View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by Research Papers in Economics

Housing Price Cycles and Prepayment Rates of
U.S. Mortgage Pools

Joe Mattey Nancy Wallace
Research Officer Associate Professor
Federal Reserve Bank of Haas School of Business
San Francisco U.C. Berkeley
(415) 974-3201 (510) 642-4732

August 20, 1999


https://core.ac.uk/display/6924082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Empirical mortgage prepayment models generally have trouble explain-
ing differences in mortgage prepayment speeds among pools with similar
interest rates on the underlying mortgages. In this paper, we model some
of the sources of termination heterogeneity across mortgage pools, par-
ticularly the role of regional variations in housing prices in generating
atypical prepayment speeds. Using a sample of Freddie Mac mortgage
pools from 1991-1998, we find evidence that differences in house price
dynamics across regions are an important source of between-pool het-
erogeneity. This finding is then shown to be robust to alternative ways
of parameterizing pool heterogeneity in mortgage termination models.

This paper presents the authors’ views, not those of the Federal Reserve
System.



1 Introduction

Empirical mortgage prepayment models generally have trouble explain-
ing differences in mortgage prepayment speeds among pools with similar
interest rates on the underlying mortgages. A common failing of existing
models is that predicted prepayment levels for seasoned mortgages often
over /underestimate the degree to which existing pools are ”burned-out”
from prior periods of interest rate driven refinancing, owing to inad-
equate controls for transaction cost heterogeneity between and within
the mortgage pools. In this paper, we model some of the sources of ter-
mination heterogeneity across mortgage pools, particularly the role of
regional variations in housing prices in generating atypical prepayment
speeds. In compiling this evidence on the importance of housing price
differences in explaining between-pool heterogeneity, we show that the
results are robust to alternative ways of parameterizing the effects of
heterogeneity within mortgage pools.

A growing literature recognizes the importance of understanding the
role of house prices in mortgage terminations. Differences across mort-
gage holders in propensities to prepay can arise either from the charac-
teristics of the individual mortgage holders or from the characteristics
of the regional housing and labor markets in which they participate.
Modeling the regional component of prepayment risk is more important
than modeling the idiosyncratic component of prepayment risk because
diversification can more easily reduce the idiosyncratic risk (Archer and
Ling, 1997; Archer, Ling, and McGill, 1996). The geographic, housing
market dimension of mortgage termination is stressed in recent research
concerning the determinants of mortgage default (Kau et al., 1992, 1995;
Deng et al., 1998). In addition to increasing defaults, weak housing prices
have been shown to decrease refinancing and mobility-related mortgage
terminations.?

!Early contributions to the study of heterogeneity in prepayment rates of mort-
gage pools, such as that of Becketti and Morris (1990), used the location of the
operations of the originator-servicer as a proxy for the geographic location of the
collateral and documented substantial variation in prepayment speeds by state from
1982 to 1988. Evidence from the early 1990s also has corroborated the importance
of geographic factors to prepayments and identified housing price developments as
the primary geographic factor. As noted by Monsen (1992) and demonstrated for-
mally by Caplin et al. (1993), home prices declined in much of the Northeast over
the 1990-92 period, and the reduction in collateral depressed prepayment activity
there relative to other states. Caplin et al. (1993) attribute this depressed level of
prepayment in the Northeast to lower refinancing activity, but their data does not
allow them to actually distinguish between prepayments related to refinancing and
prepayments related to home purchases. Using loan-level data on refinancings, Peri-
stiani et al. (1996, 1997) were able to document a large effect of low home equity
on the propensity to refinance, but they were not able to address the issue of how



In Mattey and Wallace (1998), we investigated terminations by type
(refinancing, default, and mobility) for fifteen California counties from
1992 through 1996. We found that the path of house prices was im-
portant for each of these types of terminations: weak collateral values
held down refinancing and mobility, while boosting defaults. The effect
of housing prices on refinancing was most economically significant, both
because the magnitude of the effect was large and because the effects of
housing prices on default and mobility were partly offsetting.

In this paper we extend the Mattey and Wallace (1998) line of anal-
ysis to include empirical evidence from housing markets throughout the
United States and focus on the sources of termination heterogeneity
across individual mortgage pools. The broader geographic variation in
the pool-level data allows us to examine the extent to which the Cali-
fornia experience was atypical, particularly whether many other states
have had weak enough housing markets to hold down refinancing rates
as much as we found in the California sample. We consider the effects of
house price evolution in the context of two quite different specifications
for mortgage terminations: an empirical hazard model and a rational
prepayment model. We find that house prices are a statistically signif-
icant omitted factor in both of these representations of typical prepay-
ment models. Also, we find that the empirical hazard model, augmented
to include house prices, is better able to explain mortgage terminations
in pools with loans concentrated in states such as California that expe-
rienced large housing price declines in the early 1990s. We also find
that the California experience was relatively atypical in this sample pe-
riod. Hawaii is the only other state for which housing market conditions
clearly showed through to prepayment patterns.

2 DMortgage Termination Model Specification

The approaches used in the literature to specify empirical prepayment
models have differed according to data availability and purposes of the
studies. We are interested in the class of model best-suited to pool-level
data, not individual loan-level data. Also, we seek mortgage termination
model specifications that can be easily integrated into algorithms for
valuing passthrough mortgage-backed securities (MBS).

MBS valuation algorithms are of two basic types, backward-solving
option-pricing models and forward-solving Monte Carlo simulations. In
both approaches to valuation, the theoretical value of the MBS can be

much regional economic conditions affect the propensity to prepay for other reasons,
such as home purchases. Stein (1995), Archer, Ling, and McGill (1996), and Mayer
and Genesove (1997) also emphasize housing prices as a determinant of household
mobility.



written as the expected present discounted value of the cash flows to
be received between the present and the termination date of the mort-
gages, where the discount factors are stochastic functions that depend
on the evolution of interest rates and on the price of interest rate risk.
In forward-solving Monte Carlo techniques (e.g., Patruno, 1994; Chan
and Russell, 1997), the cash flows depend on current (and potentially
past) interest rates, but there is no explicit dependence of the cash flows
on what these interest rate realizations imply about the likely future
course of interest rates. In backward-solving option-pricing models with
rational prepayments (Dunn and McConnell, 1981; Timmis, 1985; Stan-
ton, 1995, 1996), the functions defining cash flows explicitly incorporate
the dependence of optimal refinancing decisions on expectations about
future interest rates. In other words, rational models incorporate the
option value-of-waiting into the measures of refinancing incentives.

Solving for the optimal option exercise rule can be computationally
burdensome, particularly if the model incorporates multiple stochastic
state variables. Accordingly, our empirical implementation of the ratio-
nal model follows Dunn and McConnell (1981) and Stanton (1995, 1996)
in assuming that a single interest rate factor, the current riskless rate r;,
summarizes all movements in the entire term structure of interest rates.
Realizations of this interest-rate process can trigger refinancing; other
sources of mortgage termination are assumed to arrive exogenously at a
mean rate of \.

The Stanton-type rational prepayment model can be written as:

i =N+ pl(ry <) + v (1)

where the hazard function governing termination for loan 7 in period ¢
takes on the value A if r, > r}, and the value A + p if r, < r’. Here, m;
is the predicted termination rate for mortgage ¢ at time ¢, X is the mean
Poisson arrival rate of exogenous termination, p governs the frequency
with which refinancing decisions are made, [ is an indicator variable
for whether the spot interest rate, r;, has fallen below the critical level,
r}, at which refinancing becomes optimal, and v; is the error term.
The critical interest rate 7}, depends on the expected future evolution of
interest rates and the level of transactions costs faced by this individual.
Following Stanton (1996), we proceed as if neither p nor A differ across
mortgage holders. Thus, this rational model incorporates heterogeneity
in termination predictions only through the effects of transactions costs
differences on the critical interest rates, 7.

For application to pool-level data we aggregate the model across
individuals. In the pool-level context, predicted refinancing rates for the
kth mortgage pool, 7, are largely determined by the decision-frequency
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parameter p and the proportion of surviving individual loans in pool k
with transactions costs low enough for refinancing to be optimal at time
t. We denote this proportion by Fi(r; < r},). Accordingly, the rational
pool-level single-factor prepayment model can be written as:

Tt = X+ pFr(ry < 17y) + Ve (2)

Following Stanton (1995), we assume that the initial distributions of
transactions costs across individuals within the kth pool are given by a
Beta probability distribution with parameters o and (3, so that the mean
transactions cost at mortgage origination is a/(a + ) of the mortgage
balance. Over time, the distribution of transactions costs across surviv-
ing mortgages within the pool evolves, and this evolution depends on
whether prepayments have been triggered by exercise of the refinancing
option or the realization of an exogenous termination. On average, real-
izations of exogenous terminations do not alter the location or shape of
distribution of transactions costs across holders of surviving mortgages.
However, only those mortgage holders with sufficiently low transactions
costs exercise refinancing, so when a pool experiences an interest rate
environment in which exercise of the refinancing option is optimal, there
is an increase in the mean of the distribution of transactions costs across
holders of surviving mortgages. Thus, Stanton’s model has an explicit
behavioral structure for the phenomenon of ”burnout”, which is the ten-
dency of a mortgage pool to exhibit less responsiveness to refinancing
incentives if it previously experienced such refinancing incentives.?

Prior to Stanton’s application of this rational model to data, empir-
ical mortgage termination models used only loosely motivated measures
of the refinancing incentives (Green and Shoven, 1986; Schwartz and
Torous, 1989). At best, these measures can be interpreted as simpli-
fied approximations to Stanton’s explicitly optimization-based measures
of refinancing incentives. These earlier-vintage empirical prepayment
models also used ad hoc parameterizations for the burnout phenomenon.
That said, even with only four unknown parameters ( «, 3, p, A), estima-
tion of the Stanton-style rational model is computationally burdensome,
and the addition of more explanatory factors to the model would add
to the computational burden. In contrast, non-optimization-based mod-
els generally can be scaled up to handle a relatively large number of
explanatory variables.

Given these competing considerations, we estimate both a Stanton-
style rational model and an exponential hazard model that uses non-
optimization-based measures of refinancing incentives and burnout. In

2We use Stanton’s (1995) discrete approximation to the evolution of these trans-
actions costs distributions.



this exponential hazard model the logarithm of the hazard rate can be
written as

log|mie] = By + Xkt + e (3)

where 3, is a constant that determines the location of the baseline haz-
ard, which gives the probability of termination (from all sources consid-
ered jointly) when the vector of covariates Xj; are equal to their sample
means. The unpredictable component of terminations is subsumed in an
error term, ;. We implement a time-varying covariate version of the
model. With time-varying covariates, the current period realizations
of Xj; determine the current period hazard rate m , and the entire
historical path of the covariates affects the probability of surviving long
enough to be at risk of prepayment during that period.

Empirical studies have shown that average prepayment rates tend to
be lowest at the beginning of the mortgage term and tend to increase
during an initial “seasoning” period that lasts for a few years.® Such
a ramp-up during the initial seasoning period can be incorporated into
a parametric baseline hazard that varies with 7, an index of the age
of the loans in the pool that increments by one with time ¢. Alterna-
tively, in our favored specification we proxy for this seasoning effect by
letting the first covariate, Xk, be a piecewise linear function of loan
age 7. We choose the kink in this piecewise-linear seasoning variable
to be at loan age month thirty, which is the month at which the widely-
referenced "PSA Schedule” also kinks. Accordingly, this representation
of the age-related component of prepayment speeds can incorporate the
"PSA Schedule” values for the baseline hazard as a special case.

In addition to the seasoning variable, the covariates Xor; and Xsgpe
are measures of the burnout phenomenon and refinancing incentive, re-
spectively. Our “burnout” measure is the Schwartz and Torous (1989)
specification; that is, we use the (one-month lagged) logarithm of the
ratio of the actual pool factor to the scheduled balance of the pool (in
the absence of prepayments) as a measure of the cumulative degree of

3The theory of mortgage choice provides theoretical support for the notion that
conventional fixed-rate mortgages should appear to have an increasing hazard over
an initial range. Borrowers who know that they are likely to have a brief tenure in
a mortage (e.g., because they plan to move) are more likely to select adjustable rate
loans with initial rates lower than prevailing fixed rates. The effect of this selection
bias on the baseline hazard diminishes with loan age.

4More specifically, our measure of SEASONING is the logarithm of the PSA
schedule, which increases linearly from zero to a single-month mortality (SMM) of
about 5 basis points (6 percent per annum) in month thirty and remains constant
thereafter. If 8y =0 and 8, = 1, then the baseline hazard of this exponential model
is the PSA schedule.



previous prepayment. For the refinancing incentive variable, we use the
spread between the weighted-average coupon (WAC) mortgage rate of
the pool and the (lagged) primary mortgage rate for newly issued mort-
gages. To isolate circumstances when this spread likely is sufficiently
wide to overcome the transactions costs associated with refinancing, our
explanatory variable takes on the value of the spread only for spreads in
excess of 1 percentage point and is zero otherwise.

These two models—the rational model given by equation (2) and the
exponential hazard model given by (3) with only the three above-defined
covariates Xigs, Xokt, and Xsp;—are not well-suited to explaining hetero-
geneity of prepayment rates across mortgage pools. Under this version
of the Stanton rational model, all pools with a common month of orig-
ination and underlying mortgage rate (WAC) have common predicted
values for prepayments.” Under this parsimonious version of the expo-
nential hazard model, pools with a common month of origination and
underlying mortgage rate (WAC) have differing predicted values for pre-
payments only if they have differing cumulative prepayment histories
and the coefficient (3,) on the related burnout measure is nonzero.

Recent theoretical contributions to the mortgage valuation litera-
ture and empirical research on loan-level mortgage terminations suggest
that regional housing market conditions likely are particularly impor-
tant to understanding why mortgage prepayment patterns differ across
mortgage pools. As previously noted, the geographic, housing price di-
mension of mortgage termination has been stressed in recent research
concerning the determinants of mortgage default, and housing prices
also have been shown to be correlated with both refinancing-related and
mobility-related terminations.

Wall Street models of mortgage backed security (MBS) prepayment,
such as those described by Patruno (1994) and Hayre and Rajan (1995),
include submodels for separate pieces of aggregate prepayment activ-
ity, including default (72), refinancing (7£), and mobility-related (m2!)
mortgage terminations. Such modeling of variations across pools in de-
terminants of these separate pieces of aggregate prepayment activity
can be important because mortgage values are sensitive to the source of
the prepayments. However, unlike Deng et. al. (1998) and others who
have estimated loan-level models for separate types of prepayment, most
modelers of MBS pool prepayments must work with data in which all

5 Although the Stanton (1995) model we implement here does not have any struc-
ture for explaining differences in prepayment rates among pools with common WAC
and month of loan origination, Stanton (1996) does extend the model to allow one of
the parameters in the Beta distribution for transactions costs to differ across mort-
gage pools.



three of these sources of terminations—defaults, refinancings, and home
sales—appear as an aggregate rate of mortgage termination:

M D R
Tht = T + Thy + T (4)

In this paper, we seek to expand on our earlier (Mattey and Wal-
lace (1998)) evidence that the single-factor rational model, equation
(2) is mis-specified in omitting house prices hy; as an explanatory vari-
able, owing to the unmodeled sensitivity of defaults, refinancing and
mobility-related terminations (home purchases) to housing prices. Also,
we seek to show that the basic exponential hazard model (with the
three covariates defined above) also is mis-specified because of such omis-
sions. Our main alternative hypothesis is that declines in home prices
tend to increase defaults (OnF/ — Ohy) > 0, decrease terminations re-
lated to home purchases (Om};/ — Ohy) < 0, and decrease refinancing
(O — Ohyy) < 0. Also, we expect that the effect of house prices on
home purchases is larger than the offsetting effect of house prices on
defaults (|07 /| — Ohyy)| > |05/ — Ohgi]), so that the sum of expected
defaults and mobility-related terminations tends to decrease as housing
prices fall (9[7M +7D] /—0hy) > 0. This latter implication runs counter
to the implications of the two-factor rational model of default and refi-
nancing (e.g., Kau et al., 1992; Kau and Keenan, 1995) that provides the
motivation for the recent empirical studies by Deng (1997) and Deng,
Quigley, and Van Order (1998).

Generally, the two-factor rational model assumes that mobility-
related terminations do not depend on home prices (i.e., (O /Ohiy) =
0)) and implies that refinancing is reduced by declines in housing prices
(ie., (Ol /) — Ohy) < 0) only to the extent that the competing risk of
defaulting has increased. In the two-factor model, the competing risk
effect is relatively large when interest rates are low enough to otherwise
trigger refinancing (i.e., (Omf ) — Ohy) ~ — (0L / — Ohyy)), but the com-
peting risk effect is negligible at higher interest rates (i.e., (Omf / — Ohy;)
~ 0). However, the empirical evidence of Peristiani et. al. (1996, 1997)
and Mattey and Wallace (1998) suggests that the effect of home price
changes on refinancing is larger in absolute value than the effect on de-
faults. Accordingly, we expect that the aggregate rate of terminations,
Tkt, tends to decrease as housing prices fall (0my/ — Ohgt) < 0. This is
likely to lead to a negative correlation between measures of the extent
to which housing prices have declined and the residuals from estimates
of the models that omit house prices.

We develop evidence on the statistical significance of the omission of
house price variables for total terminations by examining the residuals
from estimates of the single-factor rational model 7;; and the residuals

7



from estimates of the basic exponential hazard model (with the three co-
variates defined above) &x;. Then, we further explore the evidence from
the estimates of the exponential hazard model under the assumption
that its specification of the refinancing incentive as a spread in excess of
1 percentage point has successfully delineated a switching-regime model.
This idea follows Kau and Springer (1992), who use a switching-regime
model to identify the separate parameters governing subtypes of prepay-
ment behavior with pool-level data, even though only the aggregate rate
of mortgage termination actually is observable with such data. More
specifically, note that our basic exponential hazard model can be inter-
preted as assuming that the baseline hazard (with seasoning and burnout
effects) represents the sum of predicted terminations from mobility and
defaults:

E [mpf + mp] = expPotXusefit Kol (5)

and the remaining contribution to total predicted terminations repre-
sents terminations from refinancing:

E [ﬂ.th] — eXpﬂo+X1ktﬂ1+X2ktﬂ2 [eXpX3ktﬂ3 _1] (6)

Because the refinancing incentive variable Xsi; equals zero when the
interest rate spread is negative or narrow (less than 1 percentage point),
the predicted rate of refinancing is zero in such cases.

To develop evidence on the sensitivity of refinancing to house prices
and the sensitivity of the sum of mobility and defaults to house prices,
we also estimate a version of the exponential hazard model with two
additional explanatory variables (X and Xsi;) that are a particular
(increasing) function of house price declines and interact with the refi-
nancing incentive switch point. The Xy, variable assumes nonzero val-
ues related to house prices only if the spread is negative or narrow, and
Xyt 18 zero otherwise, whereas the X5;; assumes nonzero values related
to house prices only when the spread exceeds 1 percentage point. There-
fore, this extended model preserves the switching-regime decomposition
as follows:

E [mhf 4 mg) = explotXiwedit Xowelat Xarels (7)

and

E [WR] = eXp'BO+X1ktﬂ1+X2ktﬂ2+X4ktﬂ4

i X3kt B3+ Xs56:05 _1] (8)

[exp

This decomposition is useful because it allows us to interpret the sign
of the estimate of the coefficient (3,) on Xy as the estimated sign of
(O + 71| | — Ohy) and the estimated sign of (071 / — Ohy,) is further
determined by the sign of the estimate of the coefficient (35) on Xsk;.
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3 Prepayments in Freddie Mac Mortgage Pools

Our empirical analysis focuses on the prepayment characteristics of a
broad class of Freddie Mac passthrough residential mortgage-backed se-
curities. Freddie Mac is one of the two largest issuers of MBS pools,
along with Fannie Mae. The universe of data for this study consists
of all Gold Participation Certificate (Gold PC) pools issued by Fred-
die Mac between January, 1991 and December, 1994. The underlying
mortgages in Gold PCs primarily are first lien residential mortgage loans
secured by one-to-four family dwellings. Among the Gold PCs, we fo-
cus on those pools backed by newly-issued, standard 30-year fixed-rate
mortgage loans.® As shown in table 1, there are 27,878 MBS pools
which meet our initial sample selection criteria.

On average, there are about 40 mortgage loans backing each Gold
PC. Thus, our data on 27,878 mortgage pools pertains to prepayment
histories on about 1.1 million underlying mortgage loans. We observe the
prepayment histories of these pools from the month of issuance through
June, 1998. Accordingly, the prepayment history of the earliest-issued
pools are observed for 90 months,and the latest-issued pools are tracked
for 42 months.

In the primary market where mortgage loans are originated, interest
rates were relatively variable over the four year period during which these
pools were issued. Interest rates on conventional mortgages evolved in
somewhat of a U-shaped pattern; the peak was in 1991, at the beginning
of the period, and primary mortgage rates declined to a trough in late
1993 before moving up sharply again during 1994. This variability is
reflected in the distribution of mortgage coupon rates on the pools, which
we summarize in table 1 by year of issuance and passthrough coupon.

The passthrough coupon rates on Freddie Mac Gold PCs have changed
relatively infrequently and in discrete, fifty basis point steps. It is con-
venient to summarize the aggregate properties of this data set at the
level of “reference pools”, which are groupings of pools according to
common year of issuance and passthrough coupon. At the beginning of
the sample period, the 1991 vintage, 9.0 coupon reference pool group of
4,127 pools consisted of 148,962 underlying loans. The weighted average
coupons (WACs) on the underlying loans tend to run about 50 basis
points above the passthrough coupon rates, and for the 1991 9.0s, the
original WAC was 9.6 percent. The WACs of the reference pools drifted
down to 8-1/2 percent during 1992 and continued falling to a low of

Specifically, we subset to pools with a Pool Type of 30 year Gold Participation
Certificates, an original weighted average loan age of two months or less, and an
original weighted average remaining maturity of 350 months or more.



about 7-1/2 percent at the beginning of 1994, before picking back up to
8-1/2 percent by the end of that year.

The full sample average prepayment rate on these MBS from pool
inception to June, 1998 was 1.09 percent per month.” Given that, on
average, the prepayment history of the pools was followed for about 60
months, this means that about 48 percent of the loans in the pools were
prepaid over the course of the observation period.

3.1 Estimation of the Rational Model

One of the primary potential advantages of a Stanton-type rational
model is that the predicted prepayments from the rational model ac-
tually obey the optimal exercise rule for the refinancing option. As dis-
cussed above, the model implies that the overall prepayment probability
for the kth pool is a function of the interest rate at which refinancing be-
comes optimal, r},; the frequency of refinancing decisionmaking among
borrowers in the pool, p; a hazard function accounting for the likelihood
of exogenous prepayment, \; and a beta distribution of transaction costs
with shape and location governed by the parameters o and 3. To imple-
ment this model, we also must specify the dynamic process for interest
rates and provide a numerical solution algorithm for calculating the op-
timal exercise rule for the refinancing option.

For these model implementation details, we follow Stanton (1995)
in most respects. We assume that the nominal interest rate process
is a one-factor Cox, Ingersoll, and Ross (1985) (CIR) process, and we
calibrate the CIR interest rate process to the parameter values from
Pearson and Sun (1989).% We calculate the optimal exercise strategy

"In computing pool-level single month mortality (SMM) conditional prepayment
rates, we follow the Bartlett (1994, p. 205) formula for estimating terminations,
given data on pool factors, time to maturity, and coupon interest rates. In computing
weighted average SMMs across pools or time periods, the beginning-of-period unpaid
balances remaining in each of the pools at those times are used as weights.

8The CIR model is a long run model of nominal interest rates in which the in-
stantaneous risk-free interest rate r; satifies the differential equation

dry = k(p —r)dt + o/redz

In principle given the long run general equilibrium nature of the model, fitted
model parameters should be unaffected by the sample period used for estimation.
We use the Pearson and Sun (1989)

K = 0.29368,
o =0.11425
q=—.12165
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for the options using standard numerical methods to value interest rate
contingent claims written on coupon bonds.”

For an individual borrower, the optimal refinancing decision depends
on the position of the current interest rate r; relative to a critical in-
terest rate 7}, that depends on the expected future evolution of interest
rates and the level of transactions costs faced by the individual. For
each mortgage pool (k), the individual transactions costs at pool orig-
ination are assumed to be drawn from a beta distribution with shape
and location parameters o and §. Over time the distribution of trans-
actions costs across remaining mortgage holders evolves, depending on
the unknown parameters (o, 3, p, A) and also on the realized sequence
of interest rates up to that time, which we denote as an information set
W,. We solve the model for the proportion of surviving individual loans
at time t in pool k with transactions costs low enough for refinancing
to be optimal, Fy(r; < 75,5 Yy o, B, p, A), by discretely approximating
the evolution of the transactions cost distribution; see Stanton (1995)
equations (19)-(25) for details on the updating rule for Fj;.

We estimate the unknown parameters (a, 3, p, A) of the rational model
using observations on pool prepayment rates m; at the monthly fre-
quency of time t, using equation (2) as the basis for our econometric
estimation strategy:'”

Tht = A + kat(Tt < 7“1:,:; Uy o, B, p, >\) + Vgt (9)

Following Stanton (1995), we estimate the model by minimizing an ob-
jective function that is the sum of squared average prediction errors.
Specifically, averaging across the N pools, the average prediction error

N
at the ¢ month is v, = 1/N >_ v, B, p, \), and the objective function
k=1

assuming that the long-run mean interest rate is pu = 0.04935.

To derive a monthly sequence of risk-free interest rates r;, we match the impli-
cations of the model for 10-year yields to actual monthly observations on 10-year
Treasury yields and then back out the short-run riskless rate implied by the CIR
model. Pool-level mortgage prepayments are assumed to respond to these monthly
changes in interest rates with a three-month lag. This lag reflects the built-in de-
lays between the time of mortgage refinancing loan applications and realizations of
prepayments in MBS passthrough cash flows.

9We use finite difference approximations to backwardly solve the value function
subject to appropriate boundary conditions. The solutions were found by the Crank-
Nicholson algorithm.

10Stanton (1995), Table 1, shows parameter estimates of .6073 and .0345, re-
spectively, for p¢ and A° parameters which are continuous-time Poisson arrival
rates expressed at annual rates. We present results in terms of the monthly dis-
crete time counterparts, which are related to these by p = (1 — exp */12) and
A= (1—exp ?/12) .
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is the sum of the squares of these average residuals, Qr = 1/T Z vt We

use the adaptive simulated annealing algorithm of Ingber (forthcomlng)
to find the values of the parameters that minimize this objective func-
tion.

Using the full sample of 27,878 pools, the objective function would
involve more than 1-1/2 million pool-by-month observations. To lower
computational burdens, we apply the rational model estimation proce-
dure to a subset consisting of 2,575 pools. These pools are stratified
across the nine reference pool groups, and within each reference pool
group we select all pools with weighted-average coupon exactly fifty ba-
sis points above the passthrough coupon rate.

Estimation results are shown in the first row of table 2. All coeffi-
cients are estimated relatively precisely, and hypotheses that they are
statistically indistinguishable from zero can be sharply rejected. The es-
timate of A = .007 implies that the monthly rate of (exogenous) default
and mobility-related terminations is about 70 basis points, consistent
with the findings of Stanton (1995) and other studies, which typically
show A in the 50 to 100 basis point range. The estimates of (& = 2.295,
3 = 4.692) imply an initial mean transactions cost of about one-third the
mortgage balance, which is very substantial but somewhat lower than
the forty percent mean found by Stanton (1995) for his sample of 1000
GNMA pools. Our estimate of p = .113 implies that if interest rates
suddenly drop and make it optimal for a group of mortgageholders to
refinance, only about 11 percent of those mortgageholders actually will
refinance in that initial month. Absent additional changes in economic
conditions, refinancing will continue in subsequent months, with a mean
elapsed time until lack of impediment to rational exercise of about 9
months. Stanton (1995) found an even longer average delay to rational
refinancing.

3.2 Estimation of the basic exponential hazard model

We estimate the time-varying covariate exponential hazard model using
the method of maximum likelihood.!! The maximum likelihood method
allows us to control for the important feature that most pools have not
fully prepaid prior to the end of the observation period. Using the full

1 The log-likelihood function for this problem is the sum of log-likelihoods for
individual observations, with each observation contributuing a survivor function to
the likelihood. Observations that experience terminations during the sample period
also contribute the probability density, evaluated at the point of termination, to the
likelihood function. In constructing the survivor function, we handle appropriately
the fact that the covariates are time varying. That is, we accumulate the integrated
hazards applicable to each time period in the sample.
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sample, the likelihood function would involve about 67 million loan-by-
month observations.!? For tractability, we present estimates computed
from a random sample of 1,000 pools per model estimation, which still
covers more than 2 million loan-by-month observations per estimation.

The estimated coefficients of the basic exponential hazard model are
shown in second row of table 2. All coefficients are estimated relatively
precisely and are statistically distinguishable from zero. Also, the esti-
mated coefficients have the anticipated signs. The estimated coefficient
on the Log(PSA) schedule is positive, reflecting the initial range of in-
creasing hazards as loans season. Pools tend to burnout; they experience
higher prepayments if they have not experienced a lot of cumulative prior
prepayments, as measured by the lagged factor to balance ratio. Last, an
increase in the refinancing incentive as measured by the spread between
the WAC and the current mortgage rate tends to have a large positive
effect on terminations.

3.3 Evidence of Mis-specification from the Residu-
als

To check for evidence that these models are mis-specified in omitting
housing prices as a determinant of mortgage prepayments, we first need
to devise time-series measures of housing market conditions for each
mortgage pool. Our data set contains information on the geographic
distribution across U.S. states of the underlying loans in each pool at the
time of pool origination. We use this distribution to define the weights
used in constructing pool-specific housing price series from published
housing price indices for the fifty states (and the District of Columbia).

We expect the relationship between house price changes and mort-
gage pool prepayments to be highly non-linear, even after controlling
for the factors included in the rational model and the basic exponen-
tial hazard model. Models of default introduce such a non-linearity by
emphasizing that a necessary (but perhaps not sufficient) condition for
optimal default is that housing prices must decline enough for the cur-
rent mortgage loan-to-housing-value ratio to exceed unity. Thus, for
mortgage loans originated with an eighty percent loan-to-value ratio,

12Because we know the original count of loans in the Freddie Mac pools, we are able
to construct dichotomous dependent variables for each pool that represent the number
of loans fully prepaid in each month. This calculation is made recursively by rounding
to the nearest integer the estimated number of prepaid loans, where the latter is
computed by multiplying the actual prepayment rate (SMM) by the number of loans
remaining in the pool at the beginning of the period. Although such a computation
abstracts from partial prepayments, these discretized dependent variables appear to
well-approximate the actual continuous prepayment history, which includes partial
prepayments.
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the probability of default increases much faster with additional declines
in house prices as the cumulative declines in house prices since loan
origination approach twenty percent. However, this sensitivity to house
prices is not symmetric; default rates do not tend to drop faster with ad-
ditional house price increases as the cumulative change in house prices
since loan origination reaches twenty percent. Similar non-linearities
may be present for the other types of prepayment, because the eighty
percent loan-to-value threshold for mortgage insurance also affects the
sensitivity of refinancing and mobility-related mortgage prepayments to
house prices.

Given these considerations, we follow Deng, Quigley, and Van Order
(1998, appendix A) in transforming our information on house prices into
a measure of the probability that the current loan to value ratio exceeds
unity. Basically, this consists of rolling forward the denominator of the
initial loan to value ratio of the loans in the pool by the sequence of
observed changes in a house price index for their geographic area and
extrapolating the numerator by the scheduled decline in the principal
balance of the loan. Such an estimate of the central tendency of the
current loan to value ratio is converted to a probability by assuming
that the distribution of logarithmic changes in house prices is normally
distributed. The variance of this normal distribution is estimated from
the moments of the underlying individual home price data from which
the aggregate home price indices are constructed.!

In constructing this variable, we assume that all pools have the same
initial loan-to-value ratio of 80 percent.'* Thus, in the first month after

13We use the Office of Federal Housing Enterprise Oversight (OFHEO) quarterly
repeat sales home price indices by state as the data source. These are interpolated
by a spline to the monthly frequency. We then compute a price index for each pool,
using the original distribution across states of amounts of principal outstanding to
construct a weighted average of the state-level price indices. For the probability
calculation, we also compute pool-specific house price volatility indices using the
pool-specific weighted average of the state level volatilities published by OFHEO.

1 Our dataset does not contain any information on initial loan-to-value ratios by
pool. the prospectus on Freddie Mac Gold PCs indicates that initial loan-to-value
ratios cannot exceed 80 percent unless satisfactory mortgage insurance of one form or
another is obtained; because such insurance is costly, most of the mortgage securtizied
by Freddie Mac have met the requirement of having an initial LTV less than 80
percent, historically. For example, Deng, Quigley and Van Order (1998) report
that about 15,000 of the roughly 22,000 loans they study (originated between 1976
and 1983 and purchased by Freddie Mac) had initial LTVs less than 80 percent,
with the remainder primarily in the 80 percent to 90 percent range. Owing to our
lack of information on initial LTVs by pool, our analysis likely is biased toward
finding against the ability of pool-specific house price indices to explain pool-level
prepayments. The fact that we do find some effect of house prices despite the data
limitation, suggests that our results would be even stronger if we had data on initial
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loan origination, it would take a 20 percent decline in home prices to
eliminate the homeowner’s equity. Accordingly, at the beginning of a
loan’s age profile, the probability measure basically is zero. The proba-
bility measure increases a bit in the first two years of the loan for almost
all pools, and thereafter it’s evolution is strongly affected by the direction
and rate of change in the home price index for the pool.

For most of the months during which we observe pools’ prepay-
ment histories, the Prob(LTV (HP,) > 1) measure is below 1-1/2 per-
cent. Only about one-quarter of the pool-month observations have a
Prob(LTV(HP,) > 1) value that exceeds 3-1/2 percent. However, a
small portion (about one-tenth) of our observations experience realiza-
tions of this covariate above 8 percent. Looking at the distribution of
Prob(LTV (HP;) > 1) by pool, 653 of the 27,878 pools experience real-
izations of this variable above 20 percent at some point in their observed
prepayment history. All of these 653 pools with high measured proba-
bility of negative equity (sharp declines in house prices) have at least 75
percent of their loans in either California or Hawaii. California experi-
enced a sharp decline in home prices beginning in 1990 and extending
through 1996, and the highest proportions of estimated negative equity
are concentrated in 1995 and 1996 in pools that were originated in 1991.

To check for potential mis-specification, we compute the rational
model and basic exponential hazard model predictions of prepayment
probabilities 7y for all 27,878 pools in our data set for each month in
which the pool factor history is observed. Then, we compute the resid-
uals for the logarithms of these hazards, log(mg:) — log(7k:). In the
case of the rational model, this log hazard residual is log(1+(0g:/7kt)),
whereas for the exponential model the residual is just &x; .We display the
slope coefficient results of OLS regressions of these prediction errors on
an intercept and the (transformed) housing price measures in the right-
most column of table 2. As shown there, each of the models’ residuals
are negatively correlated with Prob(LTV (HPF;) > 1). This indicates
that the overall rate of mortgage terminations tends to be depressed for
those mortgage pools in housing markets experiencing particularly large
declines in housing prices.

3.4 Estimation of the augmented exponential haz-
ard model
We also have estimated a version of the exponential hazard model aug-

mented to include two additional explanatory variables (Xyx: and Xsx)
that are a particular (increasing) function of house price declines and

LTVs.

15



interact with the refinancing incentive switch point (table 3, first row).
The Xy variable equals Prob(LTV (HP,) > 1) only if the spread is
narrow or negative, and Xy is zero otherwise, whereas Xsi; equals
Prob(LTV (HP,) > 1) only when the spread exceeds 1 percentage point
and X5 is zero otherwise. The estimated coefficients on the inter-
cept, seasoning and refinancing incentive variables are not very sensitive
to whether or not the housing-price-related explanatory variables also
are included in the model. Although the estimated coefficient on the
burnout variable is moderately sensitive to whether or not the housing-
price-related explanatory variables also are included in the exponential
hazard model, this variable does not contribute much to the predic-
tive power of the model; thus, changes in the estimated coefficient on
burnout have a relatively small impact on the overall fit of the model.

The estimated coefficients ﬁ4and ﬂ5 on the final two housing-price-
related variables are negative and statistically distinguishable from zero.
The result (6, < 0) that falling house prices tend to depress overall
prepayments when refinancing incentives are negligible is consistent with
the alternative hypothesis we described above: the sum of default and
mobility-related terminations tends to decrease as housing prices fall.
Apparently, this is because mobility-related terminations drop in weak
housing markets ((0[m2f/ — dhy,) < 0)), and this latter effect of house
prices on home purchases is larger than the offsetting effect of house
prices on defaults (|07M | — Ohyy)| > |07 ) — Ohyy|). The result (|55 >
13,]) that weak house prices have an even larger depressing effect on
overall terminations when refinancing incentives are active than when
they are inactive suggests that weak housing prices affect refinancing
through much more than just increasing the risk of default.

3.5 Model Adequacy and Robustness of Results

Figure 1 shows a comparison of the time-series average actual SMMs to
the aggregated predictions of the three models we have estimated. The
upper panel plots the results for the full data set of 27,878 pools and
the lower panel plots the results for the 653 weak housing market pools
comprised primarily of mortgages from California and Hawaii. Several
features of these plots are notable. First, using the full data set, all
three models meet the minimal requirement of being able to predict ele-
vated, spiking prepayments in declining interest-rate environments, such
as that experienced in 1993. Second, all three models display short-
comings in some historical episodes. The exponential models generally
underpredicted prepayments in the high prepayment period of late 1992
and 1993 and then overpredicted prepayments throughout the quieter
remainder of the mid-1990s, until there were unpredictably large spikes
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in prepayments in early 1996 and early 1998. The rational model over-
predicted prepayments in the refinancing waves of 1993 and early 1996.
Last, in the time-series dimension, the aggregated fit of the exponential
hazard model is relatively insensitive to whether or not the house price
variables are included in the model.

For the weak housing market subsample shown in the lower panel of
Figure 1, the two models that omit house prices-the rational model and
basic exponential hazard model-significantly overpredict prepayments in
the low interest rate environments of late 1993 and early 1996. These
are periods with particularly large cumulative declines in housing prices
in California and Hawaii relative to 1991, when most of these weak
housing price pools were originated. Thus, the results displayed in this
figure suggest that the negative correlation between housing prices and
the prediction errors of the models that omit housing prices is largest
when housing prices are low and interest rates are low. Also, there is
some evidence that the suppression of refinancing and mobility-related
terminations in the mid-1990s led to "reverse burnout” in early 1998,
when interest rates fell again but housing prices had recovered. For the
pools shown in the lower panel, the version of the exponential model
augmented to include house prices is able to capture both the subsumed
prepayments in the mid-1990s and the acceleration of prepayments in
early 1998. This ability of the model to improve the fit for these weak
housing price pools likely is part of the reason why the housing price vari-
ables are statistically significant in the augmented exponential hazard
model (table 3, first row).

The finding that the house price variables are statistically significant
in the augmented exponential hazard model is robust. Various authors
have suggested alternative measures of seasoning, burnout, and refinanc-
ing incentives for empirical prepayment models, and the use of such
alternative measures does not change this result on house prices. For
example, the use of a quadratic function of age instead of the log(PSA)
schedule for the seasoning effect produces little change in the estimated
size and standard errors of the coefficients on the house price, burnout,
and refinancing incentive variables (table 3, row 2), partly because the
implied fits of the quadratic and the log (PSA) seasoning variables are
very similar over the first sixty months of loan age. Second, although
various authors have advocated using a burnout measure that accumu-
lates the ”in-the-moneyness” of the prepayment option, instead of the
Schwartz and Torous (1989) log factor to balance ratio we use to measure
burnout, the use of such an alternative burnout measure does not change
our main results. Specifically, Schwartz and Torous (1993) propose accu-
mulating the values of the interest rate spread variable for those periods
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when the spread exceeds the refinancing incentive threshold. When we
use as a burnout measure the accumulated values of the spread when the
spread exceeds one percentage point, the house price variables remain
statistically significant, and the coefficients on other explanatory vari-
ables also are little-changed (table 3, row 3). Last, some authors have
argued that the ratio of outstanding mortgage coupon to current primary
market mortgage rates is a better measure of refinancing incentives than
the spread between these interest rates. Our result that weakness in
housing prices tends to depress refinancing and mobility-related prepay-
ments is robust to the use of the ratio form of the refinancing incentive
variable (table 3, row 4).

Although the diagnostics we have applied suggest that the rational
model and basic exponential hazard model are adequate for investigat-
ing the additional explanatory power of house price variables for pre-
payments, we also recognize that these models have some additional
shortcomings. To further review model performance, we also display
the fits of the models and actual prepayment histories by selected ref-
erence pool groups (Figure 2). Much of the pool-specific variation in
average prepayment rates is associated with the vintage of origination
and WACs of the pools, which are clustered by reference pool group.
The 1991 vintage reference pool group (with 9.0 percent passthrough
coupon and 9.6 percent original WAC) experienced the highest rates of
prepayment throughout all of the sample except early 1998. The 1992
8.0s also experienced large refinancing waves in 1993 and 1994, when
primary mortgage rates were relatively low. The 1993 7.0s (lower panel)
and other pools originated in 1993, generally carry the lowest coupons of
the pools in the sample; these pools generally experienced prepayment
rates of less than 1 percent per month until early 1998. Pools origi-
nated in late 1994 generally bear WACs of 8-1/2 percent or above and
experienced a mild bout of refinancing in early 1996 and a larger spike
of prepayments in early 1998 (not shown). Fitting the wide variety of
prepayment patterns across reference pool groups with a single set of
parameter estimates is a major challenge for the models.

Neither type of model (rational or exponential hazard) is able to fit
the variety of prepayment patterns well with a single set of parameter es-
timates. As shown by the fits of the various models by selected reference
pool aggregates also shown in Figure 2, the rational model captured the
basic features of actual prepayments for the relatively high coupon 1991
9.0s and 1992 8.0s, but the rational model shows too much interest rate
sensitivity for the low coupon 1993 7.0s. In contrast, the exponential
models fit the low coupon 1993 7.0s pattern well, but the exponential
models notably underpredict the late 1993 prepayment spike in the 1992
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8.0s and notably overpredict the late 1993 prepayment spike in the 1991
9.0s.

Although this paper is not the place to attempt to fully refine these
prepayment models, we will note a few directions for future research.
The exponential hazard model clearly could benefit from some improve-
ment in its specification of refinancing incentives. One indication of
this comes from a plot of the average actual and fitted values of pre-
payments by discrete (10 basis point wide) classes of the interest rate
spread variable (Figure 3, upper panel). Except for a slight underpre-
diction of prepayments in the range of 50 to 100 basis points of spread,
the basic exponential model fits well for ranges of the spread below 200
basis points. But, the model substantially overpredicts prepayments at
very wide spreads that exceed 200 basis points. In contrast, the rational
model fits the actual data by class of spread for a wider range of spreads.

The basic exponential model fits the seasoning profile in the data well
(Figure 3, lower panel), but the rational model clearly could benefit from
some improvement in its specification of how prepayment probabilities
vary as loans age. In this regard, the mis-specification of the rational
model occurs primarily in the first two years after mortgage origination,
during which predicted prepayments on individual pools remain at or
above the background (default and mobility) hazard rate of A = .007 ,
and average actual prepayments fall short of the predicted values.

4 Conclusions

As we have shown, a common failing of existing models of mortgage
termination is that predicted prepayment levels for seasoned mortgages
often over /underestimate the degree to which existing pools are ”burned-
out” from prior periods of interest rate driven refinancing, owing to in-
adequate controls for transaction cost heterogeneity between and within
the mortgage pools. A particular focus of our work has been to deter-
mine the degree to which regional variations in housing prices generate
atypical prepayment speeds. Our findings indicate that mortgage termi-
nation models that do not include housing prices as a state variable are
mis-specified.

Additionally, we find that weak housing prices have a larger depress-
ing effect on overall terminations when refinancing incentives are active
and than when they are not which suggests that housing prices affect
terminations in ways other than simply increasing the risk of default.
This result is robust to alterations in the specification of the termination
models, however, because most Freddie Mac pools tend to be relatively
well-diversified across geographic areas, and given that housing prices
were increasing in most states during the 1991 to 1998 historical period
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we study, most Freddie Mac pools were not subject to the test of whether
weak housing prices hold down aggregate prepayments. From the fit of
the housing-price augmented exponential model relative to the one that
omits these effects, we find that the model with housing price effects was
much better able to explain low levels of mortgage terminations in pools
with concentrations of loans in California.

Our investigation of the performance of rational and exponential
models of mortgage termination indicates that neither class of model,
when constrained to a single set of parameter estimates, is able to accu-
rately fit the variety of prepayment patterns exhibited by Freddie Mac
pools of different coupons and vintages. Furthermore, we find that the
exponential model appears to need refinement of its specification for re-
financing incentives whereas the rational model needs to refine its spec-
ification of how prepayment probabilities vary as loans age. Together
these findings highlight the need for additional research on why large
declines in house prices tend to hold down refinancing and home sales
related mortgage terminations and what factors underlie transaction cost
heterogeneity within and between mortgage pools.
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Figure 2

Reference Pool Aggregates of Actual and Fitted
Weighted Average Single Month Mortality by Month
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TABLE 1
Basic Characteristics of Freddie Mac Pools

of Newly Issued Conventional Mortgages

Weighted
Weighted Average
Average Number Number Single
Year Passthrough  Original of of Month
Issued Coupon Coupon Pools Loans  Mortality
1991 9.0 9.60 4,127 148,962 .0259
1992 8.5 8.92 2,760 62,824 .0203
1992 8.0 8.53 4,827 123,328 .0155
1993 7.5 7.96 3,620 125,644 .0090
1993 7.0 7.50 5,433 234,709 .0055
1994 7.0 7.45 2,647 182,530 .0052
1994 7.5 7.97 1,603 82,068 .0073
1994 8.0 8.52 1,715 93,836 .0119
1994 8.5 8.92 1,146 67,910 .0155
Full Sample 27,878 1,121,811  .0109

Sources: Authors calculations of aggregates from pool-level data.
Notes: Weighted average single-month mortalities are computed

using monthly observations from pool inception to June, 1998 using the
beginning-of-month outstanding balances of each pool as a weight.



TABLE 2
Estimated Coefficients of Rational and Basic Exponential Hazard Models
of Mortgage Termination in Freddie Mac MBS Pools

Rational Prepayment Model

Refinancing
Decision — -Memorandum————
Intercept Transactions Costs Frequency OLS Slope Estimate of
A & i p Residual on Prob[LTV(HP;)] > 1)
.007 2.295 4.692 113 -3.565
( .001) ( .19) (.43) (.014) ( .061)
Exponential Hazard Model
Seasoning  Burnout Refinancing Incentive
Log Factor Spread when ———Memorandum————
Intercept Log(PSA) to Balance Spread > 1 OLS Slope Estimate of
Bo By s Bs Residual on Prob[LTV (HP;)] > 1)
-1.822 .05 755 1.131 -8.377
( .074) ( .013) ( .015) ( .008) ( .059)

Sources: Estimation by the authors.

Notes: (1) The exponential hazard model was estimated by the method of maximum likelihood using a
1000 pool random subset of all pools. The dependent variables are loan by month observations on whether
a loan has prepaid, spanning the date of pool inception to June, 1998. The rational prepayment model
was estimated by non-linear least squares using data from those 2575 pools with weighted-average coupons
exactly 50 basis points above their passthrough coupon. Both subsamples span the full range of passthrough
coupons and years of issuance shown in table 1. Estimated standard errors of the coefficients are shown in
parentheses. The final column shows the estimated slope coefficients on the house price probability variable
in regressions using as dependent variables the residuals of each model for the log hazards, computed from
observations on all 27,878 pools.



TABLE 3
Estimated Coefficients of Exponential Hazard Models
of Mortgage Termination in Freddie Mac MBS Pools

using Alternative Measures of Seasoning, Burnout, and Refinancing Incentive

Seasoning Burnout Re financing Incentive House Price Variables

Quadratic Age Terms Log Factor Cumulative Spread when Ratio form Prob|LTV(HPF;)] > 1) when
Intercept  Log(PSA) T T2 to Balance  of Spread>1 Spread>1 of Spread  Spread<l1 Spread> 1
-1.629 939 447 1.244 -3.846 -12.980
(.083) (.014) (.017) (.010) (.513) (.408)
-5.626 .054 -.0006 .328 1.273 -5.128 -14.822
(.019) (.001) (.0000)  (.024) (.011) (.521) (.408)
-2.077 ATT -.034 1.241 -3.150 -9.570
(.079) (.013) (.001)  (.010) (.510) (.424)
-9.788 616 .566 8.620 -7.651 -8.177
(.117) (.014) (.018) (.069) (.514) (.377)

Sources: Estimation by the authors.
Notes: (1) The exponential hazard models were estimated by the method of maximum likelihood using a 1000 pool random subset of all pools.

The dependent variables are loan by month observations on whether a loan has prepaid, spanning the date of pool inception to June, 1998.
Estimated standard errors of the coefficients are shown in parentheses.



