
- 

WORKING PAPER SERIESFE
D

ER
AL

 R
ES

ER
VE

 B
AN

K
 o
f A

TL
AN

TA
 

Information Criteria for Impulse Response  
Function Matching Estimation of DSGE Models 
 
Alastair Hall, Atsushi Inoue, James M. Nason,  
and Barbara Rossi 
 
Working Paper 2007-10 
May 2007 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6924568?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 
 
The authors thank Craig Burnside for sharing his codes and for many useful suggestions. They also thank L. Christiano for 
making the Altig et al. (2004) codes available in his webpage. They gratefully acknowledge comments from Jean Boivin, Peter R. 
Hansen, Oscar Jorda, Jesper Linde, Sophocles Mavroedis, Frank Schorfheide, and seminar participants at the 2006 EC2 
Conference, the Empirical Macro Study Group at Duke University, the University of British Columbia Macro Lunch Group, the 
2007 Conference on the Macroeconomics of Technology Shocks in Waterloo, the 2007 ESSM, the 2007 SED Conference, Kyoto 
University, Hitotsubashi University, Brown University, and the University of Cincinnati. The views expressed here are the 
authors’ and not necessarily those of the Federal Reserve Bank of Atlanta or the Federal Reserve System. Any remaining errors 
are the authors’ responsibility. 
 
Please address questions regarding content to Alastair Hall, Manchester University, Economics Department, School of Social 
Sciences, Manchester, United Kingdom M13 9PL, alastair.hall@manchester.ac.uk; Atsushi Inoue, University of British  
Columbia, Department of Economics, Room 997, 1873 East Mall, Vancouver, British Columbia, Canada, V6T 1Z1, 
ainoue@interchange.ubc.ca; James M. Nason, Federal Reserve Bank of Atlanta, Research Department, 1000 Peachtree Street, 
N.E., Atlanta, GA 30309, jim.nason@atl.frb.org; or Barbara Rossi, Duke University, Department of Economics, 204 Social Science 
Building, Durham, NC 27708, brossi@econ.duke.edu. 
 
Federal Reserve Bank of Atlanta working papers, including revised versions, are available on the Atlanta Fed’s Web site at 
www.frbatlanta.org. Click “Publications” and then “Working Papers.” Use the WebScriber Service (at www.frbatlanta.org) to 
receive e-mail notifications about new papers. 

FEDERAL RESERVE BANK of ATLANTA       WORKING PAPER SERIES 

Information Criteria for Impulse Response Function  
Matching Estimation of DSGE Models 
 
Alastair Hall, Atsushi Inoue, James M. Nason, and Barbara Rossi 
 
Working Paper 2007-10 
May 2007 
 
Abstract: We propose a new information criterion for impulse response function matching estimators of 
the structural parameters of macroeconomic models. The main advantage of our procedure is that it 
allows the researcher to select the impulse responses that are most informative about the deep 
parameters, therefore reducing the bias and improving the efficiency of the estimates of the model’s 
parameters. We show that our method substantially changes key parameter estimates of representative 
dynamic stochastic general equilibrium models, thus reconciling their empirical results with the existing 
literature. Our criterion is general enough to apply to impulse responses estimated by vector 
autoregressions, local projections, and simulation methods. 
 
JEL classification: C32, E47, C52, C53 
 
Key words: impulse response function, matching estimator, redundant selection criterion 
 



1

1. Introduction

Since the seminal work by Rotemberg and Woodford (1997), there has been an increasing interest

in estimating macroeconomic models by using Impulse Response Function (IRF) matching esti-

mators. The method is appealing because of its simplicity, and because it focuses on estimating

the parameters on the basis of impulse responses, which directly capture the dynamics that are

of primary interest to macroeconomists. Among the recent papers that have used IRF matching

estimators we have: Christiano Eichenbaum and Evans (2005), Altig et al. (2004), Jordà and Koz-

icki (2005), Boivin and Giannoni (2006), Uribe and Yue (2006), DiCecio (2005) and DiCecio and

Nelson (2006).

This paper proposes a new method to improve the efficiency of such estimators and to select

the IRFs lag length based on statistical criteria. Our method is essentially an information criterion,

and it is very easy to implement. It provides an econometrically sound and convenient procedure

for implementing IRF matching estimators (IRFME) that improves their statistical inference.

We show that our method can substantially change the parameter estimates of existing represen-

tative Dynamic Stochastic General Equilibrium (DSGE) models. We focus on two recent important

contributions by Altig et al. (2004) and Christiano et al. (2005). Overall, qualitatively our em-

pirical results confirm the findings in these papers; however, we also find that some key parameter

estimates are statistically significantly different from those in Altig et al. (2004). In particular, the

average duration between firms’ price re-optimization in the homogeneous capital model is shorter

than that in Altig et al. (2004), thus going in the direction of reconciling their results with the

previous literature. We argue that the difference in the estimates may be caused by small sample

biases, and report Monte Carlo simulations which show that the use of our methodology provides

substantially more precise estimates of the deep parameters of similar models.
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From a theoretical point of view, our proposed estimator answers two questions. The first

is: “Is there a method to improve the performance of IRFME?”. Since standard macroeconomic

models can be written in a state-space form, whose dynamics is constrained to be a function of a

few parameters, this imposes some degree of linear dependence on the IRFs. Such restrictions are

not imposed in the current IRFME, therefore causing a loss of efficiency in the estimates of the

deep parameters in small samples, and possibly a bias. Our goal is to propose a criterion to select

IRFs for the matching estimator that will perform well in small samples. Our criterion does so by

keeping relevant impulse responses and discarding irrelevant impulse responses.

The second question is: “How many lags in the IRFs should be matched?”. So far the literature

has proceeded in ad-hoc ways. Christiano et al. (2005) and Altig et al. (2004) use a diagonal

weighting matrix, and match a pre-specified number of IRF lags.1 Jordà and Kozicki (2005) gener-

alize the IRF matching procedure to efficient weighting matrices and select the number of IRF lags

based on their significance at conventional levels. However, this procedure fails to recognize that: (i)

even impulse responses that are zero may well be informative about the parameters of interest (e.g.

restrictions imposed via long-run identification); (ii) confidence bands for each IRFs are obtained

independently of each other. Instead, we propose a procedure that exploits the information content

in the data to choose which lags to match. Our procedure also provides a framework to choose

not only the IRF lag length, but also “which IRFs to match”. Thus, we offer applied researchers a

selection criterion that is easy to use and addresses an important and, so far, neglected issue.

Our estimator has several advantages over those proposed in the literature: (i) the estimator

significantly improves inference; in fact, we show in the Monte Carlo simulations that our estimator

has a significantly lower bias, and furthermore in both the Monte Carlo simulations and in the

1Christiano et al. (2005) and Altig et al. (2004) do not motivate their choice of a specific number of IRF lags.
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empirical application we find that the standard errors of the deep parameter estimates significantly

decrease; (ii) the estimator is very easy to implement; in fact, it only requires an estimate of the

variance of the deep parameters given a particular choice of the number of lags in the IRFs; such

an estimate is usually already available because it is computed for the purposes of inference on

the deep parameters; (iii) the estimator can be used with or without an efficient weighting matrix;

(iv) the estimator can be used in the presence of calibrated parameters (these will just be ignored

in the criterion, since they won’t affect estimation uncertainty in any way); (v) the estimator can

be used when the IRFs are identified by using the most common identifying restrictions, including

short-run and long-run restrictions;2 (vi) our criterion provides both a way to select the appropriate

lag length for a given subset of IRFs and, in case the researcher does not have a strong opinion

on which IRFs to match, a way to select them (e.g. which, between an IRF to a monetary policy

shock and an IRF to a technology shocks, to use).

The IRF matching estimator is a limited information approach to estimation of DSGE models.

Limited information estimators do not rely on a full model specification. Thus, the IRF matching

estimator can ignore the full set of predictions of which the DSGE model is capable. For example,

Christiano, Eichenbaum, and Evans (2005) estimate DSGE model parameters by matching the

empirical and theoretical responses of inflation and other macro variables only to an identified

monetary policy shock. This contrasts with full information approaches in which the likelihood

expresses the complete set of predictions inherent in the DSGE model. Although the solutions of the

linearized DSGE models we study have well defined likelihoods, we adopt the limited information

motivation of the IRF matching estimator to better understand its properties and behavior.3

2A type of restrictions not allowed in our current framework are sign restrictions, as they do not produce point
estimates but only intervals.

3Besides IRF matching and maximum likelihood, simulation estimators in the frequentist domain are used to
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Our method is related to several contributions that recently appeared in the literature. As in

Rotemberg and Woodford (1996), Christiano et al. (2005), Altig et al. (2004), we estimate the

model’s deep parameters by minimizing the difference between estimated and theoretical IRFs.

However, our method allows for (although it is not limited to) an efficient estimation of the para-

meters by optimally weighting the IRFs. Jordà and Kozicki (2005) propose a IRFME estimator

based on local projections and an efficient weighting matrix. We instead propose a method to select

the IRFs. In addition, our estimator does not necessarily rely on local projections: our method can

be used with commonly used VAR-based methods as well as with local projections.4

Before getting into technical details, here below we outline the simple step-by-step procedure to

implement our estimator in the VAR case (of finite or infinite order):

• I. Choose a particular horizon h between a chosen upper bound (H) and lower bound (h);

• Estimate the impulse responses up to horizon h, and collect them in the vector bγh;
• Obtain analytic or numerical expressions for the theoretical impulse responses up to

horizon h as a function of the parameter of interest θ: γh (θ) ;

• Estimate the parameters θ via IRF matching (i.e. by minimizing the objective function

(2) below) — denote the estimated parameter bθh;
• Estimate the variance of the parameters, V̂h;

• Calculate the Redundant Impulse Response Selection Criterion, “RIRSC”, by using

estimate DSGE models. A useful survey of simulation estimators is Gourieroux and Monfort (1997). Bayesian
approaches to DSGE model estimation are also becoming more widespread. Del Negro and Schorfheide (2004), Del
Negro, Schorfheide, Smets and Wouters (2007), Rabanal and Rubio-Ramirez (2005), and Fernandez-Villaverde and
Rubio-Ramirez (2005) are good examples of the variety of Bayesian techniques for estimating DSGE models.

4The method proposed in this paper is further related to Andersen and Sorensen (1996) and Hall et al. (2005).
The former paper show (in a different context than ours) that minimum distance and GMM estimators do not work
well in finite samples when the number of overidentifying restriction is large. Hall et al. (2005) propose a “relevant
moment selection criterion” based on entropy arguments that is useful to solve that problem. They show that the
limiting distribution of a GMM estimator can be written in terms of long-run canonical correlations between the
moment function and the true score vector. We utilize a similar concept here, although we focus on a CMD estimator
framework, which is more appropriate for the IRF matching problem.



5

formula (4) below, that is: RIRSC(h) = log(|V̂h|) + h
ln(
√
T)√
T

if the VAR has a finite order p, and

RIRSC(h) = log(|V̂h|) + h
ln(
√
T/p)√
T/p

if the VAR has an infinite order but is estimated with p lags,

where T is the sample size.

• II. Repeat the previous steps for h equal to all possible values from h to H, and collect the

values of RIRSC(h) in a vector;

• III. Finally, choose the value of h associated to the minimum value of the RIRSC, call it bh.
The parameter estimates for that particular horizon are our suggested parameter estimates.5

The paper is organized as follows. Section 2 presents our new estimator in the leading VAR

case, and discusses the assumptions that guarantee its validity. Section 3 provides a clarifying

example, Section 4 discusses the projection and the simulation-based estimators, Section 5 presents

the main empirical results, and Section 6 reports robustness and Monte Carlo analyses. Section 7

concludes. All the technical proofs and assumptions are collected in the Appendix.

2. The VAR-based IRF matching estimator

We provide a framework for researchers interested in estimating the parameters of a structural

model based on a series of variables of interest. Let yt be the (ny × 1) vector containing the values

of the ny variables at date t, t = 1, 2, ..., T , where T is the total sample size.

In this section, we consider the leading case in which the researcher is interested in estimating

the deep parameters of the model by using a VAR-based IRFME, that is an estimator obtained by

minimizing the distance between the empirical IRFs (obtained by fitting a VAR to the data and

imposing some identification restrictions implied by the model) and the theoretical IRFs implied

5Note that the first 5 steps have to be programmed anyway by a researcher wishing to estimate and perform
inference on the deep parameters of the structural model by using the IRF matching method — the only computational
step that our procedure adds is step 6, which is very easy to calculate.
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by the model itself. We therefore assume that the structural model admits a structural VAR

representation, so that, eventually, the IRFs estimated from a (reduced-form) VAR are informative

for the parameters contained in the structural model:

yt = Φ0 +Φ1yt−1 +Φ2yt−2 + ...+Φpyt−p + εt, (1)

where εt is a white noise with mean 0 and variance Σε. The VAR lag order, p, can be either finite

or infinite, and each of these cases will be treated separately.6

Let γi,j,τ denote IRFs of each variable yi,t+τ to a structural shock εj,t at horizon τ , where

i = 1, ..., ny and j = 1, ..., nε; τ = h, h + 1, ..., H, where h denotes the lower bound on h such

that the deep parameters of the model are not identified for h < h and are identified for h ≥ h,7

and H is the maximum horizon of the IRFs. We assume that H is a finite number when dealing

with structural models that have a finite and known VAR order, and that instead H can be infinite

when dealing with structural models that have an infinite VAR representation.

Let γ
τ
be a (nεny × 1) vector that collects the IRFs at a particular horizon τ :

γ
τ
= (

i=1z }| {
γ1,1,τ , γ1,2,τ , ..., γ1,nε,τ ,

i=2z }| {
γ2,1,τ , γ2,2,τ , ..., γ2,nε,τ , ...,

i=nyz }| {
γny,1,τ , ..., γny,nε,τ )

0

The IRFs at horizons τ = h, h+ 1, ..., h will be collected in a (nεny (h− h)× 1) vector γh :

γh =
³
γ0
h
, γ0

h+1
, ..., γ0

h

´0
6We make standard assumptions on the VAR lag operator defined as: Φ(L) ≡ I −Φ1L −Φ2L2 − · · · −ΦpL

p, where
I is the identity matrix, L is the lag operator: we assume that Φ(L) is invertible, so that the MA representation (and
therefore the IRFs) exists.

7Our criterion does not require the researcher to know h.
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Let the model’s parameters (referred to as deep parameters) be collected in a (q × 1) vector θ,

θ ∈ Θ, and the theoretical IRFs up to horizon h be denoted by γh (θ).
8

The IRF Matching Estimator (IRFME) using horizons {h, h+ 1, ..., h} is defined as:

θ̂h = argmin
θ∈Θ

[bγh − γh (θ)]
0cWh [bγh − γh (θ)] (2)

where cWh is an estimated weighting matrix. As explained in the Appendix, cWh could be the

covariance matrix of the IRFs, or, as often found in practice, a restricted version of this matrix

that has zeros everywhere except along its diagonal. In general, cWh can be readily obtained from

standard package procedures that compute IRF standard error bands.

In order to implement the IRFME in practice, the researcher has to choose the horizon h in

(2). Our contribution to the existing literature is to provide statistical criteria to choose h.

We derive our results under several technical assumptions, formally stated in the Appendix as

Assumptions 1 and 1’. They differ depending on whether the VAR has a finite order (p < ∞) or

not (p = ∞). To summarize, we require that: (i) the parameter estimate θ̂h be consistent and

asymptotically normal for every horizon h; (ii) the asymptotic variance of the parameter estimate,

denoted by Vh, be positive definite; (iii) Vh be consistently estimated by V̂h. Examples of such

estimators are discussed in detail in the Appendix around equations (19) and (20).

The criterion that we propose allows the researcher to identify the “relevant horizon” of the

IRFs (denoted by h0) and to avoid using IRFs that contain only redundant information. Since IRFs

that do not contain additional information only add noise to the estimation of the deep parameters,

8Theoretical models may also contain additional parameters whose values are not estimated but calibrated. We
denote such parameters by φ. Let γh (θ, φ) denote the mapping between the deep parameters and the theoretical
model’s IRFs. Since the calibrated parameters do not play any role in our analysis, in order to simplify notation we
will ignore them and write γh(θ) rather than γh(θ, φ).
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these IRFs should be eliminated. The following definitions formalize these concepts.9 Note that

we do allow h0 to be infinite (see the Appendix).

Definition 1 [Redundant IRFs]. Suppose two horizons h1 and h2 satisfy h2 > h1. Then the IRFs

at horizons h1 + 1, ..., h2 are redundant if Vh2 = Vh1 . The IRFs that correspond to horizons

h1 + 1, ..., h2 are non-redundant if Vh1 − Vh2 is positive semi-definite and distinct from the matrix

of zeros.

Definition 2 [Relevant IRFs]. We say that h0 is the horizon associated with the relevant IRFs

if the following properties hold: (i) h0 ∈ {h, ...}; (ii) Vh1 − Vh0 is positive semi-definite where

h1 = h0 −∆h and ∆h is a positive number; (iii) Vh0 = VH if h0 ≤ H.

Finally,10 we need a penalty function to ensure that our criterion consistently selects the relevant

horizon, h0. One such penalty function that seems to work well in practice is:11

κ(h, T, p) =

⎧⎪⎪⎨⎪⎪⎩
h
ln(
√
T)√
T

for p <∞

h
ln(
√
T/p)√
T/p

for p→∞
(3)

Our main result, namely the IRFME that we propose, is defined in the following theorem:12

9For notational simplicity, in what follows we assume that, if the researcher is matching multiple IRFs, he uses
the same horizons for all of them. All the results in the paper do not change in the more general case in which the
relevant horizons can differ across IRFs.
10Note that non-relevant IRFs can be non-redundant because relevance is defined relative to the use of all IRFs

whereas redundancy is not. Even if some IRF is not relevant, it can be non-redundant relative to some other IRF.
11The Appendix derives results for more general penalty functions. Here we consider only the case in which

h = h, ..,H (H can be infinite), although in general the penalty function would depend on the number of constraints.
12Note that in the theorem we allow h to be unknown, and therefore let the horizon chosen by the researcher be

s.t. h ∈ {1, ...,H}.
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Theorem 3 [Consistent IRFs selection (VAR case)]. Let the structural model have a VAR(p) rep-

resentation (1), and the estimator of the deep parameters be defined as (2), where h is chosen s.t.

ĥ = arg min
h∈{1,...,H}

RIRSC(h)

RIRSC(h) = log(|V̂h|) + κ(h, T, p), (4)

and κ(.) is defined in (3) and |.| denotes the determinant. Then:

(a) if p <∞, under Assumption 1, ĥ p→ h0;

(b) if p→∞, under Assumption 1’, ĥ p→ h0.

3. Interpretation of the RIRSC

The following example clarifies identification issues of the deep parameters as well as the definitions

of redundant and relevant IRFs.

Example 4 [Labor productivity and hours]. Consider a simplified Real Business Cycle model

of labor productivity and employment (cfr. Watson, 2006, eqs. 3,4). By imposing the parameteri-

zation ρl = φ = 1 and the short-run restriction az = 0, the model can be written as

⎡⎢⎢⎣ ∆ln
³
yt
lt

´
∆ln(lt)

⎤⎥⎥⎦ =

⎡⎢⎢⎣ β0δ −αβ0δ

δ −αδ

⎤⎥⎥⎦
⎡⎢⎢⎣ ∆ln

³
yt−1
lt−1

´
∆ln(lt−1)

⎤⎥⎥⎦

+

⎡⎢⎢⎣ β0δ −αβ0δ

δ −αδ

⎤⎥⎥⎦
⎡⎢⎢⎣ ∆ln

³
yt−2
lt−2

´
∆ln(lt−2)

⎤⎥⎥⎦+
⎡⎢⎢⎣ 1 β0

0 1

⎤⎥⎥⎦
⎡⎢⎢⎣ ηt

νt

⎤⎥⎥⎦

where β0 = −β1, δ = −ãz/(1− α), ηt = (1− α)σzε
z
t , vt = alσlε

l
t, and εlt, ε

z
t have zero mean, unit
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variance and are uncorrelated. The structural parameters of interest are α, σ2l , σ
2
z, al and ãz. Let

Γj =

⎡⎢⎢⎣ γj,11 γj,12

γj,21 γj,22

⎤⎥⎥⎦
denote the jth-step structural IRFs. The restrictions on the first three-steps IRFs are

γ0,11 = (1− α)2σ2z (5)

γ0,12 = −α (alσl)2 (6)

γ0,21 = 0 (7)

γ0,22 = (alσl)
2 (8)

γ1,11 = −α(1− α)ãzσ
2
z (9)

γ1,12 = 2α2ãz (alσl)
2 /(1− α) (10)

γ1,21 = (1− α)ãzσ
2
z (11)

γ1,22 = −2αãz (alσl)2 /(1− α) (12)

γ2,11 = (α(1− α)ãz + 2α
2ã2z)σ

2
z (13)

γ2,12 = −2α2 (alσl)2 ãz/(1− α) (14)

γ2,21 = −((1− α)ãz + 2αã
2
z)σ

2
z (15)

γ2,22 = 2α (alσl)
2 ãz/(1− α). (16)

Since al and σl cannot be separately identified (only their product is identified), four out of the

five deep parameters are identified. For example, α is identified from restrictions (6) and (8), while

alσl, ãz and σ2z are identified from restrictions (8), (9) and (5), respectively.
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There are two trivial examples of redundant impulse responses. One is restriction (7). Another is

restrictions on Γj , for j > 2: since the model is a VAR(2) model, restrictions for j > 2 are nonlinear

transformation of (5)—(16), and thus are first-order equivalent to some linear combinations of the

above restrictions. Therefore, adding these restrictions will not reduce the asymptotic variance.13

However, even if an impulse response depends on the parameters of interest and its horizon is less

than or equal to p, the impulse response may be redundant.14

4. Alternative IRF matching estimators

Jordà and Kozichi (2006) have proposed IRF matching estimators based on local projections. In

addition, researchers have been interested in simulation-based methods to approximate theoretical

impulse responses. This section extends the RIRSC to these IRF matching estimators, and describes

how our criterion is implemented in these contexts.

4.1. The IRF Matching Projection Estimator. Consider first the local projections method

advocated by Jordà (2005). The simplest version of his estimator for the τ−th step impulse response

is B̂1,τD, where B̂1,τ is directly estimated from

yt+τ = B0,τ +B1,τyt−1 +B2,τyt−2 + · · ·+Bp,τyt−p + ut+τ

for τ = h, ...,H, and D is a matrix derived from the identification procedure.

13The Appendix shows that our criterion can be given a Canonical Correlations interpretation along the lines of
Hall et al. (2006).
14For example, suppose α = 0.5, σz = al = σl = eaz = 1, where α is to be estimated and the latter parameters

are instead known. Let the covariance matrix of the impulse responses be the identity matrix. When α is estimated
by using the optimal weighting matrix, using (5), (6), (10)-(16) produces the same asymptotic variance as using
(5),(6),(9)-(16). Thus (9) is a redundant IRF (it does not help to identify α, as it is used to identify other parameters
that are assumed to be known in the example in this note). While the redundant IRF does not change the asymptotic
variance, it can inflate the variance in finite samples. The other IRF are all relevant. Omitting any of these IRFs
increases the asymptotic variance and will likely increase the finite sample variance.
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Jordà’s local projection impulse responses estimator is:

θ̂J,h = argmin
θ∈Θ

(bγh − γh(θ))
0Ŵh(bγh − γh(θ)) (17)

where bγh is a vector of structural impulse responses estimated by local projections, γh(θ) is the
vector of the model’s theoretical impulse responses up to horizon h given structural parameter θ,

and Ŵh is a weighting matrix.

Theorem 5 [Consistent IRF selection (Local projections case)]. Let Assumption 1’ hold and the

estimator of θ be (17), where h is chosen such that:

ĥ = arg min
h∈{1,...,H}

RIRSCJ(h),

RIRSCJ(h) = log(|V̂J,h|) + κ(h, p, T )

where V̂J,h is an estimate of the asymptotic covariance matrix of θ̂J,h and κ(h, p, T ) = h ln
³√

T/p
´
/
³√

T/p
´
.

Then ĥ
p→ h0 .

4.2. The IRF Matching Simulation Estimator. The second estimator that we consider is

the simulation-based estimator, which we will refer to as the Sims-Cogley-Nason (SCN) estimator.

In this case, we assume that the DSGE model implies an infinite-order VAR process; the reason is

that when the VAR is of finite order there is no advantage from using simulation-based estimators

because there is no lag-truncation problem. The SCN estimator is implemented in practice as

follows. First, VAR(p) models are fitted actual data to obtain empirical impulse responses bγh.15
15All the subsequent estimated parameters should also be function of p, the estimated number of lags in the VAR.

However, in order to simplify notation, we will not explicitly do so in the notation.
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Next, simulate data of length T from the model with parameter θ and apply the VAR(p) procedure

to obtain a vector of simulated impulse responses. Let eγ(s)h (θ) denote the vector of simulated impulse
responses from the s−th simulated data, s = 1, .., S, where S is the total number of simulation

replications. Finally, let eγh(θ) denote the average across the ensemble of simulated IRFs, which we
refer to as the approximate theoretical impulse responses: eγh(θ) =(1/S)PS

s=1 eγ(s)h (θ).
The SCN estimator of θ minimizes the distance between the average simulated theoretical

impulse responses and the empirical impulse responses:

θ̂SCN,h = argmin
θ∈Θ

(bγh − eγh(θ))0Ŵh(bγh − eγh(θ)) (18)

where Ŵh is a weighting matrix.16 Let V̂SCN,h denote a consistent estimate of the asymptotic

variance of θ̂SCN,h. One such estimator is provided in the Appendix (see eq. (25)).

Next, consider the problem of selecting the impulse responses for the IRF matching estimator.

Theorem (6) describes the IRF selection criterion we propose for the SCN estimator:

Theorem 6 [Consistent IRF selection (Simulation-based estimators case)]. The estimator of θ̂SCN,h

is (18), where h is chosen s.t.:

ĥ = arg min
h∈{1,...,H}

RIRSCSCN (h),

RIRSCSCN (h) = log(|V̂SCN,h|) + κ(p, h, T ),

16 In other words, the Sims-Cogley-Nason estimator can be viewed an indirect-inference estimator with a sequence of
finite-order VAR models used as an auxiliary model (see Gourieux, Monfort and Renault (1993) for indirect inference).
The Appendix shows that, under quite mild conditions, θ̂SCN,h is consistent and asymptotically normal.
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whereV̂SCN,h is an estimate of the asymptotic covariance matrix of θ̂SCN,h and κ(p, h, T ) = h
ln(
√
T/p)

T/p .

Under Assumption 1”, ĥ
p→ h0 .

5. Empirical analysis of two representative DSGE models

We apply the methods developed in this paper to two important representative macroeconomic

models recently developed by Altig et al. (2004) and Christiano et al. (2005) and estimated by

IRFME. Altig et al. (2004) account for the dynamic response of ten key postwar macroeconomic

variables to monetary policy, neutral technology and capital embodied shocks. Christiano et al.

(2005) focus instead exclusively on the monetary policy shock. One of the key parameters of

these models is the average time between price re-optimization. Both papers estimate the model’s

parameter values as well as the implied average time between re-optimization that minimize the

distance between the dynamic responses to shocks in the model and the impulse responses estimated

by using a VAR. The number of lags in the IRFs is fixed and equal to 20 (excluding those that are

zero by assumption), and the weighting matrix is diagonal.17

The goal of this section is to efficiently select the number of lags and compare our results to

theirs. We follow Altig et al. (2004) in estimating the empirical IRFs by using the following

structural identification assumptions: (i) neutral and capital embodied shocks are the only shocks

that affect productivity in the long run; (ii) the capital embodied shock is the only shock that

affects the price of investment goods; (iii) monetary policy shocks do not contemporaneously affect

aggregate quantities and prices. The number of deep parameters to be estimated is 18. We focus

on the case of a diagonal weighting matrix, as in Altig et al. (2004) and Christiano et al. (2005).

Table 1(a) reports the results for the Altig et al. (2004) model. The table reports the estimated

17Altig et al. (2005) remark that the diagonal weighting matrix ensures that the estimated value of the parameter
is such that the model’s IRFs lie as much as possible within the confidence bands based on the estimated IRFs.
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parameters along with their standard errors18 based on (4) in the columns labeled “RIRSC” (see

Altig et al. (2004) for a detailed description of the parameters). We match all three shocks’ IRFs,

and progressively reduce the lags in all three IRFs by one. We apply the RIRSC criterion (4) for

a number of lags in each IRF between 2 and 20, for a total of number of IRF points (h) ranging

between 6 and 60. The criterion selects 3 as the relevant number of lags for each IRF. Table 1(a)

also reports the estimated parameter values and standard errors for the case of a fixed number of

IRFs lags (namely 20, which is the case considered in the Altig et al., 2004) in the columns labeled

“Fixed lags (20)”. The table shows that the point estimates obtained by using our method are

overall qualitatively comparable to those in Altig et al. (2004), thus confirming their empirical

findings, although some parameter estimates are different. In particular, note that the estimate of

σa falls from 2 to 0.487, therefore going in the direction of reconciling the estimate with that in

Christiano et al. (2005).

A crucial aspect of the model is the implied average time between firms’ price re-optimization,

which is a function of the key parameter γ. Interestingly,note that our estimate of γ is substantially

(and statistically significantly) higher than that with h = 20. As a consequence, our estimate of

the implied average time between price re-optimization, reported in Table 1(b), implies that such

average time is about 3 quarters even in the homogeneous capital model (rather than the 5 quarters

that one would obtain in the fixed IRF lag scenario), which is more in line with the empirical

evidence discussed in Blinder et al. (1998). From the standard errors reported in parentheses below

such estimates in Table 1(b), note that the difference is statistically significant at conventional levels.

Furthermore, our estimator is more efficient, and this shows up in significantly lower standard errors

18Our standard errors are smaller than their counterparts in Altig et al. (2004). This is because the latter report
the square root of the components on the main diagonal of the asymptotic covariance matrix, whereas we report
those values divided by the square root of the sample size, namely the standard errors.
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of the parameters, including the implied average time between price re-optimization.

Table 2 shows the results for the Christiano et al. (2005) model, where the monetary policy

shock is the only shock of interest. In this case, the RIRSC chooses 6 lags for the impulse response.

Although the RIRSC changes some parameter estimates, the differences in this case are smaller

than in Table 1. This is likely due to the fact that Christiano et al. (2005) match only the IRFs to

one shock, which drastically reduces the dimensionality problem.

Note that our point estimates and standard errors are slightly different from those in the original

papers by Christiano et al. (2005) and Altig et al. (2004). The reason is that we modified the

numerical estimation procedure to make it more robust to changes in the initial parameter values

and to obtain more precise results. Specifically: (i) we use a Newton-Raphson type algorithm rather

than a simplex algorithm; (ii) our number of maximum iterations is 1000 rather than 10; (iii) the

grid sizes for numerical derivatives are different. We found that the latter two are responsible for

most of the differences in the numerical parameter values.19

As a robustness analysis, we investigate whether the insensitivity of our point estimates in

Tables 1 and 2 to a different IRF lag length is robust to different choices for the initial parameter

values and to the step size for the numerical derivatives. Unreported results show that a slightly

perturbation of the initial parameter values does not substantially change the main results, although

the estimates might change considerably when the magnitude of the perturbation is large.20 The

results are considerably less sensitive to the choice of the step size; in that case, the estimates and

standard errors change only very slightly.

19 In particular note that the estimate of σa in the Christiano et al. (2005) model was around 2 whereas in our case
is much smaller.
20 In particular, results were robust to adding a Normal(0,σ) shock to the initial parameter values with σ ∈ [1, 10],

but were not robust to ad-hoc initial parameter values (e.g. the origin).
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6. Monte Carlo robustness analysis

The striking difference in the estimates of some key parameters in the previous section deserves

an additional careful investigation into the causes of why this happens. In this section, we argue

that the difference in the estimates is likely caused by small sample biases, and report Monte Carlo

simulations to show that the use of our methodology provides substantially more precise estimation

of the deep parameters of the structural models. Unfortunately, a careful Monte Carlo analysis of

Altig et al. (2004) and Christiano et al. (2005) is currently computationally unfeasible, so we

investigate the properties of smaller scale models that nevertheless contain many features of the

more complicated models considered in the previous section. We consider a variety of examples,

some of which are purely statistical and others which are influential business cycle macroeconomic

models: a simple univariate AR(1) process; the structural VAR(2) example discussed in (4); the

Christiano and Eichenbaum (1992) and the Burnside et al. (1993) models, which have a VAR(∞)

representation. In the Christiano and Eichenbaum (1992) example, the impulse responses are

identified by using long-run identifying restrictions, whereas in the Burnside et al. (1993) example,

the impulse responses are identified by using short-run restrictions.

6.1. The AR(1). To start, first consider the following simple univariate AR(1):

yt = ρyt−1 + εt , t = 1, 2, ...T

where εt are random draws from a normal distribution with mean zero and variance one, and

T = 100. We estimate the deep parameter ρ by the IRFME that minimizes the distance between

the vector of IRFs estimated by fitting an AR(2) to the data and the theoretical IRF derived from

the AR(1). The weighting matrix W is the inverse of the covariance matrix of the estimated IRFs
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calculated by using Monte Carlo simulation. In this section we let H denote either the number of

IRFs matched by the IRFME with a fixed number of IRF lags (when we refer to the usual IRFME)

or the maximum number of IRFs considered when criterion (4) is used to select the relevant IRF

lag length.

Table 3(a) reports, for various values of ρ and H, both the estimated average bias (“bias”) and

the empirical rejection rates (“rej. rate”) of nominal 5% significance level tests for the following

estimators: the IRF matching estimator with H IRF lags, labeled “IRFME”; the IRF matching

estimator using only the IRFs selected by (4), labeled “IRFMERIRSC”; and the usual AR(1) esti-

mator, labeled “AR(1)”. Note that the IRFME with H = 1 is the maximum likelihood estimator.

We performed 1,000 Monte Carlo replications, discarding replications in which the estimator did

not converge numerically.

The table shows that the bias of IRFME tends to increase (in absolute value) with the number

of IRFs used (H) and its rejection rates are well above the nominal level of 0.05 for H ≥ 5, and

tend to go to one as H increases. The table also shows that the RIRSC method that we propose

does not suffer from over-rejections, and that it substantially reduces the bias of the traditional

IRFME.

6.2. The structural VAR(2) discussed in example (4). In example (4), the structural

model has a finite order structural VAR representation. We set T = 1, 000 to assess the performance

of the estimator in large samples. Table 3(b) reports bias (columns labeled “bias”) and empirical

rejection frequencies of t-tests with a nominal 5% rejection level (columns labeled “rej. rates”) for

both the IRF matching estimator with a fixed number of lags equal to H (labeled “IRFME”) and

the IRF matching estimator using only the IRFs selected by (4) (labeled “IRFMERIRSC”). The
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table shows that the bias afflicts mostly β0, and that the RIRSC helps to keep it under control.

Note that tests based on the traditional IRFME become unreliable whenH increases, with rejection

rates well above the nominal level, a problem that does not arise if one uses the RIRSC.

6.3. Burnside, Eichenbaum and Rebelo (1993). In this case, the structural model has

an infinite VAR representation for endogenous variables, such as output. Government spending

and productivity are exogenous and follow independent univariate autoregressive processes. We

estimate the empirical IRFs by using a bivariate VAR with output and government spending. The

Burnside et al. (1993) theoretical model implies that the former has an infinite VAR representation,

the latter an AR(1) representation.

The simulations are performed as follows. We generate a sample of artificial data of output and

government spending from the model (treating the parameter estimates of Burnside et al. (1993) as

the true values — such values are reported in the row labeled “true param.”). The empirical IRFs are

estimated by using a VAR(p), where p is selected by the BIC. The identification strategy assumes

that the productivity shock does not contemporaneously affect government spending, whereas the

government spending shock does. We perform 100 Monte Carlo replications, and evaluate only the

bias of the parameter estimates.21

Results are reported in Table 3(c). Parameter notation is the same as in Burnside et al. (1993,

cfr. Table 1). The table shows that in this environment the RIRSC performs quite well. It reduces

the average absolute bias across parameter estimates by 15% or more (see the last column, labeled

"Average Bias"). Not all the parameters in the Burnside et al. (1993) model are sensitive to

21For the Burnside et al. (1993) and the Christiano and Eichenbaum (1992) cases, we do not consider coverage
rates because they would require a very large number of Monte Carlo replications. Although the current number of
Monte Carlo replications is enough to give a flavor of the biases incurred in these examples, it is not sufficient to
provide a precise analysis of coverage properties.
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changes in the horizon of the IRF used for estimation: for example, parameters like θ and ρA do

not seem to be influenced by that. From comparing the size of the biases with the magnitude of the

true parameter values, it is clear that the biases can be substantial, and that therefore our RIRSC

can be extremely valuable.

6.4. Christiano and Eichenbaum (1992). We select two variables, employment and output;

the theoretical model implies that they jointly have an infinite VAR representation. We simulate

data of employment and output from the theoretical model by using the Christiano and Eichen-

baum’s (1992) estimated parameter values, reported in the table as “True param.” to provide a

comparison for the bias estimates. We then estimate a VAR(p) with a fixed lag length (p = 2)

to control for the effect caused by uncertainty on the lag length on the IRFME performance.22

Parameter notation is the same as in Christiano and Eichenbaum (1992, Table 1, the indivisible

labor case with α = 0).

According to the model, the government spending shock has no long run effect on output nor

employment, whereas the productivity shock does. We therefore estimate the empirical IRFs by

using such long run identification procedure. The deep parameter of the structural model by

matching the IRF estimated from the data with the theoretical IRF generated by the model. Since

the estimation procedure is computationally burdensome, the number of Monte Carlo simulations

is limited to 100.

Table 3(d) shows the results. The rows labeled “IRFME” report the bias of the IRFME im-

plemented with H lags, whereas the rows labeled “IRFMERIRSC” report the bias of the IRFME

implemented with a number of lags chosen by the RIRSC. The table shows that increasing the

22One lag was insufficient to the VAR to replicate the shape of the theoretical IRFs, and sometimes a BIC criterion
selected that and the estimator did not converge; in general, two lags did a pretty good job. Cogley and Nason (1995)
also impose a lag length equal to two.
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number of IRF lags used in the IRFME usually increases the mean absolute bias of the parameter

estimates. On average across the various parameters that we consider, the mean absolute bias

increases from 0.0938 when H = 3 to 0.2119 when H = 10. The rows labeled “IRFMERIRSC” show

instead that our criterion is very successful in attenuating this bias.

7. Conclusions

This paper’s objective is to contribute to the literature on the estimation of DSGE models by using

IRF matching estimators. We propose a simple and econometrically sound method for doing so.

We show by Monte Carlo simulations that our method can substantially improve the precision of

the parameter estimates and decrease their small sample biases. We also show that our method can

substantially change key parameter estimates of existing representative DSGE models. We hope

that the simplicity and the usefulness of the criterion that we propose will increase the applicability

of impulse response function matching estimators in practice.

Our framework assumes, as in most of the literature on IRF matching, that the IRFs to be

used in the estimation are correctly specified. Although it could be interesting to identify correctly

specified IRFs and those that are not, it is outside the scope of this paper.

Our paper provides an information criterion to improve upon commonly used IRF matching

estimators. We do not provide a systematic analysis of the relative merits of using IRF matching

estimators versus alternative estimators (e.g. MLE or Bayesian methods). The latter use the entire

likelihood of the model whereas the IRF matching focuses only on selected aspects of the model

(like limited information methods), therefore giving rise to the usual trade-off between efficiency

and robustness. We leave these issues to future work.
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9. Appendix

Notation. In what follows,
p→ denotes convergence in probability, d→ denotes convergence in dis-

tribution, dim(x) denotes the length of vector x, and for a matrix A: kAk2 ≡ tr(A0A), bA denotes

an estimate of A, “p.s.d.” denotes positive-semidefinite, “p.d.” denotes positive-definite, and E (.)

denotes the expectation operator.

Assumption 1 (VAR(p)). (a) For every h ∈ {h, h + 1, ...,H},
√
T (θ̂h − θ0)

d→ N(0, Vh),

where Vh is p.d. (b) There is a consistent estimator of Vh, V̂h = Vh + Op(T
−1/2) for every

h ∈ {h, ...,H}. (c) Ŵh is a sequence of p.s.d. matrices and satisfies Ŵh = Wh + Op(T
−1/2)

where Wh is p.d. for every h ∈ {h, ...,H}. (d) There is a unique h0 ∈ {h, ...,H} such that: (i)

Vh − Vh0 is p.s.d. for all h ∈ {h, ...,H}; (ii) If there is another h1 6= h0 such that Vh − Vh1 is

p.s.d. for all h ∈ {h, ...,H}, then h0 < h1. (e) For any h1, h2 ∈ {h, ...,H} such that h1 < h2,

√
T [κ(h2, T )− κ(h1, T )]→∞ as T →∞ and κ(h, T ) = o(1) for every h ∈ {h, ...,H}.

Assumption 1’ (VAR(∞)). Assumption 1 holds with 1(b,d,e,f) replaced by: (b’) V̂h =

Vh + Op(p
2T−1/2) uniformly in h [for the local projection estimator, V̂J,h = VJ,h +Op(p

2T−1/2)];

(d’) There is a unique h0 ∈ {h, ...} such that: (i) Vh − Vh0 is p.s.d. for all h ∈ {h, ...}; (ii) If

there is another h1 6= h0 such that Vh − Vh1 is p.s.d. for all h ∈ {h, ...}, then h0 < h1. (e’)

for any h1, h2 ≥ h such that h1 < h2, (
√
T/p2)[κ(h2, p, T ) − κ(h1, p, T )]

p→ ∞ as T → ∞ and

κ(p, p, T ) = o(1) for every h ≥ h; (f ’) H = cp, where c > 0.

Assumption 1” (SCN). (a”) For every h ∈ {h, ...},
√
T (θ̂SCN,h − θ0)

d→ N(0, VSCN,h),

where VSCN,h is p.d. (b”) V̂SCN,h = VSCN,h+Op(p
2T−1/2) uniformly in h. (c”) There is a unique

h0 ∈ {h, ...} such that: (i) VSCN,h − VSCN,h0 is p.s.d. for all h ∈ {h, ...}; (ii) If there is another

h1 6= h0 such that Vh−Vh1 is p.s.d. for all h ∈ {h, ...}, then h0 < h1. (d”) For any h1, h2 ∈ {h, ...}
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such that h1 < h2,
√
T

p2
[κ(h2, p, T ) − κ(h1, p, T )] → ∞ as T → ∞ and κ(p, p, T ) = o(1) for every

h ∈ {h, ...}; (e”) H = cp, where c > 0.

Remarks on Assumptions 1 and 1’. The IRFME (2) is a Classical Minimum Distance

Estimator (CMD). I. 1(a) is a high-level assumption and follows from more primitive assumptions

for CMD estimators (e.g., Newey and McFadden, 1994, Theorem 3.2). For example, under standard

assumptions, the asymptotic covariance matrix of the estimator θ̂h takes the form of

Vh = [Γh(θ0)
0WhΓh(θ0)]

−1Γh(θ0)
0WhΣγhWhΓh(θ0)[Γh(θ0)

0WhΓh(θ0)]
−1,

where Γh(θ) ≡ ∂γh(θ)/∂θ, Σγh is the covariance matrix of the IRFs, and Wh is the weighting

matrix.

II. Examples of consistent estimators of Vh are as follows. For a general weighting matrix (for

example, Ŵh = I) the following estimator satisfies Assumptions 1(b,c) under standard assumptions:

V̂h = [Γh(θ̂h)
0ŴhΓh(θ̂h)]

−1Γh(θ̂h)
0
ŴhΣ̂γhŴhΓh(θ̂h)[Γh(θ̂h)

0ŴhΓh(θ̂h)]
−1, (19)

where Σ̂γh is a consistent estimator of the covariance matrix of impulse responses, Σγh , Ŵh is a

consistent estimator of Wh by Assumption 1(c). In Assumption 1(b), H can be bigger than p, and

therefore the covariance of the IRFs may be singular, in which case we assume that a generalized

inverse is used to invert such a matrix. When Ŵh is the optimal weighting matrix, Ŵh = Σ̂
−1
γh
, then

(19) simplifies to:

V̂h = [Γh(θ̂h)
0Σ̂−1γh Γh(θ̂h)]

−1. (20)

III. Assumption 1(d) is the identification condition for the number of relevant impulse responses,
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h0. IV. Assumption 1(e) is a condition on the penalty term for unnecessary redundant impulse

responses. For example, Hall et al. (2006) recommend a BIC-type penalty, h ln
³√

T
´
/
√
T , which

is the penalty function that has been used throughout the main paper. V. Note that assumption

1c(i) does not require ny ≤ nε, nor that ny = nε. Nor it requires non-singularity of Wh.23 VI. Note

that κ(p, h, T ) = h
ln(
√
T/p)

T/p satisfies Assumption 1’(e’) and 1”(d”).

Assumption 2.24 In model (1): (a) As p, T →∞, p4/T → 0. (b) The parameter space Θ is

compact. (c) Let γh(θ) denote a vector of population impulse responses implied by a VAR(p) model

fitted to the data simulated with θ. There is a sequence of covariance matrix {Σγh(θ)} such that,

for any sequence of vectors { p} satisfying 0 < L1 ≤ k pk ≤ L2 <∞ for all p,
√
T 0

p(bγh − γh(θ0))

d→ N(0, limp→∞ 0
pΣγh(θ0) p) and

√
T 0

p(eγ(s)h (θ) − γh(θ))
d→ N(0, limp→∞ 0

pΣγh(θ) p) jointly and

independently for every θ ∈ Θ and s = 1, 2, ..., S. (d) limp→∞ kγh(θ)− γh(θ0)k = 0 if and only if

θ = θ0. (e) {γh} is continuously differentiable and the rank of Γh(θ0) is dim(θ) for p = h, h+1, ...

for some h. (f) γh(θ) and eγh(θ) satisfy Lipschitz conditions, kγh(θ0) − γh(θ)k < Lkθ0 − θk and

keγh(θ0)− eγh(θ)k < L̃kθ0 − θk where L and L̂ do not depend on θ and θ0 and are O(1) and Op(1),

respectively. (g) Each row of {Γh(θ0)} is summable. (h) There is a sequence of matrices {Wh}

such that, for any absolutely summable sequence of vectors { p}, 0
p(Ŵh −Wh) p = Op

³
p2/
√
T
´
.

(k) The eigenvalues of {Wh} are all positive and bounded away from zero and above. (l) For

23 In fact, for example, suppose that you estimate a tri-variate VAR(2) with two shocks and estimate eight deep
parameters using the optimal weighting matrix. When H = 2, the 18 by 18 asymptotic covariance matrix of all the
possible IRFs is singular and has rank 12, say. If you use the Moore-Penrose generalized inverse of the asymptotic
covariance matrix as the weighting matrix and if the 18 by 8 Jacobian matrix Fh(θh) has rank 8, which is implicit
in assumption (a), the result will still carry through even though ny > nε. Suppose now that the tri-variate VAR(2)
is driven by one shock instead of two. Then the asymptotic covariance matrix has rank 6. As a result the matrix
[Fh(θh)

0ŴhFh(θh)] is singular and the deep parameters will not be identified. In conclusion, the dimension of shocks
matters but not necessarily relative to the dimension of yt. Provided the rank conditions are satisfied, one could keep
adding a redundant vector of variables to the VAR system in which the number of shocks is fixed and not violate the
identification condition. Of course the finite-sample performance of the CMD estimator will deteriorate.
24The asymptotic normality of structural impulse responses estimators in Assumption 2 is a high-level assumption,

and follows from arguments similar to those in Lewis and Reinsel (1985) and Lütkepohl and Poskitt (1991).
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any absolutely summable sequence of vectors, {vp}, limp→∞ v0pWhvp is well-defined. (m) There

are consistent estimators of Σγh(θ0) and Σγh(θ), Σ̂γh and Σ̃
(s)
γh(θ)

respectively, such that, for any

absolutely summable sequence of vectors { p}, 0
pΣ̂γh p− 0

pΣγh(θ0) p = Op(p
2/
√
T ) and 0

pΣ̃
(s)
γh(θ)

p−

0
pΣγh(θ) p = Op(p

2/
√
T ).

Proof. [Proof of Theorem 3] Recall that h denotes the lowest horizon of the IRF for which the

parameters are identified. (a) Suppose that h >h and h 6= h0. First consider the case in which

Vh = Vh0. Because Assumption 1(d) implies that h > h0, it follows from Assumptions 1(b,e) that

T 1/2(RIRSC(h)−RIRSC(h0)) = T 1/2(log(|V̂h|)− log(|V̂h0 |)) + T 1/2(κ(h, T )− κ(h0, T ))

→ ∞.

Thus T 1/2(RIRSC(h)−RIRSC(h0)) is positive with probability approaching one as T →∞. Next

consider the case in which Vh 6= Vh0 . By Theorem 22 of Magnus and Neudecker (1999, p.21), it

follows from Assumption 1(d) that log(|Vh|) − log(|Vh0 |) > 0, where Vh is defined in Assumption

1(a). Thus it follows from Assumptions 1(b,e) that

RIRSC(h)−RIRSC(h0) = log(|V̂h|)− log(|V̂h0 |) + κ(h, T )− κ(h0, T )

= log(|Vh|)− log(|Vh0 |) + op(1)

> 0

with probability approaching one. When h <h, it follows from the definition of h that the rank of

Γh(bθh) will be less than the dimension of θ with probability approaching one. Thus |Γh(bθh)0WhΓh(bθh)| p→

0 and RIRSC(h)
p→ ∞ for all h <h. Since RIRSC(h) = Op (1) for h ≥h, ĥ ≥h with probabil-
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ity one. Because RIRSC(h) is uniquely minimized at h0 with probability approaching one and

RIRSC( ĥ) ≤ RIRSC(h) for all h, ĥ
p→ h0.

(b) First consider the case h0 <∞ . When h0 and h < h are compared, or when h0 and h that is

greater than or equal to h and does not depend on p are compared, h0 will be selected with probability

approaching one by using arguments analogous to the proof of Part (a). When h0 and h that is

increasing in p are compared, the value of the penalty term for such h will be larger than that for

h0. Because the first term of the criterion will converge to the same limit, h0 will be chosen with

probability approaching one.

Second, consider the case h0 = ∞ and p → ∞ under Assumption 1’. Let hT be a sequence such

that hT →∞ as T →∞, hT = O(p), and κ(p, p, T ) = o (1) . Then for every finite h,

RIRSC(h)−RIRSC(hT ) = log(|V̂h|)− log(|V̂hT |) + κ(h, p, T )− κ(hT , p, T )

= log(|Vh|)− log(|VhT |) + op(1)

> 0 (21)

with probability approaching one.25 Since RIRSC(ĥ) ≤ RIRSC(hT ), it follows that for any finite

h,

RIRSC(h)−RIRSC(ĥ) > 0 (22)

with probability approaching one. Thus ĥ
p→ ∞. Therefore, summarizing the results in Part (b),

our criterion will choose the right horizon whether h0 is finite or not (at least asymptotically).

Proof. [Canonical Correlation interpretation of RIRSC] The fact that our criterion can be given

25This follows because h0 =∞. No matter how large h is, there is always an h0 > h such that the IRF at horizon
h0 is relevant. As a result, the difference is positive with probability one.
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a Canonical Correlations interpretation along the lines of Hall et al. (2006) can be shown as follows.

Let bΨh denote a vector of slope coefficients and covariance matrix estimates and Ψ0 be the vector

of their true parameter values. In general, estimators of the slope coefficients and the covariance

matrix are
√
T -consistent and can be written as

√
T (bΨh − Ψ0) = GT−

1
2
PT

t=1 st(θ0) + op(1),

for some non-singular matrix G and random vectors {st(θ)} such that it is serially uncorrelated

and E [st(θ0)] = 0. Because impulse responses are smooth functions of slope coefficients and the

covariance matrix of a VAR model, it follows that

√
T (bγh − γh(θ0)) =

√
T
³
f(bΨh)− f(Ψ0)

´
=
√
TFh(Ψ0)(bΨh −Ψ0) + op(1)

= Fh(Ψ0)GT
−1
2

TX
t=1

st(θ0) + op(1),

where Fh(Ψ) is the Jacobian matrix of the smooth functions. Thus, an impulse function matching

estimator is first-order equivalent to the GMM estimator based on Fh(Ψ0)GE(st(θ0)) = 0, provided

that asymptotically equivalent weighting matrices are used. Thus, the results in Hall et al. (2006)

apply: the RIRSC criterion selects the set of moment conditions (or the impulse responses that

correspond to these moment conditions) whose canonical correlations with the true score is highest

among the set of candidate moment conditions (impulse responses).

Proof. [Proof of Theorem (5).] The proof is as in Theorem 1(b).

Theorem 7 [Asymptotic normality of simulation-based estimators]. Under Assumption 2(a)—(l),

θ̂SCN,h is consistent and is asymptotically normally distributed:

√
T (θ̂SCN,h − θ0)

d→ N(0, VSCN,h) (23)
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where

VSCN,h =

µ
1 +

1

S

¶
lim
p→∞

(Γh,p(θ0)
0WhΓh,p(θ0))

−1Γh,p(θ0)
0WhΣγh(θ0)WhΓh,p(θ0)

×(Γh,p(θ0)0WhΓh,p(θ0))
−1.

Proof. [Proof of Theorem (7)] By Theorem 2.1 of Newey and McFadden (1994), for a given hori-

zon h, θ̂SCN,h is consistent if: (i) Q0h(θ) ≡ limp→∞Qh(θ), where Qh(θ) ≡ (γh(θ0)−γh(θ))0Wh(γh(θ0)−

γh(θ)) is uniquely minimized at θ0, where γh(θ) is defined in Assumption 2(c); (ii) Θ is compact;

(iii) Q0h(θ) is continuous; and (iv) Q̂h(θ) (the objective function evaluated at the estimated para-

meters and at the estimated weighting function) converges uniformly in probability to Q0h(θ). By

Assumptions 2(d,k), Q0h(θ) is uniquely minimized at θ0. By Assumption SCN1(d), Θ is compact.

By Assumptions 2(b,f,k),

|Qh(θ
0)−Qh(θ)| = |(γh(θ0)− γh(θ))

0Whγh(θ
0) + γh(θ)

0Wh(γh(θ
0)− γh(θ))|

≤
£
(γh(θ

0)− γh(θ))
0Wh(γh(θ

0)− γh(θ))
¤ 1
2 (Qh(θ)

1
2 +Qh(θ

0)
1
2 )

≤ Ckγh(θ0)− γh(θ)k, (24)

where C is a constant that does not depend on p. Since

|Q0h(θ0)−Q0h(θ)| ≤ C lim
p→∞

kγh(θ0)− γh(θ)k,

it follows from Assumption 2(f) that Q0h(θ) is continuous in θ. To show that Q̂h(θ) uniformly con-

verges in probability to Q0h(θ), we need to show pointwise convergence and stochastic equicontinuity
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of Q̂h(θ). The pointwise convergence of Q̂h(θ) to Q0h(θ) follows from Assumptions 2(c,g). The

stochastic equicontinuity of Q̂h(θ) follows from the Lipschitz condition in Assumption 2(f). By

the uniform law of large number (e.g., Theorem 21.9 of Davidson, 1994, p.337), Q̂h(·) converges

uniformly in probability to Q0h(·). Therefore, θ̂SCN,h converges in probability to θ0.

Since θ̂SCN,h
p→ θ0, it follows from the first-order condition and the mean-value theorem that

√
T (θ̂SCN,h − θ0) = (Γ(θ̂SCN,h)

0ŴhΓ(θ̄SCN,h))
−1

×Γ(θ̂SCN,h)
0Ŵh[
√
T (bγh − γh(θ0)−

√
T (eγh(θ0)− γh(θ0)],

where θ̄SCN,h is a point between θ̂SCN,h and θ0. Then

√
T (θ̂SCN,h − θ0)

d→ N(0, VSCN,h),

where

Vh = lim
p→∞

(Γh(θ0)
0WhΓh(θ0))

−1Γh(θ0)
0Wh (1 + 1/S)Σγh(θ0)WhΓh(θ0)(Γh(θ0)

0WhΓh(θ0))
−1.

Theorem 8 [Estimation of asymptotic variance of simulation-based estimators]. Let Σ(s)γh(θ) denote

the estimated asymptotic covariance matrix of the simulated impulse responses eγsh(θ), and Σ̂γh de-
note the estimate of the asymptotic covariance matrix of the empirical impulse responses. Let

Ŵh =

Ã
Σ̂γh +

1

S2

SX
s=1

Σ̃
(s)

γh(θ̃SCN,h)

!−1
,
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where θ̃SCN,h is an estimator of θ (e.g., the SCN estimator with Wh = I). Then

V̂SCN,h = (Γh(θ̃SCN,h)
0ŴhΓh(θ̃SCN,h))

−1 (25)

×Γh(θ̃SCN,h)
0Ŵh

Ã
Σ̂γh +

1

S2

SX
s=1

Σ̃
(s)

γh(θ̃SCN,h)

!
ŴhΓh(θ̃SCN,h)

×(Γh(θ̃SCN,h)
0ŴhΓh(θ̃SCN,h))

−1

where bΓh(θ) ≡ 1
S

PS
s=1 Γ

(s)
h (θ), for Γ

(s)
h (θ) ≡ ∂eγ(s)h (θ)/∂θ. Under Assumption 2,

a. If θ̃SCN,h is
√
T -consistent, V̂h = Vh +Op(p

2/T ).

b. If h < h, |V̂ −1h | p→ 0.

When the weighting matrix Ŵh =

µ
Σ̂γh +

1
S2
PS

s=1Σ
(s)

γh(
bθSCN,h)

¶−1
is used, the variance of θ̂SCN,h

can be estimated by:

V̂SCN,h = (bΓh(θ̂SCN,h)
0Ŵh

bΓh(θ̂SCN,h))
−1 (26)

Proof. [Proof of Theorem (8)] (a). The consistency of the covariance matrix estimator follows

from Assumptions 2(c)(e)(f)(g)(k) and Theorem (7). The convergence rate follows from Assump-

tions 2(a,h). (b). Since the rank of Γh(θ̂SCN,h) is less than full for h < h,

|V̂ −1SCN,h| = |Γh(θ̂SCN,h)
0
µ
Σ̂γh(θ̂SCN,h)

+ 1
S Σ̃

(s)

γh(θ̂SCN,h)

¶
Γh(θ̂SCN,h)|

p→ 0. When h0 and h ≤ h are

compared, h0 will be selected with probability approaching one by arguments similar to those in

Theorem 1(b). When h0 and h that is greater than or equal to h and does not depend on p are

compared, h0 will be selected with probability approaching one by using arguments analogous to those

in Theorem 1. When h0 and h that is increasing in p are compared, the value of penalty term for

such h will be larger than the for h0. Because the first term of the criterion will converge to the

same limit, h0 will be chosen with probability approaching one.
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10. Tables

Table 1(a). Empirical results (Altig et al. (2004))

RIRSC Fixed lags (20)

Parameter Standard Parameter Standard

Parameters Estimates Errors Estimates Estimates

ρxM -0.097 0.019 -0.040 0.023

ρxz 0.588 0.097 0.329 0.073

cz 0.655 0.051 2.952 0.240

ρμz 0.237 0.054 0.894 0.012

ρxΥ 0.997 0.008 0.822 0.027

cΥ 0.307 0.034 0.247 0.034

ρμΥ 0.344 0.019 0.239 0.033

σM 0.334 0.009 0.333 0.008

σμz 0.203 0.013 0.069 0.005

σμΥ 0.287 0.007 0.304 0.007

ε 0.831 0.022 0.809 0.020

κ 6.907 0.762 3.350 0.269

ξw 0.832 0.017 0.713 0.020

b 0.779 0.010 0.706 0.010

σa 0.413 0.060 2.029 0.329

cpz 0.144 0.109 1.379 0.289

cpΥ 0.073 0.045 0.137 0.039

γ 0.207 0.034 0.039 0.005
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Table 1(b). Implied Average Time Between Re-Optimization

(Altig et al. (2004))

RIRSC Fixed lags (20)

Firm-Specific Capital Model 1.294 1.515

(0.010) (0.019)

Homogeneous Capital Model 2.770 5.655

(0.047) (0.127)

Table 2. Empirical results (Christiano et al. (2005))

RIRSC Fixed lags (20)

Parameter Standard Parameter Standard

Parameters Estimates Errors Estimates Errors

ρM -0.020 0.023 -0.114 0.021

σM 0.348 0.008 0.352 0.008

0.897 0.021 0.836 0.020

κ 3.732 0.286 4.324 0.353

ξw 0.624 0.015 0.645 0.020

b 0.762 0.010 0.717 0.011

λf 1.002 0.018 1.097 0.021

σa 0.001 0.012 0.041 0.043

γ 0.106 0.019 0.208 0.042

Note to Tables 1-2. The tables report parameter estimates and their standard errors for the

IRFME with 20 lags for each IRF, and the IRFME with lags chosen according to the RIRSC (4).
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Table 3(a). Monte Carlo results for the AR(1) case.

ρ H IRFME IRFMERIRSC

bias rej. rate bias rej. rate

0.4 1 0.0010 0.0531 0.0010 0.0511

5 -0.0243 0.2265 -0.0045 0.0521

10 -0.0135 0.4090 -0.0036 0.0442

20 0.0026 0.6194 -0.0072 0.0473

50 -0.0768 0.6815 -0.0480 0.0506

100 -0.0819 0.6236 -0.0451 0.0577

Table 3(b). Monte Carlo results for the structural VAR(2) case

H Bias Rej. rates

αδ δ β0 αδ δ β0

1 IRFME -0.036 0.025 -0.023 0.066 0.059 0.051

IRFMERIRSC -0.036 0.025 -0.023 0.057 0.058 0.047

2 IRFME -0.024 0.018 -0.024 0.065 0.061 0.060

IRFMERIRSC -0.036 0.025 -0.024 0.053 0.057 0.048

6 IRFME -0.028 0.021 -0.030 0.403 0.356 0.238

IRFMERIRSC -0.035 0.026 -0.025 0.053 0.050 0.056

12 IRFME -0.031 0.026 -0.036 0.646 0.565 0.460

IRFMERIRSC -0.034 0.025 -0.024 0.050 0.052 0.070
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Table 3(c). Monte Carlo results for the Burnside et al.’s (2003) model

α δ lnY lnγ lnG ρg σεa

True param. 0.6552 0.0208 8.5721 0.0040 6.9487 0.9819 0.0068

H Bias Average Bias

2 IRFME 0.1207 0.0968 1.1534 0.0572 0.7026 0.0505 0.0690 0.1556

IRFMERIRSC 0.1207 0.0968 1.1534 0.0572 0.7026 0.0505 0.0690 0.1556

10 IRFME 0.2374 0.4029 0.7414 0.3297 0.4606 0.0823 0.1093 0.2965

IRFMERIRSC 0.1150 0.0202 1.0121 0.0197 0.5853 0.0505 0.0679 0.1281

15 IRFME 0.1702 0.2858 0.6388 0.2517 0.3519 0.1305 0.1320 0.2801

IRFMERIRSC 0.1160 0.0212 1.1017 0.0216 0.6794 0.0485 0.0660 0.2934

Table 3(d). Monte Carlo results for the Christiano-Eichenbaum (1992) model

γ θ δ λ ρ

True param. 0.003 0.6552 0.0208 0.0037 0.9571

H Bias Average Bias

3 IRFME 0.057 0.3174 0.0531 0.0508 0.0420 0.0938

IRFMERIRSC 0.057 0.3174 0.0531 0.0508 0.0420 0.0938

10 IRFME 0.057 0.3560 0.3253 0.3091 0.0635 0.2119

IRFMERIRSC 0.055 0.3163 0.0212 0.0212 0.0935 0.0915

15 IRFME 0.006 0.3554 0.3690 0.3519 0.0781 0.2320

IRFMERIRSC 0.006 0.3386 0.0472 0.0436 0.1096 0.1090
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Note to Tables 3(a,b). The tables reports bias (i.e. true parameter value minus estimated value)

and rejection rates of 95% nominal confidence intervals for examples AR(1) and (4).

Note to Tables 3(c,d). The tables report mean absolute bias (defined as the absolute value of

the difference between the true parameter value and the estimated value) for selected parameters,

as well as their average, for two estimators: the IRFME with H lags for each impulse response,

and the IRFME with lags chosen according to the RIRSC (4).




