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A,B,C'S (AND D)'S FOR UNDERSTANDING VARS

“(Likelihood Principle) The information brought by an olpgation x about [a parameter]
6 is entirely contained in the likelihood functionThe Bayesian Choi¢doy Christian P.
Robert, p. 15

“... with a specific parameterization of preferences the theayldvplace many restric-
tions on the behavior of endogenous variables. But thesegimts do not take the form
of locating blocks of zeros in a VAR description of these a&bkes.”Money and Interest in
a Cash-in-Advance Econorfgobert E. Lucas, Jr., and Nancy L. Stokey, p. 512.

. INTRODUCTION

This paper is about inferring a set of meaningful economaxkl from the innovations
to a VAR. Applied macroeconomists use unrestricted Vectdoragressions (VARS) to an-
swer questions about responses to economically intelpeeshiocks. For example: What
is the effect of a technology shock on hours worked? How dagsubrespond to monetary
perturbations? What happens after a fiscal shock? VAR rdssarhope that they can coax
answers to such questions from unrestricted VARS and prdpesesstimated impulse re-
sponses functions as objects that subsequent quantitiaigestical models should aim to
interpret in terms of structural parameters.

To get pertinent impulse responses, a researcher nee@dntbarm the one-step ahead
prediction errors in her VAR into shocks that impinge on aoreamic model, i.e., shocks
to preferences, technologies, agents’ information set$tl@e economist’'s measurements.
Unrestricted VAR researchers hope to accomplish this eggeb by imposing weak iden-
tification restrictions directly on the unrestricted VAR. él'hestrictions are called weak
because the researcher wants them to hold for a class of snodel

The preceding epigraphs frame our topic. At least up to atiapproximation, the theo-
retical vector autoregression implied by a model is a reeeiesxpression of its conditional
likelihood function, which according to the likelihood pciple, contains all that the data
have to say about the model's parameters. Lucas and Stokeyraoct a theoretical model
whose equilibrium is a Markov process. They express dobtsMarkov process implies

1See Robert, (2001).
2See Lucas and Stokey (1987).
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zero restrictions on a vector autoregression. Lucas arkegiadicate that it would be a
good idea to deduce the restrictions that theoretical nsdde theirs put on VARs. This
paper collects a set of convenient formulas that summauele sestrictions and describes
the mapping from the economic shocks to the shocks in a VAR. &ew conditions
under which this mapping has an inverse that is one-sidedmme&gative powers of the
lag operator, a prerequisite for having impulse responsetions to VAR innovations that
can potentially match impulse response functions to the@wic shocks. We then fo-
cus on circumstances when the impulse response associdted WAR mirrors the one
associated with the economic theory. In an interestingiap&stjuare case’ in which the
number of economic shocks equals the number of variable¥ARa we provide an easy
to check necessary and sufficient condition for the exigtarican identification of VAR
shocks that makes the impulse response associated with angéh the one associated
with the economic theory.

Prominent macroeconomists have expressed skepticisnt tigovalue of incompletely
theoretical VAR’s as a research tool (see Chari, Kehoe, andrikttgn (2005)). By de-
scribing how VAR shocks recombine current and past readizatof the economic shocks
hitting preferences, technologies, information sets,rapdsurements, formula (25) below
helps us to express and evaluate diverse grounds for siseptddout VARs. Formula (25)
imposes the following taxonomy of potential challengesnieipreting VAR shocks and
the impulse responses of observables to them in terms ofcth@oenic shocks and their
impulse responses.

First, for some theories, the number of economic shockemiffrom the number of
observables and therefore the number of shocks in the VARorBe@ven in the lucky
situation in which the number of economic shocks equals timeler of observables, the
history of economic shocks can span a bigger space than stenhof the observables,
making it impossible to match up their impulse responsetfans; here there is said to
be an invertibility problem because the economic shocke@iabe expressed as a linear
combination of current and past VAR innovations. Third,rewéen the theory and mea-
surements are such that there are equal numbers of econodnéA& shocks and there is
no invertibility problem, there remains the challenge aftiianing the contemporaneous
covariation among VAR shocks in a way that captures the copdeaneous covariance of
economic shocks and measurement errors. Fourth, even Wioéthe first three problems
can be resolved, because (25) is in general an infinite ordBr (Yechnically, it is a finite
order VARMA system), one must either include vector movingrage terms or make sure
to include a sufficient number of AR terms, perhaps guidedbynéormation-theoretic
(e.g., a Bayesian information criterion).
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This hierarchy of problems has prompted many quantitatiseroeconomists to forgo
matching their theories to an unrestricted VAR. But becaus&#&R representation can be
regarded as an expression of a conditional likelihood fon¢ta researcher who believes
fully in her theory cannot turn her back on the implicatiofi&er theory for a VAR

l.1. Related literature. The process of reverse engineering a subset of economikshoc
from the innovations to a VAR is known to be fraught with hailzar Several authors
have described the invertibility problem that we highlighthis paper. For examples, see
Hansen and Sargent (1981, 1991c), Watson (1994), ReichiirLgopi (1994), and Sims
and Zha (2004). These papers present some examples in Wwkiahvertibility problem is
‘fatal’, but also indicate other examples in which it is not.

1.2. Point of this paper. This paper reviews what is known about the reverse engimgeri
exercise and, for an interesting special case, describeagncheck for the presence of
an invertibility problem. We present four examples thatrespnt a variety of situations,
some in which invertibility is a problem, and others in whitls not. The models are (1)
a permanent income model in which lack of invertibility isdemic; (2) and (3) a model
with two sources of technology change and a model with starkges, in both of which
invertibility prevails, though in model (3) there is a bemigigenvalue of unity that prevents
an infinite order VAR representation from existing ; and (4)amne production model in
which, depending on the variables observed, invertibitigy or may not be a problem.
For each example, we form a 4-tuglé, B,C, D) for the economic model, then deduce
the 4-tuple(A K, C, %) for the associated VAR. Thus, these examples all involveitereg-
ing’ a VAR from an economic theory rather than ‘reverse eaging’ features of the dy-
namics to economic shocks from a VAR. Our intention is thagéiengineering’ examples
will provide insights about the pitfalls and possibilities successfully performing reverse
engineering exercises. Nevertheless, we recognize thamagst who is confident about
his model and who knows the mapping from its deep parametdteettuple(A B,C,D)
would not proceed by first estimating a VAR not restricted [sytheory. Instead, he would
use one of the likelihood based approaches — either maxinkatihbod or a Bayesian
procedure — and directly estimate the deep parameters maheer recommended a quar-
ter of a century ago by Hansen and Sargent (198jactitioners who estimate relatively
unrestricted VARs are doubtful about many details of the dying, and prefer to impose
restrictions that they believe will be robust across a warié specifications. That is the

3A theorist who wants to analyze the data as if her thasrgot true would not turn her back on the
likelihood function either, but this robustness businesaniother story.

40f course, as we remind the reader in section 11.12, at eaghisthe iterative calculations in his estima-
tions, he would form a restricted VAR in order to factor thediional likelihood.

SThis is explicitly the motivation of Jonas Fisher (2003).
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audience that should be vitally interested in our reverggneering exercise. A good way
to shed light on that endeavor is to assemble some représeme@amples of environments
((A,B,C,D)’s) where reverse engineering can be done easily and othens\it cannot.

1.3. Organization. Section Il describes the mapping from the obje@sB,C,D) that
characterize (a linear approximation to) an economic mealebjects(A,K,C,%) that
define an infinite order vector autoregression. This sedefimes impulse response from
economic shocks to observables and from VAR innovationsbgervables, reviews the
connection between an infinite order VAR and a conditiorkalihood, and describes the
invertibility criterion in terms of the zeros of a particulaatrix characteristic polynomial.
Section 1l gives an easy to check condition for inverttlyilin terms of the eigenvalues
of the matrixA — BD~1C. Sections IV, V, VI, and VIl apply this check to four models:
a permanent income model, the two-shock model of Fisher3R@Be sticky price and
wage model of Erceg, Henderson, and Levin (2000), and thedimid production model
of Benhabib, Rogerson, and Wright (1991). We check the inubtyilcondition for both
calibrated and estimated versions of these models andtEnative sets of observables,
thereby illustrating an insight of Watson (1994). Sectiohl Wriefly describes findings
of two recent papers that address related issues. Sectioaribdins some concluding re-
marks. Three appendices describe the priors that we usdatamgosterior distributions
of the parameters of several models; a fourth appendix goresulas that magA, B,C, D)
into a finite order VAR.

[I. MAPPING FROM AN ECONOMIC MODEL TO AVAR

This section describes a class of economic model with shacks preferences, tech-
nologies, agents’ information sets, and the economistasmements. For a set of ob-
servablesy, we leta;’s be innovations to a VAR. The innovatiolas can be expressed as
a linear combination of the history of thv's up tot. We state conditions on the (linear
approximation to) the economic model under whighcan be recovered from the history
of ag’s throught.

Il.1. Representation of an equilibrium. We start with an equilibrium of an economic
model or an approximation to it that has a representatiohdrstate-space form
X+1 = Ax+Bw (1)
Yt = Cx+Dw (2)
wherew; is a Gaussian vector white noise satisfylégt = 0, Emw; = I, Ewmw;_j =0

for j #£0. Herex is ann x 1 vector of possibly unobserved state variabjgss ak x 1
vector of variables observed by an economist or econonetriandw; is anmx 1 vector
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of economic shocks and measurement errors impinging ortdkessand observables. The
observation vectoy; typically includes some prices, quantities, and capitatlst. Withm
shocks in the economic modelstates, an#t observableshisnxn,Bisnxm,Ciskxn,
andD is k x m. In generalk # m, although we shall soon devote some special attention to
an interesting ‘square case’ in whikhk=m.

There are two popular ways to obtain equilibrium repredenta of the form (1)-(2).
The first is to compute a linear or loglinear approximatioraaionlinear model about a
nonstochastic steady state, as exposited for example, isti@ho (1990), Uhlig (1999), or
thedynar e manuakF It is straightforward to collect the linear or log linear apgimations
to the equilibrium decision rules and to arrange them inéostiate-space form (1)-(2). We
provide an extended example in section V. A second way is t¢13€2) directly as a
representation of a member of a class of dynamic stochastiergl equilibrium models
with linear transition laws and quadratic preferences. Ryt Rosen (2003), Topel and
Rosen (1988), Rosen, Murphy, and Scheinkman (1994), and HamgkSargent (2005)
provide many examples. We describe such an example in sd¥gtio

The economic shocks, the'’s, are comprised of two kinds of shocks, the first being the
shocks to preferences, technologies, and informationvaéten an economic model, the
second being errors in measuringro distinguish these two components, we can write

Bw = [B; O] mj

Dw = [Dy Dy m;j

wherewy; represents the economic shocks andrepresents pungmeasurement error.

[I.2. Argument in a nutshell. The following simple argument isolates a main outcome
and the major themes of this pagewhenD is square and ! exists, (2) impliesw =
D~1(y; — Cx). Substituting this into (1) and rearranging gijes- (A—BD1C)L]x 1 =

BD 1y, whereL is the lag operator. If the eigenvalues(#f— BD~1C) are strictly less than
one in modulus, then the inverse of the operator on the ldftisfequation gives a square
summable polynomial i, and we can solve fox;1 = 35 o[A—BD *C|/BD 'y ;.
Shifting back one period and substituting this equatioa () gives

yi=C Z)[A— BD'C]'BD 'y;_j_1+Dw. 3)
]:

%Dynare is a suite of Matlab programs that computes linearcqapations of a big class of dynamic
stochastic general equilibrium models.
The argument in this subsection is entirely due to our dismoisMark Watson.
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Under the conditions used to derive it (i.8,is invertible and the eigenvalues oA —
BD~1C) are strictly less than one in modulus), equation (3) defines:tor autoregression
for y; becauseDw; is orthogonal toy;_j for all j > 0. The impulse response function
associated with (1) describes both the VAR and the thealetiodel. Thus, wheA —
BD~IC) is a stable matrif the VAR matches up naturally with the theory. In the follogin
sections we say more about this outcome. In addition, wepexpvhy, when A—BD~1C)

is not a stable matrix, the impulse responses from a VAR dammmade to match up with
those from the economic model.

I1.3. Impulse response from economic shocks to observablesy. VAR researchers are
often interested in an impulse response function fromifgto they;’s,

e = Hy+d(L)w (4)
wherelL is the lag operatod(L) = z‘j";odij, > jotraced;d]) < +oo, andpy is the mean
of y, which can be computed as follows. If all eigenvaluesAddire less than unity in
modulus, except for a single unit eigenvalue associatedd avtonstant state variable, then
the meanuy of the stationary distribution of; can be computed by appropriately scaling

the eigenvector of associated with the unit eigenvalug:— A) ix = 0. After solving this
equation forpy, the meanuy of the stationary distribution of; can be computed from

Hy = Clix.
Elementary calculations with system (1)-(2) deliver
Yt = py+[C(I — AL)~*BL + D]w, (5)
so that evidently
d = D

d = CA B j>1

To economize on notation, from now on we shall assumeytfat 0. Note that (4) trans-
formsm shocksw; into k observabley; , j, j > 0. Formula (5) tells us how to compute the
impulse response function directly from the state spaceesemtation(A,B,C,D) of the
economic mode.

Il.4. Nonuniqueness of(A,B,C,D). It is a sensible position to regard the basic theoret-
ical object as being the impulse response function in (5)gdneral, there are multiple
four-tuples of matrice$A, B,C, D) that can be used to represent an impulse response func-
tion in (5): different(A,B,C,D)’s can deliver the samgy,d(L). For convenience, one
often selects a particular member of this class by choosmganum state realization of

8A square matrix is said to be stable if all its eigenvaluessaietly less than one in modulus.
9The Matlab control toolkit programnpul se. mcalculatesd(L) from (A,B,C,D).
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uy,d(L).10 We can sometimes exploit the freedom to switch among thgsesentations
in order to get a representation that satisfies our assungpti@and 2 in section Ill.

[I.5. The VAR and the associated impulse responséAn infinite order vector autoregres-
sion is defined by the projection equation

=0+ Ajy-j+a (6)
=1

wherea = (1 — Y51 Aj) Ly, @ = Yt — Elyt|y 1, > -1tracgAjA]) < +oo, and theA;s sat-
isfy the least squares orthogonality conditions

These least squares normal equations implyfzat= 0 andEaa_= 0 fors= 0. Letting
Eaa = Q = GG, we can represer = Gg;, whereg; is a stochastic process that satisfies
E& =0,Egg =1, andEsts{_j = 0 for j # 0. Then write (6) as

Ve =0o+ ZAth—j-i-GEt (8)
=i

wherea; = Gg;. _ _
Compute the polynomial in the operatoil) = Y ocjL! = (I — z‘f:lAjLJ)‘lG and
use it to form the moving average representation

Yt = Hy+c(L)&. (9)

This is said to be a Wold moving average representdtiohhe shock process is said

to be ‘fundamental fog;’ because it is by construction in the space spanned by square
summable linear combinations of current and past valuebeoj;tprocess. The defining
characteristic of a Wold representation is that the astgtianovation is fundamental for

Yt. An impulse response function associated with an infinileb¥AR is by construction a
Wold representation. In particular, representation (8)pepulation version of the impulse
response function reported by a typical VAR researcher.

10The Matlab control toolkit commanslys=ss(sys, ' m n’) replaces a four-tupleA,B,C,D) with
an equivalent minimal state realization.

LIA VAR representation does not exist when(@ét)) has zeros on the unit circle. See Whittle (1983) and
Hansen and Sargent (1991a).
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[1.6. Main issue in unrestricted VAR identification. We are interested in knowing the
circumstances under which the impulse response functipmgSociated with the VAR
matches the theoretical impulse response function (4) fxaheoretical model. Thus, we
want a formula like (5) that is also cast in terms(8f B,C,D), but that tells the response
of y; to current and pagt’s. The key to constructing this representation isitiv@vations
representationto which we now turn.

Il.7. The innovations representation: the(A,K,C, ) System. We seek a mapping from
the matricegA,B,C, D) for an equilibrium stochastic process fgrto the autoregression
coefficientsAj, ] = 1,... and volatility matrixG in (8) and the associated moving aver-
age coefficiend; in (9). The innovations representation is the recursiveesgntation
for y; that corresponds to a Wold representation. Associatedamyhstate space system
(A,B,C,D) of the form (1)-(2) is another state-space system calledhth@vations repre-
sentation'?

X1 = A% +KGg (10)
i = CX+Gg, (12)

wherex; = E[x |y 1],G& = a = vt — E[wt|y" 1], K is the Kalman gain from the steady
state Kalman filter equations:

S = ASA +BB - (AsC'+BD)) (12)
(C=C'+DD')"}(AsC' +BD'Y
K = (ASC'+BD)(CzC' +DD')?! (13)

whereZ = E(x — %) (% —%)’. The covariance matrix of the innovatioas= Gg; equals
Eaa = GG =CxC'+DD'. (14)

With m shocks in the economic modei,states, and observablesk is nx k andG is
k x k. The vector processes andg; are each of dimensiokx 1, as is they process, and
the matrixG is k x k.

We use the following

Definition 11.1. H(Z) is the Hilbert space consisting of all square summable lireean-
binations of the one-sided infinite history of random vesthr

12The conditions for the existence of this representatiostated carefully, among other places, in Ander-
son, Hansen, McGrattan, and Sargent (1996). The condiienthat thatA, B,C, D) be such that iterations
on the Riccati equation far; = E(x — %) (X — %)’ converge, which makes the associated Kalman Hain
converge tK. Sufficient conditions are th&®',C’) is stabilizable and tha®y', B') is detectable. See Ander-
son, Hansen, McGrattan, and Sargent (1996, page 175) foitdefs of stabilizable and detectable.
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The Kalman filter applies a Gram-Schmidt procedure to théohjis/! to construct a
historya! with orthogonal increments that spangy'), i.e., is such thaiti () = H(a') and
forwhichEaa,=0fort #s.

The innovations representation (10)-(11) for Yh@rocess resembles the original repre-
sentation (1)-(2). It differs from it in that (a) threx k matrix KG replaces th@ x m matrix
B; (b) thek x k matrix G replaces thé& x m matrix D; and (c) thek x 1 procesg; replaces
themx 1 processv.

11.8. Formula for the Wold moving average representation in termsof (A ,B,C,D).
The innovations representation (10)—(11) can be rearchtmyassume the form of a Wold
moving average representation

vt = [G+C(I —AL)KGLg, (15)
which is a version of (9) with

co = G
¢ = CAXKG, j>1

11.9. Formula for the VAR representation in terms of (A,B,C,D). By applying a par-
titioned inverse formula to invert the operaf@-+C(l — AL)~KGL] in (15), Hansen and
Sargent (2005) show that when the eigenvalueé ofKC are strictly less than unity in
modulus,y; has an autoregressive representation given by

Yt = C[l — (A—KC)L] *Kyt1+ G (16)
which is of the form (8) with
Aj =C(A—KC)I"K, j>o0. (17)

[1.10. Conditions for existence of an infinite order VAR. Remember tha depends on
(A,B,C,D) through formulas (12), (13). Equations (16) and (19) indi¢hat the dominant
eigenvalue oA — KC controls the rate at which the autoregressive coefficidptonverge

to zero. If all the eigenvalues & — KC are strictly less than unity in modulus, tihg
coefficients converge to zero agdis said to have an (infinite order) vector autoregressive
representatior® If all of the eigenvalues oA — KC are less than or equal to unity, but one
or more is equal to unity in modulus, thgndoes not have an autoregressive representation.
To explain what failure of an AR representation to exist iis ttase means, consider the
nth order autoregressions

n
Ve = Hy+ Z)ATyt_ jta (18)
l:

135ee page 112 of Anderson and Moore (1979).
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wherepy, A7, ..., Af satisfy the population orthogonality conditioBs] = 0 andEaaLj =

0, j=1,...,n. When the eigenvalue & — KC with maximum modulus is unity, the pro-
jectionsy]! = uy + Z?ZOA?yt_j still converge in mean squareyp = E|y|yi_1,...] whereE

is the linear least squares projection oper&tdfhat an autoregressive representation fails
to exist means that the AR coefficiert$ do not converge as— co. Howevery — ¥;° in
mean square as— co.

I1.L11. Formula for the VARMA representation in terms of (A ,B,C,D). Representation
(15) is an infinite order vector moving average, and (16) i;énite order vector autore-
gression. In the special square case thatk and thek x n matrix is of rankn, it is easy to
deduce a VARMA representation.

Premultiply both sides of (16) b@ 1, then premultiply both sides of the result py-
(A—KC)L] and rearrange to obtain:

Clyi = [(A—KC)C ' +K]yi_1+C 'Gg — (A—KC)C 'Ggi_1.
Premultiply both sides of this equation Byto obtain:
Yt = C[(A—KC)C 1 +K]y;_1+G& —C(A—KC)C 'Gg_4

or

vt = C[(A—KC)C 1 +K]y;_1+C[l — (A—KC)L|C'Gg (19)
Equation (19) is a first-order VARMA (vector autoregressiv@yving average process) for
yt. The presence of the moving average component indicateththaure VAR represen-

tation (16) is in general of infinite order. We have more to shgut the square case= k
in section lll.

I1.12. The conditional Likelihood. A theoretical infinite order VAR or an innovations
representation implied byA,B,C,D) contains all of the implications of the economic
model for first and second moments of the procggs$. Whenw; is Gaussian, it ex-
hausts the implications of the model for the joint distribatof any sequence gf’s. This
claim follows from the fact that all of the information thatiiene series of observations
{yt}{_; contains about the economic parameters underlg#ng,C, D) is contained in the
model’s likelihood function. The innovations represeiotai{10)-(11) or the infinite order
vector autoregression (8) contains all of the informatieeded to construct a Gaussian
likelihood function conditional on an initial infinite histy of observations®

1435ee Hansen and Sargent (1991b), chapter 2.

15see Hansen and Sargent (2005), chapter 9, for how the Kalftemctin also be used to construct an
unconditional likelihood function.
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Denote the likelihood function of a sample of da{t)a}thl conditional on the infinite
historyy® by f(yr,yr_1,...,y1|]y°). Factor this likelihood as

L= f(yr.yr-1,....yay®) = fr(yrly" D froalyr-aly" 2 fa(yay®).  (20)

Under the assumption thag is a Gaussian process, the conditional dengity|y* 1) is
N (C%,GG). Recalling thag = y; — C% from (11), it follows that logf (yr,yT_1,...,Y1[y°),
the log of the conditional likelihood (20), equals

.
logL = —.5 Z{kloan+In|GG’|+a{(GG’)‘1at}. (21)
t=

[1.13. Comparison of impulse responsesComparing (1)-(2) with (10)-(11), notice that
the representations are equivalent wikes KG, G = D, andg = w;. Note thatB, D, and
w; are objects embedded in an economic theory, WKil&, and & are objects that are
functions of the economic-theory determined the fouréyp@l, B,C, D), functions pinned
down by the Kalman filter equations given above.

[1.14. The mapping from economic to VAR innovations. We can combine and rearrange
the two representations (1)-(2) and (12)-(13) to obtainféflewing system that describes
the mapping from the economic shoaksto the innovation€g; in the innovations repre-
sentation:

ol = e a el i o] e
G = [C —C] m + Dw. (23)
Define
A= {KA(\Z A—OKC} (24)
and write (22)-(23) as
Ga={pD+[c —CJ[I-AL]" [KBD} L b, (25)

Equation (25) verifies that by constructith(e') = H(a!) € H(w'). We want to know
whetherH (al) = H(w!). Ifit is, we say that the mapping (25) is invertible. For theose
of directly interpreting the shockSeg; in a vector autoregression in terms of the economic

shocksw;, we would prefer thafC —C] || —A*L}_1 {KBD} =0 so that (25) would col-

lapse to
G& = Dw.
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In the following section, we give a neat condition for checkivhetheH (al) = H(&!) in
the ‘square’ case that there are as many observables aswicasimcks.

lll. THE SQUARE CASE

In this section, we focus on the square case with equal nisrdfeshocks and observ-
ables and assume tHat! exists. This is the case that is ‘least likely’ to have an itiisdity
problem. We state a necessary and sufficient condition Yeriiility directly in terms of
(A,B,C,D).

We shall make the following assumptions:

AssUMPTION 1. The state space system (1), (2) is stable: all eigenvaliésare less
than one in modulus, except possibly one associated witimstaot.

ASsSUMPTIONZ: D is square and invertible.

l1l.1. Simple check for invertibility. Assumption 2 often applies to systems with equal
numbers of economic shocks and observables (i.e., vasiabtee pertinent VAR). Under
Assumptions 1 and 2, (25) can be represented as

Ga={I+[c —Cc][-AL]" [Bi_l] L }ow (26)

A sufficient condition forH (') = H(w!) is that the polynomial ik on the right side of

(26) has a square-summable inverse in nonnegative powérsSiich an inverse exists if
~1
and only if the zeros of d%ﬂ +[C —C] [z —A*Tl BD } are all less than unity in

modulus. The following theorem gives an easy way to checkghificient condition for
H(a) = H(w).

Theorem lI.1. Under assumption 1, whenD exists, the zeros of

def{1+[C —C|[z1-AT " [Bi_l] }

equal the eigenvalues of-ABD'C and the eigenvalues of A.

Proof. Write

| +C*(zl —A")1B" = {l +jc —Cllz-A]" [Bil]} (27)
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where
c = [c -
§ BD 1!
= - [
Now seta=I,b=C*,c=B*,d = (zI — A") in the partitioned inverse formula
det(a) det(d + ca 1b) = det(d) deta+ bd'c) (28)
to get
- det(zl — A"+ B*C¥)
* A\ —1lp* _
det(l +C*(zl — A")""B") detzl — A') (29)
Compute
_RrRPp-1 —1
zl - A"+ B*C* =zl - {A BOD c BDA C}, (30)

an equation that shows that the zerogagtzl — A* + B*C*) equal the eigenvalues &f—
BD~IC and the eigenvalues @& Using this result in (29) shows that the zeros of(bet
C*(zI — A")~1B*) equal the eigenvalues #f— BD~'C and the eigenvalues & O

-1
Remark I11.2. If all zeros ofdet{l+[C —C] [zI—A*}_1 [BDK 1}are less than or equal

to unity in modulus, but one or more zeros equal unity in magjuthen an autoregressive
representation fails to exist. Nevertheless, it is true #i@!) = H(w!). See Whittle (1983)
and Hansen and Sargent (2005), chapter 2.

Remark 111.3. Under assumptions 1 and 2, to check whethée'fi= H(w'), we can
simply inspect the eigenvalues ofBD~1C. Thus, we can check whethefdl) = H(w!)
by knowing only the fundamental objectsBAC, D and without actually computing the
innovation representation and,K via the Kalman filter.

Another way to express this point is to note that we can coetpatnd directly without
having to solve the Riccati equation (13), as we show in tHeviahg theorem.

Theorem lIl.4. Suppose that D' exists and A- BD~C is a stable matrix. Then in the
steady state Kalman filter, k& BD~! andX = 0.

Proof. Notice thatz = 0 solves the steady state Riccati equation (13). Notice hgontith
> = 0, equation (13) implies tha¢ = BD~L. Furthermore, the Riccati difference equation
corresponding to the steady state equation (13) can besepes as

Sii1 = (A—KC)S(A—KC) +BB
+ KDD'K'—BDK’—KDB' (31)
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where
Ki = (A%C' 4+ BD')(C%C' +DD') L.
Under the conditions of the theorem,— K;C converges to a stable matrix— BD1C

and successive iterat@s converge to zero starting from any positive semidefinitgahi
>0. O

Remark I11.5. When D! exists and A- BDIC is a stable matrix, the implicatioB = 0
means that there are no hidden state variables. It follows o= 0 that % 1 belongs to
the Hilbert space generated by, y

Remark I11.6. Under assumption 1, when-ABD~1C is a stable matrix, all of the zeros of
det(l +C*(zI - A*)~1B*) are cancelled by pole®. This follows from (29) and the definition
of A*. This result reflects a situation in whicheGequals Dw; in particular, the correlation
between the wprocess and the process is entirely contemporaneous.

Remark 111.7. The one step ahead errors covariance matrix from the econonadel
Elyt — E[(yt|W=1))] [yt — E[(y:)w*~1])] = DD’; while the one step ahead errors covariance
matrix from the VAR is B — E[(y [y 1)][vt — E[(t|y*1)]’ = DD’ +C=C'. When the in-
vertibility condition fails, the prediction error variamcmatrix for the VAR is larger.

We have the following

Corollary 111.8. Under the conditions of theorem IIl.1, Dw Gg& and the innovation
covariance matrix GG= DD'. Thus, we are free to set & D. Of course, the choice of G
is unique only up to postmultiplication by an orthogonal mat

Proof. It can be verified directly from (25) that when the conditi@igheorem 111.1 hold
and, thereforeK = BD, it follows thatGeg = Dw. O

Remark 111.9. Under the conditions of theorem l1ll.1, corollary 111.8 g&e way to find
the correct identification scheme for the VAR. If an eigamvalf A— BD~1C equalsl in
modulus, the model remains invertible (see remark Ill.2)ibkacks an infinite order VAR
representation (see subsection 11.10).

The assertions in theorems 111.1 and 111.4 can be viewed #&nsions to a vector process
of the following well-known example:

Example 111.10. Take the scalar pure m.a. process
Vi =W + AW 1.

18crom (29), the zeros of d@t+C*(zI — A*)~1B*) are the zeros of détl — A* +B*C*) and the poles are
the zeros of dérl — A*).
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Let the state be;x=w;_; so that we have a state space representation with@\B = 1,
C=a, and D= 1. Evidently,

A—BD C=—a,
which is a stable matrix if and only j&r| < 1, in which case k= B.

l11.2. A quartet of examples. In the following four sections, we present four models de-
signed to illustrate the theoretical results of sectior@t 11l. We select our four examples
to document when invertibility is a problem, when it is natdavhen we face benign bor-
derline cases in which an eigenvalue of unity in modulus igagom that an infinite order
VAR does not exist. Each model will teach us something ofregtin a context we feel is
representative of some typical applications in macroecoos.

First, we use a permanent income model to express the pant atvertibility made by
Hansen, Roberds, and Sargent (1991) in terms of the objetttsonem 111.1. If we observe
total income and consumption, this model is always nontiitde because one eigenvalue
of A—BD~1C would be equal to the inverse of the discount factor, andsequently,
bigger than one. The origin of the non-invertibility of thisodel is the presence of two
income shocks that cannot be disentangled from observiabit@ome and consumption.

Second, we discuss the model with investment-specific tdofital shocks as described
in Fisher (2003). We show that for our choice of observalilesmodel is invertible both
for a sensible calibration and for parameters estimatetjubkie Bayesian approach.

Third, we use the model with sticky prices and sticky wageEkrekeg, Henderson, and
Levin (2000). For a particular set of observables, this rhedavertible but does not have
a VAR representation for a reasonable choice of parameteesaThis result teaches us
about benign borderline cases that sometimes occur incapipins in macroeconomics.
We also estimate the model using the Bayesian approach andtlsag for our choice of
observables, the posterior probability of the model beimg-imvertible is zero.

Finally, we study a model of household production descrime@enhabib, Rogerson,
and Wright (1991). We show that, for a sensible choice of patanvalues, the model is in-
vertible for one set of observables but non-invertible foother set. This model illustrates
how the presence or absence of invertibility depends diyaa our choice of observables
in ways that have been discussed by Hansen and Sargent (198&Ig), Watson (1994),
and Reichlin and Lippi (1994). Finally, we estimate this modaging the Bayesian ap-
proach and show how the posterior probability of the modeldeon-invertible is zero for
our first set of observables, but one for the second’set.

17Note that our discussion of invertibility holds for linearlmearized models. If we work with non-linear
economies, different issues appear as illustrated in Gabaind Engel, (2004).



A B,C'S (AND D)'S FOR UNDERSTANDING VARS 16

V. A BADLY BEHAVED EXAMPLE: A PERMANENT INCOME MODEL

This section briefly reviews how the structure of the permaimecome models of Hansen,
Sargent, and Roberds (1991) manifests itself in ways desthly our theorem Ill.1. As-
sume that there is a representative household whose preésrever stochastic sequences
of consumptionc; and capital accumulatiokk — k;_1 are representable by the following
utility function:

5 iﬁt[(ct b+ ek —ki_1)?) (32)
t=

whereg > 0 is a very small number, makirefk; — kt,l)2 a small adjustment cost that we
include to select an interesting solutith.

The representative household maximizes utility functi®®) (subject to the asset accu-
mulation equation:

ki +ct < Rk_1+ 0k

with k_1 as an initial condition, and where the endowmentollows the two-component
process described by:

o =ty + O Wt +

1—piL 1A L 722

where|p1| < 1, |A1] <1,wy ~.47(0,1), andwy ~ .47(0,1).

We follow Hall (1978) and seRB = 1 in order to deliver the outcome thiatandc; are
cointegrated?® Our choice of parameter values is as follos= 1.05, p; = 0.9, A; = 0.6,
Ug = 5, andb = 30.

IV.1. The A, B, C, and D matrices. Let dy; = 1_—}31L01W1t, Oy = 1_—}\1L02W2t, andd;, =
g + di + dyr. Define the state vector as= [k_1 1 dy dzt}' and let the observable
variables be; = [Q dt]'. We can write ou, B, C, andD matrices as follow<?

X+1 = Ax+Bw
Vi = Cx+Dw

18t we sete = 0, the solution of the problem iz = b.

197his outcome occurs in the limit &\, 0.

20we used Hansen and Sargent’s (2005) Matlab prografinvea. mto compute(A,B,C,D) by setting
S=[sc;sd(1,:)], A=ao, B=c, C=S+rao, D=Sxc.
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/. . . . . .
wherew; = [wlt WZt} is a vector of white noise with mean zero and identity contemp
raneous covariance matrix and:

[1.0000 00000 06667 0888
A — 0 1.0000 0 0
- 0 0 0.9000 0
| 0 0 0 Q6000
0 0
0 0
B = 0.5000 0
| 0 0.8000
c _ [0.0500 50000 03333 01111
N 0 5.0000 Q9000 06000
D — [0.1667 00889
N 10.5000 08000
It follows that:
1.0000 00000 06667 08889
A_BD IC— 0 1.0000 0 0

—0.2250 —20.0000 —0.1500 —0.2000]
0.2250 150000 01500 02000

This matrix has an eigenvalue of0b, which equal®k. Therefore, the mapping (26) is not
invertible. It follows that the Hilbert spadé(a') spanned by the history of VAR shocks is
smaller than the spade(w') spanned by the space of economic shocks. Furthermore, in
general the shapes of the impulse responsesandw; differ.?!

Motivated by remark 111.7, as a measure of the informaticst Ia the historyy* condi-
tioning the VAR compared to the histowy of shocks in the economic model, we computed
CsCl - {0.0000 00000 0.0357 015441

wherey; = [c; dt]’. These ma-

!/ __
0.0000 00227} andDD’ = {0.1544 08900/’

trices reveal that while the VAR correctly estimates the-step ahead prediction error
variance in consumption (this is after all the content oflH4lL978) characterization of
the linear-quadratic permanent income model), it overesis the volatility of the ag-
gregate endowment shock from the consumer’s point of viewe dverestimation of this
volatility comes hand in hand with failing to match the imgeiresponse function.

21Invertibility of the mapping (26) for the permanent incomedel is obtained if the observation vector
is either [c kt]' or o ki — kt_l]'. With either of these observation vectors, the offending zR flips
to become a zero & L.



A B,C'S (AND D)'S FOR UNDERSTANDING VARS 18

IV.2. Historical note. Sargent (1987, chapter XIIl), Hansen, Roberds, and Sar§y@ady,
and Roberds (1991) studied a version of this example in regptina question asked by
Robert E. Lucas, Jr., at a 1985 Minneapolis Fed conferendé: axconstant interest rate,
what restrictions the hypothesis of present value budganba place on a vector autore-
gression for government expenditures and tax receipts?p@&hmaanent income model is
isomorphic to a stochastic version of a tax smoothing madéhe style of Barro (1979)
with total tax collections; replacing consumption; and government expenditurgsre-
placing the endowmertd;. This model imposes two restrictions on tyeandd; process:
(1) present value budget balance, andd{2ust be a martingale. Because it implies equal
present values of the moving average coefficient ahdc; to either economic shoack,
present value budget balance puts a zef ioito the operator on the right side of (26) and
is therefore the source of non-invertibility.

Hansen, Roberds, and Sargent (1991) went on to answer Lupgsssion by showing
that present value budget balance by itself puts no testabiactions on the infinite order
VAR of [ d]'.

The permanent income example withandd; as the observables is one in which the
invertibility condition is bound to fail. That stands as aiaterexample to a presumption
that VAR shocks always readily match up with the economicckley. It is thus one
important example of things that can go wrong. However,ehae other examples in
which things can go right. In the next sections, we turn tagxas that are invertible.

V. A BETTER BEHAVED EXAMPLE: JONAS FISHER'S TWO TECHNOLOGY SHOCK
MODEL

The model of Fisher (2003) is a good laboratory for us becéljsEisher explicitly re-
marks that invertibility is a prerequisite for his intertaons to hold water; (2) at least with
Fisher's observables, invertiblity can be established Hirect argument; and (3) Fisher’s
model directly confronts some of the issues about matcmngvations from VARS to pro-
ductivity shocks that have preoccupied critics of VARs (searClikehoe, and McGrattan
(2005)).

Fisher (2003) assesses the impact of technology shockssimelss cycles by imposing
long-run restrictions on an estimated non-structural VARhEr explicitly acknowledges
that a necessary condition for his procedure to be compa8ithat the mapping (26) be in-
vertible, and he assumes but does not verify invertibilitg.imposes a long-run restriction
on G that is suggested by an analysis of his exogenous growthImaitetwo orthogonal
unit-root technology processes. In this section, we usdlmarem Ill.1 to verify that that
invertibility assumption is indeed valid at calibratedwes for the parameters in Fisher’s
model.
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Recovering the theoretical impulse responses from an uintest VAR requires assign-
ing the correct identifying matrixz. In this section we also show that Fisher’s choice is
the right one. In the last part of the section we extend thalteby reporting the posterior
probability of the model being non-invertible using the Bsig@ approach.

Fisher's model features a representative household whaferpnces over stochastic
sequences of consumpti@and leisure 1 L; are representable by the utility function:

Ebiﬁawq+wmmr¢m
t=

wheref € (0,1) is the discount factor anH is the conditional expectation operator. The
resource constraint is:

Ce+X% = AKIL,
and the law of motion for capital is:
Kip1= (1—0) Ki + WX,
and:
A = eV-Q-Ca(L)UaWatAtil, y>0
\/t — eU+CU(L)O-UwUt\/t,1, U Z O
[Wat, Wyt] ~ 47(0,1)
whereC, (L) andC,, (L) are square summable polynomials in the lag opetatdiVe as-
sume thaC,; andC, are both the identity operator.
V.1. The A, B, C, and D matrices. Since the model is non-stationary, we define the
1 a 1 ~
scaling variablez; = AT{ V5 = (A_1V%;)T7 and the transformation§; = & and

Kt = 2/ Using loglinearization, we compute policy functions foettransformed capi-

tal stock around the steady state value of the variables:

10Kt 1.~ logKss = a (10gK: — I0gKss) + 3 0aWa + 8306 Wot.
for hours worked:
logL; —logLss= by ('09 Ki —log lzss) + b20awWat + b3oywy ¢,
and for consumption:
logG; — logCss= C1 (Iog K —log Kss) + Co0aWay + C30u W 1,

whereay, ay, ag, by, by, bs, 1, ¢2 andcs are constants that depend on the structural parame-
ters of the economy. For this model, it turns out that az, ay = —fi—la, andby; = — -,

We use these loglinear decision rules and the definitionbetriansformed variables to
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obtain the following state-space system in logarithms ofaviginal (untransformed) vari-
ables??

1 1 0 1 0 0 W
Dkis1| = |52 (y+u) ar O] |Ak | + | 1% +a0a 2% +a30y [wa’tl (33)
It b2 by 1 [ b20a bsay v
y+u 1
Al —l)| _ [y+abi—g a(l-by) O Ak | + (1—aby)oa —absoy]| [Wat
It —b 2 by Of |, b20a bsoy, | [Wut
-1

(34)
wherek; = logK, It = logLt, andy; = log;.

Equations (33) and (34) form a state space system of the Agi3) C, andD. We set
parameter values to b8 = 0.99, ¢ = 2.2, a = 0.33, 5 = 0.025, y = 0.01, v = 0.001,

0, = 0.5, ando, = 0.2.

The system formed by (33) and (34) is a ‘square system’ withghocks and two ob-
servables. The eigenvalues Af- BD~IC are all strictly less than one in absolute value,
which means that (26) is invertible. It also means that byirgetcG = D, the impulse
response function tg; associated with an identified VAR perfectly matches the ilsgu
response function to the theoretical shoeks This impulse response function is reported
in the bottom two rows of panels of Figure 1.

Therefore, we can conclude that for this particular modell @ms particular set of ob-
servables, invertibility prevails so that we are assured there exists som@ satisfying
GG = DD’ that makes the impulse response for the identified VAR madteltheoretical
impulse response to the@'s. However, the example also confirms the doubt expressed in
the epigraph from Lucas and Stokey at the beginning of thpepd he require® must be
equal to
~10.4370 —0.0252
~10.1908 00763

which lacks zeros, as Lucas and Stokey feared.

As mentioned before, Fisher explicitly acknowledges thatrder to recover the theo-
retical impulse response to twés using an unrestricted VAR, we need the mapping (26)
to be invertible. But it is important to note that we also needha of discoverings while
initially being ignorant oD. Is Fisher able to do that? We analyze this question below.

D (35)

22This is not a minimum state space representation. With soaomk,WoglL; 1 can be eliminated as a state
variable.
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FIGURE 1. Common impulse response functions for VAR and economic

structure for Fisher's model. For the two-observed-vdeiahodel, only the
bottom two panels are pertinent.
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V.2. Fisher’s identification procedure. Fisher fits an unrestricted VAR withlogp; as
an observable. Therefore, in order to explain his proceduesneed to define the state
space system formed by (33) and the following observer amuat

Alog p -V 0 0 1 0 —0y
Alyi—lt) | = y+ab1{f—g a(l—bg) O] [Ak |+ |(1—aby)oa —absoy {Wa’t}
I by tY b 0 [k e bsay | L
(36)

Before we describe Fisher’s bit of magic, we have to work adoaitechnical difficulty.
When using the three variable observation vector (36), we t@mgonfront the fact that now
we have a stochastically singular system. Two shocks avendrthree observables (i.e.,
the system formed by (33) and (36) is not square). To elimitta stochastic singularity
problem, while staying as close as possible to Fisher’'s imageadd a very small normally
distributed measurement error to lagvith mean zero and standard deviatigy .

To identify G from a three variable system, Fisher notes thiaig p; = —AlogV; is an
exogenous white noise that equalg;. Therefore, any scheme for factori@G' that
identifies the row ofGe; associated witAlog pr with wy + should work. Fisher uses the
following scheme that satisfies this condition.

Let Q = CZC' + DD’ be the covariance matrix @e¢; from the infinite order VAR (see
equation (14)). Fisher (2003), footnote 5, applies a proeedf Blanchard and Quah to
identify G. First, he formg(1) = (I — z‘f:lAj)—l. Second, he computes a lower triangular
Cholesky factox of €(1)Q¢€(1)’, so thatxX = €(1)Q¢&(1)’. Third, after noting that(1)G is
a factor ofc{1)Q¢E(1)’, he compute§ = ¢(1) ~1x.

This scheme succeeds in recoverin@a D. The impulse response associated with
the infinite order VAR wherc = D conforms with the impulse response to the economic
shocks. The impulse responses functions are reported urd-ilg The only change from
the VAR computed for our two variable system is the additibthe top panel in Figure
124

While these calculations confirm the validity of Fisher’sntiécation procedure for his
theoretical model, they do not really contradict the skagtn about zero restrictions on
Gor z‘f:lAij expressed in Lucas and Stokey’s epigraph. The phexstogenousari-
ables’ in the epigraph bears remembering. Fisher’s zetoatsn thatAlogp; is never

23Notice that system (36) is by construction triangular, wite shockw;; being revealed b log p;. By
an easy argument, it can then be shown thgtcan be revealed fromiy; and either of the remaining two
observables. Therefore, the model with these observablasgartible.

24 simple alternative to Fisher's scheme would also work, elgnthoosings as a triangular Cholesky
factor of the innovation covariance mattixthat setsGiow, 1 = Alog p.
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influenced byw,: comes from having specified the model so thédg p; is econometri-
cally exogenoug?®

V.2.1. Finite order VARs for Fisher’'s modelJsing the projection formulas in Appendix
D, we computed population versions of finite order vectooegressions for both the two
and three variable VARs implied by the Fisher’s model. We coteg VARs with 1 and 4
lags. Both gave such close approximations to the impulsensgpfunctions reported in
Figure 1 that it was impossible to detect any difference whemplotted them on along side
those in Figure 1. Therefore, for Fisher's model, a VAR witie ¢dag that includeAlog pt,
A(y: — i), andl; as regressors would do a fabulous job in matching the theal@npulse
responses if correctly identified.

V.3. Posterior distribution for parameters of Fisher's Model. We have argued that,
when we observélogp, A(y: — It), andl, Fisher’s model is invertible for a sensible
choice of parameter values. In this subsection, we invagigshether the result also holds
when we estimate the model using U.S. d&ta.

In order to do that, we employ the formulas reported in sectid?2 to compute the
likelihood function of Fisher's Model. Then, using the pador the structural parameters
reported in Appendix A, we draw from the posterior distribatof the parameters using
McMc techniques. For each draw of the posterior, we evaloiaitd, B, C, andD matrices.
We find the eigenvalues associated with each draw of theeeatand compute the poste-
rior probability of the model being non-invertible. The persor mean, standard deviation,
and a plot of the posterior distribution of the structuraigmaeters are reported in Appendix
A.

We observéilog pt, A(y: — i), andl, where logp; is the log of real price of investment,
y; — It is the log of labor productivity in consumption units, dpdre logs of worked hours.
We use quarterly data, with sample period 1955:01 to 2000A@&4follow Fisher and mea-
sure the real price of investment as the ratio of an investrdeftator and a deflator for
consumption derived from the National Income and Produciofiats (NIPA). In general,
investment deflators are poorly measured, so we use Fistwersructed investment defla-
tor. Our consumption deflator corresponds to nondurabtgjcss, the service flow from
durables, and government consumption. Labor productisithe non-farm business la-
bor productivity series published by the Bureau of LaboriStias (BLS). Per capita hours

25Fisher presents an informative discussion of this pointisngaper and describes how the particular
zero restriction that we have imposed would not prevail w&ithodified technology for producing investment
goods.

26ps noticed before, the system (33) and (36) is not square.rderdo square the system we add a
normally distributed measurement error to the observedkeebhours,u, with mean zero and standard
deviationgy,, .
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are the BLS hours worked divided by population 16 and 65 ydarsrder to express la-
bor productivity in consumption units per hour, we use thestmonption deflator reported
above?’

The results are that, given our priors, the posterior pritibhabf the model being non-
invertible is zero. This is not only true for the set of obsdates we report above, but it is
also true for the case where, instead of log hours, we obseevdifference of log hours,
Alg.

VI. ANOTHER WELL BEHAVED EXAMPLE: THE EHL MODEL

Many sticky price models imply a reduction in hours worketeat positive produc-
tivity shock hits the economy (see Gali, (1999)). This tetical finding has motivated
some empirical work trying to identify a productivity shoakd its consequences for hours
worked.

We analyze Erceg, Henderson, and Levin’s (2000) model withysprices and sticky
wages. We use our theorem IIl.1 to verify that invertibilggsumption is indeed valid at
calibrated values. Since this model is well known in theditare, we will only present the
equations describing the log deviation from steady-stal@es of the variables.

First, we have the Euler equation that relates output grevittnthe real rate of interest:

Yt = EtVir1— 0(re — E:Apr+1+ EtGi41 — Or)

wherey; denotes output; is the nominal interest ratg; is the preference shifter shog,
is the price level, and is the elasticity of intertemporal substitution.
The production function and the real marginal cost of préidacare:

Vi =a+(1—90)n

MG =W — Pt +M— W

whereg; is a technology shocky is the amount of hours workeg is the real marginal
cost,w is the nominal wage, andl is the capital share of output.
The marginal rate of substitutiomrs, between consumption and hours is:

1
mr&ZQH'EYt‘f—Vnt

wherey is the inverse elasticity of labor supply with respect tol igages. Hence, the
preference shifter shock affects both the consumptionriegjeation and the marginal rate
of substitution.

2N\we thank Jonas Fisher for these data.
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The pricing decision of the firm under a Calvo timing restantidelivers the following
forward looking equation for price inflatiodp;:

Apr = BEAPL1 + Kp(MG + Ar)
wherek, = (1*33812?51(11);%) ande = A%l Is the steady state value of the elasticity of
substitution between types of goods.is the price markup shoclé, is the probability of
keeping prices fixed during the period, gfids the discount factor.
Staggered wage setting delivers the following forward Inglequation for wage infla-
tion Aw:

AW = BEAW, ;1 + Ky(Mrg — (W — pt))

whereky = %, By is the probability of keeping wages fixed in a given period,

andg is the elasticity of substitution between different vaastof labor in the production
function. With staggered wage setting, it is no longer tiugt workers remain on their
labor supply schedule. Hence, the driving force of curremhimal wage growth is expected
nominal wage growth, as well as the distance between theinargte of substitution and
the real wage.

We use the following specification for the Taylor rule:

re=pPrre—1+ (1—pr) [Pt + Wyi] +ms

wherey;; andy; are the long run responses of the monetary authority to tlengof infla-
tion and output from their steady state values, magds the monetary shock. We include an
interest rate smoothing parametey, following recent empirical work (see Clarida, Gali,
and Gertler, (2000)).

To complete the model, we need the identity that links re@engrowth, nominal wage
growth and price inflation:

Wt — Pt =We—1— Pr—1+Aw —Ap.
Finally, we specify the shocks to follow:
& = Pad-1+W
O = PgGt1+W
mg = w"
A = w

where each innovatiow/ is distributed as#” (0, ¢?) distribution, fori = a,g,m,A. The
innovations are uncorrelated with each other.
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VI.1. The A, B, C, and D matrices. With the model in this loglinear form, we find that
the coefficients of the policy function of the form:

ki = Pk—1+Qz, (37)
and
Lt = Rk_1+ Sz, (38)
whereke=[ wi—pr rc Apr Awt v |\Li=[n mg mrg ¢ |,andz=[a g ms A /.
A more convenient way of writing (37) and (38) is

LRI A IS R o

and
Lk=[R SN][K , Z ,] +Sw,
wherew = [ W@ W™ w wf ]'.
Let us consider the observabMs= [ Ap; Any y¢ W — p; |'. Then, we obtain the
following state-space system in log deviations from stestdie:

(K Z n ] =A[K , 7, no1]+Bw, (39)
Yt:C[kt/_l 4_1 r\t—l}/+DWt, (40)
where
P ON O
A= N 0 0
Ry. (SN)L. 0
| Q
As.
As.—[00OO0OO0OO0O0O0OTO0Y
C= : ,
As.
A
and
Bs.
B Bs..
D= Bs.
Bi.

whereA, . stands for theth row of matrixAandx = [ K _; Z ; n_1]"
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VI.2. An empirical analysis of EHL's model. Equations (39) and (40) form a state space
system with matricea, B, C, andD. Since the system is ‘square’, with four shocks and four
observables, we can check its non-invertibility empificalMe do so from two empirical
strategies.

First, we follow the literature and chose our parametereslio be:3 = 0.9, € = 6,
0=04,0=05,6=6,=09,y=2,90=06,% =0.125,y7= 15,0 = pa=pg = 0.9,
andg; = 0.05 fori =a, m, A, andg.

Second, we estimate the model and compute the posterioalpitity of the system (39)
and (40) being non-invertible as we did for the Fisher’s nodlee prior distributions, the
posterior mean, standard deviation, and a plot of the postgistribution of the structural
parameters are reported in AppendixB.

For both empirical strategies, the eigenvalued ofBD1C are all strictly less than one
in absolute value except one that is exactly equal to onesolate value. Therefore (26)
is invertible. The unit eigenvalue means that the model dm¢shave an infinite order
VAR representation, but the fact that invertibility prdganeans that to an arbitrarily good
approximation the economic shocks can be expressed as tiogdinations innovations
in a sufficiently long finite order VARSs.

VIl. AN INTERMEDIATE EXAMPLE: THE HOUSEHOLD PRODUCTION MODEL

Benhabib, Rogerson, and Wright, (1991) and Greenwood and werc@1991)intro-
duced a household sector into a standard business cycld.nider motivation was that
the household sector is large both in terms of inputs (timekaae and capital used) and
in terms of output and that including this section improvesquantitative performance of
the model along several dimensions. We use a model of holaspetamluction to show how
th