
 

WORKING PAPER SERIESFE
D

ER
AL

 R
ES

ER
VE

 B
AN

K
 o

f A
TL

AN
TA

 

Price Distributions and Competition
 
Ken Burdett and Eric Smith 
 
Working Paper 2009-27 
October 2009 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6924497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 
 
The views expressed here are the authors’ and not necessarily those of the Federal Reserve Bank of Atlanta or the Federal 
Reserve System. Any remaining errors are the authors’ responsibility. 
 
Please address questions regarding content to Ken Burdett, Department of Economics, University of Pennsylvania, 3718  
Locust Walk, Philadelphia, PA 19104, or Eric Smith, Research Department, Federal Reserve Bank of Atlanta and Department of 
Economics, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom, 44 1206 872756, 
esmith@essex.ac.uk. 
 
Federal Reserve Bank of Atlanta working papers, including revised versions, are available on the Atlanta Fed’s Web site at 
www.frbatlanta.org. Click “Publications” and then “Working Papers.” Use the WebScriber Service (at www.frbatlanta.org) to 
receive e-mail notifications about new papers. 

FEDERAL RESERVE BANK of ATLANTA       WORKING PAPER SERIES 

Price Distributions and Competition 
 
Ken Burdett and Eric Smith 
 
Working Paper 2009-27 
October 2009 
 
Abstract: Considerable evidence demonstrates that significant dispersion exists in the prices charged for 
seemingly homogeneous goods. This paper adopts a simple, flexible equilibrium model of search to 
investigate the way the market structure influences price dispersion. Using the noisy search approach, the 
paper demonstrates the effects of having a single large, price-leading firm with multiple outlets and a 
competitive fringe of small firms with one retail outlet each. 
 
JEL classification: D40, L7 
 
Key words: price dispersion, consumer search, market structure 



Empirical research has established that there is signi�cant dispersion in prices

charged by retail outlets for seemingly homogeneous goods.1 Indeed, price dispersion

appears to be pervasive in that it is observed in markets with very di¤erent structures.

The objective here is to investigate the way in which the underlying structure of the

market can a¤ect equilibrium price distributions.

A relatively large literature attempts to explain how price distributions can arise

as part of a market equilibrium. In search models2, a large number of �rms post prices

and consumers pay a cost to observe the prices o¤ered. Most contributions in this

literature generate non-degenerate equilibrium price distributions by assuming that

�rms and/or consumers di¤er in some way. (See, for example, Reinganum, 1976; Var-

ian, 1980; Carlson and McAfee, 1983; Rob, 1985; Stahl, 1989; Spulber 1989; Jansen

and Moraga 2004.) These models have led to new and important insights. Neverthe-

less, their particular nature makes them di¢ cult to generalize to other environments.

The Burdett and Judd (1983) model of noisy search di¤ers somewhat. When both

consumers and �rms are homogeneous, the unique equilibrium is characterized by a

continuous distribution of price o¤ers. This paper illustrates the �exibility of Burdett-

Judd approach. We consider a market structure with one large �rm having multiple

outlets and a competitive fringe consisting of many small �rms each with a single

outlet. Single outlet �rms o¤er a continuous distribution of prices, and the multiple

outlet �rm, the recognized market leader, o¤ers the highest price in the market. Not

surprisingly, market power generates higher average prices, making consumers worse

o¤. Prices at the multiple outlet �rm tend to be higher than prices charged if there

were only single outlet �rms. The high price from the market leader confers bene�ts

1See, for example, Stigler, (1961); Pratt, Wise and Zeckhauser, (1979); Carlson and Pescatrice,

(1980); Villas-Boas, (1995); Warner and Barsky, (1995); and Sorensen, (2000). This dispersion,

somewhat surprisingly, appears to persist despite the recent rise of e-commerce. Although consumers

with a connected computer can now observe a huge number of prices for any particular good at a

relatively small cost in time and energy, evidence to date demonstrates that price dispersions for

similar goods sold on the web are signi�cant and stable. (See, for example, Brynjolfsson and Smith,

2000; Baye and Morgan, 2001; and Baye, Morgan and Scholten, 2001.)
2So called clearing house models o¤er an alternative approach to price dispersion.
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on all outlets.

The market structure considered here has become part of the standard �tool-kit�

in industrial organization (Carlton and Perlo¤, 1999, p. 63-65, 107-118). There are,

of course, a wide variety of additional settings and topics. The more general message

here is that the broad framework o¤ers a �exible and robust platform on which to

study many other classical problems in industrial organization.

The Framework

Suppose there is a �xed continuum of consumers and retail outlets. One large

�rm has proportion � of all outlets and many small �rms have a single outlet each.

All outlets sell a homogeneous, indivisible good. A consumer who purchases at price

p; enjoys utility z� p: Before the market opens, each �rm posts a price which cannot
be changed once set. The marginal cost of production is constant. Without loss of

generality, assume marginal cost is zero.

All large �rm outlets o¤er the same price - x: Let F (p) denote the probability a

single outlet �rm o¤ers a price no greater than p: Further, let p` and ph indicate the

in�mum and supremum of the support of F with z � ph � p` � 0 for any F .
As distributions with mass points will be considered, the following notation con-

vention is used. Given distribution function F; assume for any p

F (p) = lim
"!o;">0

F (p� ") + �(p)

where �(p) indicates the mass of �rms o¤ering price p; if such a mass exists. If

�(p) = 0 for all p; the distribution is said to be continuous.

Consumers search over prices to maximize expected utility from purchasing the

good net of search costs, c > 0. A consumer observes one o¤er with probability

1 � � and two o¤ers with probability �: An observed price is the realization of an
independent draw from all prices on o¤er. There is no recall of previously rejected

o¤ers. Neither �rms nor consumers discount the future.

This type of search has been termed noisy search and can be motivated as follows.

In an attempt to �nd a low price, the consumer pays a cost to observe a price, say

by visiting a store. After visiting this store and observing the price, with probability
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� this consumer meets a friend who has contacted another store and observed a

di¤erent price. If this meeting occurs, the friends exchange information by informing

each other of the price o¤ered and location of each store visited. The consumer

then either purchases from one of these two stores, or pays c and searches again. If

a friend is not contacted, the consumer either purchases from the store visited, or

search continues.

Single Outlet Firms

A given outlet cannot in�uence the number of buyers it contacts - consumers

search randomly. Hence, a �rm maximizes expected pro�ts by maximizing expected

pro�t per consumer visit. Suppose for the moment all �rms expect consumers to use

e¤ective reservation price R > 0. Each single outlet �rm takes as given three objects

- the price o¤ered by the multiple outlet �rm, x; the e¤ective reservation price of

consumers, R; and the distribution of prices made by other single outlet �rms, F:

Given random search, the �rm�s expected pro�t per potential customer when it o¤ers

price p � R can be written as

�(pjR; x; F ) =

8>><>>:
p[ + (1� )(1� �)(1� F (p) + �(p)=2) + (1� )�] for p < x

p[ + (1� )(1� �)(1� F (p) + �(p)=2) + (1� )�=2] for p = x

p[ + (1� )(1� �)(1� F (p) + �(p)=2)] for p > x
(1)

where  denotes the probability the consumer contacted is one who has only observed

one price that period. Note that �(pjR; x; F ) = 0; for p > R:
A market equilibrium is de�ned later. Nevertheless, it will be useful to specify

an important element of it at this point. In an equilibrium we require that for given

(R; x); 0 < x � R; there exists a single outlet price distribution (SPD), F; such that

�(pjR; x; F )

8<: = �� � 0 for all p on support of F

< �� otherwise
(2)

It is possible to restrict the class of distributions functions that can be a SPD.

Claim 1: Given (R; x); 0 < x � R; if F is a SPD, then F is continuous.

Proof: R > 0 implies that for any given F; when 0 < � < 1; �rms can obtain strictly

positive expected pro�ts per customer. Hence, no �rm charges p = 0:
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Assume in equilibrium F has a mass at p0 > 0: In this case

�(p0jR;F ) = p0 + p0(1� )[(1� F (p0)) + �(p0)=2]

Clearly, if a �rm o¤ers price p0 � "; " > 0; then

�(p0 � "jR;F ) � (p0 � ") + (p0 � ")(1� )[(1� F (p0)) + �(p0)]

It follows from inspection that �(p0 � "jR;F ) > �(p0jR;F ) for small enough " > 0

and therefore a contradiction completes the proof.�

Given Claim 1, (1) can be written as

�(pjR; x; F ) =

8>><>>:
p[ + (1� )(1� �)(1� F (p)) + (1� )�] for p < x

p[ + (1� )(1� �)(1� F (p)) + (1� )�=2] for p = x

p[ + (1� )(1� �)(1� F (p))] for p > x

(3)

The object now is to demonstrate that for given (R; x); 0 < x � R; there exists a

unique SPD. Claim 2 �rst establishes that at any SPD the supremum of the support

is either, ph = R; or ph = x: This result along with (3) can be used to establish the

expected pro�ts at any SPD.

Claim 2: Given (R; x); 0 < x � R; suppose F (:jx;R) is the associated SPD (pro-

vided one exists).

(a) If F (xjx;R) < 1 and x < R; i.e., if a positive measure of single outlet �rms

o¤er a price greater than x; then ph = R and the expected pro�ts of all single

outlet �rms is R:

(b) If F (xjx;R) > 0; i.e., if a positive measure of single outlet �rms o¤er a price
no greater than x; then F (xjx;R) � F (x � "jx;R) > 0 for all " > 0 small

enough. Further, the expected pro�ts of all single outlet �rms is

x[ + (1� )(1� �)(1� F (xjx;R)) + (1� )�]:

Proof: Given F (xjx;R) < 1; suppose ph < R: As F (:jx;R) must be continuous, the
expected pro�ts of a �rm o¤ering ph is ph: However, a �rm o¤ering price p such that
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ph < p � R obtains expected pro�ts p > ph: This leads to a contraction thereby

establishing (a).

Given F (xjx;R) > 0; suppose there exists a p1 < x such that F (p1) = F (x); i.e.,
no single outlet �rm o¤ers a price p1 < p � x: The expected pro�ts of a �rm o¤ering

price p; where p1 < p � x; can be written as

�(pjx;R; F (:jx;R)) =

8<: p[ + (1� )(1� �)(1� F (xjx;R)) + (1� )�] for p1 < p < x
p[ + (1� )(1� �)(1� F (xjx;R)) + (1� )�=2] for p = x

It follows immediately that �(p jx;R; F (:jx;R) ) is strictly increasing in p when p1 <
p < x. This implies there is a contradiction establishing the �rst part of (b). It also

follows that

�(p jR; x; F (:jx;R) )! x[ + (1� )(1� �)(1� F (xjx;R)) + (1� )�]

as p ! x: Hence, because F (:jx;R) is a SPD all �rms must make these expected

pro�ts. �

The next Claim establishes that given R (0 < R � z); there exists two numbers,
x(R) and x(R), such that (a) if x < x(R) then at a SPD all single outlet �rms o¤er

a price more than x and (b) if x > x(R); then at a SPD all single outlet �rms o¤er

a price less than x: This Claim further fully characterizes the unique SPD for given

R and x in both case (a) and case (b).

Claim 3:

(a) Given R such that 0 < R � z; de�ne x(R) by

x(R) = R (4)

If x < x(R); there is a unique SPD, F (:jx;R); such that F (xjx;R) = 0; i.e.,
all single outlet �rms o¤er a price greater than x: Further,

F (pjx;R) = 1� (R� p)
(1� )(1� �)p (5)

with support [p`; R] such that

p` =


(1� )(1� �) + R (6)
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(b) Given R such that 0 < R � z; de�ne x(R) by

x(R) =
R

 + �(1� ) > x(R) (7)

If x > x(R); there is a unique SPD, F (:jx;R); that implies F (xjx;R) = 1;

i.e., all single outlet �rms o¤er a price less than x: Further,

F (pjx;R) = 1� (x� p)[ + (1� )�]
p(1� )(1� �) (8)

with support [p`; x]; where

p` = x[ + (1� )�] (9)

Proof: Given (x;R) such that 0 < x < R � z; suppose all single outlet �rms o¤er a
price greater than x: From Claim 2(a) it follows that all �rms make expected pro�ts

R: Suppose a deviant single outlet �rm o¤ers a price p < x: Such a �rm sells to all

consumers who visit and therefore obtains expected pro�ts (per potential customer)

�(p jx;R; F (:jx;R) ) = p for p < x: Hence, the deviation is not pro�table if x < x(R);
where x(R) is de�ned in (4). Given x < x(R); equal expected pro�ts for all single

outlet �rms yields

R = p[ + (1� )(1� �)(1� F (p))]

Solving implies that F (:jx;R) satis�es (5) and (6).
Given (x;R) such that 0 < x < R � z; suppose all single outlet �rms o¤er a price

less than x: From Claim 2(b), it follows that if F is a SPD, then all single outlet

�rms make expected pro�ts x[ + (1 � )�]: When will a �rm want to deviate and

o¤er a price greater than x? Given x < R; a �rm that o¤ers a price greater than x

will o¤er price R and obtain expected pro�ts R: Hence, no single outlet �rm will

select to deviate and o¤er a price greater than x if x > x(R); where x(R) is de�ned

in (7). Given x > x(R); equal expected pro�ts for all single outlet �rms yields

p[ + (1� )(1� �)(1� F (xjx;R) + (1� )�] = x[ + (1� )�]

for all p on the support of F (:jx;R). Solving implies F (:jx;R) satis�es (8) and (9).�
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The next step is to characterize the unique SPD for when the multiple outlet

�rm charges intermediate prices, i.e., for x between x(R) and x(R). For such an

intermediate x; single outlet �rms not surprisingly distribute themselves on either

side of the multiple outlet price. However, this distribution contains a gap. There

exists a range of prices immediately above x which lead to lower than equilibrium

expected pro�ts so that no single outlet �rm sets its price in this region.

Claim 4: For �xed R > 0 (0 < R � z); if x 2 (x(R); x(R)); then there exists a
unique SPD; such that

�(x;R) =
R� x[ + (1� )�]
x(1� )(1� �) (10)

indicates the proportion of single outlet �rms o¤ering a price greater than x: Further,

the unique SPD, F (:jx;R), can be written as

F (pjx;R) =

8>><>>:
p�R

p(1�)(1��) for pl < p � x
F (xjx;R) for x < p � ep(x;R)
1� (R�p)

p(1�)(1��) for ep(x;R) < p � R (11)

where ep(x;R) = R

 + (1� )(1� �)�(x;R) > x (12)

and

p` = R (13)

Proof: Given R (0 < R < z); if x(R) < x < x(R)); then we require the expected

pro�ts of single outlet �rms o¤ering a price greater than x to be the same as that

obtained by those o¤ering a price less than x; i.e.,

R = x[ + (1� )(1� �)�(x;R) + (1� )�] (14)

Solving implies �(x;R) must satisfy (10). For those single outlet �rms o¤ering a price

greater than x; equal pro�ts implies

R = p[ + (1� )(1� �)(1� F (pjx;R))]
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for all p > x on the support of F (:jx;R): As

�(x;R) = 1� F (xjx;R) = 1� F (~pjx;R)

this yields ep(x;R) in (12). Given R in (14) it follows that ep(x;R) > x:
For those single outlet �rms o¤ering a price less than x; equal pro�ts implies

R = p[ + (1� )(1� �)(1� F (pjx;R)) + (1� )�]

for all p < x on the support of F (:jx;R): Solving for F and then again for pl generates
the form of the unique SPD as presented in (11) and (13). Note, F (pjx;R) =
F (xjx;R) for all p 2 [x; ep(x;R)]:�
The Multiple Outlet Firm

The multiple outlet �rm takes as given the reservation price of consumers, R; and

the response of single outlet �rms as represented by the family of SPDs fF (:jx;R)g0<x�R:
Whatever price the multiple outlet �rm charges, x; the response by single outlet �rms

can be described by the unique SPD, F (:jx;R): This speci�cation in e¤ect makes
the multiple outlet �rm a market leader that sets its price before single outlet �rms.

At a particular outlet, the multiple outlet �rm�s expected pro�ts per potential

customer, given R and the family fF (:jx;R)g0<x�R; is

�m(x;R) =

8>><>>:
x[ + (1� )(1� �) + (1� )�=2] for x < x(R)

x[ + (1� )(1� �)�(x;R) + (1� )�=2] for x(R) � x < x(R)
x[ + (1� )�=2] for x(R) � x � R

(15)

where again �(x;R) equals the proportion of single outlet �rms o¤ering a price greater

than x: It follows

@�m(x;R)

@x
=

8>>>>><>>>>>:
 + (1� )(1� �) + (1� )�=2 for x < x(R)

 + (1� )(1� �)�(x;R) + (1� )�=2
+x(1� )(1� �)@�(x;R)

@x
for x(R) < x < x(R)

 + (1� )�=2 for x(R) � x � R

(16)

Note, if x < x(R) or x > x(R); the above derivative is strictly positive. Further, if

x(R) < x < x(R); then substituting (10) and its derivative into (16) yields

@�m(x;R)

@x
=
2R

x
� �(1� )

2
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Clearly, @2�m(x;R)=@x2 < 0: At both x = x(R) and x = x(R); @�m(x;R)=@x is

strictly positive and therefore @�m(x;R)=@x > 0 for all x(R) < x < x(R): It follows

from inspection that the multiple outlet �rm will maximize its pro�ts by o¤ering price

R:

If n consumers are searching for a low price, then [2�+(1��)]n = (1+�)n is the
expected number of o¤ers observed by consumers. It follows that  = (1��)=(1+�)
denotes the probability a �rm contacts a consumer who only observes one price (given

a contact is made). Therefore, in equilibrium the multiple outlet �rms charge price

R; and the distribution of prices charged by the single outlet �rms is given by

F (pjR) = 1� (x� p)[1� �+ 2��]
2p�(1� �) (17)

where the support of F is [p`; R]

p` =
[1� �+ 2��]
(1 + �)

R

Consumer Behavior

Before discussing consumer behavior, we �rst de�ne an equilibrium

De�nition: A market equilibrium is (R�; x�; fF (:jx;R�)g0<x�R�); where

(a) x� maximizes the multiple outlet �rm�s expected pro�ts given R� and fF (:jx;R�)g0<x�R�

(b) the SPD, F (:jx�; R�); describes the optimal pricing behavior of single outlet
�rms, given x� and R�

(c) R� is the reservation price of any consumer, given x� and F (:jx�; R�)

So far we have shown that, given R; equilibrium conditions (a) and (b) are sat-

is�ed when the multiple outlet �rm o¤ers price R; and the equilibrium response of

single outlet �rms is given by the SPD, F (:jR;R): Each consumer takes F and x as
given. Without loss of generality assume that (a) and (b) are satis�ed and therefore

consumers take R and F (:jR;R) as given for some R; where 0 < R � z:
As search is random,
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(a) (1��)(1��) denotes the probability the consumer receives only one o¤er which
is from a single outlet �rm,

(b) 2�(1��)� denotes the probability the consumer receives one o¤er from a single
outlet �rm and one from the multiple outlet �rm; and

(c) �(1� �)2 denotes the probability the consumer receives two independent o¤ers
each from a single outlet �rm.

Given the multiple outlet �rm charges price R with probability one, with proba-

bility (1� �)(1� �) + 2�� (1� �) the consumers lowest price observed is a random
draw from F (:jR;R); whereas �(1 � �)2 indicates the probability the lowest price
observed is a random draw from G = 1� (1� F )2: Hence, with probability

� = 1� [(1� �)(1� �) + 2��(1� �) + �(1� �)2]

the lowest price observed is R: Suppose all �rms expect consumers to use e¤ective

reservation price, R; the multiple outlet �rm charges price R; and F (:jR;R) is the
SPD: In this case the expected return to a consumer from search can be written as

V = �c+ [(1� �)(1� �) + 2��(1� �)]
�Z Q

p`

(z � p)dF (pjR;R) + (1� F (QjR;R))V
�

+�(1� �)2
�Z Q

p`

(z � p)dG(pjR;R) + (1�G(QjR;R))V
�
+ �maxfV; z �Rg

where Q is the reservation price used that satis�es z � Q = V: Integrating by parts
and manipulating yields

V = �c+ [(1� �)(1� �) + 2��(1� �)]
Z Q

p`

F (pjR;R)dp+ �(1� �)2
Z Q

p`

G(pjR;R)dp

+(1� �)V + �maxfV; z �Rg

As maxfV; z �Rg = V +maxfQ�R; 0g; we have

c = [(1� �)(1� �) + 2��(1� �)]
Z Q

p`

F (pjR;R)dp

+�(1� �)2
Z Q

p`

G(pjR;R)dp+ �maxfQ�R; 0g

10



for any R (0 < R � z): In equilibrium we require either Q = R, for some R � z; or
Q > R; for all R � z: De�ne �(R) by

�(R) = [(1� �)(1� �) + 2��(1� �)]
Z R

p`

F (pjR;R)dp

+�(1� �)2
Z R

p`

F (pjR;R)[2� F (pjR;R)]dp

Substituting (8) for F (:jR;R) and performing the relevant integration establishes that

�(R) = �(1� �)2R

hence

R� = minfz; c

�(1� �)2g (18)

This implies we have a unique equilibrium. Using  = (1� �)=(1 + �); the following
Proposition summarizes what has been established above.

Proposition: There exists a unique equilibrium in which (a) the multiple outlet �rm

o¤ers price R�; (b) R� satis�es (18) and (c) the distribution of prices o¤ered by single

outlet �rms can be written as

F (pjR�; R�) = 1� (R
� � p)[1� �(1� 2�)]

2p�(1� �) (19)

with support [p`; R] such that

p` =
1� �(1� 2�)

1 + �
R� (20)

Further, consumers utilize reservation price R�:

Discussion

Prices are strategic complements. A higher price at any particular outlet increases

the expected payo¤ at those outlets with lower prices thereby generating a positive

spillover among outlets. As potential competitors raise their prices, an outlet has an

increased incentive to raise its own price.

The multiple outlet �rm but not the single outlet �rms takes advantage of its size

in this situation. Realizing that with probability � it will capture the spillover from
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a higher price at one of its outlets, the multiple outlet �rm has the incentive to push

up the highest price found in the market (relative to the supremum price in the case

where there are only single outlet �rms and when R < z). The extent to which this

occurs depends on the number of outlets operated by the multiple outlet �rm. For

z > c=�(1� �)2, a larger proportion of outlets in one �rm generates a higher price x

at those outlets associated with that �rm.

In the competitive fringe of single outlet �rms, prices also increase with the propor-

tion of outlets in one �rm. The distribution of prices given � stochastically dominates

the distribution of prices given �0 if and only if � < �0, i.e. F�(pjR�; R�) < 0. The re-
lationship between the price distribution and � decomposes into two complementary

e¤ects. Having more �rms charging the highest price reduces competition in the com-

petitive fringe and hence induces higher prices among these �rms. In addition, if the

supremum price increases as well, i.e. z < c=�(1� �)2; fringe prices rise accordingly.
More interestingly, the range of prices is non-monotonic in �. In particular, if

z > c=�(1��)2; i.e. if there exists a su¢ ciently small �; price dispersion (as measured
either by the price range between the supremum and the in�mum or by di¤erences

in percentile price as discussed above) increases with � until R = z: In this case, as �

increases, the rise of the supremum outstrips the rise in the in�mum. However, once

� is su¢ ciently large so that the reservation price is limited by the monopoly price,

that is, R = z; a higher � reduces dispersion. In this case, only the in�mum increases

with �:

In equilibrium, because the multiple outlet �rm but not single outlet �rms is

privately providing a public good (for all outlets) of higher prices, single outlet �rms

earn higher expected pro�ts than outlets associated with the market leader. Further

note that for z < c=�(1 � �)2 outlets, pro�t per potential customer at the outlets
of the market leader are independent of �: Increasing the number of outlets at the

multiple �rm outlet only bene�ts the remaining single outlet �rms.

In this noisy search model, although having one large seller and many small sellers

does not alter the fundamental source of price dispersion, it does in�uence pricing

in interesting ways. More generally, this model illustrates that noisy search can be

12



adapted to address in a consistent manner issues fundamental to industrial economics.

For example, the approach appears well suited for including advertising, the adoption

of new technologies, and market entry and exit. The approach could likewise be

expanded to other areas such as international trade, as in Alessandria (2004).
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