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MCMC METHOD FOR MARKOV MIXTURE SIMULTANEOUS-EQUATION
MODELS: A NOTE

I. INTRODUCTION

We consider nonlinear stochastic dynamic simultaneous equations of the structural form:

y′tA0(st) = x′tA+(st)+ ε ′t , t = 1, . . .,T, (1)

Pr(st = i | st−1 = k) = pik, i,k = 1, . . . ,h, (2)

where s is an unobserved state, y is an n×1 vector of endogenous variables, x is an m×1
vector of exogenous and lagged endogenous variables, A0 is an n×n matrix of parameters,
A+ is an m×n matrix of parameters, T is a sample size, and h is the total number of states.

Denote the longest lag length in the system of equations (1) by ν . The vector of right-
hand variables, xt , is ordered from the n endogenous variables for the first lag down to the
n variables for the last (ν th) lag with the last element of xt being the constant term.

For t = 1, . . .,T , denote
Yt = {y1, . . .,yt}.

We treat as given the initial lagged values of endogenous variables Y0 = {y1−ν , . . .,y0}.
Structural disturbances are assumed to have the distribution:

π(εt | Yt−1) = N

(
0

n×1
, In

)
,

where N(a,b) refers to the normal pdf with mean a and covariance matrix b and In is an
n×n identity matrix. Following Hamilton 1989 and Chib 1996, we impose no restrictions
on the transition matrix P = [pik].
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The reduced-form system of equations implied by (1) is:

y′t = x′t B(st)+u′t(st), t = 1, . . .,T ; (3)

where

B(st ) = A+(st)A−1
0 (st), (4)

ut(st) = A′−1
0 (st)εt , (5)

E(ut(st)ut(st)′) =
(
A0(st)A′

0(st)
)−1

. (6)

In the reduced form (4)-(6), B(st) and ut(st) involve the structural parameters and shocks
across equations, making it impossible to distinguish regime shifts from one structural
equation to another. In contrast, the structural form (1) allows one to identify each structural
equation, such as the policy rule, for regime switches.

II. PRIOR RESTRICTIONS

II.1. Restrictions on time variation. If we let all parameters vary across states, it is rela-
tively straightforward to apply the existing methods of Chib 1996 and Sims and Zha 1998
to the model estimation because A0(st) and A+(st) in each given state can be estimated
independent of the parameters in other states. But with such an unrestricted form for the
time variation, if the system of equations is large or the lag length is long, the number of
free parameters in the model becomes impractically large. For a typical monthly model
with 13 lags and 6 endogenous variables, for example, the number of parameters in A+(st)
is of order 468 for each state. Given the post-war macroeconomic data, however, it is not
uncommon to have some states lasting for only a few years and thus the number of asso-
ciated observations is far less than 468. It is therefore essential to simplify the model by
restricting the degree of time variation in the model’s parameters. Such a restriction en-
tails complexity and difficulties that have not been dealt with in the simultaneous-equation
literature.

To begin with, we rewrite A+ as

A+(st)
m×n

= D(st)
m×n

+ S
m×n

A0(st)
n×n

. (7)

where

S =

[
In

0
(m−n)×n

]
.

If we place a prior distribution on D(st) that has mean zero, the specification of S is consis-
tent with the reduced-form random walk feature implied by existing Bayesian VAR models
(Sims and Zha 1998). As can be seen from (4) and (7), this form of prior tends to imply that
greater persistence (in the sense of a tighter concentration of the prior on the random walk)
is associated with smaller disturbance variances. This is reasonable, as it is consistent with
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the idea that beliefs about the unconditional variance of the data are not highly correlated
with beliefs about the degree of persistence in the data.

We consider the following three cases of restricted time variations for A0(st) and D(st):

a0, j(st),di j,�(st),c j(st) =


ā0, j, d̄i j,�, c̄ j Case I

ā0, jξ j(st), d̄i j,�ξ j(st), c̄ jξ j(st) Case II

a0, j(st), d̄i j,�λi j(st),c j(st) Case III

, (8)

where ξ j(st) is a scale factor for the jth structural equation, a0, j(st) is the jth column
of A0(st), d j(st) is the jth column of D(st), di j,�(st) is the element of d j(st) for the ith

variable at the �th lag, the last element of d j(st), c j(st), is the constant term for equation j.
The parameter λi j(st) changes with variables but does not vary across lags. The variability
across variables is necessary to allow long run (policy) responses to vary over time, while
the restriction on the time variation across lags is essential to prevent over-parameterization.
The bar symbol over a0, j, di j,�, and c j means that these parameters are state-independent
(i.e., constant across time).

Case I represents a traditional constant-parameter VAR equation, which has been dealt
with extensively in the literature and thus will not be a focal discussion of this paper. Case
II represents a structural equation with time-varying disturbance variances only. Case III
represents a structural equation with time-varying coefficients. 1

II.2. Identifying restrictions. It is well known that the model (1) would be unidentified
without further identifying restrictions. We follow the identified VAR literature and apply
linear restrictions on A0 and D, which imply the following relationships (Waggoner and
Zha 2003a)

a j
nh×1

= Uj
nh×o j

b j
o j×1

, j = 1, . . . ,n, (9)

d j
mh×1

= Vj
mh×r j

g j
r j×1

, j = 1, . . .,n, (10)

a j =

a0, j(1)
...

a0, j(h)

 , d j =

d j(1)
...

d j(h)

 ,

where b j and g j are the free parameters “squeezed” out of a j and d j by the linear restric-
tions, o j and r j are the numbers of the corresponding free parameters, columns of U j are
orthonormal vectors in the Euclidean space R

nh, and columns of Vj are orthonormal vectors
in R

mh.

1The reduced-form equation for Case III, however, has both time-varying coefficients and heteroscedastic
disturbances. This fact reinforces the point that one should work directly on the structural form, not the
reduced-form, of the model.
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The restricted form (9) - (10) encompasses many existing models. For example, the
restrictions imposed on the three-equation system of Taylor 1999 (one of the equations is
the widely-used Taylor rule) fall into this form where a0, j(1) = · · · = a0, j(h) and d j(1) =
· · ·= d j(h) for all j’s. Similarly, the Rudebusch and Svensson 2002’s empirical model is of
the form with different lag structures imposed on different equations, which is summarized
by (10).

II.3. Prior distributions. In addition to these identifying restrictions, we use the reference
prior on A0 and D in the existing literature. The prior distributions take the Gaussian form:

π(a0, j(k)) = N(0,H0 j), k = 1, . . .,h, j = 1, . . .,n; (11)

π(d j(k)) = N(0,H+ j), k = 1, . . . ,h, j = 1, . . .,n. (12)

We follow Sims and Zha 1998 to incorporate into the model the n + 1 “dummy observa-
tions” formed from the initial observations (Y0). These dummy observations, used as an
additional prior component, express widely-held beliefs in unit roots and cointegration in
macroeconomic series and play an indispensable role in improving out-of-sample forecast
performance. Let Yd be an (n+1)×n matrix of dummy observations on the left hand side
of system (1) and Xd be an (n + 1)×m matrix of dummy observations on the right hand
side. It follows from Sims and Zha 1998 that

(X ′
dXd +H−1

+ j )
−1(X ′

dYd +H−1
+ j S) = S,

Y ′
dYd +H−1

0 j +S
′
H−1

+ j S−Σ−1
0 j = H−1

0 j ,

where

Σ−1
0 j = (Y ′

dXd +S
′
H−1

+ j )(X
′
dXd +H−1

+ j )
−1(X ′

dYd +H−1
+ j S).

These results, combined with (9), (10), (11), and (12), lead to the prior distributions for the
free parameters b j and g j:

π(b j) = N(0,H0 j), (13)

π(g j) = N(0,H+ j), (14)

where

H0 j =
(

U ′
j(I⊗H−1

0 j )Uj

)−1
,

H+ j =
(

V ′
j(I ⊗ (X ′

dXd +H−1
+ j ))Vj

)−1
.

The prior distribution for ξ j(k) is taken as π(ζ j(k)) = Γ(αζ ,βζ ) for k ∈ {1, . . .,h}, where
ζ j(k) ≡ ξ 2

j (k) and Γ(·) denotes the standard gamma pdf with βζ being a scale factor (not
an inverse scale factor as in the notation of some textbooks). The prior pdf for λ i j(k) is
N(0,σ2

λ ) for k ∈ {1, . . .,h}.
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The prior of the transition matrix P takes a Dirichlet form as suggested by Chib 1996.
For the kth column of P, pk, the prior density is

π(pk) = π(p1k, . . ., phk) = D(α1k, . . .,αhk) ∝ pα1k−1
1k · · · pαhk−1

hk , (15)

where αik > 0 for i = 1, . . .,h.
There are three steps in setting up a prior for pk. First, the prior mode of pik is chosen to

be υik such that ∑h
i=1 υik = 1. Let

υz j = max{υ1 j, . . . ,υh j}.
In general, we set z = j or υz j = υ j j, reflecting beliefs in the concentration on the diagonal
of P.

In the second step, choose the prior variance of pz j to be εz j such that is sufficiently small
to have a real solution for αz j in the following third order polynomial

φ3α 3
z j +φ2α 2

z j +φ1αz j +φ0 = 0,

where

ψz j =
1−υz j

υz j
,

φ3 = εz j(1+ψz j)3,

φ2 = εz j(1+ψz j)2 [3(h−ψz j)−2
]−ψz j,

φ1 = (h−ψz j −1)
{

εz j(1+ψz j)
[
3(h−ψz j)−1

]−1
}

,

φ0 = εz j(h−ψz j)(h−ψz j −1)2.

Given the prior modes {υ1 j, . . . ,υh j} and the solution αz j, the third step involves solving
for all the other elements of the vector α j as

α �
j

(h−1)×1

= B�−1
j

(h−1)×(h−1)

 ς�
j

(h−1)×1

−αz j β�
j

(h−1)×1

 ,

where α �
j is the (h−1)×1 subvector of α j without the zth element, B�

j is the (h−1)× (h−
1) submatrix of the following matrix without the z th row and zth column

1−υ1 j −υ1 j . . . −υ1 j

υ2 j 1−υ2 j . . . −υ2 j
...

...
. . .

...
−υh j −υh j . . . 1−υh j

 ,
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β�
j is the (h−1)×1 subvector of the zth column of the above matrix without the zth element,

and ς�
j is the (h−1)×1 subvector of the following vector without the z th element1−hυ1 j

...
1−hυh j

 .

It can be verified that the values of all elements of α j constructed above imply

εz j ≥ Var(pk j), ∀k ∈ {1, . . .,h}.

III. POSTERIOR ESTIMATE

As shown in Section II.3, the restricted parameters (through identification and the degree
of time variation) are functions of the free parameters. We gather different groups of free
parameters as follows, with the understanding that we sometimes interchange the use of
free parameters and original (but restricted) parameters.

p = {pk, k = 1, . . .,h} ;

γ =

{
ζ =

{
ζ j(k), j = 1, . . . ,n, k = 1, . . .,h

}
, for Case II;

λ =
{

λi j(k), i, j = 1, . . .,n, k = 1, . . .,h
}

, for Case III;

g =
{

g j, j = 1, . . .,n
}

;

b =
{

b j, j = 1, . . .,n
}

;

θ = {p,γ,g,b}.

The overall likelihood function π(YT | θ) can be obtained by integrating over unobserved
states the conditional likelihood at each time t and by recursively multiplying these condi-
tional likelihood functions forward (Kim and Nelson 1999):

π(YT | θ) =
T

∏
t=1

{
h

∑
st=1

[π(yt | Yt−1, st ,θ)Pr(st | Yt−1,θ)]

}
, (16)

where

π(yt | Yt−1, st ,θ) = (2π)−
n
2 |A0(st)|exp

{
−1

2

n

∑
j=1

[
a′0, j(st)yty

′
t a0, j(st)

−2a′+, j(st)xty
′
t a0, j +a′+, j(st)xtx

′
t a+, j(st)

]}
,

(17)

Pr(st | Yt−1,θ) =
h

∑
st−1=1

[Pr(st | st−1)Pr(st−1 |Yt−1,θ)] . (18)
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The probability Pr(st−1 | Yt−1,θ) can be updated recursively. We begin by setting Pr(s0 |
Y0,θ) = Pr(s0) = 1/h. For t = 1, . . .,T , the updating procedure involves the following
computation:

Pr(st | Yt,θ) =
π(yt | Yt−1, st ,θ)Pr(st | Yt−1,θ)

∑h
st=1 [π(yt | Yt−1, st ,θ)Pr(st | Yt−1,θ)]

. (19)

From the Bayes rule, the posterior distribution of θ conditional on the data is

π(θ | YT) ∝ π(θ)π(YT | θ), (20)

where the prior π(θ) is specified in Section II.3.
In order to avoid very long startup periods for the MCMC sampler, it is important to begin

with at least an approximate estimate of the peak of the posterior density (20). Moreover,
such an estimate is used as a reference point in normalization to obtain likelihood-based
statistical inferences. Because the number of parameters is quite large for our models (over
500), we used an eclectic approach, combining the stochastic expectation-maximizing al-
gorithm with various optimization routines.

IV. INFERENCE

Our objective is to obtain the posterior distribution of functions of θ such as impulse re-
sponses, forecasts, historical decompositions, and long-run responses of policy. It involves
integrating over large dimensions many highly nonlinear functions. Because most of these
dimensions are related to unobserved states, there is no analytical solution for π(θ |YT), nor
is it possible to simulate from its distribution. One can, however, use a Gibbs sampler to
obtain the joint distribution π(θ ,ST |YT ) where

St = {s0, s1, . . ., st}, ∀t ∈ {1, . . .,T}.
The Gibbs sampler we propose here involves sampling alternatively from the following

conditional posterior distributions:

Pr(ST | YT , p,γ,g,b),

π(p | YT ,ST ,γ,g,b),

π(γ | YT ,ST , p,g,b),

π(g | YT ,ST , p,γ,b),

π(b | YT ,ST , p,γ,g).

It has been shown in the literature that such a Gibbs sampling procedure produces the
unique limiting distribution that is the posterior distribution of S T and θ (e.g., Geweke 1999).
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IV.1. Conditional posterior distribution of ST . Denote

St = {st , . . . , sT} , Yt = {yt , . . . ,yT} , ∀t ∈ {1, . . .,T}.
Paths of ST are simulated recursively backward from the last conditional posterior distri-
bution whose pdf is Pr(ST | YT , p,γ,g,b) or Pr(ST | YT ,θ). To see how this recursion is
accomplished, observe that

Pr(ST | YT ,θ) = Pr(sT | YT ,θ) · · ·Pr(st | YT ,St+1,θ) · · ·Pr(s0 | YT ,S1,θ); (21)

and

Pr(st |YT ,St+1,θ) ∝ Pr(st | Yt,θ)Pr(Y t+1,St+1 | Yt, st ,θ)

∝ Pr(st | Yt,θ)Pr(st+1 | st ,θ)Pr(Y t+1,St+2 | Yt, st , st+1,θ)

∝ Pr(st | Yt,θ)Pr(st+1 | st ,θ), (22)

because Pr(Yt+1,St+2 | Yt, st , st+1,θ) is independent of st when st+1 is given. Relationship
(22) implies that

Pr(st |YT ,St+1,θ) =
Pr(st |Yt,θ)Pr(st+1 | st ,θ)

∑h
st=1 [Pr(st | Yt,θ)Pr(st+1 | st ,θ)]

. (23)

The backward recursion begins by drawing the last state sT from Pr(sT |YT ,θ) according to
(19) and drawing st recursively given the path St+1 according to (23). It can be seen from
(21) that draws of ST this way come from Pr(ST |YT ,θ).

IV.2. Conditional posterior distribution of p. Given the path ST , the posterior distribu-
tion of p is reduced to the following distribution:

π(p | ST ) ∝ Pr(ST | p)π(p).

The likelihood for ST given p has the multinomial form:

Pr(ST | p) =
(

T
n11, . . . ,nh1, . . . ,n1h, . . . ,nhh

)
ps1s0 ps2s1 . . . psT sT−1 Pr(s0), (24)

where ni j is the total number of one-step transitions of s from state j to state i over the entire
sample and

T =
h

∑
i=1

h

∑
j=1

ni j.

The resulting conditional posterior pdf is also of Dirichlet:

π(pk | ST ) = D(α1k +n1k, . . .,αhk +nhk), ∀k ∈ {1, . . .,h}. (25)
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IV.3. Conditional posterior distribution of γ, g, or b. The likelihood function condi-
tional on ST and θ is

π(YT | ST ,θ) =
T

∏
t=1

π(yt |Yt−1, st ,θ), (26)

where π(yt |Yt−1, st ,θ) is given by (17). The joint posterior pdf of γ, g, and b conditional on
YT , ST , and the other parameters is proportional to the conditional likelihood (26) multiplied
by the Gamma prior distribution of ζ , the Gaussian prior distribution of λ , and the Gaussian
prior distributions of g and b, specified by (13) and (14). This joint distribution involves
a large number of parameters and has an unrecognized analytical form that is impossible
to simulate accurately. In what follows, we derive the conditional posterior distribution of
each individual group of parameters from which random values of the parameters can be
accurately simulated. We begin with Case III and work backward to Case II.

IV.3.1. Additional Notation. The following notation, which will be repeatedly used for
Cases II and III, is now introduced.

ϒ
n2×n

=



e′n,1
0n

e′n,2
0n
...

e′n,n−1
0n

e′n,n


, d j,1(k)

nν×1
=



d1 j,1(k)
...

dn j,1(k)
...

di j,�(k)
...

d1 j,ν(k)
...

dn j,ν(k)


, d̄ j,1

nν×1
=



d̄1 j,1
...

d̄n j,1
...

d̄i j,�
...

d̄1 j,ν
...

d̄n j,ν


, D j,1

n×ν
=

d̄1 j,1 · · · d̄1 j,ν
...

. . .
...

d̄n j,1 · · · d̄n j,ν

 ,

where en, i is a standard unit vector of size n× 1 with the ith element being 1 and 0n is an
n× n matrix of zeros. Let Tk be the total number of observations such that st = k. The
notation for a block diagonal matrix is defined as

diag
[
{Bk}h

k=1

]
=


B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bh

 .
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Additional notation for λ is introduced as

λ j
nh×n

=


λ j(1)

...
λ j(k)

...
λ j(h)

 , λ j(k)
n×1

=


λ1 j(k)

...
λi j(k)

...
λn j(k)

 ,

Λ j(k)
n×n

=


λ1 j(k) 0 · · · 0

0 λ2 j(k) · · · 0
...

...
. . .

...
0 0 · · · λn j(k)

 , ∆ j(k)
m×m

=

Iν ⊗Λ j(k) 0
nν×1

0
1×nν

1

 .

IV.3.2. Case III. Note the relationship

d j,1(k) =
[
In ⊗Λ j(k)

]
d̄ j,1 = (D j,1 ⊗ In)ϒλ j(k).

With this and some algebraic work, one can show that the conditional posterior distributions
of λ , g, and b have the following forms:

π(λ j(k) | YT ,ST , d̄ j,1,c j(k),a0, j(k)) = N(λ̃ j(k),Ψ̃4 j(k)), (27)

π(g j |YT ,ST ,λ j,b j) = N(g̃ j,Ψ̃6 j), (28)

π(b | YT ,SY ,γ,g) ∝
h

∏
k=1

|A0(k)|Tk exp

{
−1

2

n

∑
j=1

(
b′j Ψ

−1
8 j b j −2Ψ7 j b j

)}
, (29)

where

λ̃ j(k) = Ψ̃4 j(k)Ψ3 j(k),

Ψ̃−1
4 j (k) = ϒ′(D1, j ⊗ In

)
Ψ2 j,11(k)

(
D
′
1, j ⊗ In

)
ϒ+

1

σ2
λ

In,

Ψ2 j(k) = ∑
t∈{t: st=k}

[
xt x′t

]
=

Ψ2 j,11
nν×nν

(k) Ψ2 j,12
nν×1

(k)

Ψ2 j,21
1×nν

(k) Ψ2 j,22
1×1

(k)

 ,

Ψ3 j(k) = ϒ′ (D1, j ⊗ In
)[

Ψ1 j,1�(k)a0, j(k)−Ψ2 j,12 c j(k)
]
,

Ψ1 j(k) = ∑
t∈{t: st=k}

[
xty

′
t − xtx

′
tS
]
=

Ψ1 j,1�
nν×n

(k)

Ψ1 j,2�
1×n

(k)

 ,

g̃ j = Ψ̃6 j V
′
j Ψ5 j b j,

Ψ̃−1
6 j = V ′

j diag
[{

∆ j(k)′Ψ2 j(k)∆ j(k)
}h

k=1

]
Vj +H−1

+ j ,
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Ψ5 j = diag
[{

∆ j(k)′ Ψ1 j(k)
}h

k=1

]
Uj,

Ψ−1
8 j = U ′

j diag
[{

Ψ0 j(k)
}h

k=1

]
Uj +H

−1
0 j ,

Ψ0 j(k) = ∑
t∈{t: st=k}

[
yty

′
t −2S

′
xty

′
t +S

′
xtx

′
t S
]
,

Ψ7 j = diag
[{

d j(k)′Ψ1 j(k)
}h

k=1

]
Uj.

Except (29), one can generate random values directly from the other two conditional
posterior distributions (27) - (28). As for the conditional posterior density of b, we use the
Gibbs sampling idea of Waggoner and Zha 2003a to sample b j one at a time conditional
on bi for i �= j and the other parameters. Unlike constant-parameter simultaneous-equation
models, however, the posterior density of b j conditional on all the other parameters in
our case has no recognized form. We thus use a Metropolis algorithm with the following
proposal density for the transition from b j to b�

j

J
(
b�

j | b j,YT ,ST ,b1, . . . ,b j−1,b j+1, . . . ,bn,γ,g
)
= N

(
0

o j×1
, κ j,III Ψ8 j

)
, (30)

where b�
j is a proposal draw and κ j,IV is a scale factor that can be adjusted to keep the

acceptance ratio optimal (e.g., between 25% and 40%).

IV.3.3. Case II. If the jth structural equation is Case II,2 λi j(k) is equal to 1 for all i ∈
{1, . . .,n} and k ∈ {1, . . .,h}. Thus, Λ j(k) = In and ∆ j(k) = Im ∀k ∈ {1, . . .,h}. The condi-
tional posterior distributions of g and b have the same densities as (28) and (29) except the
terms Ψ2 j(k), Ψ1 j(k), and Ψ0 j(k) are now replaced by

Ψ2 j(k) = ∑
t∈{t: st=k}

[
ζ j(st)xtx′t

]
,

Ψ1 j(k) = ∑
t∈{t: st=k}

[
ζ j(st)

(
xty

′
t − xtx

′
tS
)]

,

Ψ0 j(k) = ∑
t∈{t: st=k}

[
ζ j(st)

(
yty′t −2S

′
xty′t +S

′
xtx′tS

)]
.

The conditional posterior distribution of ζ j(k) has the following pdf

π(ζ j(k) | YT ,ST ,g j,b j) = Γ

(
Tk

2
+αζ ,

1

ζ̃ j(k)/2+1/βζ

)

∝ ζ j(k)Tk/2+αζ −1 e
−
(

ζ̃ j(k)/2+1/βζ

)
ζ j(k)

,

(31)

2Other equations may be Case III or II.
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where

ζ̃ j(k) = ā′0, j ∑
t∈{t: st=k}

[
yty

′
t −2S

′
xty

′
t +S

′
xtx

′
t S
]

ā0, j

−2d̄ ′
j ∑
t∈{t: st=k}

[
xty′t − xtx′tS

]
ā0, j

+ d̄ ′
j ∑
t∈{t: st=k}

[
xtx

′
t

]
d̄ j,

and d̄ j = [d̄ ′
j,1 c̄ j]′.

IV.3.4. Additional Case. There may be situations where one is willing to consider iden-
tifying restrictions for different lag structures across equations to reduce the number of
parameters while imposing no restrictions on the degree of time variation in a0, j(st) and
d j(st). With little modification, the analytical results derived in the previous sections apply
to this case as well. Because such identifying restrictions are still in the form of (9) and
(10), it can be seen that the conditional posterior distributions of g j and b are the same as
(28) and (29), except ∆ j(k) = Im ∀k ∈ {1, . . . ,h} in the expressions for Ψ̃−1

6 j and Ψ5 j in
Section IV.3.2.

V. NORMALIZATION

To obtain accurate posterior distributions of functions of θ (such as long run responses
and historical decompositions), we must normalize both the signs of structural equations
and the labels of states; otherwise, the posterior distributions will be symmetric with mul-
tiple modes, making statistical inferences of interest meaningless. Such normalization is
also necessary to achieve efficiency in evaluating the marginal likelihood for model com-
parison.3 For both purposes, we normalize the signs of structural equations the same way.
Specifically, we use the Waggoner and Zha (2003b) normalization rule to determine the
column signs of A0(k) and A+(k) for any given k ∈ {1, . . .,h}.

Two other normalizations, scale normalization on ζ j(k) and λ j(k) and label normaliza-
tion on the states, require additional treatment. The rule applied to inference is different
from that used for evaluating the marginal likelihood.

V.1. Error bands. We first obtain the posterior estimate of θ under the restrictions ζ j(k) =
1 and λ j(k) = 1h×1 for all j ∈ {1, . . .,n} and k ∈ {1, . . .,h}, where the notation 1h×1 denotes
the h× 1 vector of 1’s. Let ζ̂ j(k) and λ̂ j(k) be the posterior estimates of ζ j(k) and λ j(k).

3Note that the marginal data density is invariant to the way parameters are normalized, as long as the
Jacobian transformations of the parameters are taken into account explicitly.
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We then normalize these posterior estimates around the unit circle as

ζ̊ j(k) =
ζ̂ j(k)

∑h
i=1 ζ̂ j(i)

, ∀ j ∈ {1, . . . ,n},k ∈ {1, . . .,h}, (32)

λ̊i j(k) =
λ̂i j(k)√

∑h
i=1 λ̂ 2

i j(i)
, ∀i, j ∈ {1, . . .,n}, i∈ {1, . . . ,h}, (33)

and adjust the other affected parameters accordingly. This normalization simply rescales
the posterior estimates and has no material consequences. But for statistical inference, the
normalization this way on each posterior draw of ζ j(k) and λ j(k) creates a better-behaved
normalized posterior distribution.

To continue this scale normalization, we simulate Markov chain Monte Carlo (MCMC)
draws of θ as detailed in Section IV with ζ j(k) = 1 and λ j(k) = 1h×1 for all j ∈ {1, . . .,n}
and k ∈ {1, . . .,h}. For each posterior draw of ζ j j(k2) and λ j(k1), we normalize these
random values in the manner of (32) and (33) and adjust accordingly the values of the other
affected parameters such as A0 and D.

To perform label normalization, compute ∑T
t=1 P(st = k|θ̂) for k = 1, . . .,h, where θ̂ is

the posterior estimate of θ . Reorder the states so that state i corresponds to the state that
has the ith largest sum. We then label the simulated states from the posterior distribution as
follows. 4

(1) Let i = 1.
(2) For each MCMC draw of states s̃t for all t = 1, . . .,T , permute the states such that

∑
t∈{t:s̃t=i}

P(st = i|θ̂) ≥ ∑
t∈{t:s̃t=k}

P(st = i|θ̂), k = 2, . . . ,h.

(3) For i = 2, . . .,h−1, repeat the previous step successively.

The normalized draws of θ after rescaling and relabeling are used in constructing the error
bands of functions of θ for statistical inference. None of the normalized draws, however,
is used in the Gibbs sampling procedure for two reasons. First, it can be seen from (32)
and (33) that the scaling normalization leads to the change of the unnormalized prior to the
normalized prior that has an unrecognized pdf form (because of the complicated Jacobian
term). Second, if the labeling normalization involves a swap of, say, λ j(1) and λ j(k) for
k �= 1, one of the swapped priors will be the inverse of a normal prior distribution. In

4This label normalization requires the number of permutations only on the order of h 2 and thus is a
computationally efficient way to approximate Wald normalization discussed by Hamilton, Waggoner, and
Zha 2003 or the normalization that maximizes the correlation of the time path of probabilities of drawn
states with the time path of posterior estimates of state probabilities. The latter two normalizations require
h! permutations. The normalization described here works well if there are a few enduring states. Otherwise,
one could obtain reduced-form residuals of some important variable such as the interest rate and normalize
the states from the smallest residual to the largest residual.
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both situations, it is very inefficient (if not impossible) to sample from the corresponding
normalized conditional posterior distribution at each Gibbs sampling step. Such problems
associated with explicit changes of prior pdfs do not exist for normalized draws because
the Jacobian terms are implicitly taken into account after the normalization.

V.2. Marginal data density. The marginal data density (or marginal likelihood) is invari-
ant to normalization. To see this point, let ρ be the normalized θ and note

π(YT ) =
∫

π(YT |θ)πθ(θ)dθ

=
∫

π(YT |ρ)πθ(ρ)|∂θ/∂ρ|dρ

=
∫

π(YT |ρ)πρ(ρ)dρ.

(34)

Since ρ is simply a normalized version of θ , the likelihoods π(YT |θ) and π(YT |ρ) are the
same. One can compute the marginal data density through either θ or its normalized pa-
rameterization. Without normalization, it would be very inefficient to compute the marginal
data density because of the multi-mode nature of the unnormalized posterior distribution.
If one works with the normalized parameterization, on the other hand, the implicit Jacobian
term |∂θ/∂ρ| may be difficult or even impossible to derive analytically. We recommend
some, not all, normalization in computing the marginal data density. Specifically, we simu-
late MCMC posterior draws of θ with ζ i(k) = 1 and λ j(k) = 1h×1 for all j ∈ {1, . . .,n} and
k ∈ {1, . . .,h}. For each posterior draw, we apply the label normalization for k > 1 only.
We do not perform the scaling normalization at all. Unlike Section V.1, the normalized
draw this way is used for the next Gibbs step. In this normalized Gibbs process, all priors
are the identical and no Jacobian terms are involved.

VI. MODEL FIT

To select a model that fits best to the data, we need to estimate the marginal data density
π(YT ) for each model and then compare the marginal data densities among different mod-
els. We apply both the modified harmonic mean method (MHM) of Gelfand and Dey 1994
and the method of Chib and Jeliazkov 2001. The MHM method is quite efficient for most
models considered in this paper, but it may give unreliable estimates for some models
whose posterior distributions have multiple modes. In such a situation, we also use the
Chib and Jeliazkov to check the robustness of the estimate.

The method of Chib and Jeliazkov 2001 utilizes the following identity

π(YT ) =
∫

π(YT | θ)π(θ)dθ

=
π(YT | θ∗)π(θ∗)

π(θ∗ | YT)
,
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where θ∗ can be any point in the support of the θ parameter space. The prior ordinate
π(θ∗) is readily available by direct calculation. It is also straightforward to compute
the likelihood ordinate π(YT | θ∗) using (16). The evaluation of the posterior ordinate
π(θ∗ | YT) demands intensive computation because it involves reduced MCMC runs for
the following n+3 blocks of conditional probability densities

π(θ∗ | YT ) =
n

∏
j=1

π
(
b∗j | YT ,b∗1, . . .,b∗j−1

)
π(g∗ | YT ,b∗)π(γ∗ |YT ,g∗,b∗)π(w∗ | YT ,γ∗,g∗,b∗) .

(35)

The estimate of the posterior ordinate

π
(
b∗i | YT ,b∗1, . . . ,b∗i−1

)
,

requires simulating random values of {bi,bi+1, . . . ,bn,ST ,δ} with the reduced conditional
probability densities:

π
(
bi | YT ,b∗1, . . .,b∗i−1,bi+1, . . .,bn,ST ,δ

)
,

π
(
bi+1 | YT ,b∗1, . . . ,b∗i−1,bi,bi+2, . . . ,bn,ST ,δ

)
,

...

π
(
bn | YT ,b∗1, . . .,b∗i−1,bi, . . . ,bn−1,ST ,δ

)
,

π
(
ST ,δ | YT ,b∗1, . . . ,b∗i−1,bi, . . .,bn

)
,

and simulating random values of {bi+1, . . .,bn,ST ,δ} with the reduced conditional proba-
bility densities:

π(bi+1 | YT ,b∗1, . . . ,b∗i ,bi+2, . . . ,bn,ST ,δ) ,

π(bi+2 | YT ,b∗1, . . . ,b∗i ,bi+1,bi+3, . . . ,bn,ST ,δ),
...

π(bn | YT ,b∗1, . . .,b∗i ,bi+1, . . .,bn−1,ST ,δ),

π(ST ,δ | YT ,b∗1, . . .,b∗i ,bi+1, . . .,bn) ,

J
(
bi | b∗i ,YT ,b∗1, . . .,b∗i−1,bi+1, . . .,bn,ST ,δ

)
.

A choice of b∗i proves less straightforward. Initially, we set b∗i = b̂i. Because the joint
posterior distribution of b1, . . .,bn is highly non-Gaussian in simultaneous equation models
like this, the posterior estimate b̂i may turn out to be in the very low probability region of
the conditional or marginal distribution of bi, rendering b̂i to be a poor choice. To choose
an efficient point, we perform an additional reduced Gibbs run to set b∗

i at the value of b′i
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that maximizes the ratio in the jumping probability of the Metropolis algorithm

π(b′i | YT ,b∗1, . . .,b∗i−1,bi+1, . . .,bn,ST ,δ)
π(bi | YT ,b∗1, . . .,b∗i−1,bi+1, . . .,bn,ST ,δ)

.

For other posterior ordinates in (35), we use the method proposed by Chib 1995. Estima-
tion of π(g∗ | YT ,b∗) involves simulating random values of {ST ,g,γ, p} from π(ST ,g,γ, p |YT ,b∗).
The value of g∗ is set to (1/Q)∑Q

q=1 g̃(q)
j . Estimation of π(γ∗ | YT ,b∗,g∗) involves simulat-

ing random values of {ST ,γ, p} from π(ST ,γ, p | b∗,g∗). Because π
(

γ | YT ,b∗,g∗,S(q)
T , p(q)

)
is non-Gaussian for Case II, we generate several random draws of γ and set γ∗ to be the

draw that gives that highest value of π
(

γ | YT ,b∗,g∗,S(q)
T , p(q)

)
in our reduced Gibbs run.

Finally, π(p∗ | YT ,b∗,g∗,γ∗) is estimated with random values of {ST , p} simulated from
π(p,ST | YT ,b∗,g∗,γ∗) and p∗ is set to the average value of the posterior means:

p∗ik =
1
Q

Q

∑
q=1

αik +n(q)
ik

∑h
i=1(αik +n(q)

ik )
.

The value of θ∗ so chosen changes randomly as the number of MC draws increases. This
feature safeguards our procedure from producing an erroneous evaluation of π(YT ) likely
to occur with any fixed value of θ that happens to be in the tail of one of the n conditional
posterior distributions in (35). The computational cost can be quite high for large models
with the non-Gaussian shape of the posterior distribution.

The modified harmonic mean (MHM) method of Gelfand and Dey 1994 seems to be
a more efficient procedure, at least for the time-varying identified models studied here.
Denote the support of π(θ |YT ) by Θπ. Let p(θ) be a weighting function that must be a pdf
(not kernel) whose support is contained in Θπ, Gelfand and Dey 1994 observe that

π(YT )−1 =
∫

Θπ

p(θ)
π(YT | θ)π(θ)

π(θ | YT)dθ . (36)

A numerical evaluation of the integral on the right hand side of (36) can be done through
the Monte Carlo integration

π̂(YT )−1 =
N

∑
i=1

p(θ(i))
π(YT | θ(i))π(θ(i))

, (37)

where θ (i) is the ith draw of θ from the posterior distribution π(θ | YT ). A popular choice
of p(θ) is a truncated normal pdf (Geweke 1999), which turns out to be a poor choice for
our problems because each element of the parameter vector w in the transition matrix is
bounded between 0 and 1. To deal with this problem, we regroup the parameter vector θ
into two blocks. The first block, denoted by θ1, contains all the parameters except w and the
second block consists of w only. Denote the supports for these two blocks of parameters by
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Θ1,π and Θ2,π. Let θ̄1,N1 and Ω1,N1 be the sample posterior mean and the sample posterior
covariance matrix of θ1 with N1 MCMC draws. For r ∈ (0,1), define

ΘN1,r =
{

θ1 : (θ1 − θ̄1,N1)
′Ω−1

1,N1
(θ1 − θ̄1,N1) < χ2

r (n1)
}

,

where n1 is the dimension of θ1 and χ2
r (n1) is the inverse of the chi-squared cdf with n1

degrees of freedom for the probability r. Define the truncated normal pdf p �
1(θ1) as

p�
1(θ1) =

χ(θ1 ∈ ΘN1,r)
r

1

(2π)n1/2

∣∣Ω1,N1

∣∣−1/2
exp

{
−1

2
(θ1− θ̄1,N1)

′Ω−1
1,N1

(θ1 − θ̄1,N1)
}

.

(38)
Recall that the indicator function χ( ) returns 1 when the statement in parentheses is true
and 0 otherwise. For Case II, since the parameter ζ j j(k2) is always greater than 0, the
support ΘN1,r is not contained in Θ1,π. Following Geweke 1999, we redefine the support
to be ΘN1,r ∩Θ1,π and calculating a rescaling constant, denoted by qN1,r, for p�

1(θ1). The
constant qN1,r can be approximately by the proportion of i.i.d. draws of θ1 from (38) that
fall in Θ1,π. This approximation is very accurate so long as qN1,r is not close to 0. The
weighting function for θ1 is

p1(θ1) =
χ(θ1 ∈ Θ1,π)

qN1,r
p�

1(θ1).

Every parameter in the second block p is bounded between 0 and 1. If the weighting
function p2(w) were truncated-normal, the rescaling constant would be very close to 0.
Thus, we use a Dirichlet distribution as the weighting function of p j ∀ j ∈ {1, . . .,h} and
∀x ∈ {1,2}. Let p̄i j and V (pi j) be the sample posterior mean and the sample posterior
variance of pi j with N2 MCMC draws. The weighting function p2(p j) is defined as

p2(p j) = D(κ̄1 j, . . ., κ̄h j),

where

κ̄i j =

{
¯̄pi j p̄i j if ¯̄pi j > 0

1 if ¯̄pi j < 0
,

¯̄pi j =
p̄i j(1− p̄i j)

V (pi j)
−1.

It can be shown that the mean and variance for p2(p j) are exactly equal to p̄i j and V (pi j).
The weighting function for evaluating (37) is

p(θ) = p1(θ1)
h

∏
j=1

p2(p j).
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VII. CONCLUSION

This paper extends the existing MCMC simulation methods to a system of simultaneous
equations with hidden Markov chains. It overcomes analytical and computational difficul-
ties that arise when one restricts the degree of time variation on the system. We derive
the probability density functions of conditional posterior distributions used for the MCMC
simulations and develope software that enables one to obtain the solution on a standard PC
desktop. Sims and Zha 2004 have applied this method to addressing various questions re-
garding monetary policy. Despite intensive computation needed to get reliable results, we
hope that further innovations in numerical methods and computer technology will make
our method easier for applied researchers to use.
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