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I. Introduction

In the empirical asset pricing literature, the popular two-pass cross-sectional regression (CSR)
methodology developed by Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973) is
often used for estimating risk premia and testing pricing models that relate expected security
returns to security betas on economic factors (beta pricing models). Although there are many
variations of this two-pass methodology, the basic approach always involves two steps. In the first
pass, the betas of the test assets are estimated using the usual ordinary least squares (OLS) time
series regression of returns on some common factors. In the second pass, the returns on test assets
are regressed on the betas estimated from the first pass. By running this second-pass CSR on a
period-by-period basis, we obtain time series of the intercept and the slope coefficients. The average
values of the intercept and the slope coefficients are then used as estimates of the zero-beta rate

and factor risk premia, with standard errors computed from these time series as well.

Since the betas are estimated with error in the first-pass time series regressions, an errors-in-
variables (EIV) problem is introduced in the second-pass CSR. Measurement errors in the betas
cause two problems. The first is that the estimated zero-beta rate and risk premia are biased,
though Shanken (1992) shows they are consistent as the length of the time series increases to
infinity. The second problem is that the usual Fama-MacBeth standard errors for the estimated
zero-beta rate and risk premia are inconsistent. Shanken (1992) addresses this by developing an
asymptotically valid EIV adjustment of the standard errors. Jagannathan and Wang (1998) extend
this asymptotic analysis by relaxing the assumption that returns are homoskedastic conditional on
the factors.! Finally, the finite sample properties of these two-pass estimators have been studied

by Ahn and Gadarowski (2003), Chen and Kan (2003), and Shanken and Zhou (2007).

Standard inference using the two-pass methodology implicitly assumes that expected returns are
exactly linear in the betas, i.e., the beta pricing model is correctly specified. It is difficult to justify
this assumption when estimating many different models because some (if not all) of the models
are bound to be misspecified. Moreover, since asset pricing models are, at best, approximations of
reality, it is inevitable that we will often, knowingly or unknowingly (because of limited power),
estimate an expected return relation that departs from exact linearity in the betas. The first

contribution of this paper is the development of misspecification-robust asymptotic standard errors

! Jagannathan, Skoulakis and Wang (2008) provide a synthesis of the two-pass CSR methodology.



for the estimated zero-beta rate and risk premia. Our analysis generalizes the results of Hou and

Kimmel (2006) and Shanken and Zhou (2007), which are derived under a normality assumption.

One nice feature of our robust standard errors is that they are applicable whether a model
is correctly specified or not. In addition, under a multivariate elliptical assumption, we provide
simple expressions for the asymptotic variances of the zero-beta rate and risk premia estimates.
In the case of the generalized least squares (GLS) CSR estimators, we prove that the variances
are always larger when the model is misspecified. The difference depends on the extent of model
misspecification as well as on the correlation between the factors and returns. We show that the
misspecification adjustment term can be very large when the underlying factor is poorly mimicked

by asset returns, a situation that typically arises when the factors are macroeconomic variables.

Judgement about the empirical success of a beta pricing model is often based on its cross-
sectional R?. A high value is usually considered evidence that the model does a good job of
explaining the cross-section of expected returns. Several papers have analyzed the properties of the
population values of the cross-sectional R? measures. Although there is an exact linear relation be-
tween expected returns and betas when a market index (factor portfolio) is mean-variance efficient,
Roll and Ross (1994) show that there may be no relation at all, i.e., an OLS R? of zero, even if an
index is nearly efficient. Kandel and Stambaugh (1995) document related limitations of the OLS
R? and show that there is a direct relation between the GLS R? and the relative efficiency of an
index. Lewellen, Nagel and Shanken (2009) provide a multifactor generalization of this result, with
mimicking portfolios substituted for non-traded factors. They also argue, as do Jagannathan and
Wang (1996), that the OLS R? can still be economically meaningful if the objective is to model

the expected returns for a particular set of assets.

Jagannathan, Kubota, and Takehara (1998), Kan and Zhang (1999), and Lewellen, Nagel, and
Shanken (2009) employ simulation methods to explore sampling issues in estimating the cross-
sectional R2.2 However, to our knowledge no attempt has been made to derive the asymptotic
distribution of the sample cross-sectional R?. Building on our analysis of parameter estimation
under potential model misspecification, the second contribution of this paper is to characterize the

asymptotic distribution of the sample R?, thereby filling a significant gap in the literature.

In contrast to our paper, Jagannathan, Kubota, and Takehara (1998) and Kan and Zhang (1999) examine the
sampling errors of the CSR R? and risk premia estimates under the assumption that one of the factors is useless (i.e.,
independent of returns).



Finally, although R?s for competing models are routinely compared in empirical asset pricing
studies, no formal model comparison test has yet been proposed in this context. This is essential
since the R? statistics are subject to considerable statistical variation. Consequently, a model with
a higher sample R? may not truly outperform its competitor. The third contribution of this paper
is the introduction of a methodology to formally test whether two beta pricing models have the
same population R?. We find that the asymptotic distribution of the difference in sample R%s
of two models depends on whether the models are correctly specified or not, and on whether the

models are nested or non-nested.

After developing the econometric methodology, we provide an in-depth empirical analysis that
demonstrates the relevance of our new tests. We examine the performance of a variety of uncon-
ditional and conditional beta pricing models that have been proposed as refinements of the static
capital asset pricing model (CAPM) and consumption CAPM (CCAPM). We start by investigat-
ing whether these models pass a specification test based on the sample cross-sectional R? and find
that, in many instances, the models are rejected at conventional statistical levels. This provides
compelling motivation to explicitly account for model misspecification in the subsequent empirical

analysis of R%s.

Next, we examine whether model misspecification substantially affects the standard errors of
the zero-beta rate and risk premia estimates. Consistent with our theoretical results, we find that
the t-ratios are about the same under correctly specified and potentially misspecified models when
the underlying factors are returns on well diversified portfolios. However, standard errors can differ

substantially when the underlying factors are not traded, e.g., macroeconomic factors.

Finally, we analyze whether different beta pricing models have significantly different cross-
sectional R? measures. It appears that the commonly used returns and factors are sometimes too
noisy to conclude that one model clearly outperforms the others. For example, using the commonly
employed 25 size and book-to-market ranked portfolios as test assets, there is not much statistical
evidence to establish that the five-factor intertemporal capital asset pricing model (ICAPM) of
Petkova (2006) outperforms even the simple unconditional CAPM in terms of cross-sectional R2.
However, the advantage of the Fama and French (1993) three-factor model over the CAPM is

statistically significant for this metric.

The rest of the paper is organized as follows. Section II presents an asymptotic analysis of the



zero-beta rate and risk premia estimates under potentially misspecified models. We also consider an
alternative CSR approach that uses covariances with the factors, rather than (multiple regression)
betas, as the regressors. In addition, we provide an asymptotic analysis of the sample cross-sectional
R?s under correctly specified and misspecified models. Section III introduces tests of equality of
cross-sectional R?s for two competing models and provides the asymptotic distributions of the test
statistics for different scenarios. Section IV presents an empirical application. The final section

summarizes our findings and the Appendix contains proofs of all propositions.

II. Asymptotic Analysis under Potentially Misspecified Models

A.  Population Measures of Pricing Errors and Cross-Sectional R?s

Let f be a K-vector of factors and R a vector of returns on N test assets. We define Y = [f/, R/

and its mean and covariance matrix as

M1

w = E[Y]= , (1)
12
Vii 'V

vV o= vafy]=| " P, (2)
Vo1 Vao

where V is assumed to be positive definite. The multiple regression betas of the N assets with
respect to the K factors are defined as 5 = V21V1_11. These are measures of systematic risk or the
sensitivity of returns to the factors. In addition, we denote the covariance matrix of the residuals

of the NV assets by X = Voo — V21V1_11V12.

The proposed K-factor beta pricing model specifies that asset expected returns are linear in

the betas, i.e.,

H2 = X77 (3)

where X = [1y, (] is assumed to be of full column rank, 1y is an N-vector of ones, and v = [vo, 1]’
is a vector consisting of the zero-beta rate (g) and risk premia on the K factors (7y;).> When the
model is misspecified, the pricing error vector, ps — Xy, will be nonzero for all values of 7. In that

case, it makes sense to choose v to minimize some aggregation of pricing errors. Denoting by W

*Note that constant portfolio characteristics can easily be accommodated in the CSR without creating any addi-
tional complication. The analysis that includes asset characteristics is available upon request.



an N x N symmetric positive definite weighting matrix, we define the (pseudo) zero-beta rate and

risk premia as the choice of 7 that minimizes the quadratic form of pricing errors:

’yW = |: 3Z’§] :| = argminw('uz — X’y)/W(/LQ - X’)/) — (X/WX)_IX/W#Q' (4)

The corresponding pricing errors of the IV assets are then given by
ew = p2 — Xyw. (5)

In addition to the aggregate pricing errors, researchers are often interested in a normalized
goodness-of-fit measure for a model. A popular measure is the cross-sectional R?. Following

Kandel and Stambaugh (1995), this is defined as

2
—1- %, 6
Pw Qo (6)
where
Qo = min(uz — 1x70) W (k2 — Lv0) = 1pWpa — poWn (U WN) = 1y Wpg, (7)
Q = eyWew = pthWpy — phWX(X'WX) L X' Wps. (8)

In order for p%/V to be well defined, we need to assume that ps is not proportional to 1y (the
expected returns are not all equal) so that @y > 0. Note that 0 < p%/V < 1 and it is a decreasing
function of the aggregate pricing errors @ = e}, Wey. Thus, p%/V is a natural measure of goodness

of fit.

While the betas are typically used as the regressors in the second-pass CSR, there is a potential
issue with the use of multiple regression betas when K > 1: in general, the beta of an asset with
respect to a particular factor depends on what other factors are included in the first-pass time-
series OLS regression. As a consequence, the interpretation of the risk premia 7; in the context
of model selection becomes problematic (more discussion on this issue later in Section III.A). To
overcome this problem, we propose an alternative second-pass CSR that uses the covariances V51 as
the regressors. Let C' = [1x, Va1] and Ay be the choice of coefficients that minimizes the quadratic

form of pricing errors:

)

Aw = [ iWﬂ ] = argminy (2 — CA)W (g — CA) = (C'WC) 1 O'W pa. 9)

5



Given (4) and (9), there is a one-to-one correspondence between vy and Ayy:

AW,0 = YW,0, M = Viiywa. (10)

It is easy to see that the pricing errors from this alternative second-pass CSR, ey = po — C Ay, are
the same as those in (5). It follows that the p#, for these two CSRs are also identical. However, it
is important to note that unless Vj; is a diagonal matrix, Ay, 1; = 0 does not imply y,1; = 0, and

vice versa.*

It should be emphasized that unless the model is correctly specified, v, Aw, ew, and p%/V
depend on the choice of W. Popular choices of W in the literature are W = Iy (OLS CSR),
W = V5' (GLS CSR),” and W = ;' (weighted least squares (WLS) CSR), where ¥, is a
diagonal matrix containing the diagonal elements of Y. To simplify the notation, we suppress the

subscript W from vy, Aw, ew, and p%/V when the choice of W is clear from the context.

B. Sample Measures of Pricing Errors and Cross-Sectional R%s

Let Y; = [f/, Rj}]’, where f; is the vector of K proposed factors at time ¢ and R; is a vector of
returns on N test assets at time ¢. Throughout the paper, we assume the time series Y; is jointly
stationary and ergodic, with finite fourth moment. Suppose we have T observations on Y; and

denote the sample moments of Y; by

M. T
N M1 1
Ho= ~ = 7 Y;fa (11)
N [ Vn V12 1 r
V= | o =) -pM-p) (12)
| Vo1 Voo T ;

The popular two-pass method first estimates the betas of the N assets by running the following

multivariate regression:

Rt:a+ﬁft—|—€t, tzl,...,T. (13)

“See Jagannathan and Wang (1998) and Cochrane (2005, Chapter 13.4) for a discussion of this issue. Another
solution to this problem is to use simple regression betas as the regressors in the second-pass CSR, as in Chen, Roll,
and Ross (1986) and Jagannathan and Wang (1996, 1998). Kan and Robotti (2009) provide asymptotic results for
the CSR with simple regression betas under potentially misspecified models.

®As pointed out by Lewellen, Nagel, and Shanken (2009), yw and ejy Wew are the same regardless of whether we
use W = V,,' or W = X7, However, it should be noted that the p}, are different for W = V,,' and W = £~'. For
the purpose of model comparison, it makes sense to use a common W across models, so we prefer to use W = Vzgl
for the case of GLS CSR.



The estimated betas from this first-pass time-series regression are given by the matrix 3 = Va; Vl_ll.
We then run a single CSR of iy on X = 1N, B] to estimate yy in the second pass.® When the
weighting matrix W is known (say OLS CSR), we can estimate vy in (4) by

4= (X'WX)'X'Whs. (14)
Similarly, letting C' = [1y, Va1], we estimate Ay in (9) by
A= (C'WE)LC'W fig. (15)

In the GLS and WLS cases, the weighting matrix W involves unknown parameters and, therefore,
we need to substitute a consistent estimate of W, say W, in (14) and (15). This is typically the

corresponding matrix of sample moments, for example, W = VQEI for GLS and W = 221 for WLS.

The sample measure of p? is similarly defined as

P12 (16)

Qo

where Qo and @ are consistent estimators of Qg and Q in (7) and (8), respectively. When W is
known, we estimate (Qy and @) using

Qo = Wia — sWIn(INWiy) ™ 1yW s, (17)
Q = Wiy — ppWX(X'WX)™ X'W . (18)

When W is not known, we replace W with W in the formulas above.

C. Asymptotic Distribution of 4 under Potentially Misspecified Models

When computing the standard error of %, researchers typically rely on the asymptotic distribu-
tion of 4 under the assumption that the model is correctly specified. Shanken (1992) presents the
asymptotic distribution of 4 under the conditional homoskedasticity assumption on the residuals.
Jagannathan and Wang (1998) extend Shanken’s results by allowing for conditional heteroskedas-

ticity as well as autocorrelated errors.

Two recent papers have investigated the asymptotic distribution of 4 under potentially mis-

specified models. Hou and Kimmel (2006) derive the asymptotic distribution of 4 for the case of

5Some studies allow B to change throughout the sample period. For example, in the original Fama and MacBeth
(1973) study, the betas used in the CSR for month ¢ were estimated from data prior to that month. We do not study
this case here mainly because the estimator of « from this alternative procedure is generally not consistent.



GLS CSR with a known value of 79, and Shanken and Zhou (2007) present asymptotic results for

the OLS, WLS, and GLS cases with v unknown. However, both analyses are somewhat restrictive,

as they rely on the i.i.d. normality assumption. We now relax this assumption.”

We first present the asymptotic distribution of 4 when W is known.

Proposition 1. Let H = (X'WX)™Y, A= HX'W, and v = [ot, 7)) = AR;. Under a poten-

tially misspecified model, the asymptotic distribution of ¥ = (X/WX)_IX/W[IQ s given by

VT (=) ~ N(0k 11, V(3)), (19)
where
V(3) = fj Elhih ), (20)
with o
b= (=) = (&1 — S)we + Hzyuy, (21)

¢ = o (e — )V, 6 = [, (n— )V, u = eW(R — p2), we = ¥Viy' (fi — ), and
2z =10, (fi — ,ul)’Vl_ll]’. When the model is correctly specified, we have:

he = (v — ) — (¢t — P)wr. (22)

To conduct statistical tests, we need a consistent estimator of V(). This can be obtained by
replacing h; with

he = (= 9) = (6 — Q)i + Hyiy, (23)

where % = [Jor, 4] = (X'WX) ' X'WRy, ¢ = [For. (51e — f)1s & = (o, (51 — )], e =

W (Ry—fig) with & = fig— X4, by = (Vi (fi—jun), H = (X'WX)" and % = [0, (fi—pm)'Vi;']'-

In particular, if h; is uncorrelated over time, then we have V(§) = E[hsh}], and its consistent

estimator is given by

. 1.
V(3 = o S b, (24)
t=1

"For the case of misspecified GMM, White (1994) and Hall and Inoue (2003) provide an asymptotic analysis of the
parameter estimates. However, the two-pass CSR is not a standard GMM procedure that estimates § and v jointly.
Instead, the two-pass CSR can be interpreted as a sequential GMM that first estimates # from one set of moment
conditions and then estimates 7 using a different set of moment conditions by plugging in the estimated 3 (see Pagan
(1984) for an analysis of regressions with generated regressors and Newey (1984) for a discussion of sequential GMM).
As a result, the asymptotic analyses of White (1994) and Hall and Inoue (2003) cannot be directly applied to the
two-pass CSR estimator of ~.



When h; is autocorrelated, one can use Newey and West’s (1987) method to obtain a consistent

estimator of V' (¥).

An inspection of (21) reveals that there are three sources of asymptotic variance for 4. The first
term ~y; — measures the asymptotic variance of 4 when the true betas (3) are used in the CSR. For
example, if R; isi.i.d., then ~; is also i.i.d. and we can use the time series variance of 4 to compute
the standard error of 4. This coincides with the popular Fama and MacBeth (1973) method.
However, since B is used in place of § in the actual second-pass CSR, there is an EIV problem.
The second term (¢; — ¢)w; is the EIV adjustment term that accounts for the estimation errors
in 3. The first two terms together give us the V(%) under the correctly specified model.® When
the model is misspecified (e # Oy), there is a third term H zyuy, which we call the misspecification

adjustment term. Traditionally, this term has been ignored by empirical researchers.

To gain a better understanding of the relative importance of the misspecification adjustment
term, in the following lemma we derive an explicit expression for V(%) under the assumption that

returns and factors are multivariate elliptically distributed.

Lemma 1. When the factors and returns are i.i.d. multivariate elliptically distributed with kurtosis

parameter k,° the asymptotic variance of 4 = (X/WX)_IX/W[IQ s given by

V(ﬁ/) = Tw + Twl + lel + Tw27 (25)
where
Yo = AVapA' 4+ (1+rK)Y V' 1ASA, (26)
Twl = _(1 + ’{)H[Ov Vivl_ll]/e/WV22A/ (27)
YTwe = (14 k)eWVaWeHV T H, (28)
o 0 0k
with V1" = 1 |-
O Vi

Note that when x = 0, Lemma 1 collapses to the expression given by Shanken and Zhou (2007)

in their Proposition 1 under normality. For general W, the misspecification adjustment term

81t can be verified that this expression coincides with the one given by Jagannathan and Wang (1998) in their
Theorem 1, except that our expression is easier to use in practice.

9The kurtosis parameter for an elliptical distribution is defined as & = pa/(30*) — 1, where 0 and a4 are its
second and fourth central moments, respectively.



Y1 + Y),; + Two is not necessarily positive semidefinite. However, for true GLS with W = VQEI
or W = X7, we have AVosWe = Ae = 041, so Y,1 vanishes, resulting in the following simple

expression for V(9):
V() = H+ 1+ mmVi m(XSTX) T+ (1+ k) QH VT H, (29)

where H = (X’VQEIX)_1 and ) = e’Vz_zle. The misspecification adjustment term (1 + /{)QHTN/HIH
is positive semidefinite in this case since 1 + x > 0 (see Bentler and Berkane (1986)) and V;;' is
positive definite. Note that the adjustment term is positively related to the aggregate pricing errors

(@ and the kurtosis parameter x.

We now turn our attention to the asymptotic distribution of 4 when W must be estimated.
Under a correctly specified model, the use of W instead of W does not alter the asymptotic
distribution of 4 (proof is available upon request). However, the asymptotic distribution is affected
when the model is misspecified. In the following proposition, we present the distribution for the

GLS case.V

Proposition 2. Let H = (X'V,'X)™!, A = HX'Vy,', and v = [yor, 75, = ARy. Under a

potentially misspecified model, the asymptotic distribution of 4 = (X’VQEIX)_IX’VQEI,&Q s given by

VT (3 =) ~ N(0k 11, V(3)), (30)
where
V(3) = fj Elhih ), (31)
with i
he = (v —7) = (0 — d)wr + Hzuy — (ve — 7)), (32)

dr = [or. (e — f)Ts & = [0, (1 — p)Ts e = €'V (Re — pi2), we = yiVi7' (fe — 1), 2 =
[0, (ft— ,ul)’Vl_ll]’. When the model is correctly specified, we have:

he = (v — ) — (¢t — P)wr. (33)

OVarious results for the WLS case are available upon request.

10



Comparing (32) with the expression for h; in (21), we see that there is an extra term in h,
associated with the use of W instead of W. This fourth term vanishes only when the model is

correctly specified.

In order to gain a more concrete understanding of the misspecification adjustment term, in the
following lemma we derive an explicit expression for V(%) in the GLS case under the multivariate

elliptical assumption.

Lemma 2. When the factors and returns are i.i.d. multivariate elliptically distributed with kurtosis

parameter k, the asymptotic variance of 4 = (X’VQEIX)_IX’VQ_QI[Q s given by

V(’?) = Tw + Tw2a (34)
where
Ty = H+(1+r)%VmXSX)™, (35)
Twr = (1+#)Q [(X’z—l)()—lv;ll(X’z—l)()—l F(xElx) (36)
. y—1 -1 —1  r—1 0 O/K
with H=(X"Voe X)™%, Q =€Vye, and Vi = N

When @ > 0, the misspecification adjustment term Y, is positive definite since it is the sum
of two matrices, the first positive semidefinite and the second positive definite. In the proof of
Lemma 2, we show that the misspecification adjustment term crucially depends on the variance
of the residuals from projecting the factors on the returns. For factors that have very low corre-
lation with returns (e.g., macroeconomic factors), therefore, the impact of misspecification on the

asymptotic variance of 41 can be very large.

D. Asymptotic Distribution of;\ under Potentially Misspecified Models

In the following proposition, we present the asymptotic distribution of ), the estimated parameters

in the covariance-based model, for various cases. Since the derivation is very similar to the derivation

for 4, we do not provide the proof.!!

A proof of this proposition is available upon request. The asymptotic distribution of ) under the i.i.d. multivariate
elliptical distributional assumption is also available upon request.

11



Proposition 3. Under a potentially misspecified model, the asymptotic distribution of;\ s given

by
VI(A = 2) & N0+, V(V), (37)
where
V(N = > Elhbi]. (38)
j=—00

To simplify the expressions for hy, we define Gy = Va1 — (Ry — p2)(fy — 1)’y Z = [0, (fy — 1),
H=(C'WC)™', A= HC'W, \y = ARy, and u; = ¢ W (Ry — pi2).

(1) With a known weighting matriz W, A = (C'WC)"1C'W jig and

ilt = (/\t — /\) + /Iét/\l + Hétut. (39)
(2) For GLS, A = (C'Vyn'C)"1C'Visy' iz and

he = (A — A) + AG M + HZ g — (A — Ny (40)

When the model is correctly specified, we have:

}Nlt = (/\t — /\) + Aét/\l. (41)

E. Asymptotic Distribution of the Sample Cross-Sectional R?

The sample R? (p?) in the second-pass CSR is a popular measure of goodness of fit for a model.
A high p? is viewed as evidence that the model under study does a good job of explaining the
cross-section of expected returns. Lewellen, Nagel, and Shanken (2009) point out several pitfalls in
this approach and explore simulation techniques to obtain approximate confidence intervals for p?.

In this subsection, we provide the first formal statistical analysis of p2.

In the following proposition, we show that the asymptotic distribution of 52 crucially depends on
whether (1) the population p? is 1 (i.e., a correctly specified model), (2) 0 < p? < 1 (a misspecified
model that provides some explanatory power for the expected returns on the test assets), or (3)
p? = 0 (a misspecified model that does not explain any of the cross-sectional variation in expected

returns for the test assets).

12



Proposition 4. In the following, we set W to be 1/2_21 for the GLS case. (1) When p? =1,

T 1) = - TQA Z La, (42)

j=
where the x;’s are independent X3 random variables, and the & ’s are the eigenvalues of
P'WiSWzP, (43)

where P is an N x (N — K — 1) orthonormal matriz with columns orthogonal to W%C’, S is the
asymptotic covariance matriz of % ZZ;I ey, and yp = 1 —N{(ftr — p1) is the normalized stochastic

discount factor (SDF).

(2) When 0 < p? <1,

e}

VT(P? ~ ) AN (0, Y Elnnesy] | (44)
j=—00
where
ne = 2[—wy+(1- %) +] /Qo for known W, (45)
ng = [u? — 2wy +(L—p )(2vt —; )] /Qo for W = VQEI, (46)

with eg = [Iy — In(UNW1n) "1\ W]pe, up = €W (R — p2), and vy = efW (Ry — p2).

(3) When p? =0,

K
_J 47
2:: 0o (47)
where the x;’s are independent X3 random variables and the & ’s are the eigenvalues of
[BWB — BWin(UyWin)  INWEV (31), (48)

where V (41) is given in Proposition 1 (for known weighting matriz W ) or Proposition 2 (for GLS).'?

The first asymptotic distribution in (42) allows us to perform a specification test of the beta

pricing model. This is an alternative to the various multivariate asset pricing tests that have

2In the proof of Proposition 4, we show that p? = 0 if and only if 71 = Ox. Therefore, another way to test
Hy : p? = 0 is to test the equivalent hypothesis Ho : 71 = Ox, which can be easily performed by using a Wald test.
When computing V (41) for the test of Hy : p> = 0, we can impose the null hypothesis Ho : 71 = Ox and drop the
EIV term (¢+ — ¢)w; in the expressions for ht in Propositions 1 and 2.
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been developed in the literature.!®> Whereas the earlier tests focus on an aggregate measure of
pricing errors, the R%-based test examines aggregate pricing errors in relation to the cross-sectional
variation in expected returns. In contrast, the asymptotic distribution in (47) permits a test of
whether the model has any explanatory power for expected returns, i.e., whether we can reject

Hy:p?>=0.

When 0 < p? < 1, the primary case of interest, Proposition 4 shows that asymptotically, p?
is normally distributed around its true value. From the results of the proposition, we see that n;
approaches zero when p? — 0 or p? — 1. Consequently, se(p?) tends to be lowest when p? is close
to zero or one, and se(p?) is not monotonic in p?. Note that the asymptotic normal distribution of
p? breaks down for the two extreme cases (p? = 0 or 1).'* Intuitively, the normal distribution fails
because, by construction, p? will always be above zero (even when p? = 0) and below one (even

when p? = 1).1°

III. Tests for Comparing Two Competing Models

One way to think about model comparison and selection is to ask whether two competing beta pric-
ing models have the same population cross-sectional R2. In this section, we derive the asymptotic
distribution of the difference between the sample R?s of two models. We show that this distribution
depends on whether the two models are nested or non-nested and whether the models are correctly
specified or not. For model comparison, we focus on the R? of the CSR with known weighting

matrix W and on the R? of the GLS CSR that uses W = VQEI as the weighting matrix.

Our analysis in this section is related to the model selection tests of Kan and Robotti (2008)
and Li, Xu, and Zhang (2009), which are based on the earlier work of Vuong (1989), Rivers and
Vuong (2002), and Golden (2003). Whereas Kan and Robotti (2008) and Li, Xu, and Zhang
(2009) conduct tests of equality of the Hansen-Jagannathan (1997) distances of two competing
asset pricing models, our objective is to test for equality of the cross-sectional R?s of two models.

The asymptotic distributions of the model selection tests developed here are derived under general

13See Campbell, Lo, and MacKinlay (1997) or Cochrane (2005) and the included references.

Y This is because when p? = 1, we have e = Ox and us = 0, so ny in (45) and (46) becomes zero. Similarly, when
p2 =0, we have y: = 1, e = eg and us = vy, so again n¢ in (45) and (46) vanishes.

5As a result, we need to use a weighted sum of independent chi-squared random variables with one degree of
freedom to characterize the sampling variation of 52 for these two extreme cases. The asymptotic distribution of p?
under the i.i.d. multivariate elliptical distributional assumption is available upon request.
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distributional assumptions.'6

We consider two competing beta pricing models. Let fi, fo, and f3 be three sets of distinct
factors, where f; is of dimension K; x 1, i = 1,2,3. Assume that model A uses f; and fo, while
Model B uses fi and f3 as factors. Therefore, model A requires that the expected returns on the

test assets are linear in the betas or covariances with respect to fi; and fo, i.e.,
piz = InAao + Cov[R, fi]Aa1 + Cov[R, fo]Aa2 = Cala, (49)

where C4 = [ly, Cov[R, fi], Cov[R, f3]] and Aa = [Aao, Ay, Nyl Model B requires that

expected returns are linear in the betas or covariances with respect to fi and f3, i.e.,
pi2 = 1nAp,o + Cov[R, filAp1+ Cov([R, f3]Ap 3 = CpAp, (50)

where Cp = [1n, Cov[R, fi], Cov[R, f3]] and Ap = [ABo, A1, A3l

In general, both models can be misspecified. Following the development in Section II.A, given

a weighting matrix W, the )\; that maximizes the p? of model i is given by
Xi = (CIWGC)'CiW pg, (51)

where C; is assumed to have full column rank, ¢ = A, B. For each model, the pricing error vector
e;, the aggregate pricing errors ();, the time ¢ multivariate regression residual vector ¢;;, the time ¢

normalized SDF y;;, and the corresponding goodness-of-fit measure p? are all defined as in Section I1.

When Ky = 0, model B nests model A as a special case. Similarly, when K3 = 0, model A nests
model B. When both K5 > 0 and K3 > 0, the two models are non-nested. We study the nested

models case in the next subsection and deal with non-nested models in Section III.B.

A. Nested Models

Without loss of generality, we assume K3 = 0, so that model A nests model B. In this case, the

following lemma shows that p% = p% is equivalent to a restriction on the parameters of model A.

Lemma 3. pi = sz if and only if Ag2 = Ok, .

16The asymptotic distributions of our model selection tests under the multivariate elliptical distributional assump-
tion are available upon request.
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Note that Lemma 3 is applicable even when the models are misspecified. By this lemma, to
test whether the models have the same p?, one can simply perform a test of Hy: Ago = Of,. Let
V(Aaz2) be a consistent estimator of the asymptotic variance of vT(Aa2 — Aa2). Then, under the
null hypothesis,

TNy oV (Aan) a2 2 xk,. (52)

and this statistic can be used to test Hy : p% = p%. If K5 = 1, we can also use the t-ratio associated
with A2 to perform the test. However, it is important to note that, in general, we cannot conduct
this test using the usual standard error of ), which assumes that model A is correctly specified.

Instead, we need to rely on the misspecification-robust standard error of A given in Proposition 3.

Alternatively, in keeping with the common practice of comparing cross-sectional R?s, we can
derive the asymptotic distribution of ﬁ% — ﬁzB and use this statistic to test Hy : pi = sz. The next

proposition presents the distribution.

Proposition 5. Partition Hy = (C'\WC4)~" as

N H H
A= ~A,11 ~A,12 ’ (53)
Hpo1 Hapo
where ﬁAgz 18 Ko X Ko. Under the null hypothesis Hy : pi = sz,
A ue &j
T(6% = bB) ~ D 5o (54)
=10

where the x;’s are independent X3 random variables and the & ’s are the eigenvalues ofﬁZ}QQV(;\AQ).

Again, we emphasize that the misspecification-robust version of V(;\ A,2) should be used to test
Hy : p% = p%. Model misspecification tends to create additional sampling variation in p% — p%.
Without taking this into account, one might mistakenly reject the null hypothesis when it is true.
In actual testing, we replace {; with its sample counterpart éj, where the éj’s are the eigenvalues

of ﬁAlezV(;\Ag), computed from the consistent estimators ﬁAgz and TA/(/A\AQ).

Before considering the more complicated case of non-nested models, it is worth clarifying a point
about risk premia, which we suspect is not widely understood. Lemma 3 implies that whether the
extra factors fp improve the cross-sectional R? depends on whether any of the prices of covariance

risk associated with f, are nonzero. However, Ay = O, does not mean that the usual risk premia
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(coefficients on the multiple-regression betas) associated with fo are zero. To see this, let v =
[Y0, 71, 74" be the zero-beta rate and the risk premia for f; and f,. Then, using the one-to-one

correspondence between A and «y in (10), we have:

ME

Hence, the risk premia associated with fo are v = Cov|fe, f{]\1 when Ay is zero. As we see, 7o

(55)

Var| fi] Cov|f1, f3] pY]
Cov|fa, f1] Var| fo] Ao |

can still be nonzero in this case unless f; and f» are uncorrelated.!” Similarly, we can show that

v2 = Og, does not imply Ay = Og, unless f; and f2 are uncorrelated.

In other words, finding a significant t-ratio on a factor risk premium — the case of a so-called
“priced” factor — need not imply that inclusion of that factor will add to the cross-sectional
explanatory power of a model. Similarly, finding that a factor is not “priced” in the usual sense
need not imply that the factor is unimportant in explaining cross-sectional differences in expected
returns. However, by Lemma 3, the corresponding implications do hold if the explanatory variables
are simple regression betas or covariances with the factors. We provide some examples to illustrate

these points.

In the first example, we consider two factors with

Vip = (56)

—10 15

15 —10 ]

Suppose there are four assets and their expected returns and covariances with the two factors are

M2 = [27 37 47 5]/7 V12 = (57)

3 5 21

1234]

It is clear that the covariances (or simple regression betas) of the four assets with respect to the
first factor alone can fully explain ps because uo is exactly linear in the first row of Vi, As a result,
the second factor is irrelevant from a cross-sectional expected return perspective. However, when

we compute the (multiple regression) beta matrix with respect to the two factors, we obtain:

0.36 0.64 0.52 0.56 |
. (58)

=VaVi;' =
f=Vahn [0.44 0.76 0.48 0.44

"When \s = Ox,, we see that 1 = Var[fi]\1. Consequently, the risk premia for fi stay the same when we add f2
to the model.
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Simple calculations give v = [1, 15, —10]’ and 72 is nonzero even though fs is irrelevant.'®

In the second example, we change po to [10, 17, 14, 15)'. In this case, the covariances (or
simple regression betas) with respect to f; alone do not fully explain us (in fact, the OLS p? for
the model with just f; is only 28%). However, it is easy to see that ps is linear in the first column
of the beta matrix, implying that the p? of the full model is 100%. Simple calculations give us
v =1, 25, 0] and 2 = 0, even though f5 is needed in the factor model, along with fi, to explain

H2.

B. Non-Nested Models

The test of Hy : p%4 = p% is more complicated for non-nested models. The reason is that under Hy,
there are three possible asymptotic distributions for p% — p%, depending on why the two models
have the same cross-sectional R2. To see this, first let us define the normalized SDFs for models A

and B as
ya =1—(fi—E[fi])Aa1—(fa—E[f2]) Aa2, yg =1—(fi—E[fi))'AB1—(f3—E[f3]) Ap3. (59)

In the Appendix, we show that y4 = yp implies that the two models have the same pricing
errors and hence p% = p%. If ya # ygp, there are additional cases in which p%4 = p%. A second
possibility is that both models are correctly specified (i.e., p4 = p% = 1). This occurs, for example,
if model A is correctly specified and the factors f3 in model B are given by f3 = fo + €, where €
is pure “noise” — a vector of measurement errors with mean zero, independent of returns. In this
case, we have C4 = Cp and both models produce zero pricing errors. A third possibility is that
the two models produce different pricing errors but the same overall goodness of fit. Intuitively,
one model might do a good job of pricing some assets that the other prices poorly and vice versa,
such that the aggregate pricing errors are the same (pi = sz < 1). As it turns out, each of these

three scenarios results in a different asymptotic distribution for p% — p%.

1. ya =yp Case

At first sight, it may appear that y4 = yp is equivalent to the joint restriction Aa1 = A,

Aa2 = 0k, and Ap 3 = Og,. The following lemma shows that the first equality is redundant since

18 This suggests that when the CAPM is true, it does not imply that the betas with respect to the other two
Fama-French factors should not be priced. See Grauer and Janmaat (2009) for a discussion of this point.
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it is implied by the other two.
Lemma 4. For non-nested models, ya = yp if and only if Aa2 = Ok, and Ap3 = Ok,.

Note that Lemma 4 is applicable even when the models are misspecified. It implies that we can
test Ho : ya = yp by testing the joint hypothesis Hy : A2 = Or,, Ap3 = Ox. Let ¢ = [Ny o, N 5l
and 1) = [Aim, Aj&g]’ . Arguing, as in the proof of Proposition 3, we can establish that under

Hy : ya = yp, the asymptotic distribution of 1& is

VT () =) & N0y 105, V() (60)
where -
V() = > Elqdt,l, (61)
j=—00

and G, is a Ko + K35 vector obtained by stacking up the last K5 and K35 elements of ; for models A

and B, respectively, where hy is given in Proposition 3.
Let V(¢)) be a consistent estimator of V(1)). Then, under the null hypothesis Hy : ¢ = O0x,1 k5,
Sty 1 A
TY'V ()™~ Xyt iy (62)

and this statistic can be used to test Hyp : y4 = yp. As in the nested models case, it is important

to conduct this test using the misspecification-robust standard error of 1&

Alternatively, we can perform a test based on the popular p? metric, the main focus of this

paper. The following proposition gives the asymptotic distribution of ﬁi — ﬁzB given Hy : y4 = yB.

Proposition 6. Let Hy = (CyWC)™t and Hp = (CLWCp)™Y, and partition them as

74— I:{A 11 I:{A,12 ’ fy— I:{B,ll I:{B,l?) ’ (63)
Hao1 Hapo Hp31 Hpgss
where ﬁAJl and ﬁB,n are (K14 1) x (K1 +1). Under the null hypothesis Hy : ya = yp,
T(pa—pB)~ Y, -t (64)
= Qo

where the x;’s are independent X3 random variables and the & ’s are the eigenvalues of

rr—1
[ HA722 0K2><K3

rr—1
0K3><K2 _HB733

] V(). (65)
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Note that we can think of the earlier nested models scenario as a special case of testing Hy :
ya = yp with K3 = 0. The only difference is that the §;’s in Proposition 5 are all positive whereas
some of the §;’s in Proposition 6 are negative. As a result, we need to perform a two-sided test

based on p% — p% in the non-nested model case.

If we fail to reject Hy : ya = yp, we are finished since equality of p% and p% is implied by this

hypothesis. Otherwise, we need to consider the case ya # yp.

2. ya # yp Case

As noted earlier, when y4 # yp, the asymptotic distribution of ﬁ% — [’)23 given Hy : pi = sz
depends on whether the models are correctly specified or not. The following proposition presents
a simple chi-squared statistic for testing whether models A and B are both correctly specified. As
this joint specification test focuses on the pricing errors, it can be viewed as a generalization of the
cross-sectional regression test (CSRT) of Shanken (1985), which tests the validity of the expected

return relation for a single pricing model.

Proposition 7. Letng=N—-—K1—Ko—1andng =N — K1 —K3—1. Also let P4 be an N Xng
orthonormal matriz with columns orthogonal to W%C’A and Pg be an N x ng orthonormal matriz

with columns orthogonal to W%C’B. Define

. gat(Aa) | ey
g:(0) = [ 9Bt(AB) ] B [ €BtYBt ] ’ (66)
where 6 = ( /Av /\33)/’ and
— Saa Sam _ o0 e
o= [ Spa Spa ] —j;mE[gt(H)gtﬂ(e)]. (67)

If ya # yp and the null hypothesis Hy : p% = p% =1 holds, then

/

PyWESaaW 2Py P W2SapWePy
PpWi8paWaPy PpWiSppWePy

A oa 1
PAWEGA

U
PJ/BWEéB

Noa 1
P\Wzéq | 4
PSS B NX?LA—l—’rLB? (68)

where €4 and ég are the sample pricing errors of models A and B, and P4, Py, and S are consistent

estimators of Pa, Pg, and S, respectively.

An alternative specification test makes use of the cross-sectional R?s. The relevant asymptotic

distribution is given in the following proposition.
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Proposition 8. Using the notation in Proposition 7, if ya # yp and the null hypothesis Hy : pi =
p% =1 holds, then

N na+npg f
TGh=0B)~ X oot (69)
=1 <0

where the x;’s are independent X3 random variables and the & ’s are the eigenvalues of
—P\ W3S aW2Py —PW2S,5W2Pp

1 1 1 1 (70)
/ = = / = =
PLWiSpaWiP, PpW2SpWsPp

Note that the ;’s are not all positive because ﬁ% — [’)QB can be negative. Thus, again, we need

to perform a two-sided test of Hy : p% = p%.

If the hypothesis that both models are correctly specified is not rejected, we are finished, as the
data are consistent with Hy : p4 = p% = 1. Otherwise, we need to determine whether p% = p% for
some value less than one. As in our earlier analysis for p?, the asymptotic distribution of ﬁ% — ﬁzB
changes when the models are misspecified. Proposition 9 presents the appropriate distribution for

this case.

Proposition 9. Suppose ya # yp and 0 < p% = p% < 1.19 We have:

~ ~ A >
VT(p%—p5) ~ N [0, > Elddiiy] | - (71)
Jj=—00
When the weighting matriz W is known,
di = 2Qy " (uBtyBt — uAtYAL), (72)

where uar = €, W (R — p2) and upy = egW(Ry — po). With the GLS weighting matriz W = Vz_zl,
dy = Qal(uit — 2uayar — uth + 2uBtth)7 (73)
where ua; = e’AVQEI(Rt — u2) and ug; = ejBVzgl(Rt — 12).

Note that if ya = ypt, then was = upt, and hence dy = 0. Or, if ya; # yp:, but both models

are correctly specified (i.e., ugy = upy = 0), then again d; = 0. Thus, the normal test cannot be

used in these cases, consistent with the maintained assumptions in the proposition.?°

19Since p% = p% = 0 implies ya = yp = 1, this case is already covered by the test based on Lemma 4.
2ONote that, depending on whether the asymptotic distribution is normal (Proposition 9) or a linear combination

of independent chi-squared random variables (Propositions 6 and 8), % — % can be either Op(Tfé) or Op(T™H),
respectively, under Hy : p% = p%.
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C. Discussion

Given the three distinct cases encountered in testing Hy : p4 = p% for non-nested models, the
approach we have described above entails a sequential test, as suggested by Vuong (1989). In our
context, this involves first testing Hy : ya4 = yp using (62) or (64). If we reject Hy : ya = yp, then
we use (68) or (69) to test Hy : p4 = p% = 1. Finally, if this hypothesis is also rejected, we use the
normal test in Proposition 9 to test Hy : 0 < p%4 = p% < 1. Let a1, ag, and a3 be the significance
levels employed in these three tests. Then the sequential test has an asymptotic significance level
that is bounded above by max[ay, as, a3].2! Thus, if oy = as = a3 = 0.05, the significance level of

this procedure for testing Hy : p%4 = p% is asymptotically no larger than 5%.

Another approach is to simply perform the normal test in Proposition 9. This amounts to as-
suming that y4 # yp and that both models are misspecified. The first assumption seems reasonable
since most of our models only have the constant term in common. Consequently, by Lemma 4,
y4 = yp would imply that the models do not account for any cross-sectional variation in expected
returns, an unlikely scenario. The second assumption is sensible because asset pricing models are
approximations of reality and we do not expect them to be perfectly specified. In the following
empirical application, we conduct both the sequential test and the normal test when comparing

non-nested models.

IV. Empirical Analysis

We apply our methodology to several asset pricing models of interest in the asset pricing literature.
First, we describe the data used in the empirical analysis and outline the different specifications of

the beta pricing models considered. Then we present our results.

A. Data and Beta Pricing Models

The return data are from Kenneth French’s website and consist of the monthly returns on the 25
Fama-French size and book-to-market ranked portfolios. For most of our time series, the data are

from May 1953 to December 2006 (644 monthly observations). The beginning date of our sample

2'For the sequential test to reject p%4 = p% all three tests must reject. Consider the first scenario, ya = ys.
P(reject p%4 = p% | ya = y5) < P(test 1 rejects | ya = yp) = 1. Similarly, the probability that the sequential test
rejects under the second and third scenarios cannot exceed a2 and as, respectively. Under Hy : p% = p%, one of the
three scenarios must hold, so the true probability of rejection cannot exceed the maximum.
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period is dictated by the bond yield data availability from the Board of Governors of the Federal

Reserve System.??

We analyze six asset pricing models. The first model is the simple static CAPM. The cross-
sectional specification is
w2 = Yo + ﬁvw'vaa
where vw is the excess return (in excess of the one-month T-bill rate from Ibbotson Associates) on

the value-weighted stock market index (NYSE-AMEX-NASDAQ) from the Center for Research in
Security Prices (CRSP).

The second model (CCAPM) is the unconditional consumption CAPM, which implies

M2 =0 + ﬁcg'ycga

where cg is the growth rate in real nondurables consumption (from the Bureau of Economic Analy-

sis). For consumption growth, the monthly data start in February 1959 (575 monthly observations).

The third model (FF3) is the Fama-French (1993) empirical three-factor model with

M2 =y + ﬁvw'va + ﬁsmb'ysmb + ﬁhml'yhmla

where vw is the stock market factor, smb is the return difference between portfolios of small and
large stocks and hml is the return difference between portfolios of high and low book-to-market

ratios (from Kenneth French’s website).

The fourth model (C-LAB) is the conditional CAPM of Jagannathan and Wang (1996). The

cross-sectional specification is

Mo =y + ﬁvw'va + ﬁlab'ylab + ﬁ;m“em'y;m"ema

where vw is the stock market factor, lab is the growth rate in per capita labor income and prem is
the lagged yield spread between BAA and AAA rated corporate bonds. Per capita labor income,
L, is defined as the difference between total personal income and dividend payments, divided by
the total population (from the Bureau of Economic Analysis). Following Jagannathan and Wang

(1996), we use a two-month moving average to construct the growth rate in per capita labor income,

22 A1l bond yield data are from this source unless noted otherwise.
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laby = (Ly—1+ Li—2)/(Li—o+ Li—3) — 1, for the purpose of minimizing the influence of measurement

error.

The fifth model (C-CCAPM) is a conditional CCAPM, with a cross-sectional specification of

the form
M2 = Yo+ ﬁdy'ydy + ﬁcg'ycg + ﬁcg-dy')/cg-dya

where dy, the conditioning variable, is the lagged dividend yield of the NYSE-AMEX-NASDAQ
value-weighted portfolio (from CRSP). This specification is obtained by scaling the constant term
and the cg factor of a linearized CCAPM by a constant and dy. Scaling factors by instruments
is one popular way of allowing factor risk premia and betas to vary over time. Examples of this
type of practice are found in Shanken (1990), Ferson and Schadt (1996), Cochrane (1996), and
Lettau and Ludvigson (2001), among others. We choose the lagged dividend yield as an instrument

because of its frequent use in the literature.

The last model (ICAPM) is the five-factor intertemporal CAPM proposed by Petkova (2006),

which implies
H2 = Y0 + BowYow + BtermVterm + ﬁdef'ydef + BaivYdiv + ﬁrf'yrfa

where vw is the stock market factor, term is the difference between the yields of ten-year and
one-year government bonds, def is the difference between the yields of long-term corporate Baa
bonds and long-term government bonds (from Ibbotson Associates), div is the dividend yield on
the CRSP value-weighted stock market portfolio, and r f is the one-month T-bill yield (from CRSP,
Fama Risk Free Rates). Following Petkova (2006), the actual term, def, div and rf factors are
zero mean innovations from a VAR(1) system of seven state variables that include vw, smb, and

hml.?3

B. Results

We start by estimating the sample cross-sectional R?s of the different pricing models considered.
Then we analyze the impact of potential model misspecification on the statistical properties of the

estimated v and A\ parameters. Finally, we present the results of our pairwise tests of equality of

%1n contrast to Petkova (2006), we do not orthogonalize the innovations since the R? of the model is the same
whether we orthogonalize or not. The results for the parameter estimates using the orthogonalized innovations are
available upon request.
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the cross-sectional R2s for different models.

1. Sample Cross-Sectional R?s of the Models

One of the main contributions of this paper is to provide the asymptotic distribution of the sample
cross-sectional R?. In Table 1, we report p? for each model and use the results in Proposition 4 to
investigate whether the model can do a good job of explaining the cross-section of expected returns.
We denote the p-value of the specification test of Hy : p? = 1 by p(p? = 1), and the p-value of the
test of Hy : p?> = 0 by p(p? = 0). The asymptotic standard error of the sample cross-sectional R?

computed under the assumption that 0 < p? < 1 is se(p?).

In addition, we report a generalized version of the CSRT of Shanken (1985), Q. = éV(é)Té,
where V(é)" stands for the pseudo-inverse of V(é), which is a consistent estimator of the asymptotic
variance of the sample pricing errors. When the model is correctly specified (i.e., e = Oy or

p? =1), we have T Q. < XA 1-2* Following Shanken (1985), we also consider an approximate

F-test which is given by QC R (J%[:]I\fj_ll) FN—K—LT—N+1-25 The two p-values associated with
testing Hp : Q. = 0 are p1(Q. = 0), the asymptotic p-value, and po(Q. = 0), the p-value for the

approximate F-test.?6 Finally, the number of parameters in each asset pricing model is No. of par.

| Table 1 about here |

In Panels A and B of Table 1, we provide results for the OLS and GLS CSRs, respectively.
First, we consider the specification tests based on R?s. It turns out that several models are rejected
at the 5% level: three out of six in the OLS case and four out of six using GLS. Consistent with
the empirical findings of Petkova (2006), the ICAPM delivers the highest OLS and GLS R?s and

passes the corresponding specification tests.

Interestingly, not all models with high cross-sectional R?s pass the specification test. For exam-

ple, the FF3 model has the second highest OLS R? (0.769) but is rejected with p-value 0.000 (it is

X0ur Q. is more general than the CSRT of Shanken (1985) because we can use sample pricing errors from any
CSR, not just the ones from the GLS CSR. In addition, we allow for conditional heteroskedasticity and autocorrelated
errors. Proofs of the results related to Qc are available upon request.

Z5Simulation evidence suggests that this test has better size properties than the asymptotic test, especially when
N is large relative to T

26The p-values and standard errors in Table 1 are computed assuming no serial correlation. In a separate set of
results (available upon request), we implement the automatic lag selection procedure without prewhitening of Newey
and West (1994). Overall, accounting for serial correlation in the data has a fairly minor impact on the results.
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also rejected using GLS). This rejection with a modestly smaller R? may be due in part to greater
precision, as suggested by the smaller standard error estimates (especially GLS) for FF3 compared
to ICAPM. Thus, while the specification tests provide information about the validity of a given
model, they provide little information about model comparison. Formal tests will be needed to

determine whether the ICAPM outperforms the other models.

We note that the C-CCAPM also passes the R? specification test in the OLS and GLS cases,
while the unconditional CCAPM is strongly rejected. The true R?s of the conditional model may
indeed be higher, and the pricing errors smaller, because the scaling variable dy allows the price
of risk and betas to vary with the business cycle. However, we must keep in mind that the use
of conditioning variables increases the number of factors and parameters, making the conditional
models better able to fit the average returns in any given sample. Again, we will need a formal test,
in this case to establish whether going from unconditional to conditional models truly improves the

cross-sectional RZ.

In rows five through seven of Table 1, we report the generalized CSRT and corresponding p-
values. The asymptotic and approximate finite sample p-values of the CSRT are close to each other
and fully support the asymptotic findings based on the sample R%s. Out of 12 cases in Panels A

and B, all specification tests reject the same seven models at the 1% and 5% significance levels.

Assuming that 0 < p? < 1, se(p?) captures the sampling variability of 2. In Table 1, we observe
that the p%s of several models are quite volatile, with the C-CCAPM having a se(p?) of almost 0.45
in the OLS case. This suggests that some of the models pass the specification test simply because
of low power. In fact, for the C-CCAPM and using OLS, not only do we fail to reject Hy : p? = 1,
but also Hy : p?> = 0, the hypothesis that the model cannot explain any of the cross-sectional
differences in expected returns on the 25 size and book-to-market ranked portfolios. We fail to
reject Hy : p? = 0 at the 5% level for the CAPM and CCAPM as well in the OLS case and for the
CCAPM and C-LAB using GLS.2” We will see below that high volatility of the p? estimates also

makes it hard to distinguish between models.

To summarize, several observations emerge from the results in Table 1. First, there is strong

evidence of the need to incorporate model misspecification into our statistical analysis. Second,

2"In computing the p-value of the test of Hy : p?> = 0, we impose the constraint of 41 = Ox in the computation of
V(%1). If we do not impose this constraint, then we fail to reject Ho : p? = 0 for more models.
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there is considerable sampling variability in 4? and so it is not entirely clear whether one model
consistently outperforms the others. Finally, specification test results are sometimes sensitive to
the weighting matrix used, and it is not always the case that models with very high s pass the

specification test.

2. Properties of the v and A\ Estimates under Correctly Specified and Potentially Misspecified
Models

Before turning to model comparison, we investigate whether model misspecification substantially
affects the properties of the v and A estimators. As far as we know, all previous empirical asset
pricing studies except the recent paper by Shanken and Zhou (2007) have used standard errors that
assume the model is correctly specified. As we argued in the introduction, it is difficult to justify
this practice because some (if not all) of the models are bound to be misspecified. In this subsection,
we see whether using an asymptotic standard error that is robust to model misspecification can

lead to different inferences.

In Table 2, we focus on the zero-beta rate and the risk premia estimates, 7, of the beta pricing
models. For each model, we report 4 and associated t-ratios under correctly specified and potentially
misspecified models.?® For correctly specified models, we give the t-ratios of Fama and MacBeth
(1973), followed by those of Shanken (1992) and Jagannathan and Wang (1998) which account for
estimation error in the betas. Last, are the ¢t-ratios under potentially misspecified models, based
on our results in Propositions 1 and 2. The various t-ratios are identified by subscripts fm, s, jw,

and pm, respectively.

‘Table 2 about here‘

Consistent with our theoretical results, we find that the ¢-ratios under correctly specified and
potentially misspecified models are similar for traded factors, while they can differ substantially
for factors that have low correlations with asset returns. Included in the latter category are the
macroeconomic factors lab and cg, the financial factors term, def, prem, div, rf, as well as the

factors scaled by dy. Consider, for example, the OLS results for the FF3 model in Panel A. The ¢-

28The t-ratios are computed by assuming that the errors have no serial correlation. In a separate set of results
(available upon request), we implement the automatic lag selection procedure without prewhitening of Newey and
West (1994). Overall, accounting for serial correlation in the data has a minor impact on the standard errors of 4.
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ratios on Yy, Ysmb and Ypmy for correctly specified and potentially misspecified models are generally
very close, as the factors are all mimicked well by the returns on the test assets. For the vw factor,
the t-ratiof,, = —2.96 and the t-ratio,, = —2.58 are approximately the same, while the t-ratios
for smb and hml hardly vary at all across methods. The GLS results in Panel B deliver a similar

message.

When we consider models with factors that are weakly correlated with asset returns, the picture
changes substantially. For example, for the dy factor in the C-CCAPM, in Panel A we have t-
ratiof,, = —5.30, t-ratioy = —2.71, t-ratioj,, = —2.82, and t-ratiop,, = —1.07. Even in the GLS
case, the standard error of 44, increases by more than 40% when we incorporate potential model
misspecification. Finally, the ICAPM provides another example of the different conclusions that
one can reach by using misspecification-robust standard errors. While the ¢-ratios under correctly
specified models in Panel A suggest that e, is statistically significant (t-ratiog, = 3.97, t-
ratios = 2.50 and t-ratio.s = 2.55), the t-ratio of 1.81 under potentially misspecified models provides

much weaker evidence.

To summarize, we find that for factors that are weakly correlated with the returns on the test
assets, all of the ¢-ratios under potentially misspecified models are smaller (in absolute value) than
the Fama and MacBeth (1973) ¢-ratios. In addition, most of the misspecification-robust ¢-ratios are
smaller (in absolute value) than the ¢-ratios of Shanken (1992) and Jagannathan and Wang (1998).
Finally, the latter two are close to each other and substantially smaller (in absolute value) than the
Fama-MacBeth ¢-ratios. Thus, both model misspecification and beta estimation error materially

affect inference about the expected return relation.

As discussed in Section III.A, there are issues with testing whether an individual factor risk
premium is zero or not in a multi-factor model. Unless the factors are uncorrelated or simple
regression betas are used, only the price of covariance risk (elements of A1) allows us to identify
factors that improve the explanatory power of the expected return model (the usual risk premium
for a given factor does not). To investigate whether the covariance risks of the factors are priced, in
Table 3 we present estimation results for A. Similar to Table 2, we report \ and associated t-ratios,

with the OLS results in Panel A and the GLS results in Panel B.29 First we have the t-ratios

2The t-ratios are computed by assuming that the errors have no serial correlation. A separate set of results
(available upon request) considers the automatic lag selection procedure without prewhitening of Newey and West
(1994). Overall, accounting for serial correlation in the data has a modest impact on the standard errors of A.
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of Fama-MacBeth (t-ratioy,,), then t-ratios that account for estimation error in the covariances

with the model correctly specified (t-ratio.s), and finally the ¢t-ratios under potentially misspecified

models (t-ratio,,). All are based on our results in Proposition 3.3°

| Table 3 about here |

To illustrate our point that risk premia and prices of covariance risk can deliver different mes-
sages, consider the FF3 model. In both Panels A and B, NXsmb 18 statistically significant at the 1%
level, as all t-ratios are close to or greater than three. In contrast, Ysm,p in Table 2 is not significant
at the 5% level using either OLS or GLS, with all t-ratios smaller than 1.7. Hence, by focusing
on the risk premium, one might think that smb is not an important factor in the FF3 model.
However, results for the price of covariance risk, ;\3mb, imply that smb has explanatory power for

the cross-section of expected returns above and beyond the other factors in the FF3 model.3!

To summarize, accounting for model misspecification can often make a qualitative difference in
determining whether estimates of the risk premium or the price of covariance risk are statistically
significant, especially when the factor has low correlation with asset returns. This would typically
be the case with macroeconomic or scaled factors. Unless one is confident about a model, potential
model misspecification should be accounted for when computing standard errors. In addition,
focusing on the 4s, rather than As, can lead to erroneous conclusions as to whether or not a factor

is helpful in explaining the cross-section of expected returns.

3. Tests of Equality of the Cross-Sectional R%s of Two Competing Models

Recall that a p-value is the probability, under the null hypothesis, of obtaining a test statistic at
least as extreme as the one observed. As such, the p-value provides no direct information about
alternative hypotheses and the extent of deviations from the null. Therefore, p-values from the spec-
ification tests do not allow us to formally compare models. In this subsection, we explore relative

goodness of fit by empirically testing whether competing beta pricing models exhibit significantly

30We also examined t-ratios for correctly specified models under the normality assumption. These t-ratios were
usually close to t-ratio.s, which is computed under general distributional assumptions.

31There are also situations where the opposite happens — a risk premium is statistically significant in Table 2,
while the corresponding price of covariance risk is not in Table 3. As expected, for one-factor models, 41 and A1 result
in similar inferences. In this case, the t-ratios of the 4; and 1 would be identical if we imposed the null hypotheses
of y1 =0 and A\ = 0, so that the EIV adjustment terms drop out of the analysis.
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different sample cross-sectional RZs.

In Section III, we showed that the asymptotic distribution of the difference between the sample
cross-sectional R?s depends on whether the two competing models are correctly specified or not
and whether they are nested or non-nested. For nested models, we use Proposition 5 to test for
equality of cross-sectional R%s.32 For non-nested models, we use the normal test in Proposition 9
as well as the sequential test described in Section III.C. However, for ease of comparison, we only
present results for the normal test, which produces just one more rejection than the sequential

test.33

In Table 4, we report pairwise tests of equality of cross-sectional R?s for different models, some
nested and others non-nested. Panel A is for the OLS CSR and Panel B is for the GLS CSR. Each

panel shows the differences between the sample cross-sectional R2s for various pairs of models and

the associated p-values (in parentheses).3*

| Table 4 about here |

The main findings can be summarized as follows. First, the results show that only the uncon-
ditional CAPM and CCAPM are often outperformed by other models at the 5% level. Specifically,
the CAPM is dominated by C-LAB and FF3 in Panel A, and by FF3 in Panel B, with R? differences
around 50 percentage points in the OLS cases. In addition, the FF3 and ICAPM fare better relative
to the CCAPM in Panel A, while only the C-CCAPM outperforms the CCAPM in Panel B.?%

Second, there is no strong evidence that conditional models outperform unconditional models.
For example, there is no statistically significant evidence that the ICAPM of Petkova (2006) out-
performs the FF3 model in terms of OLS and GLS cross-sectional R?s. Surprisingly, we cannot
even strongly conclude that the ICAPM dominates the simple static CAPM, although the OLS p-

value of 0.064 is suggestive. In addition, out of eight comparisons involving C-LAB and C-CCAPM

32When computing the misspecification-robust V(S\ A,2), we impose the null hypothesis Ho : Aa2 = Ok,. However,
the p-values remain virtually unchanged when we do not impose the null hypothesis. Results obtained using the
Wald test in (52) (not reported in the paper) are consistent with the ones shown in Table 4.

33The sequential test we implement is based on Lemma 4 and Propositions 7 and 9. We also experimented with a
sequential test based on Propositions 6, 8, and 9, and found that both tests reject the same models.

34Note that in the case of non-nested models, the reported p-values are two-tailed p-values.

35 All the p-values in Table 4 are computed assuming no serial correlation. A separate set of results (available upon
request) considers the automatic lag selection procedure without prewhitening of Newey and West (1994). We find
that most of the p-values of the test statistics become slightly larger and differences between models even harder to
detect. Two of the four rejections of equality in Panel A of Table 4 are reversed at the 5% level.
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and the unconditional models, CAPM and CCAPM, the C-LAB model of Jagannathan and Wang
(1996) dominates the CAPM only in the OLS case (p-value 0.020) and the C-CCAPM outperforms
the CCAPM only in the GLS case (p-value 0.025). Of course, failure to reject may, in some cases,
be due to low power; as we saw earlier, the precision of the C-CCAPM sample R? is particularly

low.

We also explored the effect of including the three Fama-French factors, along with the 25
portfolios, as test assets in the various model comparisons. For models that include one or more of
these traded factors, inclusion requires that the estimated price of risk conform to the corresponding
model restriction (i.e., equal the expected market premium over the zero-beta rate or the expected
spread return for hml and smb) either exactly (GLS) or approximately (OLS), as discussed by
Lewellen, Nagel, and Shanken (2009). For the most part, our inferences are unchanged.?® We
do find, however, that the ICAPM specification can now be rejected (GLS R? p-value 0.011),
with the price of covariance risk for the term factor no longer significant after allowing for model

misspecification (the GLS t-ratio declines from 2.03 to 1.03).

Finally, since the population R? depends on the choice of test assets when a model is misspec-
ified, we consider the robustness of our conclusions to an alternative set of asset portfolios — 25
size-beta sorted portfolios.?” The main differences in model comparison results are observed in the
OLS case, with the C-CCAPM and ICAPM both outperforming the CAPM and the CCAPM at
the 5% level. Moreover, we find that the ICAPM now outperforms the FF3 model as well, with a
spread in OLS R? of 0.203 and a p-value of 0.033.

V. Conclusion

We have provided a systematic analysis of the asymptotic statistical properties of the traditional

cross-sectional regression methodology and the associated R? goodness-of-fit measure when an

36In this context, the vector 1y in the X matrix and in Equation (7) is modified to have entries of zero corresponding
to the hml and smb test assets. Adding five industry portfolios (from Kenneth French’s website) as test assets likewise
has little effect on our main conclusions. The results of the analyses with portfolio restrictions and industry portfolios
are available upon request.

3"The 25 portfolios are determined by first forming size quintiles based on market capitalization rankings of all
NYSE-AMEX-NASDAQ common stocks (from CRSP), and then by forming beta quintiles within each size quintile.
This is similar to the approach of Fama and French (1992). We use quintiles, rather than deciles, to mitigate
potential finite-sample issues related to the inversion of a large sample covariance matrix. The results of this analysis
are available upon request.
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underlying beta pricing model fails to hold exactly. Our misspecification-robust standard errors for
the zero-beta rate and factor risk premia are derived under very general distributional assumptions,
extending the previous results of Shanken and Zhou (2007) derived under normality. A nice feature

of these standard errors is that they can be used whether the model is correctly specified or not.

When factors and returns are multivariate elliptically distributed, we show analytically that with
GLS cross-sectional regressions, the standard errors under model misspecification are always larger
than the standard errors that assume the model is correctly specified. We also show, in the GLS
case, that the misspecification adjustment depends, among other things, on the correlation between
the factor and the test asset returns. This adjustment can be very large when the underlying factor

is poorly mimicked by asset returns.

We also provide a general asymptotic theory for the sample OLS and GLS cross-sectional R?s.
In particular, we believe our study is the first to consider (in any manner) the important sampling
distribution of the difference between the sample R?s of two competing models. As we show, the
asymptotic distribution of this difference depends on whether the models are correctly specified

and whether they are nested or non-nested.

Our econometric results are used to analyze a variety of asset pricing models that have been
proposed in the literature, focusing mainly on the commonly employed 25 size and book-to-market
ranked portfolios as test assets. We find that the significance of risk premia for several non-traded
factors is substantially reduced once potential model misspecification is taken into account. For
example, the OLS t-ratio on the risk premium for the lagged dividend yield in a conditional version
of the consumption CAPM goes from —2.82 to —1.07, a reduction in magnitude of 60% (the
traditional Fama-MacBeth ¢-ratio is —5.30).

Our empirical findings suggest that the sample cross-sectional R? measure can be too noisy
to permit a conclusion that one model outperforms another, in that very large differences in R?
are sometimes statistically insignificant. The estimated standard errors for the sample OLS RZs
range from 0.099 for the Fama and French (1993) three-factor model to 0.447 for a conditional
version of the consumption CAPM. These findings imply that the common approach of informally
relying solely on the sample R? and ignoring its sampling variability in comparing models can be
dangerous. In this respect, our work reinforces the simulation-based conclusion of Lewellen, Nagel,

and Shanken (2009), while providing a more formal framework to evaluate statistical precision and
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conduct inference.

Finally, the intertemporal CAPM of Petkova (2006) and the Fama and French (1993) three-
factor model perform best in our model comparison tests, while the CAPM and the unconditional
consumption CAPM are frequently dominated by other models. Furthermore, the intertemporal
CAPM of Petkova (2006), the conditional CAPM of Jagannathan and Wang (1996) and a condi-

tional version of the consumption CAPM are never outperformed at the 5% level.38

Our analysis could be extended in a number of ways. For instance, since we find that the zero-
beta rate estimates of all models are unreasonably large, it would be interesting to perform model
comparison under the constraint that the zero-beta rate equals the risk-free rate. Other metrics
for comparing models besides the R? measure could also be considered. Finally, although we have
made substantial progress in deriving asymptotic results, future research should also address the

small sample properties of the test statistics proposed in this paper.

38This includes comparisons that employ the 25 size and book-to-market ranked portfolios and the 25 size and beta
ranked portfolios as test assets.

33



Appendix

Proof of Propositions 1 and 2: We only provide the proof of Proposition 2 here, as the proof of
Proposition 1 is very similar. The proof relies on the fact that 4 is a smooth function of i and V.
Therefore, once we have the asymptotic distribution of 4 and V, we can use the delta method to
obtain the asymptotic distribution of 4. Let

i

. Al
vec(V) (A1)

;o p=

We first note that 2 and V can be written as the GMM estimator that uses the moment conditions

Elrde)] = 0(n1x)(N+EK+1), Where

Yi—n

(A2)
vee((Yy — p)(Ye = p)' = V)

re(p) = [

Since this is an exactly identified system of moment conditions, it is straightforward to verify that

under the assumption that Y; is stationary and ergodic with finite fourth moment, we have:3"

VT(p— ) ~ NNy (N+E+1)50); (A3)
where
So = Z Elr(p)reri(9)]- (Ad)
j=—00

Using the delta method, the asymptotic distribution of 4 under the misspecified model is given by
. A 0y o]’
vT(H— ~ N|{O — | So =1 |- A5
(Y= ( K+15 [&p’] 0 [690’] (A5)
It is straightforward to obtain:

oy oy

ol = 0(k41)xK > B = A. (A6)

For the derivative of v with respect to vec(V'), we first need to show that

ox

ovec(V) = ([0x, v, 0(K+1)><N) ® -8, In], (A7)

39Note that Sy is a singular matrix as Vis symmetric, so there are redundant elements in ¢. We could have written
@ as [f/, vech(V)']’, but the results are the same under both specifications.

34



where x = vec(X). In order to prove this identity, we write:

Vii = Ik, Ogxn]V Ik, Oxxn]', Vor = [Onxk, IN]V Ik, Oxxn] (A8)
to obtain
ovec(V11)
= I I A
vec(VY Ik, Okxn] ® [Tk, Oxxn], (A9)
ovec(Va1)
= I In|. Al
vec(V) Uk, Oxxn] ® [Onxk, IN] (A10)
With the following identity
dvec(Vi1h) B dvec(Vi7h) dvec(Viy)
ovec(V)  Ovec(Viy)" Ovec(V)

= —(Vii' @ Vih) (Uk,s Oxxn] ® [k, Orxn])

= [Vl_llv OKXN] ® [_Vl_lla 0K><N]7 (All)

we can use the product rule to obtain

ovec() 1 ovec(Va1) dvec(Vi7h)
ovec(V)! Vir @ Iy) ovec(V)! Uk @ V) ovec(V)!
= [Vl_llv OKXN] ® [ONXK7 IN] + [Vl_lla 0K><N] & [—ﬁ, 0N><N]
Finally, using the identity
oz
e Il oI Al
Dvec(B) Ok, Ix] ® Iy, (A13)
we obtain:
oz dr  Ovec _
= ) = ([0x, Vi7'T, O(k41)xn) @ [=8, In]. (A14)

Ovec(V) — Ovec(B)" Ovec(V)
Let K, be a commutation matrix (see, e.g., Magnus and Neudecker (1999)) such that K, ,,vec(A) =
vec(A’) where A is an m x n matrix. In addition, denote K,,,, by K. Then, using the product

rule, we obtain:

Oy P Ovec(H) P dvec(X') , , Ovec(Vy')
_— = X®I1 B H)—— HX') ————==~,
ovec(V)! (HaVyy X @ K+1)8vec(V)’ +H2Voy ® )avec(V)’ e ® ) ovec(V)! (A15)

The last two terms are given by
B Ovec(X' 4 _ _
(u5Vy' ® H)WEV)? [H [0k, V111] ;O(K41)xN] ® (15 V3! B, 115 V5], (Al6)
Ovec(Vy! _
iy HX)GENR ) 0, 557 8 ey, 41 (A17)
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For the first term, we use the chain rule to obtain
Ovec(H)
ovec(V)!
Ovec(H) Ovec(H™1)
ovec(H1) dvec(V)

(15 Vs X ® Irc41)

= (WhVis' X ® Irc41)

) B ox
= (V' X ® L) (H © H) | (X'Vi' © Icn) K e 5o oy
ovec(Vygh) - Oz
X' @ X222 ) I X'V ————
+(XTe X7 Ovec(V) Uk ® 2 )avec(V)’

= ~(VoH){([-X'Vy'B8, X'V @ [0k, Vi7", Orer1)xn]) Knxc
— [O(rs1yxis X'Vag' 1@ [Ogres1ysres X'Vig']
+ [[0k, V'l 0(K+1)xN] ®[-X'Vs' 8, lezgl]}

= [H[OKv Vﬁl]’, 0(K+1)><N] ® [V/lez_zlﬁa —V/X/Vﬁl]

+ 0%, YX'Var' 1 ® [0(r 41y Al — [1Vi1', O] @ [—AB, Al

Combining the three terms and using the first order condition 3 Vzgle = O, we have:

Iy

Fvec(VY [H[0k, V7', Ornyxn] @ [0, €'Vay']

- hivl_llv O/N] ® [_Aﬁv A] - [ /Kv e/V2_21] ® [0(K+1)><Ka A] :

Using the expression for dv/9¢’, we can simplify the asymptotic variance of 4 to

o

VE) = Y. Eh(@)hui(#),

j=—00
where

hilp) = g—;rt<¢>

[0k, Vi7'|H

On (K1)

= A(R; — p2) + vec ([Uﬁo Vo 1Y — ) (Ye — ) — V]

V1_1171
On

Ok
Vyo'te

— vec ([—Aﬁ, Al[(Y; =) (Y — ) = V]

)

— vec ([O(K—I—l)xKa AJ[(Y: = ) (Ve = ) = V]

)

(A18)

(A19)

(A20)

= (v—")+HOg, Vii'I'(fi — m)w — A[(Re — p2) — B(fe — p)](fr — 1) Vi7" m

— A(Ry — p2)us — H[0g, Vi1 1'ViaVis'e — AByy + ABy + Ae
= (v —7)+ Hzug — (¢ — Q)wy — (v¢ — 7)us.
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The last equality follows from the first order condition X' Vz_zle = O +1 (which implies 5’ Vz_zle =0g
and Ae = 0x41) and the fact that AS = AX [0k, Ix]) = [0k, Ix] gives us
0

ARy — po) — AB(fe — ) = v — v — [
Jt—m

] = ¢ — 9. (A22)

Note that when the model is correctly specified, we have e = Oy, us = 0, and hy(p) can be
simplified to
hi(p) = (e —7) — (¢ — Pwr. (A23)

This completes the proof.

Proof of Lemma 1: In our proof, we rely on the mixed moments of multivariate elliptical distribu-
tions. Lemma 2 of Maruyama and Seo (2003) shows that if (X;, X;, Xy, X)) are jointly multivariate

elliptically distributed and with mean zero, we have:
E[X;X; X, = 0, (A24)
EX;X; X X)) = (14 k)(0ijow + oioji + 0aoji), (A25)
where 0;; = Cov[X;, X;]. We first note that since v, ¢, 2¢, wy, and u; are all linear functions of Ry

and f;, they are also jointly elliptically distributed. In addition, using (A22), we have ¢, — ¢ = Ae;,

where ¢, = Ry — o — B(ft — p1), which is uncorrelated with f;. Using this result, we can easily

show that
Var[y;] = AVaA, (A26)
Var[¢;] = AXA, (A27)
Var[z] = V7!, (A28)
Varfw] = vVii'm, (A29)
Var[u;] = €WVaWe, (A30)
Covigr, 2] = O(xi1)x(K+1); (A31)
Covlgr, wy] = Oxu, (A32)
Cov[gy,w] = ALWe = AVpWe, (A33)
Covlwy, %] = [0, %1Vi1'), (A34)
Cov[zt,ug] = Ogq1, (A35)
Cov]wg, wg) = 0. (A36)
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Using these second moments, we can then apply (A24) and (A25) to obtain

El(ve =) — &)'wi] = Ori1yx(is1)s (A37)
El(ve — 7zued = Og41)x(K+1)> (A38)
Elziziu?] = (14 r)dWVaeaWeV ', (A39)
E[(¢r — ¢)zwew] = (1+k)AVaaWel0, 3V, (A40)
El(¢e = )(¢e— ¢)wi] = (1+r)1Vi'mASA. (A41)
Using these results and the i.i.d. assumption, we can now write:
V(7)) = Elhdy]
= Varly] — El(v — 7)(¢r — ¢)'wi] + E[(v —v) 2y H
+ E[(¢1 — ¢) (¢ — 0)wi] — E[(¢r — ¢)(ve — 7)'wi] — E[(¢r — ¢) zwywg] H
+ HE[zziuf| H + HE[2(7; — 7)'we) — HE[2(¢r — ¢) ugwy]
= AV A + (14 k) (V') AZA + (1 + k)W Ve WeHV ' H
— (1 + K) AV Wel0, v V7 1 H — (14 k) H[0, v,V e W A'. (A42)

This completes the proof.

Proof of Lemma 2: Under the i.i.d. assumption, the expression for V(%) is given by

Elhhi] = Var[y] — E[(v — 7) (¢ — ¢)'wi] + El(ve — )z H — E[(ve —7) (v — 7)"we]
+ E[(¢r — ¢) (¢ — ¢)wi] — El(¢r — &) (ve — 7)'wi] — E[(¢r — ¢)zpwius H
+ E[(¢ — 6) (3 — 7)'wews] + HE[zzuf| H + HE[z( — 7)"u]
— HE[z(¢¢ — ¢)'wywy] — HE[z(v — 7)'ui] + E[(ve = 7) (ve = 7)'uf]

— E[(v —7) (e — )ue] + E[(ve — 7) (¢ — ¢)'wewe] — E[(ve — ) zui]H.  (A43)

Following the proof of Lemma 1, we have:

Var[v] = H, (A44)

El(v: —7)(dt — ¢)'we] = O(ki1)x(k+1)> (A45)
El(ve —v)zu] = O(ki1)x(K+1)> (A46)
Elzzui] = (1+r)QVT, (A47)
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El(¢r — d)zwpw] = O(ky1)x(K+1)s (A48)
El(¢e = 0)(¢r — ¢)wi] = (1+r)NVi (X' X)7 (A49)
El(yve—7)(ve—7)w] = Otxi1yx(k+1)s (A50)
El(¢r — &) (vt — ) 'weu] = Ogreq1)x(K+1)» (A51)
El(ve = —""] = (1+r)QH, (A52)
2 0 Ok
Ela(y —7)ui] = (1+£)Q : (A53)
Ok Ik
By partitioning H as
H H
o 11 Hi 7 (A54)
Hy1 Hyo
where Hiq is the (1,1) element of H, and using (A44)—(A53), we can write:
Ellh)) = H+ A+ r)WMVmX'S1X)" 4+ 1+ x)QHV'H
0 0 0
—(14+k)QH +(1+k)QH — (1+kK)Q H
O Ik Ok Ik
- H 0’
= Yo+ (1+r)Q(HV H+| 1K
O —Ha
HioV7 Hoy + H HpoVi ' H.
_ Tw + (1 + I{)Q 12V11 _211 11 1_21 11 22 ' (A55)
Hoo Vi Ho Hoo V| Hao — Hoo
- ~ 0o 0

By applying the identity (X'S7'X)~! = H — Vi1, where V1; = 0 VK , we can verify that

Kk Vi

the expression of T2 in Lemma 2 is the same as the second term in (A55) as follows:4?

X' X)) WS X)) T - (XTI X) T = (H- Vi)V (H - Vi) + H — Vi

) Hy 0
= mgvgtH+ | K (A56)

Ok —Hao

In particular, the misspecification adjustment term for V' (57) is
(1+ K)Q(Ha2Vi7' Hao — Hap)
= (14 k)QHxnV7 (Vir — Vi1Hyy Vi1) Vi, Hoo
)

= (1 + K QH22V1_11[V11 — V12V251V21 + V12V2511N(1/NV2_211N)_11/NV2_21V21]V1_11H22, (A57)

40By comparing V(%) for the estimated GLS case with the V(%) for the true GLS case in (29), it is easy to see that
the use of Vzgl instead of Vzgl as weighting matrix increases the asymptotic variance of 49 but reduces the asymptotic
variance of 4.
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where the last equality is obtained by writing H2_21 as
Hyy' = 'V 8 = B'Vay ' In(Un Vi ' 1) T iy V' 6. (A58)
This completes the proof.
Proof of Proposition 4: (1) p*> = 1: We first derive the asymptotic distribution of
TQ = T(psW iz — fiW X (X'WX) ™' X'W jip) (A59)
under Hy : p? = 1, where N 7 (this includes the known weighting matrix case as a special

case). This can be accomplished by using the GMM results of Hansen (1982). Let 6 = (6}, 65)’,
where 0; = (¢/, vec(8)’)" and 6y = . Define

g1:(01)
g2:(0)

Iy ® €
Rt—X’y

9:(0) = (A60)

where I; = [1, f/]' and ¢ = Ry — a — Bf;. When the model is correctly specified, we have
E[gi(0)] = 0p4n, where p = N(K +1). The sample moments of g;(#) are given by

1T
_ T 21 91¢(01)
gr(0) = [ TIZtTl ! ] . (A61)
T >i=192¢(0)
Let 6 = (0}, 6,)', where 0; = (&, vec(B)") is the OLS estimator of  and 3, and
1 0o
0y =4 = (X'WX) ' X'W jig (A62)

is the second-pass CSR estimator of v. Note that 6 is the solution to the following first order

condition
Brgr(0) = 0pyx 11, (A63)
where
I 0 e I 0
Br = G I P PN =B, (A64)
Okyyxp X W Okyyxp X W
Writing
Lh®e = vec(ely) = (It @ In)vec(e), (A65)
€ = Rt—a—ﬁft:Rt—(l£®IN)91, (A66)
Bn = (V1@ Iy)vec(B), (A67)
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we have:

0g1:(61)

= —ltl/ ® Iy,
a0, t
0g1:(61) _ 0
BIA px (K+1)s
9g2t(0) /
= [07 - ] ® INv
a0, 1
aggt(ﬁ)
s, — X
Let
g7 (0)
D =
4 a6’
_ - (% > ltl{t) ®IN Opx(k+1)
as, —Ell]] @ IN Opx(x41) _ 5

Hansen (1982, Lemma 4.1) shows that when the model is correctly specified, we have:

VTgr(0) & N(Opsn, Iprn — D(BD) ™ B]S[L.n — D(BD)™'B]'),

where
o0

S = Z E[g4(0)ge+5(0)"].

Jj=—00

Using the partitioned matrix inverse formula, it is easy to verify that

-1 -1
L+mVip e —m Vi

E[ltl;]_l _= _V_l'ul V—l
11 11

It follows that

BD — —Ell] @I  Opx(xt1)
0, —vleXxX'w —H7 |

~Elll)'eI 0
(D) = / _1[ ] / _iv px(i+) |
Vi V@ A —H
[ I, Opx N

D(BD)™'B =

Y

[ Viih, YV ® (In— XA) —XA

Opxp Opr

Iy —D(BD)'B = B o
[Vin s, Vil (In —XA) Iy - XA
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(A68)
(A69)
(AT70)

(AT1)

(A72)

(AT3)

(A74)

(AT5)

(AT6)

(ATT)

(A78)

(A79)



We now provide a simplification of the asymptotic distribution of gor(6). From (A73), we have:

VTgor(8) ¥ N(Ox, Vy), (A80)
where -
Vo= 2 Ela®)ai+;(0)', (A81)
and S
@(0) = [Onwp IV)(Ix = D(BD) ™ B)gi(6)

= —(In - XA)ei V7' (fi — ) + (In — X A)(Ry — X)

= (In = XA)[Ri— Vi (fi — )]

= (In = X(X'WX)'X'W)[a+ Bf; + e — e Viy (fr — )]

— Wy - WEX(X'WX) " X' W3 W ey

= WEIy — WIC(C'WC) L C'WE|W ey,

— W IPP'Wiequy, (A82)

where y; = 1 — v,V (fe — 1) = 1= N (fy — pu1) follows from (10). The fifth equality holds because
a =g —Pur = Invo+ (71 — 1) = X¢ when the model is correctly specified and = X [0g, Ix].
Therefore, both  and §f; vanish when premultiplied by In — X A. With this expression of ¢;, we
can write V; as

V,=W 2PPW2SWzPP'W 2, (A83)
where S is the asymptotic covariance matrix of % ZZ;I €:yr. Having derived the asymptotic
distribution of gor(6), the asymptotic distribution of @ is given by

) o N-K-1
TQ = Tgor(0) War () 2 > Gy, (A84)
=1

where the z;’s are independent x? random variables, and the §j’s are the N — K — 1 nonzero
eigenvalues of

W3V,W? = PP'W2SW32PP (AS5)
Equivalently, the &;’s are the eigenvalues of P’ W3SW3P. Since Qo 2% Qo > 0, we have:

~- ﬁ;pj. (AS86)

T 1= 0
j=1
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(2) 0 < p? < 1: The proof uses the same notation and delta method employed in Propositions 1

and 2 to obtain the asymptotic distribution of 5? as

VI = ) AN [0, Y Efnnes] | (A87)
Jj=—00
where
o 2
ng = a—';/rt(go). (A88)

Obtaining an explicit expression for n; requires computing 9p?/d¢’. For both the known weight-

ing matrix case and the estimated GLS case, we have:

2
L (A89)
O
2 _ o 2
= 2 W - ol (A90)
12

Equation (A89) follows because p? does not depend on ;. For (A90), using the first order conditions
1vWep =0 and X'We = 041 and letting Qo = e,Weq, we have:

0Qo oQ
— oW —% —9We. A91
Opz 2Weo, Oz 2We (A91)
It follows that
op? _10Q 5 . 0Q _ _ _
S = Qi 5 S + Q%05 = 205" We + 2005 Wey = 205" W[(1 = pea —el. (A92)

The expression for 9p%/dvec(V)’, however, depends on whether we use a known W or an estimate
of W, say W, as the weighting matrix. We start with the known weighting matrix W case.
Differentiating Q = ¢/We with respect to vec(V'), we obtain:

d(p2 — X) ox v
N P4 7 vt il R, PN !
=2eW 26W | (v @ Iy) ovec(V)! * X@vec(V)’

(A93)

Note that the second term vanishes because of the first order condition X’'We = 0x41. Using (A7)
for the first term and the fact that 3’We = 0x gives
SO = W (VT O] © 6, In)) = 2 (Vi Ok @ 0k, ¢W]) . (A9
dvec(V)! o ’ 1

Since Qo = e;,Weq does not depend on V, we have:

o> 1 0Q i, o
dvec(V) ~ dvec(V) 2Qp" [MVir's O] ® [0k, eW]. (A95)
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Therefore, for the known weighting matrix W case, n; is given by

dp*

n = Frt((p)
= 2Q5'[(1— p*ep — €IW (Ry — p2) +2Qp ' ¢'W (Ry — p2) (fr — 1) ViT'm
= 2Qy [~wye + (1 — pP)v. (A96)

We now turn to the W = Vi, case. Differentiating Q = ¢'Vyy'e with respect to vec(V), we

obtain:
oQ -1 0(p2 — X) / / aVeC(V2_21)
7  _ 9 e 2D 222 )
ovec(V)! Vo ovec(V)! +lewe) ovec(V)!
= —2(Vinh 0N @ [0k, €'Vi']) = (€ @) ([0vur: Via' 1@ [0, V')
= —[2nVir, €Vl @ [0k, €'Vl (A97)
Similarly, we have:
Qo _ _
Bvec(V) —[0%, eVay' ] @ [0%, €pVay']. (A98)
It follows that
op? B Q- Qo
ovec(V) Q' dvec(V) Q0" Q@vec(V)’
= Qo [271‘/11 ) elvzgl] ® [O/Kv elvzgl]
— Qo' (1= %) [0, V'] @ [0, V'] - (A99)
Therefore, we have:
o 2
ng = a—iﬂ"t(@

= 2Q (1 — pPef — €V (Re — ) + Q€' Vi (R — i) (291 ViT (fe — 1)
+ €'V (R — p2)] — Qo (1 — p*)[egVag (Re — p2)]* — Q51 Q + Qg (1 — p*)Qo

= Qo' [uf = 2uy + (1 — p*) (20 — 7). (A100)

(3) p? = 0: We start by rewriting Qo — Q as

Qo—Q = yWX(XWX)IX'Wpy — pyWin(INW1n) W o
Wip)=t 0
= WX (XWX) X' Wy — thWX (INWix) KXW,
Ok OrxKi
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1. Win)t 0,
= W)y —xwx) | T O e,
Ok O xK
Wiy 1"\ Wp
— YXWX)y—o | N , SN v
= WBWB = BFWIN(INWin)  IyWaEmn. (A101)

The matrix in the middle is positive definite because X is assumed to be of full column rank, so
the necessary and sufficient condition for Qo = @ (i.e., p> = 0) is 71 = Ox. Note that (A101) also

holds for its sample counterpart, so we can write p? as

2o1_Q_Q-Q _ HBEWE - FWin(NWin) Iy WA

Qo Qo Qo
Under the null hypothesis Hy : 71 = 0x, we have:

(A102)

VT4 2 N0k, V(1)) (A103)

where V' (41) is the asymptotic variance of 41 obtained under the misspecified model. As Qo 235

Qo > 0 and
BWB = FWin(IyWin) "IN B 2% BWE — S Wiy Wiy) 1y WB, (A104)

it follows that

|4

2, (A105)
0

AKE
Ty~

where the z;’s are independent x? random variables and the ¢ ;'s are the eigenvalues of

O

[BWB — BWIn(INyW1n) " INWBIV (4). (A106)
This completes the proof.

Proof of Lemma 3: Partition C4 = [Caq, Capl, where Cyq is the first K1 + 1 columns of C'4 and
Cap is the last Ko columns of C4. Using the fact that Cs4, = Cp, we can write the difference

between Qg and Q4 as

Qe —Qa = pyWCA(CYWC L) TCUW g — iy WCB(CeW ) LCW sy

( A/AaWCACL)_l 0(K1+1)><K2

= b WCA(CHWCA) I CUW g — s W Ca CuW o

0K2><(K1+1) 0K2><K2
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(ChaWCaa)™ Ok 41) 5Ky

= Ny(C4WC A4 — Ny (CULWCy) (Cy\WCa)Aa
0K2><(K1+1) 0K2><K2

= Nyo[ClyWCay — ClyyWCaa(ClayWCaa) " (ClagWCab)| A a2

= /\/A,2H2,122/\A,27 (A107)

where H A,22 is the lower right Ko x Ko submatrix of H 4. Since C4 is assumed to be of full column
rank, ﬁ;}zz is a positive definite matrix. It follows that Q4 = @p if and only Aa2 = Og,. This

completes the proof.

Proof that yo = yg implies e4 = ep: Using the first order conditions for model A, we obtain:
0=1yWea =1yWua — UyWinAao — InWCoV|[R, fi]Aa1 — INWCoV[R, fi)Aa2.  (A108)

This implies that the (pseudo) zero-beta rate of model A is

Ao = (UnWin) "W (ug — Cov[R, fi]Aa1 — Cov(R, f5]Aaz) = (InWin) ™ Iy WE[Ryal,

(A109)
and the pricing errors of model A can be written as
ea= Iy — IN(IyW1n) "Iy W]E[Ry.. (A110)
Similarly, the pricing errors of model B can be written as
ep = [In — In(IyW1n) "IN WIE[Ryp]. (Al11)

Therefore, when y4 = yp, we have e4 = eg. This completes the proof.

Proof of Lemma 4: Given that y4 = yp if and only if Ag1 = A1, Aa2 = Ok,, and Ap 3 = Ok, it
suffices to show that A4 2 = Ox, and Ap 3 = Ok, imply Aa1 = Ap 1. For model A, premultiplying
both sides of (51) by C’yWC4, we obtain:

Ao

jﬁ‘aWC’ACL CA/AQWCAI) CA/AaW/Q
) , ar =1 : (A112)
A2
When Ay 2 = O,, the first block of this equation gives us
A4 / —1 v
o | (CagWCaa)™ ClagWpa. (A113)
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Similarly for model B, when Ap 3 = Ok,, we have:

AB,0
AB1

where Cp, is the first K71+1 columns of C'. Since C4, and Cp, are both equal to [1n, Cov[Ry, f1,]],

= (C WCBa) CB, W s, (A114)

we have Ao = A and Mg 1 = Ap,1. This completes the proof.

Proof of Propositions 5 and 6: Since Proposition 5 is a special case of Proposition 6 when K3 = 0,
we only provide the proof of Proposition 6 here. We first derive a simplified expression for Qp—Q 4.

The aggregate pricing errors of model A are given by
Qa =€ Wen = bWy — psWC4(CyWCA) 1O, W g (A115)

We now introduce a model M that uses only f; as factors. The aggregate pricing errors of model M
are given by

Qur = eyWenr = phWg — pyWCH (CoW Ca ) EC W pia, (A116)

where Cyy = [1n, Cov[R, f{]]. Using the fact that the C4, = Cp, = Ci and (A107), we can write

the difference between @3y and Q4 as
Qv —Qa= /\/AQHZ}QQ/\A,Z- (A117)

Similarly, we have:
Qu — Q= b,gﬁg}gg/\B,s- (A118)

Subtracting (A118) from (A117), we obtain:

(A119)

] ¥ HyYy  Okyxk
N - A x K-
Qp —Qa =Ny oH 5 a2 — Np sl phyAps =9 [ 22 2y

0K3><K2 _Hg}gg
where 1 = [/\1472, /\3373]’ . This equation also holds for its sample counterpart, and under the null
hypothesis Hp : ¢ = Og,+Kk,, we have \/TV(&)_%qﬁ 2 N(OgytKs: Iry+K5)- It follows that

Ko+K3

T(Qp — Qa) 2 Z &y, (A120)
=1

where the z;’s are independent x? random variables and the ¢ ;'s are the eigenvalues of

rr—1
[ HA,22 OKryx K,

rr—1
0K3><K2 _HB733

] V(). (A121)
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Since p4 — p% = (Q —Q4)/Qo and Qo =2 Qo > 0, we have

A K2+K3 E
T(a=rb)~ 2. 5ot (A122)
j=1

This completes the proof.

Proof of Propositions 7 and 8: In the proof of Proposition 4, we show that when the model is

correctly specified,

VTea 2 N0y, V,,), (A123)
where
o0
Voua = Z E[(JAt(JiLt.Fj]a (A124)
j=—00
with
qar = W2 PAP\WZeaya = W2 P4 Py WEga. (A125)

A similar result holds for model B. Stacking up the pricing errors of the two models, we have:

é
vT | ] A N0y, V), (A126)
€B
where
Vo= Y Elagiyj), (A127)
j=—00
and ) )
qAt W2 PsP\W2gyu
@ = = AT . (A128)
4Bt W=2PpP,W2gp,
We can simplify V; as
. W2 PAP \W2SuAWEP,PyW ™5 W 3PyP\W2S4pW2PsPRW 3 (4129)
! W2 PgPLWESpaWiP\P\W ™2 W 2PgPLW2SpsWiPsPyW ™2 |
It follows that )
P Wiae
c=VT | AT T AN Oytnn, Vo), (A130)
PJ/BWEéB
where ) ) ) )
B PAWESAAWEPA PAWESABWEPB (A131)
PLW2SpaWiP, PyW2SpsWiPy |
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Then, we have:

2Vl 2 X2A+nB. (A132)
This completes the proof of Proposition 7.
Using the first order condition CA’QKW’ éa = 0K, +K,+1, We can write:
TQu = TE\WE[PaPy + W2CA(CW W) C, W2 Wzéy
= T\ WiP P W2,
= 2424, (A133)

where z4 is the first ny elements of z. Similarly, TQp = 2z, where zp is the last np elements

of z. Let QZQ’ be the eigenvalue decomposition of

1 -1, 0 1
V.2 e 72 (A134)
OTLB XN A I’fLB
where = = Diag(&1, - -+, §ny+np) 1s @ diagonal matrix of the eigenvalues of (A134) or, equivalently,

L
2

of the eigenvalues of (70). Writing 2 = Q'V, %z 2 N(Opy4nps Instnp ), We have:

A A / _I’ﬂA OnAXnB / % — A/ % i
T(Qp—Qa) ==z z=2V2Q=EQ'V2z = Z &y, (A135)
OnBXnA InB J=1
where z; = NJZ 2 X3, j=1,...,n4+ np, and they are asymptotically independent of each other.

Since p%4 — p% = (Qp — Qa)/Qo and Qo > Qo > 0, we have:

A na+npg f
TGh—0B)~ X ot (A136)
j=1

This completes the proof of Proposition 8.

Proof of Proposition 9: We start from the known weighting matrix case. Using the results of

Proposition 4, we obtain the following expressions for models A and B:

2 !

nae() [%‘] @) = 200 —wacyar + (1 pA)vi. (A137)
2 !

npily) = [%] ri) = 25 [uprse + (1 — p)ui. (A138)
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Now, using the delta method and equations (A1)-(A4), the asymptotic distribution of p% — p%

when both models are misspecified is given by

(02 — p2 / (02 — o2
VI - = (A —oh) A N (0|22l g | Q2B - (an30)
Iy Iy
With the analytical expressions of n4;(¢) and npi(i), the asymptotic variance of vT'(p% — p%) can

be written as
o0

Z Eldi(¢)di+()], (A140)
Jj=—00
where )
op%4  Op?
) = (2 = 2 (o) = naule) ~ nanlio) (AL41)
12 12
Under Hy : pi = sz, we have:
di(p) = 2Qal(uBtth — UALYAL)- (A142)

Using the same type of proof for the GLS case with W = VQEI, we obtain:

di(p) = Qy ' (W — 2uyar — uBy + 2upYBe).- (A143)

This completes the proof.
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TABLE 1
SAMPLE CROSS-SECTIONAL R?S AND SPECIFICATION TESTS OF THE MODELS

PANEL A: OLS

CAPM CCAPM FF3 C-LAB C-CCAPM ICAPM

p? 0.213 0.036 0.769 0.691 0.526 0.793
p(p?=1) 0.000 0.000 0.000 0.099 0.207 0.207
se(p?) 0.236 0.118 0.099 0.156 0.447 0.115
p(p? =0) 0.099 0.545 0.004 0.007 0.367 0.004
Q. 0.101 0.128 0.075 0.040 0.022 0.030
p1(Q.=0) 0.000 0.000 0.001 0.207 0.911 0.427
p2(Q:.=0) 0.000 0.000 0.001 0.251 0.927 0.475
No. of par. 2 2 4 4 4 6
PANEL B: GLS

CAPM CCAPM FF3 C-LAB C-CCAPM ICAPM

P> 0.127 0.045 0.336 0.158 0.388 0.389
p(p? =1) 0.000 0.000 0.001 0.000 0.418 0.223
se(p?) 0.085 0.076 0.114 0.106 0.229 0.189
p(p? =0) 0.004 0.228 0.000 0.244 0.004 0.030
Q. 0.098 0.123 0.077 0.093 0.040 0.042
p1(Q.=0) 0.000 0.000 0.000 0.000 0.340 0.105
p2(Q:.=0) 0.000 0.000 0.001 0.000 0.397 0.136
No. of par. 2 2 4 4 4 6

Note.-The table presents the sample cross-sectional R? (p?) and the generalized CSRT (Q.) of six asset
pricing models. The models include the unconditional CAPM (CAPM), the consumption CAPM (CCAPM),
the Fama and French (1993) three-factor model (FF3), the conditional CAPM (C-LAB) of Jagannathan and
Wang (1996), the conditional CCAPM (C-CCAPM), and the intertemporal CAPM (ICAPM) of Petkova
(2006). The models are estimated using monthly returns on the 25 Fama-French size and book-to-market
ranked portfolios. Most of the data are from May 1953 to December 2006 (644 observations), but the data
for the CCAPM and C-CCAPM start in February 1959 (575 observations). p(p* = 1) is the p-value for the
test of Hy : p? = 1. se(p?) is the standard error of p? under the assumption that 0 < p? < 1. p(p? = 0) is
the p-value for the test of Hy : p> = 0. p1(Q. = 0) is the p-value for the asymptotic test of Hy : Q. = 0.
p2(Q. = 0) is the p-value for the approximate F-test of Hy : Q. = 0. No. of par. is the number of parameters
in the model.
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TABLE 2

ESTIMATES AND ¢-RATIOS OF ZERO-BETA RATE AND RISK PREMIA UNDER

CORRECTLY SPECIFIED AND MISSPECIFIED MODELS

PANEL A: OLS
CAPM CCAPM
3/0 '?vw '3/0 '?cg
Estimate 1.90 —0.66 1.00 0.15
t-ratiog,, 5.53 —1.72 4.85 0.70
t-ratiog 547 —1.70 4.75  0.69
t-ratioj,, 5.28 —1.67 4.80 0.70
t-ratiop, 4.97 —1.60 3.86  0.58
FF3 C-LAB
3/0 '?vw '?smb '?hml 3/0 '?vw '?lab '?;m"em
Estimate 2.01 —-0.99 0.15 0.43 1.95 —1.08 0.11 0.54
t-ratiog,, 6.94 —-296 1.22 3.86 5.79 —-296 094 4.31
t-ratiog 6.69 —2.87 122 3.86 3.44 —-1.89 0.56 2.58
t-ratioj,, 6.72 —2.85 1.22 3.87 3.46 —1.94 058 2.78
t-ratio,, ©5.91 —-2.58 1.23 3.86 348 —-197 052 3.21
C-CCAPM ICAPM
'3/0 '?dy '?cg '?cg-dy '3/0 '?vw 'S/t erm 'S/de f '?div 3/7" f
Estimate 1.33 —1.61 050 0.01 121 —0.16 0.26 -0.11 —0.01 —0.48
tratios,, 6.82 —530 294 247 391 —0.47 397 -237 —054 -—3.77
t-ratio, 347 —2.71 151 127 244 -032 250 -150 —0.35 —2.38
tratios, 3.56 —2.82 147  1.26 2.06 —0.28 255 —1.29 —0.26 —2.19
t-ratiop, 3.13 —1.07 0.53  0.65 173 —0.25 1.81 -1.18 -0.20 -1.96
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TABLE 2 (Continued)
ESTIMATES AND ¢-RATIOS OF ZERO-BETA RATE AND RISK PREMIA UNDER
CORRECTLY SPECIFIED AND MISSPECIFIED MODELS

PANEL B: GLS
CAPM CCAPM
3/0 '?vw '3/0 '?cg
Estimate 1.90 —0.85 1.27  0.21
t-ratiog,, 8.98 —3.17 8.93 1.92
t-ratiog 8.80 —3.14 8.56 1.85
t-ratioj,, 8.63 —3.10 8.49 1.85
t-ratiop,, 7.591 —2.84 7.61 1.19
FF3 C-LAB
3/0 '?vw '?smb '?hml 3/0 '?vw '?lab '?;m“em
Estimate 1.88 —0.84 0.20 0.40 1.82 —-0.78 —0.07 0.06
t-ratiog,, 7.40 —-2.77 1.68 3.61 8.41 —2.84 —-0.93 0.83
t-ratiog 717 =271 1.68 3.61 8.00 —-2.75 —-0.89 0.80
t-ratioj,, 7.22 =270 1.69 3.62 7.64 —2.67 —-0.89 0.76
t-ratio,,, 6.11 —-2.37 1.69 3.61 6.57 —-2.32 —-0.44 0.40
C-CCAPM ICAPM
3/0 '?dy '?cg '?cg-dy 3/0 '?vw 'S/t erm '?de f '?div '3/7" f
Estimate 1.18 —0.97 050  0.02 161 —0.52 021 -—0.08 0.01 —0.22
tratios,, 818 —5.02 4.03 3.98 594 —1.67 399 —210 053 —2.06
t-ratio, 529 —3.30 2.66  2.62 433 -131 294 —155 039 —1.52
tratios, 4.89 —3.85 2.61  2.52 3.90 —1.23 297 —147 034 —1.46
t-ratiop, 4.69 —2.64 208 2.06 3.08 —1.01 201 -1.09 025 —1.10

Note.—The table presents the estimation results of six beta pricing models. The models include the uncon-
ditional CAPM (CAPM), the consumption CAPM (CCAPM), the Fama and French (1993) three-factor
model (FF3), the conditional CAPM (C-LAB) of Jagannathan and Wang (1996), the conditional CCAPM
(C-CCAPM), and the intertemporal CAPM (ICAPM) of Petkova (2006). The models are estimated using
monthly returns on the 25 Fama-French size and book-to-market ranked portfolios. Most of the data are
from May 1953 to December 2006 (644 observations), but the data for the CCAPM and C-CCAPM start
in February 1959 (575 observations). We report parameter estimates 4 (multiplied by 100), the Fama
and MacBeth (1973) t-ratios under correctly specified models (t-ratioyf,,), the Shanken (1992) and the
Jagannathan and Wang (1998) ¢-ratios under correctly specified models that account for the EIV problem

(t-ratios and t-ratioj,,, respectively), and our model misspecification-robust t-ratios (¢t-ratiopm).
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TABLE 3
ESTIMATES AND ¢-RATIOS OF ZERO-BETA RATE AND PRICES OF COVARIANCE RISK
UNDER CORRECTLY SPECIFIED AND MISSPECIFIED MODELS

PANEL A: OLS
CAPM CCAPM
;\0 ;\vw ;\0 ;\Cg
Estimate 1.90 —3.66 1.00 28.96
t-ratiog,, 5.53 —1.72 4.85 0.70
t-ratio,s 5.28 —1.69 4.80 0.70
t-ratiop,, 4.97 —1.61 3.86  0.58
FF3 C-LAB
;\0 ;\vw ;\smb ;\hml ;\0 ;\vw ;\lab ;\prem
Estimate 2.01 —5.43 4.66 3.96 1.95 —7.70 31.48 318.91
t-ratiog,, 6.94 —-249 3.09 2.12 5.79 —-3.83 0.44 4.50
t-ratio,s 6.72 —2.39 295 2.02 3.46 —2.41 0.26 2.84
t-ratio,,, ©5.91 —-2.13 290 1.92 3.48 —2.46 0.23 3.29
C-CCAPM ICAPM
;\0 ;\dy ;\cg ;\cg-dy ;\0 ;\vw ;\term ;\def ;\div ;\rf
Estimate 1.33 —156.29 —58.35 4471.67 1.21  —-9.87 286.90 —278.89 —275.39 —91.95
t-ratiof,, 6.82 —5.38 —-0.71 1.65 391 —-1.13 2.60 —3.05 —0.90 —2.22
t-ratio,s 3.56 —2.74 —0.33 0.77 2.06 —-0.54 1.80 —1.56 —0.42 —1.22
t-ratioy,, 3.13 —1.35 —0.11 0.35 1.73 —-0.38 1.15 —1.41 —0.28 —1.17
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TABLE 3 (Continued)
ESTIMATES AND ¢-RATIOS OF ZERO-BETA RATE AND PRICES OF COVARIANCE RISK
UNDER CORRECTLY SPECIFIED AND MISSPECIFIED MODELS

PANEL B: GLS
CAPM CCAPM
;\0 ;\vw ;\0 ;\Cg

Estimate 1.90 —4.73 1.27 40.53
t-ratiof,, 898 —3.17 8.93 1.92
t-ratiogs 8.63 —3.15 8.49 1.83
t-ratiop,, 7.51 —2.81 7.61 1.18

FF3 C-LAB

/\0 /\vw /\smb ;\hml /\0 /\vw ;\lab /\;m“em

Estimate 1.88 —4.66 4.95 4.04 1.82 —4.98 —55.12 43.60
t-ratiog,, 7.40 —236 3.41 2.24 8.41 -—-3.30 -1.12 1.04
t-ratiogs 722 —-2.28 3.26 2.20 7.64 -3.19 -—-1.07 0.96
t-ratiop,, 6.11 —-1.97 3.21  2.08 6.57 =277 —0.54 0.52

C-CCAPM ICAPM
;\0 ;\dy ;\cg ;\cg-dy ;\0 ;\vw ;\term ;\def ;\div ;\rf
Estimate 1.18 —96.74 —49.83 4369.36 1.61 —4.58 345.64 —155.28 —9.08 4.51
t-ratiog,, 818 =524  —0.72 2.03 5.94 —-0.59 3.81 —-2.16 —-0.03 0.14
t-ratiogs 489 —-3.76 —0.49 1.34 3.90 -0.38 2.83 —-1.45 —-0.02 0.09
t-ratiop,, 4.69 —-2.72  —-0.36 1.02 3.08 —0.27 2.03 -1.10 —-0.01 0.07

Note.—The table presents the estimation results of six beta pricing models. The models include the unconditional
CAPM (CAPM), the consumption CAPM (CCAPM), the Fama and French (1993) three-factor model (FF3),
the conditional CAPM (C-LAB) of Jagannathan and Wang (1996), the conditional CCAPM (C-CCAPM), and
the intertemporal CAPM (ICAPM) of Petkova (2006). The models are estimated using monthly returns on the
25 Fama-French size and book-to-market ranked portfolios. Most of the data are from May 1953 to December
2006 (644 observations), but the data for the CCAPM and C-CCAPM start in February 1959 (575 observations).
We report parameter estimates A (with Ag multiplied by 100), the Fama and MacBeth (1973) t-ratios under
correctly specified models (t-ratiof,,), the t-ratios under correctly specified models that account for the EIV
problem (t-ratiocs), and model misspecification-robust ¢-ratios (¢-ratiop,).
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TABLE 4
TESTS OF EQUALITY OF CROSS-SECTIONAL R?S

PANEL A: OLS
CCAPM FF3 C-LAB C-CCAPM ICAPM
CAPM 0.135 —0.555  —0.478 —0.355 —0.580
(0.686) (0.000) (0.020) (0.457) (0.064)
CCAPM —0.747 —0.585 —0.490 —0.803
(0.029) (0.129) (0.321) (0.023)
FF3 0.078 0.256 —0.024
(0.608) (0.558) (0.792)
C-LAB 0.095 —0.102
(0.849) (0.543)
C-CCAPM —0.313
(0.470)

PANEL B: GLS
CCAPM FF3 C-LAB C-CCAPM ICAPM
CAPM 0.067 —-0.209 —0.031 —0.275 —-0.261
(0.588)  (0.001) (0.735) (0.256) (0.256)
CCAPM —-0.283  —0.092 —0.342 —0.296
(0.058)  (0.502) (0.025) (0.151)
FF3 0.178 —0.059 —0.053
(0.163) (0.802) (0.778)
C-LAB —0.250 —0.230
(0.318) (0.268)
C-CCAPM 0.047
(0.871)

Note.—The table presents pairwise tests of equality of the OLS and GLS cross-sectional
R2s of six beta pricing models. The models include the unconditional CAPM (CAPM), the
consumption CAPM (CCAPM), the Fama and French (1993) three-factor model (FF3), the
conditional CAPM (C-LAB) of Jagannathan and Wang (1996), the conditional CCAPM
(C-CCAPM), and the intertemporal CAPM (ICAPM) of Petkova (2006). The models are
estimated using monthly returns on the 25 Fama-French size and book-to-market ranked
portfolios. Most of the data are from May 1953 to December 2006 (644 observations), but the
data for the CCAPM and C-CCAPM start in February 1959 (575 observations). We report
the difference between the sample cross-sectional R2s of the models in row i and column
J» 9; — p5, and the associated p-value (in parentheses) for the test of Ho : p; = p5. The
p-values are computed under the assumption that the models are potentially misspecified.
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