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A,B,C’S (AND D)’S FOR UNDERSTANDING VARS

“(Likelihood Principle) The information brought by an observationx about [a parameter]
θ is entirely contained in the likelihood function.”The Bayesian Choice, by Christian P.
Robert, p. 15.1

“ . . . with a specific parameterization of preferences the theory would place many restric-
tions on the behavior of endogenous variables. But these predictions do not take the form
of locating blocks of zeros in a VAR description of these variables.”Money and Interest in
a Cash-in-Advance Economy, Robert E. Lucas, Jr., and Nancy L. Stokey, p. 512.2

I. I NTRODUCTION

This paper is about inferring a set of meaningful economic shocks from the innovations
to a VAR. Applied macroeconomists use unrestricted Vector Autoregressions (VARs) to an-
swer questions about responses to economically interpretable shocks. For example: What
is the effect of a technology shock on hours worked? How does output respond to monetary
perturbations? What happens after a fiscal shock? VAR researchers hope that they can coax
answers to such questions from unrestricted VARS and proposetheir estimated impulse re-
sponses functions as objects that subsequent quantitativetheoretical models should aim to
interpret in terms of structural parameters.

To get pertinent impulse responses, a researcher needs to transform the one-step ahead
prediction errors in her VAR into shocks that impinge on an economic model, i.e., shocks
to preferences, technologies, agents’ information sets, and the economist’s measurements.
Unrestricted VAR researchers hope to accomplish this recovery job by imposing weak iden-
tification restrictions directly on the unrestricted VAR. The restrictions are called weak
because the researcher wants them to hold for a class of models.

The preceding epigraphs frame our topic. At least up to a linear approximation, the theo-
retical vector autoregression implied by a model is a recursive expression of its conditional
likelihood function, which according to the likelihood principle, contains all that the data
have to say about the model’s parameters. Lucas and Stokey construct a theoretical model
whose equilibrium is a Markov process. They express doubts that Markov process implies

1See Robert, (2001).
2See Lucas and Stokey (1987).
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A,B,C’S (AND D)’S FOR UNDERSTANDING VARS 2

zero restrictions on a vector autoregression. Lucas and Stokey indicate that it would be a
good idea to deduce the restrictions that theoretical models like theirs put on VARs. This
paper collects a set of convenient formulas that summarize such restrictions and describes
the mapping from the economic shocks to the shocks in a VAR. We review conditions
under which this mapping has an inverse that is one-sided in nonnegative powers of the
lag operator, a prerequisite for having impulse response functions to VAR innovations that
can potentially match impulse response functions to the economic shocks. We then fo-
cus on circumstances when the impulse response associated with a VAR mirrors the one
associated with the economic theory. In an interesting special ‘square case’ in which the
number of economic shocks equals the number of variables in aVAR, we provide an easy
to check necessary and sufficient condition for the existence of an identification of VAR
shocks that makes the impulse response associated with a VARmatch the one associated
with the economic theory.

Prominent macroeconomists have expressed skepticism about the value of incompletely
theoretical VAR’s as a research tool (see Chari, Kehoe, and McGrattan (2005)). By de-
scribing how VAR shocks recombine current and past realizations of the economic shocks
hitting preferences, technologies, information sets, andmeasurements, formula (25) below
helps us to express and evaluate diverse grounds for skepticism about VARs. Formula (25)
imposes the following taxonomy of potential challenges in interpreting VAR shocks and
the impulse responses of observables to them in terms of the economic shocks and their
impulse responses.

First, for some theories, the number of economic shocks differs from the number of
observables and therefore the number of shocks in the VAR. Second, even in the lucky
situation in which the number of economic shocks equals the number of observables, the
history of economic shocks can span a bigger space than the history of the observables,
making it impossible to match up their impulse response functions; here there is said to
be an invertibility problem because the economic shocks cannot be expressed as a linear
combination of current and past VAR innovations. Third, even when the theory and mea-
surements are such that there are equal numbers of economic and VAR shocks and there is
no invertibility problem, there remains the challenge of partitioning the contemporaneous
covariation among VAR shocks in a way that captures the contemporaneous covariance of
economic shocks and measurement errors. Fourth, even when all of the first three problems
can be resolved, because (25) is in general an infinite order VAR (technically, it is a finite
order VARMA system), one must either include vector moving average terms or make sure
to include a sufficient number of AR terms, perhaps guided by an information-theoretic
(e.g., a Bayesian information criterion).
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This hierarchy of problems has prompted many quantitative macroeconomists to forgo
matching their theories to an unrestricted VAR. But because the VAR representation can be
regarded as an expression of a conditional likelihood function, a researcher who believes
fully in her theory cannot turn her back on the implications of her theory for a VAR.3

I.1. Related literature. The process of reverse engineering a subset of economic shocks
from the innovations to a VAR is known to be fraught with hazards. Several authors
have described the invertibility problem that we highlightin this paper. For examples, see
Hansen and Sargent (1981, 1991c), Watson (1994), Reichlin and Lippi (1994), and Sims
and Zha (2004). These papers present some examples in which the invertibility problem is
‘fatal’, but also indicate other examples in which it is not.

I.2. Point of this paper. This paper reviews what is known about the reverse engineering
exercise and, for an interesting special case, describes aneasy check for the presence of
an invertibility problem. We present four examples that represent a variety of situations,
some in which invertibility is a problem, and others in whichit is not. The models are (1)
a permanent income model in which lack of invertibility is endemic; (2) and (3) a model
with two sources of technology change and a model with stickyprices, in both of which
invertibility prevails, though in model (3) there is a benign eigenvalue of unity that prevents
an infinite order VAR representation from existing ; and (4) ahome production model in
which, depending on the variables observed, invertibilitymay or may not be a problem.

For each example, we form a 4-tuple(A,B,C,D) for the economic model, then deduce
the 4-tuple(A,K,C,Σ) for the associated VAR. Thus, these examples all involve ‘engineer-
ing’ a VAR from an economic theory rather than ‘reverse engineering’ features of the dy-
namics to economic shocks from a VAR. Our intention is that these ‘engineering’ examples
will provide insights about the pitfalls and possibilitiesfor successfully performing reverse
engineering exercises. Nevertheless, we recognize that ananalyst who is confident about
his model and who knows the mapping from its deep parameters to the tuple(A,B,C,D)

would not proceed by first estimating a VAR not restricted by his theory. Instead, he would
use one of the likelihood based approaches – either maximum likelihood or a Bayesian
procedure – and directly estimate the deep parameters in themanner recommended a quar-
ter of a century ago by Hansen and Sargent (1981).4 Practitioners who estimate relatively
unrestricted VARs are doubtful about many details of the dynamics, and prefer to impose
restrictions that they believe will be robust across a variety of specifications.5 That is the

3A theorist who wants to analyze the data as if her theoryis not true would not turn her back on the
likelihood function either, but this robustness business is another story.

4Of course, as we remind the reader in section II.12, at each step in the iterative calculations in his estima-
tions, he would form a restricted VAR in order to factor the conditional likelihood.

5This is explicitly the motivation of Jonas Fisher (2003).
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audience that should be vitally interested in our reverse engineering exercise. A good way
to shed light on that endeavor is to assemble some representative examples of environments
((A,B,C,D)’s) where reverse engineering can be done easily and others where it cannot.

I.3. Organization. Section II describes the mapping from the objects(A,B,C,D) that
characterize (a linear approximation to) an economic modelto objects(A,K,C,Σ) that
define an infinite order vector autoregression. This sectiondefines impulse response from
economic shocks to observables and from VAR innovations to observables, reviews the
connection between an infinite order VAR and a conditional likelihood, and describes the
invertibility criterion in terms of the zeros of a particular matrix characteristic polynomial.
Section III gives an easy to check condition for invertibility in terms of the eigenvalues
of the matrixA−BD−1C. Sections IV, V, VI, and VII apply this check to four models:
a permanent income model, the two-shock model of Fisher (2003), the sticky price and
wage model of Erceg, Henderson, and Levin (2000), and the household production model
of Benhabib, Rogerson, and Wright (1991). We check the invertibility condition for both
calibrated and estimated versions of these models and for alternative sets of observables,
thereby illustrating an insight of Watson (1994). Section VIII briefly describes findings
of two recent papers that address related issues. Section IXcontains some concluding re-
marks. Three appendices describe the priors that we used to obtain posterior distributions
of the parameters of several models; a fourth appendix givesformulas that map(A,B,C,D)

into a finite order VAR.

II. M APPING FROM AN ECONOMIC MODEL TO AVAR

This section describes a class of economic model with shockswt to preferences, tech-
nologies, agents’ information sets, and the economist’s measurements. For a set of ob-
servablesyt , we letat ’s be innovations to a VAR. The innovationsat can be expressed as
a linear combination of the history of thews’s up to t. We state conditions on the (linear
approximation to) the economic model under whichwt can be recovered from the history
of as’s throught.

II.1. Representation of an equilibrium. We start with an equilibrium of an economic
model or an approximation to it that has a representation in the state-space form

xt+1 = Axt +Bwt (1)

yt = Cxt +Dwt (2)

wherewt is a Gaussian vector white noise satisfyingEwt = 0, Ewtw′
t = I , Ewtwt− j = 0

for j 6= 0. Herext is ann×1 vector of possibly unobserved state variables,yt is a k×1
vector of variables observed by an economist or econometrician, andwt is anm×1 vector
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of economic shocks and measurement errors impinging on the states and observables. The
observation vectoryt typically includes some prices, quantities, and capital stocks. Withm
shocks in the economic model,n states, andk observables,A is n×n, B is n×m, C is k×n,
andD is k×m. In general,k 6= m, although we shall soon devote some special attention to
an interesting ‘square case’ in whichk = m.

There are two popular ways to obtain equilibrium representations of the form (1)-(2).
The first is to compute a linear or loglinear approximation ofa nonlinear model about a
nonstochastic steady state, as exposited for example, in Christiano (1990), Uhlig (1999), or
thedynaremanual.6 It is straightforward to collect the linear or log linear approximations
to the equilibrium decision rules and to arrange them into the state-space form (1)-(2). We
provide an extended example in section V. A second way is to set (1)-(2) directly as a
representation of a member of a class of dynamic stochastic general equilibrium models
with linear transition laws and quadratic preferences. Ryooand Rosen (2003), Topel and
Rosen (1988), Rosen, Murphy, and Scheinkman (1994), and Hansen and Sargent (2005)
provide many examples. We describe such an example in section IV.

The economic shocks, thewt ’s, are comprised of two kinds of shocks, the first being the
shocks to preferences, technologies, and information setswithin an economic model, the
second being errors in measuringy. To distinguish these two components, we can write

Bwt =
[
B1 0

][
w1t

w2t

]

Dwt =
[
D1 D2

][
w1t

w2t

]
,

wherew1t represents the economic shocks andw2t represents purey-measurement error.

II.2. Argument in a nutshell. The following simple argument isolates a main outcome
and the major themes of this paper.7 WhenD is square andD−1 exists, (2) implieswt =

D−1(yt −Cxt). Substituting this into (1) and rearranging gives[I − (A−BD−1C)L]xt+1 =

BD−1yt , whereL is the lag operator. If the eigenvalues of(A−BD−1C) are strictly less than
one in modulus, then the inverse of the operator on the left ofthis equation gives a square
summable polynomial inL, and we can solve forxt+1 = ∑∞

j=0[A−BD−1C] jBD−1yt− j .
Shifting back one period and substituting this equation into (1) gives

yt = C
∞

∑
j=0

[A−BD−1C] jBD−1yt− j−1 +Dwt . (3)

6Dynare is a suite of Matlab programs that computes linear approximations of a big class of dynamic
stochastic general equilibrium models.

7The argument in this subsection is entirely due to our discussant Mark Watson.
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Under the conditions used to derive it (i.e.,D is invertible and the eigenvalues of(A−

BD−1C) are strictly less than one in modulus), equation (3) defines avector autoregression
for yt becauseDwt is orthogonal toyt− j for all j > 0. The impulse response function
associated with (1) describes both the VAR and the theoretical model. Thus, when(A−

BD−1C) is a stable matrix,8 the VAR matches up naturally with the theory. In the following
sections we say more about this outcome. In addition, we explore why, when(A−BD−1C)

is not a stable matrix, the impulse responses from a VAR cannot be made to match up with
those from the economic model.

II.3. Impulse response from economic shocksw to observablesy. VAR researchers are
often interested in an impulse response function from thewt ’s to theyt ’s,

yt = µy +d(L)wt (4)

whereL is the lag operator,d(L) = ∑∞
j=0d jL j , ∑∞

j=0 trace(d jd′
j) < +∞, andµy is the mean

of y, which can be computed as follows. If all eigenvalues ofA are less than unity in
modulus, except for a single unit eigenvalue associated with a constant state variable, then
the meanµx of the stationary distribution ofxt can be computed by appropriately scaling
the eigenvector ofA associated with the unit eigenvalue:(I −A)µx = 0. After solving this
equation forµx, the meanµy of the stationary distribution ofyt can be computed from
µy = Cµx.

Elementary calculations with system (1)-(2) deliver

yt = µy +[C(I −AL)−1BL+D]wt , (5)

so that evidently

d0 = D

d j = CAj−1B j ≥ 1.

To economize on notation, from now on we shall assume thatµy = 0. Note that (4) trans-
formsm shockswt into k observablesyt+ j , j ≥ 0. Formula (5) tells us how to compute the
impulse response function directly from the state space representation(A,B,C,D) of the
economic model.9

II.4. Nonuniqueness of(A,B,C,D). It is a sensible position to regard the basic theoret-
ical object as being the impulse response function in (5). Ingeneral, there are multiple
four-tuples of matrices(A,B,C,D) that can be used to represent an impulse response func-
tion in (5): different(A,B,C,D)’s can deliver the sameµy,d(L). For convenience, one
often selects a particular member of this class by choosing aminimum state realization of

8 A square matrix is said to be stable if all its eigenvalues arestrictly less than one in modulus.
9The Matlab control toolkit programimpulse.m calculatesd(L) from (A,B,C,D).



A,B,C’S (AND D)’S FOR UNDERSTANDING VARS 7

µy,d(L).10 We can sometimes exploit the freedom to switch among these representations
in order to get a representation that satisfies our assumptions 1 and 2 in section III.

II.5. The VAR and the associated impulse response.An infinite order vector autoregres-
sion is defined by the projection equation

yt = α +
∞

∑
j=1

A jyt− j +at (6)

whereα = (I −∑∞
j=1A j)µy, at = yt −E[yt |yt−1], ∑∞

j=1 trace(A jA′
j) < +∞, and theA js sat-

isfy the least squares orthogonality conditions

Eaty
′
t− j = 0, j ≥ 1. (7)

These least squares normal equations imply thatEat = 0 andEata′t−s = 0 for s 6= 0. Letting
Eata′t = Ω = GG′, we can representat = Gεt , whereεt is a stochastic process that satisfies
Eεt = 0, Eεtε ′t = I , andEεtε ′t− j = 0 for j 6= 0. Then write (6) as

yt = α +
∞

∑
j=1

A jyt− j +Gεt (8)

whereat = Gεt .
Compute the polynomial in the operatorc(L) = ∑∞

j=0c jL j = (I −∑∞
j=1A jL j)−1G and

use it to form the moving average representation

yt = µy +c(L)εt . (9)

This is said to be a Wold moving average representation.11 The shock processεt is said
to be ‘fundamental foryt ’ because it is by construction in the space spanned by square
summable linear combinations of current and past values of the yt process. The defining
characteristic of a Wold representation is that the associated innovation is fundamental for
yt . An impulse response function associated with an infinite order VAR is by construction a
Wold representation. In particular, representation (9) isa population version of the impulse
response function reported by a typical VAR researcher.

10The Matlab control toolkit commandsys=ss(sys,’min’) replaces a four-tuple(A,B,C,D) with
an equivalent minimal state realization.

11A VAR representation does not exist when det(c(z)) has zeros on the unit circle. See Whittle (1983) and
Hansen and Sargent (1991a).
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II.6. Main issue in unrestricted VAR identification. We are interested in knowing the
circumstances under which the impulse response function (9) associated with the VAR
matches the theoretical impulse response function (4) froma theoretical model. Thus, we
want a formula like (5) that is also cast in terms of(A,B,C,D), but that tells the response
of yt to current and pastεt ’s. The key to constructing this representation is theinnovations
representation, to which we now turn.

II.7. The innovations representation: the(A,K,C,Σ) System. We seek a mapping from
the matrices(A,B,C,D) for an equilibrium stochastic process foryt to the autoregression
coefficientsA j , j = 1, . . . and volatility matrixG in (8) and the associated moving aver-
age coefficientd j in (9). The innovations representation is the recursive representation
for yt that corresponds to a Wold representation. Associated withany state space system
(A,B,C,D) of the form (1)-(2) is another state-space system called theinnovations repre-
sentation:12

x̂t+1 = Ax̂t +KGεt (10)

yt = Cx̂t +Gεt , (11)

wherex̂t = E[xt |yt−1],Gεt ≡ at = yt −E[yt |yt−1], K is the Kalman gain from the steady
state Kalman filter equations:

Σ = AΣA′ +BB′− (AΣC′ +BD′) (12)

(CΣC′ +DD′)−1(AΣC′ +BD′)′

K = (AΣC′ +BD′)(CΣC′ +DD′)−1 (13)

whereΣ = E(xt − x̂t)(xt − x̂t)
′. The covariance matrix of the innovationsat = Gεt equals

Eata
′
t = GG′ = CΣC′ +DD′. (14)

With m shocks in the economic model,n states, andk observables,K is n× k andG is
k×k. The vector processesat andεt are each of dimensionk×1, as is theyt process, and
the matrixG is k×k.

We use the following

Definition II.1. H(zt) is the Hilbert space consisting of all square summable linear com-
binations of the one-sided infinite history of random vectors zt .

12The conditions for the existence of this representation arestated carefully, among other places, in Ander-
son, Hansen, McGrattan, and Sargent (1996). The conditionsare that that(A,B,C,D) be such that iterations
on the Riccati equation forΣt = E(xt − x̂t)(xt − x̂t)

′ converge, which makes the associated Kalman gainKt

converge toK. Sufficient conditions are that(A′,C′) is stabilizable and that(A′,B′) is detectable. See Ander-
son, Hansen, McGrattan, and Sargent (1996, page 175) for definitions of stabilizable and detectable.
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The Kalman filter applies a Gram-Schmidt procedure to the history yt to construct a
historyat with orthogonal increments that spansH(yt), i.e., is such thatH(yt) = H(at) and
for whichEata′s = 0 for t 6= s.

The innovations representation (10)-(11) for theyt process resembles the original repre-
sentation (1)-(2). It differs from it in that (a) then×k matrixKG replaces then×mmatrix
B; (b) thek×k matrix G replaces thek×m matrix D; and (c) thek×1 processεt replaces
them×1 processwt .

II.8. Formula for the Wold moving average representation in termsof (A,B,C,D).
The innovations representation (10)–(11) can be rearranged to assume the form of a Wold
moving average representation

yt = [G+C(I −AL)−1KGL]εt , (15)

which is a version of (9) with

c0 = G

c j = CAj−1KG, j ≥ 1.

II.9. Formula for the VAR representation in terms of (A,B,C,D). By applying a par-
titioned inverse formula to invert the operator[G+C(I −AL)−1KGL] in (15), Hansen and
Sargent (2005) show that when the eigenvalues ofA−KC are strictly less than unity in
modulus,yt has an autoregressive representation given by

yt = C[I − (A−KC)L]−1Kyt−1 +Gεt (16)

which is of the form (8) with

A j = C(A−KC) j−1K, j ≥ 0. (17)

II.10. Conditions for existence of an infinite order VAR. Remember thatK depends on
(A,B,C,D) through formulas (12), (13). Equations (16) and (19) indicate that the dominant
eigenvalue ofA−KC controls the rate at which the autoregressive coefficientsA j converge
to zero. If all the eigenvalues ofA−KC are strictly less than unity in modulus, theA j

coefficients converge to zero andyt is said to have an (infinite order) vector autoregressive
representation.13 If all of the eigenvalues ofA−KC are less than or equal to unity, but one
or more is equal to unity in modulus, thenyt does not have an autoregressive representation.
To explain what failure of an AR representation to exist in this case means, consider the
nth order autoregressions

yt = µy +
n

∑
j=0

An
j yt− j +an

t , (18)

13See page 112 of Anderson and Moore (1979).
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whereµy,An
1, . . . ,A

n
n satisfy the population orthogonality conditionsEan

t = 0 andEata′t− j =

0, j = 1, . . . ,n. When the eigenvalue ofA−KC with maximum modulus is unity, the pro-
jectionsŷn

t = µy+∑n
j=0An

j yt− j still converge in mean square to ˆy∞
t = Ê[yt |yt−1, . . .] whereÊ

is the linear least squares projection operator.14 That an autoregressive representation fails
to exist means that the AR coefficientsAn

j do not converge asn→ ∞. However, ˆyn
t → ŷ∞

t in
mean square asn→ ∞.

II.11. Formula for the VARMA representation in terms of (A,B,C,D). Representation
(15) is an infinite order vector moving average, and (16) is aninfinite order vector autore-
gression. In the special square case thatn = k and thek×n matrix is of rankn, it is easy to
deduce a VARMA representation.

Premultiply both sides of (16) byC−1, then premultiply both sides of the result by[I −
(A−KC)L] and rearrange to obtain:

C−1yt = [(A−KC)C−1 +K]yt−1 +C−1Gεt − (A−KC)C−1Gεt−1.

Premultiply both sides of this equation byC to obtain:

yt = C[(A−KC)C−1 +K]yt−1 +Gεt −C(A−KC)C−1Gεt−1

or

yt = C[(A−KC)C−1 +K]yt−1 +C[I − (A−KC)L]C−1Gεt (19)

Equation (19) is a first-order VARMA (vector autoregressive,moving average process) for
yt . The presence of the moving average component indicates that the pure VAR represen-
tation (16) is in general of infinite order. We have more to sayabout the square casen = k
in section III.

II.12. The conditional Likelihood. A theoretical infinite order VAR or an innovations
representation implied by(A,B,C,D) contains all of the implications of the economic
model for first and second moments of the process{yt}. When wt is Gaussian, it ex-
hausts the implications of the model for the joint distribution of any sequence ofyt ’s. This
claim follows from the fact that all of the information that atime series of observations
{yt}

T
t=1 contains about the economic parameters underlying(A,B,C,D) is contained in the

model’s likelihood function. The innovations representation (10)-(11) or the infinite order
vector autoregression (8) contains all of the information needed to construct a Gaussian
likelihood function conditional on an initial infinite history of observations.15

14See Hansen and Sargent (1991b), chapter 2.
15See Hansen and Sargent (2005), chapter 9, for how the Kalman filter can also be used to construct an

unconditional likelihood function.
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Denote the likelihood function of a sample of data{yt}
T
t=1 conditional on the infinite

historyy0 by f (yT ,yT−1, . . . ,y1|y0). Factor this likelihood as

L = f (yT ,yT−1, . . . ,y1|y
0) = fT(yT |y

T−1) fT−1(yT−1|y
T−2) · · · f1(y1|y

0). (20)

Under the assumption thatwt is a Gaussian process, the conditional densityft(yt |yt−1) is
N (Cx̂t ,GG′). Recalling thatat = yt−Cx̂t from (11), it follows that logf (yT ,yT−1, . . . ,y1|y0),
the log of the conditional likelihood (20), equals

logL = −.5
T

∑
t=1

{
k log2π + ln |GG′|+a′t(GG′)−1at

}
. (21)

II.13. Comparison of impulse responses.Comparing (1)-(2) with (10)-(11), notice that
the representations are equivalent whenB = KG, G = D, andεt = wt . Note thatB,D, and
wt are objects embedded in an economic theory, whileK,G, andεt are objects that are
functions of the economic-theory determined the four-tuple (A,B,C,D), functions pinned
down by the Kalman filter equations given above.

II.14. The mapping from economic to VAR innovations. We can combine and rearrange
the two representations (1)-(2) and (12)-(13) to obtain thefollowing system that describes
the mapping from the economic shockswt to the innovationsGεt in the innovations repre-
sentation:

[
xt+1

x̂t+1

]
=

[
A 0

KC A−KC

][
xt

x̂t

]
+

[
B

KD

]
wt (22)

Gεt =
[
C −C

][
xt

x̂t

]
+Dwt . (23)

Define

A∗ ≡

[
A 0

KC A−KC

]
(24)

and write (22)-(23) as

Gεt =
{

D+
[
C −C

][
I −A∗L

]−1
[

B
KD

]
L
}

wt . (25)

Equation (25) verifies that by constructionH(ε t) = H(at) ⊂ H(wt). We want to know
whetherH(at) = H(wt). If it is, we say that the mapping (25) is invertible. For the purpose
of directly interpreting the shocksGεt in a vector autoregression in terms of the economic

shockswt , we would prefer that
[
C −C

][
I −A∗L

]−1
[

B
KD

]
= 0 so that (25) would col-

lapse to
Gεt = Dwt .
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In the following section, we give a neat condition for checking whetherH(at) = H(ε t) in
the ‘square’ case that there are as many observables as economic shocks.

III. T HE SQUARE CASE

In this section, we focus on the square case with equal numbers of shocks and observ-
ables and assume thatD−1 exists. This is the case that is ‘least likely’ to have an invertibility
problem. We state a necessary and sufficient condition for invertibility directly in terms of
(A,B,C,D).

We shall make the following assumptions:

ASSUMPTION 1. The state space system (1), (2) is stable: all eigenvaluesof A are less
than one in modulus, except possibly one associated with a constant.

ASSUMPTION2: D is square and invertible.

III.1. Simple check for invertibility. Assumption 2 often applies to systems with equal
numbers of economic shocks and observables (i.e., variables in the pertinent VAR). Under
Assumptions 1 and 2, (25) can be represented as

Gεt =
{

I +
[
C −C

][
I −A∗L

]−1
[
BD−1

K

]
L
}

Dwt (26)

A sufficient condition forH(ε t) = H(wt) is that the polynomial inL on the right side of
(26) has a square-summable inverse in nonnegative powers ofL. Such an inverse exists if

and only if the zeros of det
{

I +
[
C −C

][
zI−A∗

]−1
[
BD−1

K

]}
are all less than unity in

modulus. The following theorem gives an easy way to check this sufficient condition for
H(at) = H(wt).

Theorem III.1. Under assumption 1, when D−1 exists, the zeros of

det
{

I +
[
C −C

][
zI−A∗

]−1
[
BD−1

K

]}

equal the eigenvalues of A−BD−1C and the eigenvalues of A.

Proof. Write

I +C∗(zI−A∗)−1B∗ =
{

I +
[
C −C

][
zI−A∗

]−1
[
BD−1

K

]}
(27)
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where

C∗ =
[
C −C

]

B∗ =

[
BD−1

K

]
.

Now seta = I ,b = C∗,c = B∗,d = (zI−A∗) in the partitioned inverse formula

det(a)det(d+ca−1b) = det(d)det(a+bd−1c) (28)

to get

det(I +C∗(zI−A∗)−1B∗) =
det(zI−A∗ +B∗C∗)

det(zI−A∗)
. (29)

Compute

zI−A∗ +B∗C∗ = zI−

[
A−BD−1C BD−1C

0 A

]
, (30)

an equation that shows that the zeros of(detzI−A∗ +B∗C∗) equal the eigenvalues ofA−

BD−1C and the eigenvalues ofA. Using this result in (29) shows that the zeros of det(I +

C∗(zI−A∗)−1B∗) equal the eigenvalues ofA−BD−1C and the eigenvalues ofA. �

Remark III.2. If all zeros ofdet
{

I +
[
C −C

][
zI−A∗

]−1
[
BD−1

K

]}
are less than or equal

to unity in modulus, but one or more zeros equal unity in modulus, then an autoregressive
representation fails to exist. Nevertheless, it is true thatH(at) = H(wt). See Whittle (1983)
and Hansen and Sargent (2005), chapter 2.

Remark III.3. Under assumptions 1 and 2, to check whether H(ε t) = H(wt), we can
simply inspect the eigenvalues of A−BD−1C. Thus, we can check whether H(ε t) = H(wt)

by knowing only the fundamental objects A,B,C,D and without actually computing the
innovation representation and K,Σ via the Kalman filter.

Another way to express this point is to note that we can computeK andΣ directly without
having to solve the Riccati equation (13), as we show in the following theorem.

Theorem III.4. Suppose that D−1 exists and A−BD−1C is a stable matrix. Then in the
steady state Kalman filter, K= BD−1 andΣ = 0.

Proof. Notice thatΣ = 0 solves the steady state Riccati equation (13). Notice also that with
Σ = 0, equation (13) implies thatK = BD−1. Furthermore, the Riccati difference equation
corresponding to the steady state equation (13) can be represented as

Σt+1 = (A−KtC)Σt(A−KtC)′ +BB′

+ KDD′K′−BD′K′−KDB′ (31)
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where
Kt = (AΣtC

′ +BD′)(CΣtC
′ +DD′)−1.

Under the conditions of the theorem,A−KtC converges to a stable matrixA−BD−1C
and successive iteratesΣt converge to zero starting from any positive semidefinite initial
Σ0. �

Remark III.5. When D−1 exists and A−BD−1C is a stable matrix, the implicationΣ = 0
means that there are no hidden state variables. It follows from Σ = 0 that xt+1 belongs to
the Hilbert space generated by yt .

Remark III.6. Under assumption 1, when A−BD−1C is a stable matrix, all of the zeros of
det(I +C∗(zI−A∗)−1B∗) are cancelled by poles.16 This follows from (29) and the definition
of A∗. This result reflects a situation in which Gεt equals Dwt ; in particular, the correlation
between the wt process and theεt process is entirely contemporaneous.

Remark III.7. The one step ahead errors covariance matrix from the economic model
E[yt −E[(yt |wt−1])][yt −E[(yt |wt−1])]′ = DD′; while the one step ahead errors covariance
matrix from the VAR is E[yt −E[(yt |yt−1)][yt −E[(yt |yt−1)]′ = DD′ +CΣC′. When the in-
vertibility condition fails, the prediction error variance matrix for the VAR is larger.

We have the following

Corollary III.8. Under the conditions of theorem III.1, Dwt = Gεt and the innovation
covariance matrix GG′ = DD′. Thus, we are free to set G= D. Of course, the choice of G
is unique only up to postmultiplication by an orthogonal matrix.

Proof. It can be verified directly from (25) that when the conditionsof theorem III.1 hold
and, therefore,K = BD, it follows thatGεt = Dwt . �

Remark III.9. Under the conditions of theorem III.1, corollary III.8 gives a way to find
the correct identification scheme for the VAR. If an eigenvalue of A−BD−1C equals1 in
modulus, the model remains invertible (see remark III.2) but it lacks an infinite order VAR
representation (see subsection II.10).

The assertions in theorems III.1 and III.4 can be viewed as extensions to a vector process
of the following well-known example:

Example III.10. Take the scalar pure m.a. process

yt = wt +αwt−1.

16From (29), the zeros of det(I +C∗(zI−A∗)−1B∗) are the zeros of det(zI−A∗ +B∗C∗) and the poles are
the zeros of det(zI−A∗).
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Let the state be xt = wt−1 so that we have a state space representation with A= 0, B= 1,
C = α, and D= 1. Evidently,

A−BD−1C = −α,

which is a stable matrix if and only if|α| < 1, in which case K= B.

III.2. A quartet of examples. In the following four sections, we present four models de-
signed to illustrate the theoretical results of sections IIand III. We select our four examples
to document when invertibility is a problem, when it is not, and when we face benign bor-
derline cases in which an eigenvalue of unity in modulus is a symptom that an infinite order
VAR does not exist. Each model will teach us something of interest in a context we feel is
representative of some typical applications in macroeconomics.

First, we use a permanent income model to express the point about invertibility made by
Hansen, Roberds, and Sargent (1991) in terms of the objects intheorem III.1. If we observe
total income and consumption, this model is always non-invertible because one eigenvalue
of A−BD−1C would be equal to the inverse of the discount factor, and, consequently,
bigger than one. The origin of the non-invertibility of thismodel is the presence of two
income shocks that cannot be disentangled from observing total income and consumption.

Second, we discuss the model with investment-specific technological shocks as described
in Fisher (2003). We show that for our choice of observables,the model is invertible both
for a sensible calibration and for parameters estimated using the Bayesian approach.

Third, we use the model with sticky prices and sticky wages ofErceg, Henderson, and
Levin (2000). For a particular set of observables, this model is invertible but does not have
a VAR representation for a reasonable choice of parameter values. This result teaches us
about benign borderline cases that sometimes occur in applications in macroeconomics.
We also estimate the model using the Bayesian approach and show that, for our choice of
observables, the posterior probability of the model being non-invertible is zero.

Finally, we study a model of household production describedby Benhabib, Rogerson,
and Wright (1991). We show that, for a sensible choice of parameter values, the model is in-
vertible for one set of observables but non-invertible for another set. This model illustrates
how the presence or absence of invertibility depends crucially on our choice of observables
in ways that have been discussed by Hansen and Sargent (1981,1991c), Watson (1994),
and Reichlin and Lippi (1994). Finally, we estimate this model using the Bayesian ap-
proach and show how the posterior probability of the model being non-invertible is zero for
our first set of observables, but one for the second set.17

17Note that our discussion of invertibility holds for linear or linearized models. If we work with non-linear
economies, different issues appear as illustrated in Caballero and Engel, (2004).
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IV. A BADLY BEHAVED EXAMPLE : A PERMANENT INCOME MODEL

This section briefly reviews how the structure of the permanent income models of Hansen,
Sargent, and Roberds (1991) manifests itself in ways described by our theorem III.1. As-
sume that there is a representative household whose preferences over stochastic sequences
of consumptionct and capital accumulationkt − kt−1 are representable by the following
utility function:

− .5
∞

∑
t=0

β t [(ct −b)2 + ε(kt −kt−1)
2] (32)

whereε > 0 is a very small number, makingε(kt −kt−1)
2 a small adjustment cost that we

include to select an interesting solution.18

The representative household maximizes utility function (32) subject to the asset accu-
mulation equation:

kt +ct ≤ Rkt−1 +dt

with k−1 as an initial condition, and where the endowmentdt follows the two-component
process described by:

dt = µd +
1

1−ρ1L
σ1w1t +

1
1−λ1L

σ2w2t

where|ρ1| < 1, |λ1| < 1, w1t ∼ N (0,1), andw2t ∼ N (0,1).
We follow Hall (1978) and setRβ = 1 in order to deliver the outcome thatkt andct are

cointegrated.19 Our choice of parameter values is as follows:R= 1.05,ρ1 = 0.9, λ1 = 0.6,
µd = 5, andb = 30.

IV.1. The A, B, C, and D matrices. Let d1t = 1
1−ρ1Lσ1w1t , d2t = 1

1−λ1Lσ2w2t , anddt =

µd + d1t + d2t . Define the state vector asxt =
[
kt−1 1 d1t d2t

]′
and let the observable

variables beyt =
[
ct dt

]′
. We can write ourA, B, C, andD matrices as follows:20

xt+1 = Axt +Bwt

yt = Cxt +Dwt

18If we setε = 0, the solution of the problem isct = b.
19This outcome occurs in the limit asε ց 0.
20We used Hansen and Sargent’s (2005) Matlab programsolvea.m to compute(A,B,C,D) by setting

S=[sc;sd(1,:)], A=ao, B=c, C=S*ao, D=S*c.
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wherewt =
[
w1t w2t

]′
is a vector of white noise with mean zero and identity contempo-

raneous covariance matrix and:

A =




1.0000 0.0000 0.6667 0.8889
0 1.0000 0 0
0 0 0.9000 0
0 0 0 0.6000




B =




0 0
0 0

0.5000 0
0 0.8000




C =

[
0.0500 5.0000 0.3333 0.1111

0 5.0000 0.9000 0.6000

]

D =

[
0.1667 0.0889
0.5000 0.8000

]
.

It follows that:

A−BD−1C =




1.0000 0.0000 0.6667 0.8889
0 1.0000 0 0

−0.2250 −20.0000 −0.1500 −0.2000
0.2250 15.0000 0.1500 0.2000


 .

This matrix has an eigenvalue of 1.05, which equalsR. Therefore, the mapping (26) is not
invertible. It follows that the Hilbert spaceH(at) spanned by the history of VAR shocks is
smaller than the spaceH(wt) spanned by the space of economic shocks. Furthermore, in
general the shapes of the impulse responses toεt andwt differ.21

Motivated by remark III.7, as a measure of the information lost in the historyyt condi-
tioning the VAR compared to the historywt of shocks in the economic model, we computed

CΣC′ =

[
0.0000 0.0000
0.0000 0.0227

]
andDD′ =

[
0.0357 0.1544
0.1544 0.8900

]
, whereyt =

[
ct dt

]′
. These ma-

trices reveal that while the VAR correctly estimates the one-step ahead prediction error
variance in consumption (this is after all the content of Hall’s (1978) characterization of
the linear-quadratic permanent income model), it overestimates the volatility of the ag-
gregate endowment shock from the consumer’s point of view. The overestimation of this
volatility comes hand in hand with failing to match the impulse response function.

21Invertibility of the mapping (26) for the permanent income model is obtained if the observation vector
is either

[
ct kt

]′
or

[
ct kt −kt−1

]′
. With either of these observation vectors, the offending zero atR flips

to become a zero atR−1.
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IV.2. Historical note. Sargent (1987, chapter XIII), Hansen, Roberds, and Sargent (1991),
and Roberds (1991) studied a version of this example in response to a question asked by
Robert E. Lucas, Jr., at a 1985 Minneapolis Fed conference: with a constant interest rate,
what restrictions the hypothesis of present value budget balance place on a vector autore-
gression for government expenditures and tax receipts? Thepermanent income model is
isomorphic to a stochastic version of a tax smoothing model in the style of Barro (1979)
with total tax collectionsτt replacing consumptionct and government expendituresgt re-
placing the endowmentdt . This model imposes two restrictions on thect anddt process:
(1) present value budget balance, and (2)ct must be a martingale. Because it implies equal
present values of the moving average coefficients ofdt andct to either economic shockwit ,
present value budget balance puts a zero ofR into the operator on the right side of (26) and
is therefore the source of non-invertibility.

Hansen, Roberds, and Sargent (1991) went on to answer Lucas’squestion by showing
that present value budget balance by itself puts no testablerestrictions on the infinite order
VAR of

[
ct dt

]′
.

The permanent income example withct anddt as the observables is one in which the
invertibility condition is bound to fail. That stands as a counterexample to a presumption
that VAR shocks always readily match up with the economic shocks wt . It is thus one
important example of things that can go wrong. However, there are other examples in
which things can go right. In the next sections, we turn to examples that are invertible.

V. A BETTER BEHAVED EXAMPLE: JONAS FISHER’ S TWO TECHNOLOGY SHOCK

MODEL

The model of Fisher (2003) is a good laboratory for us because(1) Fisher explicitly re-
marks that invertibility is a prerequisite for his interpretations to hold water; (2) at least with
Fisher’s observables, invertiblity can be established by adirect argument; and (3) Fisher’s
model directly confronts some of the issues about matching innovations from VARs to pro-
ductivity shocks that have preoccupied critics of VARs (see Chari, Kehoe, and McGrattan
(2005)).

Fisher (2003) assesses the impact of technology shocks on business cycles by imposing
long-run restrictions on an estimated non-structural VAR. Fisher explicitly acknowledges
that a necessary condition for his procedure to be compelling is that the mapping (26) be in-
vertible, and he assumes but does not verify invertibility.He imposes a long-run restriction
on G that is suggested by an analysis of his exogenous growth model with two orthogonal
unit-root technology processes. In this section, we use ourtheorem III.1 to verify that that
invertibility assumption is indeed valid at calibrated values for the parameters in Fisher’s
model.
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Recovering the theoretical impulse responses from an unrestricted VAR requires assign-
ing the correct identifying matrixG. In this section we also show that Fisher’s choice is
the right one. In the last part of the section we extend the results by reporting the posterior
probability of the model being non-invertible using the Bayesian approach.

Fisher’s model features a representative household whose preferences over stochastic
sequences of consumptionCt and leisure 1−Lt are representable by the utility function:

E0

∞

∑
t=0

β t (logCt +ψ log(1−Lt))

whereβ ∈ (0,1) is the discount factor andE0 is the conditional expectation operator. The
resource constraint is:

Ct +Xt = AtK
α
t L1−α

t ,

and the law of motion for capital is:

Kt+1 = (1−δ )Kt +VtXt ,

and:

At = eγ+Ca(L)σawatAt−1, γ ≥ 0

Vt = eυ+Cυ (L)συ wυtVt−1, υ ≥ 0

[wat,wυt ]
′ ∼ N (0, I)

whereCa(L) andCυ (L) are square summable polynomials in the lag operatorL. We as-
sume thatCa andCυ are both the identity operator.

V.1. The A, B, C, and D matrices. Since the model is non-stationary, we define the

scaling variableZt = A
1

1−α
t−1V

α
1−α

t−1 =
(
At−1Vα

t−1

) 1
1−α and the transformations̃Ct = Ct

Zt
and

K̃t = Kt
ZtVt−1

. Using loglinearization, we compute policy functions for the transformed capi-
tal stock around the steady state value of the variables:

logK̃t+1− logK̃ss= a1

(
logK̃t − logK̃ss

)
+a2σawa,t +a3συwυ ,t ,

for hours worked:

logLt − logLss= b1

(
logK̃t − logK̃ss

)
+b2σawa,t +b3συwυ ,t ,

and for consumption:

logC̃t − logC̃ss= c1

(
logK̃t − logK̃ss

)
+c2σawa,t +c3συwυ ,t ,

wherea1, a2, a3, b1, b2, b3, c1, c2 andc3 are constants that depend on the structural parame-
ters of the economy. For this model, it turns out thata2 = a3, a2 = − a1

1−α , andb2 = − b1
1−α .

We use these loglinear decision rules and the definitions of the transformed variables to
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obtain the following state-space system in logarithms of our original (untransformed) vari-
ables:22




1
∆kt+1

lt


 =




1 0 0
1−a1
1−α (γ +υ) a1 0
−b1

γ+υ
1−α b1 1







1
∆kt

lt−1


+




0 0
σa

1−α +a2σa
συ

1−α +a3συ
b2σa b3συ




[
wa,t

wυ ,t

]
(33)

[
∆(yt − lt)

lt

]
=

[
γ +αb1

γ+υ
1−α α (1−b1) 0

−b1
γ+υ
1−α b1 0

]


1
∆kt

lt−1


+

[
(1−αb2)σa −αb3συ

b2σa b3συ

][
wa,t

wυ ,t

]

(34)

wherekt = logKt , lt = logLt , andyt = logYt .
Equations (33) and (34) form a state space system of the formA, B, C, andD. We set

parameter values to be:β = 0.99, ψ = 2.2, α = 0.33, δ = 0.025, γ = 0.01, υ = 0.001,
σa = 0.5, andσυ = 0.2.

The system formed by (33) and (34) is a ‘square system’ with two shocks and two ob-
servables. The eigenvalues ofA−BD−1C are all strictly less than one in absolute value,
which means that (26) is invertible. It also means that by setting G = D, the impulse
response function toεt associated with an identified VAR perfectly matches the impulse
response function to the theoretical shockswt . This impulse response function is reported
in the bottom two rows of panels of Figure 1.

Therefore, we can conclude that for this particular model and this particular set of ob-
servables, invertibility prevails so that we are assured that there exists someG satisfying
GG′ = DD′ that makes the impulse response for the identified VAR match the theoretical
impulse response to thew’s. However, the example also confirms the doubt expressed in
the epigraph from Lucas and Stokey at the beginning of this paper. The requiredG must be
equal to

D =

[
0.4370 −0.0252
0.1908 0.0763

]
(35)

which lacks zeros, as Lucas and Stokey feared.
As mentioned before, Fisher explicitly acknowledges that in order to recover the theo-

retical impulse response to thew’s using an unrestricted VAR, we need the mapping (26)
to be invertible. But it is important to note that we also need away of discoveringG while
initially being ignorant ofD. Is Fisher able to do that? We analyze this question below.

22This is not a minimum state space representation. With some work, logLt−1 can be eliminated as a state
variable.
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FIGURE 1. Common impulse response functions for VAR and economic
structure for Fisher’s model. For the two-observed-variable model, only the
bottom two panels are pertinent.
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V.2. Fisher’s identification procedure. Fisher fits an unrestricted VAR with∆ logpt as
an observable. Therefore, in order to explain his procedure, we need to define the state
space system formed by (33) and the following observer equation:23




∆ logpt

∆(yt − lt)
lt


=




−ν 0 0
γ +αb1

γ+υ
1−α α (1−b1) 0

−b1
γ+υ
1−α b1 0







1
∆kt

lt−1


+




0 −συ
(1−αb2)σa −αb3συ

b2σa b3συ




[
wa,t

wυ ,t

]

(36)
Before we describe Fisher’s bit of magic, we have to work around a technical difficulty.

When using the three variable observation vector (36), we have to confront the fact that now
we have a stochastically singular system. Two shocks are driving three observables (i.e.,
the system formed by (33) and (36) is not square). To eliminate the stochastic singularity
problem, while staying as close as possible to Fisher’s model, we add a very small normally
distributed measurement error to logLt with mean zero and standard deviationσµ1.

To identify G from a three variable system, Fisher notes that∆ logpt = −∆ logVt is an
exogenous white noise that equalswυ ,t . Therefore, any scheme for factoringGG′ that
identifies the row ofGεt associated with∆ logpt with wυ ,t should work. Fisher uses the
following scheme that satisfies this condition.

Let Ω = CΣC′ + DD′ be the covariance matrix ofGεt from the infinite order VAR (see
equation (14)). Fisher (2003), footnote 5, applies a procedure of Blanchard and Quah to
identify G. First, he forms ˆc(1) = (I −∑∞

j=1A j)
−1. Second, he computes a lower triangular

Cholesky factorx of ĉ(1)Ωĉ(1)′, so thatxx′ = ĉ(1)Ωĉ(1)′. Third, after noting that ˆc(1)G is
a factor ofĉ(1)Ωĉ(1)′, he computesG = ĉ(1)−1x.

This scheme succeeds in recovering aG = D. The impulse response associated with
the infinite order VAR whenG = D conforms with the impulse response to the economic
shocks. The impulse responses functions are reported in Figure 1. The only change from
the VAR computed for our two variable system is the addition of the top panel in Figure
1.24

While these calculations confirm the validity of Fisher’s identification procedure for his
theoretical model, they do not really contradict the skepticism about zero restrictions on
G or ∑∞

j=1A jL j expressed in Lucas and Stokey’s epigraph. The phrase ‘endogenousvari-
ables’ in the epigraph bears remembering. Fisher’s zero restriction that∆ logpt is never

23Notice that system (36) is by construction triangular, withthe shockwat being revealed by∆ logpt . By
an easy argument, it can then be shown thatwνt can be revealed fromwat and either of the remaining two
observables. Therefore, the model with these observables is invertible.

24A simple alternative to Fisher’s scheme would also work, namely, choosingG as a triangular Cholesky
factor of the innovation covariance matrixΩ that setsG12wυ ,t = ∆ logpt .
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influenced bywa,t comes from having specified the model so that∆ logpt is econometri-
cally exogenous.25

V.2.1. Finite order VARs for Fisher’s model.Using the projection formulas in Appendix
D, we computed population versions of finite order vector autoregressions for both the two
and three variable VARs implied by the Fisher’s model. We computed VARs with 1 and 4
lags. Both gave such close approximations to the impulse response functions reported in
Figure 1 that it was impossible to detect any difference whenwe plotted them on along side
those in Figure 1. Therefore, for Fisher’s model, a VAR with one lag that includes∆ logpt ,
∆(yt − lt), andlt as regressors would do a fabulous job in matching the theoretical impulse
responses if correctly identified.

V.3. Posterior distribution for parameters of Fisher’s Model. We have argued that,
when we observe∆ logpt , ∆(yt − lt), and lt , Fisher’s model is invertible for a sensible
choice of parameter values. In this subsection, we investigate whether the result also holds
when we estimate the model using U.S. data.26

In order to do that, we employ the formulas reported in section II.12 to compute the
likelihood function of Fisher’s Model. Then, using the priors for the structural parameters
reported in Appendix A, we draw from the posterior distribution of the parameters using
McMc techniques. For each draw of the posterior, we evaluateourA, B, C, andD matrices.
We find the eigenvalues associated with each draw of the matrices and compute the poste-
rior probability of the model being non-invertible. The posterior mean, standard deviation,
and a plot of the posterior distribution of the structural parameters are reported in Appendix
A.

We observe∆ logpt , ∆(yt − lt), andlt , where logpt is the log of real price of investment,
yt − lt is the log of labor productivity in consumption units, andlt are logs of worked hours.
We use quarterly data, with sample period 1955:01 to 2000:04. We follow Fisher and mea-
sure the real price of investment as the ratio of an investment deflator and a deflator for
consumption derived from the National Income and Product Accounts (NIPA). In general,
investment deflators are poorly measured, so we use Fisher’sconstructed investment defla-
tor. Our consumption deflator corresponds to nondurable, services, the service flow from
durables, and government consumption. Labor productivityis the non-farm business la-
bor productivity series published by the Bureau of Labor Statistics (BLS). Per capita hours

25Fisher presents an informative discussion of this point in his paper and describes how the particular
zero restriction that we have imposed would not prevail witha modified technology for producing investment
goods.

26As noticed before, the system (33) and (36) is not square. In order to square the system we add a
normally distributed measurement error to the observed worked hours,µ1, with mean zero and standard
deviationσµ1.
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are the BLS hours worked divided by population 16 and 65 years.In order to express la-
bor productivity in consumption units per hour, we use the consumption deflator reported
above.27

The results are that, given our priors, the posterior probability of the model being non-
invertible is zero. This is not only true for the set of observables we report above, but it is
also true for the case where, instead of log hours, we observethe difference of log hours,
∆lt .

VI. A NOTHER WELL BEHAVED EXAMPLE: THE EHL MODEL

Many sticky price models imply a reduction in hours worked after a positive produc-
tivity shock hits the economy (see Gali, (1999)). This theoretical finding has motivated
some empirical work trying to identify a productivity shockand its consequences for hours
worked.

We analyze Erceg, Henderson, and Levin’s (2000) model with sticky prices and sticky
wages. We use our theorem III.1 to verify that invertibilityassumption is indeed valid at
calibrated values. Since this model is well known in the literature, we will only present the
equations describing the log deviation from steady-state values of the variables.

First, we have the Euler equation that relates output growthwith the real rate of interest:

yt = Etyt+1−σ(rt −Et∆pt+1 +Etgt+1−gt)

whereyt denotes output,rt is the nominal interest rate,gt is the preference shifter shock,pt

is the price level, andσ is the elasticity of intertemporal substitution.
The production function and the real marginal cost of production are:

yt = at +(1−δ )nt

mct = wt − pt +nt −yt

whereat is a technology shock,nt is the amount of hours worked,mct is the real marginal
cost,wt is the nominal wage, andδ is the capital share of output.

The marginal rate of substitution,mrst , between consumption and hours is:

mrst = gt +
1
σ

yt + γnt

whereγ is the inverse elasticity of labor supply with respect to real wages. Hence, the
preference shifter shock affects both the consumption Euler equation and the marginal rate
of substitution.

27We thank Jonas Fisher for these data.
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The pricing decision of the firm under a Calvo timing restriction delivers the following
forward looking equation for price inflation,∆pt :

∆pt = βEt∆pt+1 +κp(mct +λt)

whereκp =
(1−δ )(1−θpβ )(1−θp)

θp(1+δ (ε̄−1)) andε̄ = λ̄
λ̄−1

is the steady state value ofε, the elasticity of

substitution between types of goods.λt is the price markup shock,θp is the probability of
keeping prices fixed during the period, andβ is the discount factor.

Staggered wage setting delivers the following forward looking equation for wage infla-
tion ∆wt :

∆wt = βEt∆wt+1 +κw(mrst − (wt − pt))

whereκw = (1−θw)(1−βθw)
θw(1+φγ) , θw is the probability of keeping wages fixed in a given period,

andφ is the elasticity of substitution between different varieties of labor in the production
function. With staggered wage setting, it is no longer true that workers remain on their
labor supply schedule. Hence, the driving force of current nominal wage growth is expected
nominal wage growth, as well as the distance between the marginal rate of substitution and
the real wage.

We use the following specification for the Taylor rule:

rt = ρr rt−1 +(1−ρr) [γπ∆pt + γyyt ]+mst

whereγπ andγy are the long run responses of the monetary authority to deviations of infla-
tion and output from their steady state values, andmst is the monetary shock. We include an
interest rate smoothing parameter,ρr , following recent empirical work (see Clarida, Galí,
and Gertler, (2000)).

To complete the model, we need the identity that links real wage growth, nominal wage
growth and price inflation:

wt − pt = wt−1− pt−1 +∆wt −∆pt .

Finally, we specify the shocks to follow:

at = ρaat−1 +wa
t

gt = ρggt−1 +wg
t

mst = wms
t

λt = wλ
t

where each innovationwi
t is distributed asN (0,σ2

i ) distribution, fori = a,g,m,λ . The
innovations are uncorrelated with each other.
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VI.1. The A, B, C, and D matrices. With the model in this loglinear form, we find that
the coefficients of the policy function of the form:

kt = Pkt−1 +Qzt , (37)

and

Lt = Rkt−1 +Szt , (38)

wherekt = [ wt − pt rt ∆pt ∆wt yt ]′, Lt = [ nt mct mrst ct ]′, andzt = [ at gt mst λt ]′.
A more convenient way of writing (37) and (38) is

[
k′t z′t

]′
=

[
P QN
N 0

][
k′t−1 z′t−1

]′
+

[
Q
I

]
wt ,

and

Lt =
[

R SN
][

k′t−1 z′t−1

]′
+Swt ,

wherewt = [ wa
t wms

t wλ
t wg

t ]′.

Let us consider the observablesYt = [ ∆pt ∆nt yt wt − pt ]′. Then, we obtain the
following state-space system in log deviations from steadystate:

[
k′t z′t nt

]′
= A

[
k′t−1 z′t−1 nt−1

]′
+Bwt , (39)

Yt = C
[

k′t−1 z′t−1 nt−1
]′

+Dwt , (40)

where

A =




P QN 0
N 0 0

R1,· (SN)1,· 0




B =

[
Q

R1,·

]

C =




A3,·

A6,·− [ 0 0 0 0 0 0 0 0 0 1]′

A5,·

A1,·


 ,

and

D =




B3,·

B6,·

B5,·

B1,·




whereA j,· stands for thejth row of matrixA andxt =
[

k′t−1 z′t−1 nt−1
]′

.
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VI.2. An empirical analysis of EHL’s model. Equations (39) and (40) form a state space
system with matricesA, B,C, andD. Since the system is ‘square’, with four shocks and four
observables, we can check its non-invertibility empirically. We do so from two empirical
strategies.

First, we follow the literature and chose our parameter values to be:β = 0.9, ε̄ = 6,
δ = 0.4, σ = 0.5, θp = θw = 0.9, γ = 2, φ = 6, γy = 0.125,γπ = 1.5, ρr = ρa = ρg = 0.9,

andσi = 0.05 for i = a, m, λ , andg.
Second, we estimate the model and compute the posterior probability of the system (39)

and (40) being non-invertible as we did for the Fisher’s model. The prior distributions, the
posterior mean, standard deviation, and a plot of the posterior distribution of the structural
parameters are reported in Appendix B.28

For both empirical strategies, the eigenvalues ofA−BD−1C are all strictly less than one
in absolute value except one that is exactly equal to one in absolute value. Therefore (26)
is invertible. The unit eigenvalue means that the model doesnot have an infinite order
VAR representation, but the fact that invertibility prevails means that to an arbitrarily good
approximation the economic shocks can be expressed as linear combinations innovations
in a sufficiently long finite order VARs.

VII. A N INTERMEDIATE EXAMPLE : THE HOUSEHOLD PRODUCTION MODEL

Benhabib, Rogerson, and Wright, (1991) and Greenwood and Hercowitz, (1991)intro-
duced a household sector into a standard business cycle model. Their motivation was that
the household sector is large both in terms of inputs (time worked and capital used) and
in terms of output and that including this section improves the quantitative performance of
the model along several dimensions. We use a model of household production to show how
the invertibility or lack of invertibility of a model depends on the choice of observables.

We describe the Benhabib, Rogerson, and Wright (BRW) model of the business cycle as
postulated in their 1991 paper. To show that the issues we areconcerned with appear in
the work of applied researchers, we calibrate the model withexactly the same parameter
values than BRW did. Then we propose two simple VARs and we discuss its invertibility
conditions.

28We observe∆pt , ∆nt , yt , andwt − pt , where∆pt is the log of inflation,nt is log of the share of per
capita worked hours,yt is the log of per capita output, andwt − pt is the real wage. We use quarterly data
for the sample period 1960:01 to 2001:04. Our measure of inflation is the nonfarm business sector deflator.
Per capita hours are the BLS hours worked divided by the working age population. As the per capita output
measure, we use the nonfarm business sector divided by the working age population. Finally, we take hourly
compensation for the nonfarm business sector as nominal wages. We demean inflation and linearly detrend
hours, output, and real wage.
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The economy is populated by a representative household whose preferences are given
by:

maxE0

∞

∑
t=0

β t
{

log
(

acθ
mt +(1−a)cθ

ht

) 1
θ
+ψ log(1− lmt− lht)

}

wherecmt is the consumption of the market good at timet, cht is the consumption of the
household good,lmt is labor in the market sector,lht is labor in the household sector,E0 is
the expectation operator, andβ ∈ (0,1) is the discount factor.

The technology to produce the market goodymt and the household goodyht is a Cobb-
Douglas function of the formymt = ezmtbkα

mtl
1−α
mt andyht = ezhtbkη

htl
1−η
ht wherekmt is the

capital used in the market sector,kht is the capital used in the household sector,b measures
the productivity level, and{zmt,zht} are shocks to the productivity levels, which follow an
AR(1) process:

zmt = ρmzmt−1 + εmt

zht = ρhzht−1 + εht

where (
εmt

εht

)
∼ N

((
0
0

)
,Σ

)

andΣ =

(
σm γ
γ σh

)
. Finally, define

(
wmt

wht

)
= Σ−1/2

(
εmt

εht

)
such that:

(
wmt

wht

)
∼ N

((
0
0

)
, I

)
.

The output of the market sector can be used for consumption orfor investment while the
output of the household sector can only be used for consumption.

Capital evolves according tokt+1 = (1−δ )kt + it whereδ is the depreciation factor and
it is investment. Since capital can be moved across sectors without cost, the aggregate
resource constraints of the economy are:

cmt + it = ezmtbkα
mtl

1−α
mt

cht = ezhtbkη
htl

1−η
ht

kt = kmt +kht

A competitive equilibrium for this economy can be defined in the standard way. Follow-
ing BRW, we set the discount factor toβ = 0.99 to match the interest rate, the participation
of capital in each sectorα = 0.33 andη = 0.08, the depreciationδ = 0.025, and the pref-
erence parameterθ = 0.8 as in the related literature. We normalize the production function
settingb = 1 . The utility function parametersa = 0.34 andψ = 0.59 are set to generate
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a fraction of market work of 0.33 and of household work of 0.28. The stochastic process
parametersρm = ρh = 0.95, σm = σh = 0.07, andγ = 2/3. Note, however, that since we
solve the model by linearization, the results of our discussion below are independent of the
values ofσm,σh, andγ because the coefficients of the policy functions are independent of
them, the covariances do not affect the eigenvalues ofA−BD−1C.

We solve the model by loglinearizing its equilibrium conditions around the steady state.
Then, we get a policy function for capital (where we usex̂t = logxt − logxss to denote a
variable value as a percentage deviations with respect to the steady state):

k̂t+1 = γkk̂t + γmρmzmt−1 + γhρhzht−1 + γmεmt + γhεht

that, together with the law of motion for the technological shocks generate the transition
equation:




k̂t+1

zmt

zht

1


 =




γk γmρm γhρh 0
0 ρm 0 0
0 0 ρh 0
0 0 0 1







k̂t

zmt−1

zht−1

1


+




γm γh

1 0
0 1
0 0


Σ1/2

[
wmt

wht

]
(41)

VII.1. Case I: things go well. Now we illustrate how the concrete choice of observed
variables renders the model invertible or not. First we assume that we observe market
output and market hours. The policy functions for market output is given by:

ŷmt = ηkk̂t +ηmρmzmt−1 +ηhρhzht−1 +ηmεmt +ηhεht

or, in observed logs:

logymt = logymss+ηkk̂t +ηmρmzmt−1 +ηhρhzht−1 +ηmεmt +ηhεht

The policy functions for hours:

l̂t = φkk̂t +φmρmzmt−1 +φhρhzht−1 +φmεmt +φhεht

or in observed logs:

loglmt = loglmss+φkk̂t +φmρmzmt−1 +φhρhzht−1 +φmεmt +φhεht

Then, the measurement equation is:

[
logymt

loglmt

]
=

[
ηk ηmρm ηhρh logymss

φk φmρm φhρh loglmss

]



k̂t

zmt−1

zht−1

1


+

[
ηm ηh

φm φh

]
Σ1/2

[
wmt

wht

]
(42)

For our calibration, the biggest eigenvalue ofA−BD−1C is 0.910 and the model is
invertible.
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VII.2. Case II: things go badly. Now let us suppose that we change our observables and
that we build a measurement equation with market consumption, whose policy function is:

logcmt = logcmss+ψkk̂t +ψmρmzmt−1 +ψhρhzht−1 +ψmεmt +ψhεht

and labor. Then, we will have:

[
logcmt

loglmt

]
=

[
ψk ψmρm ψhρh logcmss

φk φmρm φhρh loglmss

]



k̂t

zmt−1

zht−1

1


+

[
ψm ψh

φm φh

]
Σ1/2

[
wmt

wht

]
(43)

Now the biggest eigenvalue ofA−BD−1C is 1.096 and the model is non-invertible.

VII.3. Posterior for parameters of household production model.We have seen that,
for a sensible calibration, the household production modelis invertible if we observeym

andlm, while non-invertible if we observecm andlm. In this subsection we go further and
compute the posterior probability of the systems (41) and (42) and (41) and (43) being
non-invertible.

Our priors for the structural parameters are reported in Appendix C, as are the posterior
mean, standard deviation, and a plot of the posterior distribution of the structural parame-
ters.

In the first system, we observe logymt and loglmt, where logymt is the log of the per
capita market output and loglmt is log of the share of market worked hours. We define mar-
ket output as the sum of real consumption, real private investment, and real government
expenditures (all from BEA). To obtain output per capita, we divide output by civilian non-
institutional population between 16 and 65 years (BLS). The share of market worked hours
is calculated as follows. We calculate per capita worked hours dividing hours worked in
the nonfarm sector (BLS) by civilian noninstitutional population between 16 and 65 years
(BLS). Then we divide per capita worked hours by 4000.29 In the second system, we ob-
serve logcmt and loglmt, where logcmt is the log of the per capita market real consumption.
We define market real consumption as the sum of real consumption of nondurables, real
consumption of services, and real government expenditures(all from BEA). In order to
obtain per capita market real consumption, we divide real consumption by civilian nonin-
stitutional population between 16 and 65 years (from BLS). Finally, since our model does
not have a balance growth path, we linearly detrend both per capita market output and per
capita market real consumption. We use quarterly data and the sample period is 1964:01 to
2004:04.

29Implicitly we are assuming that the maximum number of hours that a person can work is 4000.
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We find the following results. If we observeym and lm, the posterior probability of the
model being non-invertible is zero. If we observecm andlm, the posterior probability of the
model being non-invertible is one. These results confirm ourcalibration results.

VII.4. Discussion.Why do things go wrong in the second case and not in the first? Watson
(1994) suggests that a researcher is most vulnerable to non-invertibility when her VAR
excludes measures of important endogenous variables that depend on streams of expected
future values of other variables. This is precisely the situation in our example. Models with
household production limit the econometrician in terms of which activities of the household
she observes. In general, the researcher can only measure market prices and quantities.

Furthermore the set of observables that generate the non-invertibilities is not obvious
ex-ante. A researcher interested in the study of the interaction between consumption and
hours can reasonably think about estimating a VAR with thesetwo variables. How could
she know, before computing the model, that this specification is non-invertible but one with
market output and hours is?

VIII. R ELATION WITH THE LITERATURE

There is a substantial critical literature evaluating the ability of VARs to document em-
pirical phenomena. We do not attempt here to review this literature except two recent
papers: Chari, Kehoe, and McGrattan (2005), or CKM, and Erceg,Guerrieri, and Gust
(2004), or EGG. These two papers discuss issues related to our points and have received
wide attention. Consequently, it is important to compare their findings with ours.

VIII.1. Do technology shocks lead to a fall in hours?CKM and EGG are motivated by
the observation that Structural Vector Autoregressions (SVAR) have become popular as a
procedure to isolate economic shocks. One of the most relevant examples is the discussion
concerning the relation between hours and productivity shocks. A SVAR with the first
differences of labor productivity30 and first differences of hours, DSVAR from now on, and
identified as proposed by Galí (1999), delivers that hours fall after a productivity shock. If,
instead of the first difference of hours, we estimate a SVAR with hours in levels, LSVAR
from now on, the evidence is ambiguous.

Both CKM and EGG specify simple business cycle models with shocks to technology,
taxes, and, in the case of EGG, preferences and government consumption. They select
parameters for their models (by ML estimation in CKM and by calibration in EGG) and
use them as data generation processes for which they computea DSVAR an LSVAR.

The results in CKM and EGG are similar. For example, if we compare figures 4, 6A,
and 11A in CKM and figure 5A, panel 2 in EGG, we see that in both papers:

30All variables are expressed in logs
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• The DSVAR gets the impulse response function wrong: the researcher that uses a
DSVAR will find that hours respond negatively to a technologyshock even when
the true impulse response function is positive.

• The LSVAR estimates a impulse response function with the right sing but the wrong
size. In addition, confidence bands are so big that the researcher cannot distinguish
among competing models.

Moreover both papers document that the presence of capital is a probable cause of the
bad behavior of SVARs. CKM also show that the eigenvalue of one induced by the use of
hours in first differences in the DSVAR is empirically of little relevance for their finding.
As the number of lags grow to a number too large for empirical applications, they can
recover the right impulse response function.

However, CKM and EGG diverge dramatically in their reading ofthese findings. CKM
conclude that SVARs are not a reliable technique to learn about the data. EGG are more
sanguine. They recognize the limitations of SVARs, but they also emphasize that several
remedies are available to avoid most the pitfalls of the tooland that, with the help of models
serving as guideposts, SVARs are a fruitful approach to learnfrom the data.

VIII.2. Comparison of CKM and EGG with our paper. From the previous discussion,
we can see how the focus of our paper is different from both CKM and EGG. Our paper
is center on the ability of the researcher to recover economic shocks to the economy from
the innovations of an unrestricted VAR of infinite order. CKM and EGG concentrate on the
study of finite order SVARs.

CKM and EGG claim that non-invertibility is not a problem in their models. We find
that, for the parameters they use, this is indeed the case when you consider a model without
measurement errors. We also checked that when you use measurement errors, as CKM
suggest when they estimate the model using a state space form, the model might be non-
invertibility. CKM also argue that the presence of an eigenvalue equal to one induced by
the first difference of hours is not important empirically. We corroborate their finding since
in our theorems we document how eigenvalues of one do not cause lack of invertibility,
for which we need eigenvalues strictly bigger than one. On the other hand, we show that
eigenvalues of one imply that the model lacks of VAR resprentation (see subsection II.10),
and that we can not be sure thatG = D is the correct identification scheme (see remark
III.9). 31

31We also agree with CKM disregard of the criticisms that sincehours are bounded they cannot literally
have a unit root.
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IX. CONCLUDING REMARKS

We hesitate to draw sweeping conclusions about VARs from these exercises that apply
our simple check for invertibility. For some(A,B,C,D)’s invertibility is a problem, and for
others it is not. Some applications of VARs are informative about the shapes of impulse
responses to some economic shocks that theories should attempt to match, others are not.

It is easy to reiterate the recommendation32 to estimate the deep parameters of a com-
plete and fully trusted model likelihood based methods. If you fully trust your model, that
recommendation is incontrovertible. However, the enterprise of identifying shocks and re-
sponses to them by identifying SVARs aims to coax interestingpatterns from the data that
will prevail across asetof incompletely specified and not fully trusted models. If one is not
dogmatic in favor of a particular fully specified model, it iseasy to be sympathetic with the
SVAR enterprise, despite its potential pitfalls.

32Offered for example by Hansen and Sargent (1981, 1991c).
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Mean St. Deviation
β 0.9996 0.0002
ψ 5.3455 0.0156
α 0.4457 0.0164
δ 0.0005 0.0005
γ 0.0002 0.0002
υ 0.0108 0.0005
σa 0.0124 0.0007
συ 0.0083 0.0804
σµ1 0.0261 0.0014

TABLE 1. Posterior mean and standard deviation for the structuralparame-
ters of Fisher’s model

APPENDIX A. PRIORS AND POSTERIOR ESTIMATES FORFISHER’ S MODEL

In this section we describe the priors of the structural parameters of Fisher’s model used
in section and the posterior distributions that we obtain.

Let us first describe the priors. Since we are mostly interested on how the likelihood
function characterizes the posterior probability of the model being non-invertible, we use
uniform priors for all the structural parameters. Therefore, we use the following prior dis-
tributionsβ ∼U(0.90,1.01), ψ ∼U(0,10), α ∼U(0,1), δ ∼U(0.0,0.1), γ ∼U(0.0,0.1),
υ ∼U(0.0,0.1), σa ∼U(0.0,0.2), συ ∼U(0.0,0.2), andσµ1 ∼U(0.0,0.2), whereU(a,b)

stands for the uniform distribution betweena andb.
The above described prior distribution, the likelihood function of the model, and the

Metropolis-Hastings algorithm are used to get 500.000 draws from the posterior distribu-
tion of the structural parameters. We obtain an acceptance ratio between 25 and 30 percent.
The posterior mean and standard deviations of the parameters are reported in table 1, while
the posterior distributions are drawn in figure 2.
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FIGURE 2. Posterior distribution for the structural parameters ofFisher’s model.
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APPENDIX B. PRIORS AND POSTERIOR ESTIMATES FOREHL’ S MODEL

In this section we describe the priors of the structural parameters of EHL’s model used
in section and the posterior distributions that we obtain.

We use the following prior distributions. The inverse of theelasticity of intertemporal
substitution follows a gamma distribution,σ−1 ∼ Gamma(2,1.25). This assumption im-
plies a positive support forσ . We assume a gamma distribution for the average duration
of prices, 1/(1−θp)−1∼ Gamma(4,1). Thus, the average duration of prices has a prior
mean of 3 and a prior standard deviation of 2. We also assume a gamma distribution for
the average duration of wages, 1/(1−θw)−1∼ Gamma(3,1). Hence, the average dura-
tion of prices has a prior mean of 2 and a prior standard deviation of 1.74. We assume
a normal distribution for the inverse of the elasticity of the labor supply,γ ∼ N (1,0.5).
We choose prior uniform distributions between 0 and 1 for theall the autorregresive pa-
rametersρr ∼ U(0,1), ρa ∼ U(0,1), andρg ∼ U(0,1). Regarding the Taylor rule coef-
ficients, because we do not impose nonnegativity restrictions, we assume normal distri-
butions,γy ∼ N (1/8,1/50) andγπ ∼ N (1.5,1/10). Therefore, the prior means match
Taylor’s original guest. Finally, we choose prior uniform distributions between 0 and 1 for
all standard deviations,σa ∼U(0,1), σms∼U(0,1), σλ ∼U(0,1), andσg ∼U(0,1). We
impose dogmatic priors over the parametersβ , δ , φ , andε. The reasons are as follows:
First, because we do not consider capital, we have difficultyestimatingβ andδ . Second,
there is an identification problem between the probability of the Calvo lottery,θp, and the
mean of the price markup,ε.33 Therefore, it is impossible to identifyθp andε at the same
time. Similarly, this problem emerges betweenθw andφ . The values we use (β = 0.99,
δ = 0,36,ε = 6, andφ = 6) are quite conventional in the literature.

The above described prior distributions, the likelihood function of the model, and the
Metropolis-Hastings algorithm are used to get 500.000 draws from the posterior distribu-
tion of the structural parameters. We obtain an acceptance ratio between 25 and 30 percent.
The posterior mean and standard deviations of the parameters are reported in table 2, while
the posterior distributions are drawn in figure 3.

33The slope of the Phillips curve,κp, is the only equation containingθp andε.
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Mean St. Deviation
σ 0.5502 0.0755
θp 0.9203 0.0023
θw 0.7479 0.0149
γ 1.7096 0.3268
ρr 0.9700 0.0089
γy 0.0887 0.0184
γπ 1.5498 0.1005
ρa 0.6710 0.0156
ρg 0.1024 0.1428
σa 0.3855 0.0201
σms 0.0094 0.0027
σλ 0.6841 0.0343
σg 0.4599 0.0477

TABLE 2. Posterior mean and standard Deviation for the structuralparame-
ters of EHL’s model
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FIGURE 3. Posterior distribution for the structural parameters ofEHL’s model.
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APPENDIX C. PRIORS AND POSTERIOR ESTIMATES FOR HOUSEHOLD PRODUCTION

MODEL

In this section we describe the priors of the structural parameters of household production
model used in section and the posterior distributions that we obtain.

We want to minimize the effects of the priors on the results, therefore we use uni-
form priors for all the structural parameters. Hence, we setthat β ∼ U(0.9050,0.9950),
α ∼ U(0,1), θ ∼ U(0,1), η ∼ U(0,1), δ ∼ U(0.0,0.1), ρm ∼ U(0,1), ρh ∼ U(0,1),
σm∼U(0.0,0.01), σh ∼U(0.0,0.01), b∼U(−2.4641,4.4641), andγ ∼U(0,1). We have
to impose dogmatic priors over the parametersψ = 0.58756 anda = 0.33707. This two
parameters fix the amount of leisure time allocated into market and household production.
We find that there is not enough information in the data to estimate them (i.e., the likelihood
function was almost flat in those dimensions). Hence, as suggested by Benhabib, Roger-
son, and Wright (1991), we calibrate them to get 33 percent of time devoted to market
production activities and 28 percent of time devoted to household production activities.

These prior distributions, the likelihood function of the model, and the Metropolis-
Hastings algorithm are used to get 500.000 draws from the posterior distribution of the
structural parameters. We obtain an acceptance ratio between 25 and 30 percent. Note that
we estimate two models. In the first model, we observeym and lm. In the second model,
we observecm andlm. For the first of the models, the posterior mean and standard devia-
tions of the parameters are reported in table 3, while the posterior distributions are drawn
in figure 4. For the second of the models, the posterior mean and standard deviations of the
parameters are reported in table 4, while the posterior distributions are drawn in figure 5.
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Mean St. Deviation
β 0.9390 2.2310−7

α 0.4815 8.0410−7

θ 0.9391 1.1310−6

η 0.0132 4.5910−8

δ 0.0318 8.9310−9

ρm 0.6886 0.1899
ρh 0.8940 0.0076
σm 0.0056 0.0029
σh 0.0050 0.0029
γ 0.4457 0.2899
b 0.8907 2.8010−8

TABLE 3. Posterior mean and standard Deviation for the structuralparame-
ters of household production model when we observeym andlm.

Mean St. Deviation
β 0.9390 2.0110−7

α 0.4815 4.4510−7

θ 0.9391 6.3910−7

η 0.0132 2.9010−8

δ 0.0318 1.1310−8

ρm 0.6601 0.1755
ρh 0.9220 0.0030
σm 0.0050 0.0029
σh 0.0050 0.0029
γ 0.4668 0.3141
b 0.8907 3.8810−8

TABLE 4. Posterior mean and standard Deviation for the structuralparame-
ters of household production model when we observecm andlm.
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FIGURE 4. Posterior distribution for the structural parameters ofhousehold
production model when we observeym andlm.
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APPENDIX D. FINITE ORDER AUTOREGRESSIONS

This appendix describes formulas for taking anA,B,C,D and forming the associatednth
order vector autoregression.34

D.1. Moment formulas. Take an economic model in the state-space form (1)-(2). Assume
that all of the eigenvalues ofA are less than unity in modulus, except possibly for a unit
eigenvalue that is affiliated with the constant. If present,the unit eigenvalue determines the
unconditional mean vectorµx of x via

(I −A)µx = 0. (A1)

The stationary covariance matrix ofx is cx(0) = E(x− µx)(x− µx)
′ and can be computed

by solving the discrete Sylvester equation

cx(0) = Acx(0)A′ +BB′, (A2)

which can be solved by Hansen and Sargent’s matlab programdoublej. (The indigenous
matlab programdlyap.m works only when there are no unit eigenvalues ofA.) The
autocovariance ofx is cx( j) = E(xt −µx)(xt− j −µx)

′ and can be computed from

cx( j) = A jcx(0), j ≥ 1. (A3)

Let µy =Cµx be the mean ofy andcy( j) = E(yt −µy)(yt− j −µy)
′. Elementary calculations

establish:

cy(0) = Ccx(0)C′ +DD′ (A4)

cy( j) = CAjcx(0)C′ +CAj−1BD′, j ≥ 1 (A5)

cy(− j) = cy( j)′, j ≥ 1. (A6)

D.2. Projection formulas. We want to calculate thenth order vector autoregressions

yt −µy =
n

∑
j=1

A(n)
j (yt− j −µy)+ ε(n)

t (A7)

whereε(n)
t satisfies the orthogonality conditions

E[ε(n)
t (yt− j −µy)

′] = 0, j = 1, . . . ,n. (A8)

34Riccardo Colacito has written a Matlab programsssvar.m that by implementing these formulas ac-
cepts an(A,B,C,D) and a positive integern and yields all of the objects defining annth order VAR. His
programvarss.m takes annth order VAR and forms a state space systemA,B,C,D, a useful tool for using
Matlab to compute impulse response functions for estimatedVAR’s.
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The orthogonality conditions, also known as the normal equations, can be written

cy(k) =
n

∑
j=1

A(n)
j cy(k− j)′, k = 1, . . . ,n. (A9)

Writing out (A9) and solving for
[
A(n)

1 A(n)
2 . . . A(n)

n

]
gives:




cy(1)′

cy(2)′

...
cy(n)′




′


cy(0) cy(1) · · · cy(n−1)

cy(−1) cy(0) · · · cy(n−2)
...

...
...

cy(1−n) cy(2−n) · · · cy(0)




−1

=
[
A(n)

1 A(n)
2 . . . A(n)

n

]
. (A10)

The covariance matrixΣ(n) = Eε(n)
t ε(n)′

t of the innovations is

Σ(n) = cy(0)−




A(n)′
1

A(n)′
2
...

A(n)′
n




′


cy(0) cy(1) · · · cy(n−1)

cy(−1) cy(0) · · · cy(n−2)
...

...
...

cy(1−n) cy(2−n) · · · cy(0)







A(n)′
1

A(n)′
2
...

A(n)′
n




. (A11)

Please note that thenth order autoregression can also be expressed as

yt = α(n) +
n

∑
j=1

A(n)
j yt− j + ε(n)

t (A12)

where

α(n) = (I −
n

∑
j=1

A(n)
j )µy. (A13)

Hereµy is a properly scaled eigenvector of∑(n)
j=1 associated with the unit eigenvalue, where

the proper scaling assures that the mean of the constant 1 is 1. Our Matlab programssvar
takes an(A,B,C,D), with the understanding that the constant 1 is the first statevariable,
and computes annth order VAR. Our programvarss takes annth order VAR and forms
the pertinent(A,B,C,D).



A,B,C’S (AND D)’S FOR UNDERSTANDING VARS 45

REFERENCES

ANDERSON, B. D. O., AND J. B. MOORE (1979):Optimal Filtering. Prentice-Hall, Inc.,
New Jersey.

ANDERSON, E., L. P. HANSEN, E. R. MCGRATTAN , AND T. J. SARGENT (1996): “Me-
chanics of Forming and Estimating Dynamic Linear Economies,” in Handbook of Com-
putational Economics, Volume 1, ed. by D. A. K. Hans M. Amman,and J. Rust, pp.
171–252. North-Holland.

BARRO, R. J. (1979): “On the Determination of the Public Debt,”Journal of Political
Economy, 87(5), 940–971.

BENHABIB , J., R. ROGERSON, AND R. D. WRIGHT (1991): “Homework in Macroeco-
nomics: Household Production and Aggregate Fluctuations,” Journal of Political Econ-
omy, 99(6), 1166–1187.

CABALLERO , R. J.,AND E. M. ENGEL (2004): “Adjustment is Much Slower than You
Think,” Manuscript, Yale University.

CHARI , V. V., P. J. KEHOE, AND E. R. MCGRATTAN (2005): “A Critique of Structural
VARs Using Real Business Cycle Theory,” Federal Reserve Bank of Minneapolis Work-
ing Paper Number 631.

CHRISTIANO, L. (1990): “Linear-Quadratic Approximation and Value-Function Iteration:
A Comparison,”Journal of Economic and Business Statistics, 8(1), 99–113.

CHRISTOPHERJ. ERCEG, D. W. H., AND A. T. LEVIN (2000): “Optimal Monetary Policy
with Staggered Wage and Price Contracts,”Journal of Monetary Economics, 46(2), 281–
313.

CHRISTOPHERJ. ERCEG, L. G., AND C. J. GUST (2004): “Can Long-Run Restrictions
Identify Technology Shocks?,” Federal Reserve Board International Finance Discussion
Paper Number 792.

FISHER, J. D. M. (2003): “Technology Shocks Matter,” Federal Reserve Bank of Atlanta
Working Paper 2002-14.

GALÍ , J. (1999): “Technology, Employment, and the Business Cycle:Do Technology
Shocks Explain Aggregate Fluctuations?,”The American Economic Review, 89(1), 249–
271.

GREENWOOD, J.,AND Z. HERCOWITZ (1991): “The Allocation of Capital and Time over
the Business Cycle,”Journal of Political Economy, 99(6), 1188–1214.

HALL , R. E. (1978): “Stochastic Implications of the Life Cycle-Permanent Income Hy-
pothesis: Theory and Evidence,”Journal of Political Economy, 86(6), 971–987.

HANSEN, L. P., W. ROBERDS, AND T. J. SARGENT (1991): “Time Series Implications of
Present Value Budget Balance and of Martingale Models of Consumption and Taxes,” in
Rational expectations econometrics, ed. by L. P. Hansen,andT. J. Sargent, pp. 121–162.



A,B,C’S (AND D)’S FOR UNDERSTANDING VARS 46

Westview Press, Boulder.
HANSEN, L. P., AND T. J. SARGENT (1981): “Formulating and Estimating Dynamic Lin-

ear Rational Expectations Models,” inRational Exectations and Econometric Practice,
ed. by J. Robert E. Lucas,andT. J. Sargent, pp. 127–158. University of Minnesota Press,
Minneapolis, Minnesota.

(1991a): “Lecture Notes on Least Squares Prediction Theory,” in Rational expec-
tations econometrics, ed. by L. P. Hansen,andT. J. Sargent, pp. 13–44. Westview Press,
Boulder.

(1991b):Rational expectations econometrics. Westview Press, Boulder.
(1991c): “Two Difficulties in Interpreting Vector Autoregressions,” inRational

expectations econometrics, ed. by L. P. Hansen,andT. J. Sargent, pp. 77–120. Westview
Press, Boulder.

(2005): Recursive Linear Models of Dynamic Economies. Princeton, Princeton,
New Jersey.

L IPPI, M., AND L. REICHLIN (1994): “VAR Analysis, Nonfundamental Representations,
Blaschke Matrices,”joe, 63(1), 307–325.

RICHARD CLARIDA , J. G., AND M. GERTLER (2000): “Monetary Policy Rules and
Macroeconomic Stability: Evidence and Some Theory,”Quarterly Journal of Econom-
ics, CXV, 147–180.

ROBERDS, W. (1991): “Implications of Expected Present Value Budge Balance: Applica-
tion to Postwar U.S. Data,” inRational expectations econometrics, ed. by L. P. Hansen,
andT. J. Sargent, pp. 163–174. Westview Press, Boulder.

ROBERT, C. C. (2001):The Bayesian Choice: From Decision-Theoretic Foundations to
Computational Implementation, Second Edition. Springer-Verlag.

ROBERT E. LUCAS, J., AND N. L. STOKEY (1987): “Money and Interest in a Cash-in-
Advance Economy,”Econometrica, 55(1), 491–513.

ROSEN, S., K. M. MURPHY, AND J. A. SCHEINKMAN (1994): “Cattle Cycles,”Journal
of Political Economy, 102(3), 468–492.

RYOO, J., AND S. ROSEN (2003): “The Engineering Labor Market,” Manuscript: Hong
Kong University of Science and Technology.

SARGENT, T. (1987):Macroeconomic Theory, Second edition. Academic Press, New York.
SIMS, C. A., AND T. ZHA (2004): “Does Monetary Policy Generate Recessions?,” Federal

Reserve Bank of Minneapolis Working Paper Number 98-12.
TOPEL, R., AND S. ROSEN(1988): “Housing Investment in the United States,”Journal of

Political Economy, 96, 718–40.
UHLIG , H. (1999): “A toolkit for analysing nonlinear dynamic stochastic models easily,”

in Computational Methods for the Study of Dynamic Economies, ed. by R. Marimon,and



A,B,C’S (AND D)’S FOR UNDERSTANDING VARS 47

A. Scott, pp. 30–61. Oxford.
WATSON, M. (1994): “Vector Autoregressions and Cointegration,” inHandbook of Econo-

metrics, Vol. IV, ed. by D. L. McFadden,andR. F. Engle, pp. 2843–2915. Elsevier Sci-
ence.

WHITTLE , P. (1983):Prediction and Regulation by Linear Least-Square Methods,Second
edition, revised. University of Minnesota Press, Minneapolis.




