marginal productivity.

As before, we have to characterize the equilibrium. This is done in the following proposi-

tion:

Proposition 2. Given {θ0, bl,−1, bh,−1, b−1} such that (6) holds, if the equilibrium is interior

and unique, then the equilibrium process for {(ci,t)i∈I , (xi,t)i∈I , (bi,t(θ))i∈I , bt(θ)}, {τ t, Tt}

and
{
pt(θ), (ωi,t)i∈I

}
is uniquely determined by the following conditions:

13



• ∃ λ such that
Uc,l,t

Uc,h,t

= λ

and
Ux,l,tφh

Ux,h,tφl

= λθt

holds.

• The next restriction is satisfied

bh,−1 − b−1 = E0

∞∑
t=0

βtUc,h,t

Uc,h,0
(Φh,t −Φt)

where

Φi,t = ci,t − (1− xi,t)
Ux,i,t

Uc,i,t

∀i ∈ I

Φt = (1−
Ux,h,t

Uc,h,tφh

)(γ(1− xh,t)φh + (1− γ)(1− xl,t)φlθt)

• The economy resource constraint (31) holds.

The equilibrium characterization is also different from the symmetric case. The most

important difference is the follwoing: The ratio of marginal utility of leisure is not constant

anymore, Ux,l,tφh/ (Ux,h,tφl) = λθt. Therefore, at least for the separable utility function used

in the numerical exercice that follows, while consumption ratio between the two types of

households is constant, hours worked does not need to be. When, θt is high hours worked by

households type l decreses with respect to those worked by households type h.

In this asymmetric case we can rewrite (23) as

τ t (ch,t, λ, θt) = 1−

(
φh

λφlθt

)
(γφh+(1−γ)φlθt)

θ
−
1
σ

t φ
−
1
σ

h
ch,t

−
(
γ + (1− γ)λ−

1

σ

)
θ
1

σ

t φ
1

σ

h

γφh

(
φh

λφlθt

)− 1

σ

+ (1− γ)φlθt


−σ

(32)

3. Results

In the following two subsections, the two versions of the model are used to analyze the

relationship between the skill ratio and both the tax rate and the income distribution.

Since closed form solutions are not available, we solve the models using numerical sim-

ulations. The parameter values choice we consider is very similar to that used in the

business cycle literature. For the symmetric model we use the following parameter val-
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ues (γ, β, σ, σε, ρ) = (0.35, 0.95, 2, 0.1, 0.9) 2. For the asymmetric model the choice is

(γ, β, σ, σε, ρ) = (0.35, 0.95, 2, 0.01, 0.99985). As the reader should notice the only differences

are in parameter values that describe the stochastic process. Those imply a less volatile

and more persistence process in the asymmetric model. This is because when studing the

asymmetric case we are mainly going to be interested on convergence issues, so business

cycle flutuations are not going to be very important.

In section 3.1, we examine the connection between the skill ratio and the tax rate. First,

we solve for the optimal policy function of the symmetric model to answer the following

three questions:

• How are the skill ratio and the average tax rate related?

• Given the skill ratio, what is the effect of the business cycle on the tax rate?

• Are the effects of permanent and non-permanent shocks on the tax rate different?

The main conclusions are:

• The lower the skill ratio, the higher the average levy.

• Chari, Christiano, Kehoe (1992) result- i.e. taxes on labor are roughly constant over

the business cycle- holds only if productivity ratio is constant.

• Permanent and non-permanent shocks effects on fiscal policy are very alike.

• There is no fiscal convergence, even when the skill ratio does converge.

Second, we solve the for the optimal policy function of the asymmetric model to answer

the two following questions:

• Are the effects of permanent and non-permanent shocks on the tax rate different?

• Does the initial skill ratio affect the actual optimal tax rate?

In the second subsection, 3.2, the analysis of the relation between the skill ratio and the

income distribution is performed. Hence, we attempt to respond to the following queries:

• How are the skill ratio and the income distribution related?

• Is the initial skill ratio significant for the actual distribution?

2Our aim is to study optimal fiscal policy and so much to match the data. This is why we do not calibrate
the model to get close to the data. We would like to remark that our qualitative results are robust to different
calibrations.
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φj
l E(τ s(φj

l , θt, θ0))
0.7 0.30875
0.825 0.18159
0.95 0.05419

Table 1: Average Tax Rate, as a Function of Consumer "l"’s Marginal Productivity

In this case, the answers are:

• The lower the skill ratio, the more unequal the income distribution.

• The lower the initial skill ratio, the more unequal the income distribution.

Just note that for the stochastic process we use a Markov Change with unconditional

mean equal to one. Let us use “s” as superindex for the symmetric model policy function

(1), and “as” for the asymmetric one, (32).

3.1. The Skill Ratio and the Tax Rate

3.1.1. Inequality and The Average Tax Rate

Now the effects of permanent changes in the skill ratio on the average optimal tax rate are

analyzed. To understand this relation, the average tax level of three identical economies

(except by productivity of type l consumer) are compared.

Using (23), this analysis can be formally written as the determination of:

E(τ s(., θt, 1))

i.e. the unconditional mean of the tax level as a function of φl. Consider three economies

indexed by j ∈ {1, 2, 3} and let τ s(φj
l , θt, 1) be the policy function associated with economy

j where φ1l = 0.7, φ2l = 0.825 and φ3l = 0.95, when θt occurs.

As shown in the table 1, the higher φl, the lower the tax. This is a classical result in the

literature.

3.1.2. Business Cycle and Fiscal Policy

Chari, Christiano, Kehoe (1992) examine optimal fiscal policy over the business cycle in the

case of homogenous agents. This new setup allows two extensions of their analysis. In the

first place, it lets us repeat their exercise in the case of heterogenous agents, and secondly, it

permits an extension when the cycle affects the skill ratio.
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First, we use the symmetric model to study the consequences of the business cycles on

the tax rate. As before, using (23), this analysis can formally be written as the study of the

next function

τ s(φl, ., 1) (33)

Second, we exploit the asymmetric model to study how perturbations of the skill ratio

affect the tax rate. In this case, the following function is analyzed

τas(φl, ., 1) (34)

Note that the difference between the last two equations is the superindex.

Figure 1 plots both functions. As it can be seen, (33), does not have a very notable

upward slope, i.e. taxes are slightly procyclical. On the other hand, (34) has a very significant

downward slope.

These two results brings us to the following conclusion: the Chari, Christiano, Kehoe

(1992) result- i.e. taxes on labor are roughly constant over the business cycle- holds only if

productivity ratio is constant. Thus, optimal tax rate should smooth distortions over time

only if the skill ratio does not change.

The intuition for the differences between (33) and (34) is as follows. Type l consumer sets

the fiscal policy. She gets half of the difference between type h consumer ’s taxes and her own.

As a result, she is going to increase the tax level until both type h and l marginal payments

are equal. In the symmetric case, shocks do not affect the skill ratio; both type h and l

marginal payments are affected in the same way, so taxes do not move. In the asymmetric

model, shocks do affect the skill ratio; both type h and l marginal payments are affected

asymmetrically, so taxes do move to compensate.

Permanent versus Non-permanent Shocks Now, we analyze whether there are dif-

ferences between tax policies facing permanent and non-permanent shocks. Consider the

following definitions of permanent and non-permanent perturbations environments:

Definition 3. A permanent perturbation environment holds if θt = θ0 ∀t.

Definition 4. A non-permanent perturbation environment holds if it is not permanent.

Let us use the subindex p for the case of permanent shock environment. Since the non-

permanent environment is the one used until now, we will not use any subindex. Thus, we

study the difference between the following two functions

τ sp(φl, ., .)

17



τ s(φl, ., 1)

Note that the first corresponds to a permanent shock and the second to a non-permanent

shock. The results are reported in figure 2. There is not much difference between these

two policy functions. As noted before, in the symmetric model perturbations correspond to

business cycle shocks. Thus, for perturbations in the range (0.8,1.2) both functions are very

similar, with differences of less than ±2% over the tax rate at the mean of the perturbation

(remember that the mean of the process is 1).

Considering now the asymmetric model, we compare the following functions

τasp (φl, ., .)

τas(φl, ., 1)

The results are reported in figure 3. The optimal policy functions for the asymmetric

model are also alike.

3.1.3. The Initial skill ratio and the actual tax rate: The Non-Fiscal Convergence.

Consider a set of economies that, starting with different skill ratio levels, converge to the

same one. How does the initial skill ratio affect the actual tax rate? In other words, is there

convergence on tax rate? The answer is no.

Let us consider four versions of the asymmetric model with index j ∈ {1, 2, 3, 4}. Let

τas(φl, θt, θ
j
0)

be the policy function associated with economy j and let θ10 = 0.5, θ20 = 0.7, θ30 = 0.8 and

θ40 = 0.9.

It is important to stress the following three points:

• Type h productivity is fixed, and lower θ0 means lower initial type l productivity.

• Type l productivity grows over time (since θj0 < 1 ∀j ∈ {1, 2, 3, 4}).

• Asymptotically, all economies converge to the same skill ratio.

The results are reported in figure 4. As we can see, the lower θ0, the higher the taxes.

Consequently, even assuming skill ratio convergence, there is not fiscal policy convergence.

Since complete markets are assumed, an intertemporal substitution of consumption ar-

gument can explain why the lower the initial inequality level, the higher the taxes in the

long run. Consumer l wants to smooth consumption, so she increases consumption today

18



φj
l λ

0.7 1.5478
0.825 1.2949
0.95 1.0773

Table 2: Income Distribution Parameter as a Function of Consumer "l"’s Marginal Produc-
tivity

via long run taxes. The lower the initial skill level the higher taxes she needs tomorrow. In

addition, labor supply’s elasticity prevents an excessive increase in tomorrow’s taxes, so the

initial productivity gap across economies cannot be totally offset.

3.2. The Skill Ratio and the Income Distribution

3.2.1. Inequality and income distribution

Now, the effects of permanent changes in the skill ratio on income distribution are analyzed.

The same three economies used in section 3.1.1 are used here, but in this case the function

to analyze is

λs = λs(., 1)

Table 2 reports the results for each j. Logically, the lower the skill ratio the higher λ since

that means higher inequality in consumption. This means that fiscal policy cannot totally

compensate for differences in skill level, even in the case that the poorest agent chooses the

taxes. This is because taxes are distortionary and labor supply is elastic.

3.2.2. The Initial skill ratio and the actual income distribution: The Non-income

distribution Convergence

Consider a set of economies that, starting with different skill ratio levels, converge to the

same one. How does the initial skill ratio affect the income distribution? In other words,

is there convergence on income distribution? The answer is also no. In other words, let us

analyze the following function

λs = λs(φl, .)

We will use the same four economies used in 3.1.3. As we can see, the lower θ0, the higher

the taxes. Hence, although there is productivity ratio convergence, this does not apply to

fiscal policy. λ, the income distribution parameter, does not converge either (see table 3).
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θj0 λ
0.5 2.15
0.7 1.8
0.8 1.6
0.9 1.2

Table 3: Income Distribution Parameter as a Function of Initial Inequality Level, in the
Asymmetric Shocks Model

The lower θ0, the lower λ.

As mentioned before, type l consumer determines tax policy. We assume complete mar-

kets, thus she can finance transfers today with taxes tomorrow. Thus, an intertemporal

substitution of consumption argument can explain why the lower the initial inequality level,

the higher the taxes in the long run. In addition, labor supply’s elasticity prevents an ex-

cessive increase in tomorrow’s taxes, so the initial productivity gap across economies cannot

be totally offset. The last point shows the importance of elasticity of labor supply3 to get

non-convergence on income distribution.

4. Conclusion

Most of the papers on fiscal policy and income distribution only define and compute the

non-stochastic stationary equilibrium. This equilibrium concept is sometimes useful because,

together with some assumptions, it permits us to get closed forms solutions for the policy

functions (see Persson and Tabellini (1994)). On the other hand, the use of this equilibrium

concept limits the results in two dimensions: [1] it is not possible to study the difference

between the effects of permanent and non-permanent perturbations; [2] the consequences of

the initial conditions on both the steady-state and transition policies cannot be analyzed.

This paper is an attempt to address these two issues. The main conclusions are as follows.

First, tax responses to both permanent and non-permanent perturbations are very similar.

Second, the initial skills inequality has a huge effect on both actual levy and the actual income

distribution. And finally, the Chari, Christiano, Kehoe (1992) result- i.e. taxes on labor are

roughly constant over the business cycle- holds only if productivity ratio is constant.

3As noted before, this point is missing in Persson and Tabellini(1994).
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5. Appendix

5.1. Numerical Algorithm

We am going to describe the method used for the symmetric model.

We need to solve (24), (25) and (26).

Step 1 Set θ0.

Step 2 Guess λ and η.

Step 3 Generate one realization, 5000 periods long, of the Markov Chain. Let

A =
[
θ0 θ1 θ2 ... θ4999

]
Step 4 Generate 100 realization, 21 periods long, of the Markov Chain. Let

B =


θ0 θ̂

1

1 θ̂
1

2 ... θ̂
1

20

θ0 θ̂
2

1 θ̂
2

2 ... θ̂
2

20

... ... ... ... ...

θ0 θ̂
100

1 θ̂
100

2 ... θ̂
100

20


Step 5 Solve, using (25), ch(θi;λ, η) for each one of θi ∈ A.

Step 6 Let

yj =
5000∑
t=j

βj[ch(θj;λ, η)
−σ∂cl(θj;λ, η)

∂λ
+ xl(θj;λ, η)

−σ ∂xl(θj;λ, η)

∂λ
+

+η
ch(θj;λ, η)

−σ

ch(θ0;λ, η)−σ
(
∂Φ(θj;λ, η)

∂λ
−

∂Φh(θj;λ, η)

∂λ
)]

Let Y =
[
y1 y2 ... y2500

]
. LetX1 =

[
θ0 θ2 ... θ2499

]
. LetX2 =

[
θ20 θ21 ... θ22499

]
.

Using the standard OLS method, estimate the parameters of

Y = µ+ β1X1 + β2X2 + ε

Note that, given these estimations, we can write

Et(yt+1/θt) � µ̂+ β̂1θt + β̂2θ
2
t
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Step 7 Repeat the last step for

ỹj =
5000∑
t=j

βj ch(θj;λ, η)
−σ

ch(θ0;λ, η)−σ
(Φ(θj;λ, η)− Φh(θj;λ, η))

Let

Et(ỹt+1/θt) � π̂ + ζ̂1θt + ζ̂2θ
2
t

Step 8 Solve, using (25), ch(θ̂
j

i , λ, η) for each one of θ̂
j

i ∈ B.

Step 9 Check if

1

100

100∑
j=1


19∑
i=0

βi

(
ch(θ̂

j

i ;λ, η)
−σ ∂cl(̂θ

j

i ;λ,η)
∂λ

+ xl(θ̂
j

i ;λ, η)
−σ ∂xl(̂θ

j

i ;λ,η)
∂λ

)
+

+η ch(̂θ
j

i ;λ,η)
−σ

ch(θ0;λ,η)−σ
(∂Φ(

̂θ
j

i ;λ,η)
∂λ

− ∂Φh(̂θ
j

i ;λ,η)
∂λ

) + β20
(
µ̂+ β̂1θ̂

20

i + β̂2(θ̂
20

i )2
)

 = 0

and

1

100

100∑
i=1

(
19∑
j=0

βi ch(θ̂
j

i ;λ, η)
−σ

ch(θ0;λ, η)−σ
(Φ(θ̂

j

i ;λ, η)−Φh(θ̂
j

i ;λ, η)) + β
(
20π̂ + ζ̂1θ̂

20

i + ζ̂2(θ̂
20

i )2
))

= 0

hold. If it does not, choose new λ and η, and go to step 2 Note that these two equations

are approximations to (24), and (26).
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Fig 2: Permanent vs. non permanent perturbation in symmetric model
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Fig 3: Permanent vs. non permanent perturbation in asymmetric model
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Fig 4: Policy functions for different initial values of the shock in asymmetric model




