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Can we use finance theory to tell us something about the empirical behavior of Trea-
sury yields that we don’t already know? In particular, can we sharpen our ability to
predict future levels of yields? A long-established fact about Treasury yields is that the
current term structure contains information about future term structures. For example,
long-maturity bond yields tend to fall over time when the slope of the yield curve is steeper
than usual. These predictive relations are based exclusively on the time-series behavior
of yields. We know from finance theory that the cross-sectional and time-series behavior
of the term structure must be linked in an internally consistent way in order to avoid
arbitrage opportunities. In principle, imposing this restriction should allow us to exploit
more of the information in the current term structure, and thus improve forecasts. But in
practice, existing no-arbitrage models impose other restrictions for the sake of tractability,
thus their value as forecasting tools is a priori unclear.

I examine the forecasting ability of the affine class of term structure models. By
‘affine’, I refer to models where zero-coupon bond yields, their physical (i.e., true) dynam-
ics, and their equivalent martingale (i.e., risk-adjusted) dynamics are all affine functions
of an underlying state vector. A variety of non-affine models have been developed, but the
tractability and apparent richness of the affine class has led the finance profession to focus
most of its attention on such models.

Although forecasting future yields is important in its own right, a model that is consis-
tent with finance theory and produces accurate forecasts can make a deeper contribution
to finance. It should allow us to address a key issue: explaining the well-documented
time-variation in expected returns to assets. In the context of the term structure, explain-
ing time-variation in expected returns means explaining the failure of the expectations
hypothesis of interest rates. Put differently, we would like to have an intuitive explanation
for the positive correlation between the slope of the yield curve and expected excess re-
turns returns to long bonds. If a model produces poor forecasts of future yields (and thus
poor forecasts of future bond prices), it is unlikely that the model can shed light on the
economics underlying the failure of the expectations hypothesis.

The first main conclusion reached in this paper is that the class of affine models
studied most extensively to date fails at forecasting. I refer to this class, which includes
multifactor generalizations of both Vasicek (1977) and Cox, Ingersoll, and Ross (1985),
and is extensively analyzed in Dai and Singleton (2000), as “completely affine.” I fit gen-
eral three-factor completely affine models to the Treasury term structure (with maturities
ranging from three months to ten years) over the period 1952 through 1994. Yield fore-
casts produced with these estimated models are typically worse than forecasts produced
by simply assuming yields follow random walks. This conclusion holds for both in-sample
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forecasts and out-of-sample (1995 through 1998) forecasts.
Even more damning is the way in which the estimated models fail. They produce yield

forecast errors that are strongly negatively correlated with the slope of the yield curve.
In other words, the models fail to replicate the key empirical relation between expected
returns and the slope of the yield curve; their underestimation of expected excess returns
to long bonds tends to be largest when the slope of the term structure is steep.

This failure is a consequence of two features of the Treasury term structure, combined
with a restriction built into completely affine models. The first feature is that Treasury
yields vary widely over time around both sides of their (sample) means. Another way to
say this is that we observe a wide variety of term structure shapes in the data. The second
feature is that across the entire maturity spectrum, the unconditional mean excess return
to bonds is small relative to the variation in conditional mean excess returns. While the
average return to Treasury bonds is not much greater than zero, the slope of the term
structure predicts a relatively large amount of variation in excess returns to bonds. One
implication of this second feature is that, as noted by Fama and French (1993), the sign
of predicted excess returns to Treasury bonds changes over time.

Completely affine models do not simultaneously reproduce these two features of term
structure behavior. The key restriction in these models is that compensation for risk is a
fixed multiple of the variance of the risk. This structure ensures that the models satisfy
a requirement of no-arbitrage: Risk compensation goes to zero if risk goes to zero. But
because variances are nonnegative, this structure also places an important limitation on
the time-series behavior of the compensation that investors expect to receive for facing
a given risk. The compensation is bounded by zero, therefore it cannot switch sign over
time.

As will be made clear in the paper, the only way this framework can produce expected
excess returns with low means and high volatilities is for some underlying factors driving
the term structure to be highly positively skewed. But this strong positive skewness limits
the flexibility of the model to fit a wide variety of term structure shapes. Thus completely
affine models can fit either of these features of Treasury yields, but not both simultaneously.

All is not lost, however. The second main conclusion of this paper is that the com-
pletely affine class can be extended to break the link between risk compensation and
interest rate volatility. This extension from the completely affine class to the “essentially
affine” class described here is costless, in the sense that the affine time-series and cross-
sectional properties of bond prices are preserved in essentially affine models. The existence
of extensions to the completely affine class is not new (Chacko, 1997, constructs a general
equilibrium example), but this paper is the first to describe and empirically investigate a
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general, very tractable extension to completely affine term structure models. I find that
essentially affine models can produce more accurate yield forecasts than completely affine
models, both in-sample and out-of-sample. However, there is a tradeoff between flexibility
in forecasting future yields and flexibility in fitting interest rate volatility.

The paper is organized as follows. The structure of affine models is discussed in detail
in Section 1. Section 2 explains intuitively why completely affine models work poorly.
Section 3 describes the estimation technique. Section 4 presents empirical results and
Section 5 concludes.

1. Affine Models of the Term Structure

1.1. Affine bond pricing

The core of affine term structure models is the framework of Duffie and Kan (1996).
Their model, which is summarized here, describes the evolution of bond prices under
the equivalent martingale measure. Uncertainty is generated by n Brownian motions,
W̃t ≡ (W̃t,1, . . . , W̃t,n)′. There are n state variables, denoted Xt ≡ (Xt,1, . . . , Xt,n)′. The
instantaneous nominal interest rate, denoted rt, is affine in these state variables:

rt = δ0 + δXt,

where δ0 is a scalar and δ is an n-vector. The evolution of the state variables under the
equivalent martingale measure is

dXt = [(Kθ)Q − KQXt]dt + ΣStdW̃t (1)

where KQ and Σ are n× n matrices and (Kθ)Q is an n-vector. The Q superscript is used
to distinguish parameters under the equivalent martingale measure from corresponding
parameters under the physical measure. The matrix St is diagonal with elements

St(ii) ≡
√

αi + β′
iXt (2)

where βi is an n-vector and αi is scalar. It is convenient to stack the βi vectors into the
matrix β, where β′

i is row i of β. The scalars αi are stacked in the n-vector α. The
following discussion assumes that the dynamics of (1) are well-defined, which requires that
αi + β′

iXt is nonnegative for all i and all possible Xt. Parameter restrictions that ensure
these requirements are in Dai and Singleton (2000).

Denote the time-t price of a zero-coupon bond maturing at time t + τ as P (Xt, τ).
Duffie and Kan show
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P (Xt, τ) = exp[A(τ) − B(τ)Xt] (3)

where A(τ) is a scalar function and B(τ) is an n-valued function. Thus the bond’s yield
is affine in the state vector:

Y (Xt, τ) = (1/τ)[−A(τ) + B(τ)′Xt]. (4)

The functions A(τ) and B(τ) can be calculated numerically by solving a series of ordinary
differential equations (ODEs).

1.2. The price of risk and expected returns to bonds

The term structure model is completed by specifying the dynamics of Xt under the
physical measure, which is equivalent to specifying the dynamics of the price of risk. Denote
the state price deflator by πt. The relative dynamics of πt are

dπt

πt
= −rtdt − Λ′

tdWt (5)

where the vector Wt follows a Brownian motion under the physical measure. Element i

of the n-vector Λt represents the price of risk associated with the Brownian motion Wt,i.
The dynamics of Xt under the physical measure can be written in terms of Λt and the
parameters of (1):

dXt = ((Kθ)Q − KQXt)dt + ΣStΛtdt + ΣStdWt. (6)

Instantaneous bond-price dynamics can be written as

dP (Xt, τ)
P (Xt, τ)

= (rt + eτ,t)dt + vτ,tdWt

where eτ,t denotes the instantaneous expected excess return to holding the bond; the
expected return, over rt, of holding a τ -maturity bond for an instant. An application of
Ito’s lemma combined with the structure of the ODEs in Duffie and Kan reveals that

eτ,t = −B(τ)′ΣStΛt, (7)

vτ,t = −B(τ)′ΣSt. (8)

Equation (7) says that variations over time in expected excess returns are driven
by variations in both the volatility matrix St and the price of risk vector Λt. A fully
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parametric model for bond-yield dynamics requires specifying a functional form for Λt.
This form should be sufficiently flexible to capture the empirically-observed behavior of
expected excess returns. Thus to motivate the choice of functional form for Λt, we briefly
review evidence on the behavior of bond returns.

A large literature documents that expected excess returns to Treasury bonds (over
returns to short-term Treasury bills) are, on average, near zero, and vary systematically
with the term structure.1 When the slope of the term structure is steeper than usual,
expected excess returns to bonds are high, while expected excess returns are low–often
negative–when the slope is less steep. Thus across the maturity spectrum, the ratio of
mean expected excess bond returns to the standard deviation of expected excess bond
returns is low.

Earlier work has also shown that the shape of the term structure is related to the
volatility of yields.2 However, the slope–expected return relation is not simply proxying
for a volatility–expected return relation. Supporting evidence is in Table I, which reports
results from regressions of excess monthly bond returns on the lagged slope of the term
structure and lagged yield volatility. Monthly returns to portfolios of Treasury bonds
are from the Center for Research in Security Prices. Excess returns to these portfolios
are produced by subtracting the contemporaneous return to a three-month Treasury bill.
The slope of the term structure is measured by the difference between month-end five-
year and three-month zero-coupon yields. The zero-coupon yields are interpolated from
coupon bonds using the technique of McCCulloch and Kwon (1991), as implemented by
Bliss (1997).3 Yield volatility is the standard deviation of the five-year zero-coupon bond’s
yield, measured by the the square root of the sum of squared daily changes in the yield
during the month.

The sample period is July 1961 through December 1998. The results in Table I reveal
that month t’s volatility has no statistically significant predictive power for excess bond
returns in month t + 1. By contrast, all of the estimated slope parameters are significant
at the ten percent level and half are significant at the five percent level. In addition, the
variation in predicted excess returns is large relative to mean excess returns. Consider, for

1 The literature is too large to cite in full here. Early research includes Fama and Bliss
(1987). Two standard references are Fama and French (1989, 1993).

2 This literature is also too large to cite in full. In an important paper, Chan, Karolyi,
Longstaff, and Sanders (1992) examine the sensitivity of volatility to the level of short-term
interest rates. Andersen and Lund (1997) refine their work by decomposing the variation
in interest-rate volatility into a component related to the level of short-term interest rates
and a stochastic volatility component.

3 I thank Rob Bliss for providing me with the yield data.
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example, bonds with maturities between three and four years. The mean excess return is
seven basis points per month, while the standard deviation of predictable excess returns is
roughly 25 basis points. In results not detailed here, I find that the conclusions are robust
to including volatilities of other bond yields as explanatory variables in the regression.

Armed with this information about the empirical behavior of bond returns, we now
discuss three alternative parameterizations of Λt.

1.3. Completely affine models

Fisher and Gilles (1996) and Dai and Singleton (2000) adopt the following parame-
terization of Λt. Let λ1 be an n-vector. Then the price of risk vector Λt is given by

Λt = Stλ1. (9)

This class nests multifactor versions of Vasicek (1977) and Cox et al. (1985; hereafter
CIR). The main reason for the popularity of this form is that the vector StΛt is affine
in Xt. This implies affine dynamics for Xt under both the equivalent martingale and
physical measures. Affine dynamics of Xt under the physical measure allow for closed-
form calculation of various properties of conditional densities of discretely-sampled yields.
These properties are discussed in detail in Duffie, Pan, and Singleton (1999) and Singleton
(1999). Of less importance is the fact that Λ′

tΛt, which is the instantaneous variance of
the log state price deflator, is also affine in Xt. This latter property motivates the term
“completely affine,” as discussed in the next subsection.

This structure imposes two related limitations on Λt. First, variation in the price of
risk vector is completely determined by the variation in St. Therefore variations in expected
excess returns to bonds are driven exclusively by the volatility of yields, an implication
that appears inconsistent with the evidence in Table I. Second, the sign of element i of Λt

is the same as that of element i of λ1, because the diagonal elements of St are restricted
to be nonnegative. The importance of this limitation will be clear in Section 2.

1.4. Essentially affine models

The essentially affine class nests the completely affine class. We first define the ele-
ments of a diagonal matrix S−

t as

S−
t(ii) =

{
(αi + β′

iXt)−1/2, if inf(αi + β′
iXt) > 0;

0, otherwise.
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Thus, if diagonal element i of St is bounded away from zero, its reciprocal is diagonal
element i of S−

t . For any diagonal element of St with a lower bound of zero (whether or
not it is accessible given the dynamics of Xt), the associated element of S−

t is set to zero.
Therefore the elements of S−

t do not explode as the corresponding elements of St approach
zero.

The form of Λt used in the essentially affine model is

Λt = Stλ1 + S−
t λ2Xt (10)

where λ2 is an n×n matrix. This form shares with (9) two important properties. First, if
St(ii) approaches zero, Λt does not go to infinity. Second, StΛt is affine in Xt. Therefore
the physical dynamics of Xt are affine, which is convenient for empirical estimation.

There are three important differences between (9) and (10). First, with λ2 6= 0, Λ′
tΛt

is not affine in Xt. Therefore this model is not completely affine, but the variance of
the state price deflator does not affect bond prices. This is the motivation for the term
“essentially affine.” Second, the tight link between the price of risk vector and the volatility
matrix is broken. The essentially affine setup allows for independent variation in prices of
risk, which is the kind of flexibility needed to fit the empirical behavior of expected excess
returns to bonds. Third, the sign restriction on the individual elements of Λt is removed.

For future reference we need to explicitly determine the physical dynamics of Xt.
Substitute (10) into (6) and define I− as the n × n diagonal matrix with I−

ii = 1 if
S−

t(ii) 6= 0, I−
ii = 0 if S−

t(ii) = 0. Then the physical dynamics in the essentially affine model
can be written as

dXt = ((Kθ)Q − KQXt)dt + Σ
[
S2

t λ1 + I−λ2Xt

]
dt + ΣStdWt. (11)

Combining terms and denoting element i of λ1 by λ1i, (11) can be written as

dXt = [Kθ − KXt]dt + ΣStdWt, (12a)

where

K = KQ − Σ




λ11β
′
1

.

.
λ1nβ′

n


 + ΣI−λ2, (12b)

and
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Kθ = (Kθ)Q + Σ




α1λ11

.

.
αnλ1n


 . (12c)

1.5. An essentially affine example

The following two-factor model illustrates a number of features of the essentially
affine model. The instantaneous interest rate rt follows a Gaussian process and there
is some other factor ft that follows a square-root process. It is convenient to begin by
modeling their dynamics under the physical measure. Under this measure, the processes
are independent, as in (13):

d

(
ft

rt

)
=

(
kf 0
0 kr

) ((
f
r

)
−

(
ft

rt

))
dt +

(
σf 0
0 σr

) (√
ft 0
0 1

)
d

(
Wt,1

Wt,2

)
. (13)

The model is closed with a description of the dynamics of the market price of risk. If
we adopt the completely affine version in (9), the result is the classic Vasicek (1977) model
for rt. In such a setup, the variable ft is irrelevant for bond pricing, and we are left with
a standard one-factor Gaussian model.

If, however, we use the essentially affine specification for the market price of risk, the
factor ft can affect bond prices, even though it cannot affect the path of rt. The reason
is that the compensation that investors require to face the risk of Wt,2 can vary with ft.
The essentially affine model specifies the price of risk Λt as

Λt =
(

λ11

√
ft

λ12

)
+

(
0 0
0 1

) (
λ2(11) λ2(12)

λ2(21) λ2(22)

) (
ft

rt

)

=
(

λ11

√
ft

λ12

)
+

(
0 0

λ2(21) λ2(22)

) (
ft

rt

)
.

The dynamics of the state price deflator are therefore

dπt

πt
= −rtdt −

(
λ11

√
ft

λ12 + λ2(21)ft + λ2(22)rt

)′
d

(
Wt,1

Wt,2

)
.

The dynamics of rt and ft under the equivalent martingale measure are, from (12a) and
(12b),
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d

(
ft

rt

)
=

(
kf + σfλ11 0
σrλ2(21) kr + σrλ2(22)

) ((
f

Q

rQ

)
−

(
ft

rt

))
dt +

(
σf 0
0 σr

) (√
ft 0
0 1

)
d

(
W̃t,1

W̃t,2

) (14)

where f
Q

and rQ are the means of ft and rt, respectively, under the equivalent martingale
measure.

There are three important differences between this description of bond-price dynamics
and the standard Vasicek model. First, the current level of the instantaneous interest rate
rt affects the price of interest rate risk, through the parameter λ2(22). In Vasicek, the
price of interest rate risk is constant. Second, there is a source of uncertainty in bond
prices that is independent of the physical dynamics of rt. The factor ft affects bond
prices through the parameter λ2(21). Chacko (1997) builds an affine term structure model
expressly designed to exhibit this second feature, and my example was inspired by his
(substantially more complicated) model. We will see in Section 4 that this kind of feature
is critical to understanding the actual dynamics of Treasury bond yields. Third, the price
of risk associated with innovations in Wt,2 can change sign, depending on the level of the
factor ft.

Because this model takes as a primitive the dynamics of the state-price deflator,
it is incapable of providing us a utility-based explanation for sign changes in investors’
willingness to face this risk. However, we know from the results of stochastic differential
utility that given arbitrary state-price deflator dynamics, there exists some utility gradient
and optimal consumption process that are consistent with the deflator dynamics. For a
textbook discussion, see Duffie (1996).

The essentially affine structure of Λt, although more flexible than the completely affine
structure, nonetheless imposes limits on the the possible dynamics of bond prices. Note
that one element of K, which is the first matrix on the right-hand-side of (13), is the
same as the corresponding element of KQ, which is the first matrix on the right-hand-side
of (14). Element (1,2) must be zero under both the physical and equivalent martingale
measures. Otherwise, the drift of ft at ft = 0 could be negative (because it would depend
on rt), which cannot be allowed because

√
ft enters into St.

To free up this element, and thus allow for a more flexible specification of the price
of risk, we could model ft as a Gaussian process. An example of such a model is Fisher
(1998). By contrast, if both ft and rt were modeled as square-root diffusion processes, the
essentially affine structure of Λ would be identical to the completely affine structure. This
illustrates a more general point noted by Duffie and Kan (1996) and Dai and Singleton
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(2000), and that we will see in current paper’s empirical work. With affine bond-pricing,
there is a tradeoff between constructing a model that can capture complicated dynamics
in volatilities and a model that can capture complicated dynamics in expected returns.

1.6. Semi-affine models

Duarte (2000) chooses an alternative generalization of completely affine models. Let
λ0 be an n-vector. The price of risk vector is

Λt = λ0 + Stλ1.

With this form, elements of Λt can switch sign over time but they cannot move
independently of St. As noted in Section 1.4, this latter feature appears inconsistent with
the empirical evidence. Thus at first glance it appears that the semi-affine setup allows
for some, but not all, of the flexibility of the essentially affine setup. However, there are
parameterizations of St for which the semi-affine model offers more flexibility than does
the essentially affine model. One example is the multifactor CIR model, which is the focus
of Duarte’s empirical work. It should be noted that the essentially affine and semi-affine
frameworks are nested in the following price of risk vector:

Λt = λ0 + Stλ1 + S−
t λ2Xt.

As with the semi-affine form of Λt, this more general form implies non-affine dynamics
of Xt under the physical measure. Duarte (2000) notes that with non-affine physical
dynamics, approximation or simulation techniques are typically necessary to reproduce
the properties of discretely-sampled yields.

1.7. A canonical form for essentially affine models

There are a variety of normalizations that can be imposed on affine models. Here
I follow the lead of Dai and Singleton’s (2000) canonical completely affine model. They
normalize Σ to the identity matrix. They also stack Xt so that, if m of the factors affect
the instantaneous variance of Xt (because they enter into one of the diagonal elements of
St) and n−m of them do not, the m factors in the former group are in positions 1 through
m of Xt and the n − m factors in the latter group are in positions m + 1 through n. The
resulting model is called an Am(n) model. They also set the first m elements of α to zero
and the remaining n − m elements to one. Then their version of (2) is
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St(ii) =

{ √
Xt,i, i = 1, . . . , m;√
1 + β′

iXt i = m + 1, . . . , n
(15)

where for i = m + 1, . . . , n,

β′
i = ( βi1 ... βim 0 . . . 0 ) .

Using their framework, we can write the diagonal elements of S−
t and I− as

S−
t(ii) =

{
0, i = 1, . . . , m;
(1 + β′

iXt)−1/2, i = m + 1, . . . , n

I−
ii =

{
0, i = 1, . . . , m;
1, i = m + 1, . . . , n.

(16)

Note that in (11) the matrix λ2 shows up only in the term I−λ2Xt. Therefore we can
normalize the first m rows of λ2 to zero. Now reconsider (7), the instantaneous expected
excess return to holding a bond with remaining maturity τ . From (10), (15), and (16), in
the canonical form this can be written as

eτ,t =

−B(τ)′







0m

λ1(m+1)

.

.
λ1n


 +

( (
Ma

m×m 0m×(n−m)

M b
(n−m)×m 0(n−m)×(n−m)

)
+

(
0m×n

L(n−m)×n

) )
Xt


 .

(17)

In (17), 0m is an m-vector of zeros. The 0p×q matrices are defined similarly. The submatrix
Ma is a diagonal matrix with the ith diagonal element equal to element i of λ1. Row i of
M b is given by the first m elements of the vector λ1(m+i)β

′
m+i. The submatrix L consists

of rows (m + 1) through n of λ2.
The additional flexibility of the essentially affine model in fitting time-variation in

expected excess returns to bonds is captured by the matrix L. In a completely affine
setup, L is a zero matrix. Therefore any elements of Xt that do not affect the instantaneous
volatility of Xt (i.e., elements m + 1, . . . , n), are also incapable of affecting instantaneous
expected excess returns to bonds. When L is nonzero, any such elements of Xt can affect
expected excess returns. In addition, L provides a mechanism for all other elements in Xt

to affect expected returns through a channel other than Ma or M b.
If all elements of Xt affect the instantaneous volatility (i.e., a correlated multifactor

CIR model, or what Dai and Singleton (2000) call an An(N) model), there is no L matrix
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(it has zero rows). Therefore the essentially affine model generalizes the completely affine
model only when there is at least one element in Xt that does not affect the instantaneous
volatility of Xt.

2. The intuition behind the failure of completely affine models

A successful model of the term structure should be consistent with the variety of
term-structure shapes observed in the data. For example, the model should be capable of
producing low, flat term structures; low, steep term structures; and high, inverted term
structures. In addition, the model should reproduce the empirically-observed patterns in
expected returns to bonds; or equivalently, produce forecasts of future yields that subsume
the forecasting information in the slope of the term structure. This section explains that
completely affine models fit to the historical behavior of Treasury yields will not simulta-
neously achieve both of these goals.

For our purposes, the key features of the excess returns to bonds are that they are, on
average, small, and exhibit substantial predictable variation. Recall from Section 1 that
eτ,t denotes the instantaneous expected excess return to a bond with maturity τ . Although
we do not observe instantaneous returns, the evidence in Table I suggests that the ratio
E(eτ,t)/

√
V ar(eτ,t) is small—well below one—for all τ . (This ratio is the inverse of the

coefficient of variation for eτ,t.)
We will see below that completely affine models can be parameterized to produce

low values of E(eτ,t)/
√

V ar(eτ,t) for all τ . However, completely affine models can fit
this behavior only by giving up the ability to fit a wide range of term-structure shapes.
Conversely, they can be parameterized to fit observed term-structure shapes, but not the
behavior of expected excess returns. The intuition underlying this result is best seen in
two steps. We will first examine the behavior of one-factor completely affine models. Then
we will see that the important properties of one-factor models carry over to multifactor
models.

2.1. One-factor models

The intuition in a completely affine one-factor model is straightforward. Expected
instantaneous excess bond returns, eτ,t, are proportional to the factor’s variance, hence
they are bounded by zero. In order for a random variable that is bounded by zero to have a
standard deviation substantially larger than its mean, it must be highly skewed. This high
skewness is a tight restriction on the admissible values of eτ,t, and thus a tight restriction
on the admissible values of the factor.
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To see this clearly, we work through the math. Our goal is to reproduce the stylized
fact that E(eτ,t)/

√
V ar(eτ,t) is small. We restrict our attention to a non-Gaussian model,

because in a completely affine Gaussian model V ar(eτ,t) = 0. The model is

rt = δ0 + xt,

dxt = k(θ − xt)dt + σ
√

xtdWt,

Λt = λ1
√

xt.

From (7), the instantaneous expected excess return to a τ -maturity bond is

eτ,t = −B(τ)σλ1xt.

Therefore the inverse of the eτ,t’s coefficient of variation is

E(eτ,t)√
V ar(eτ,t)

=
E(xt)√
V ar(xt)

=
θ√

V ar(xt)
. (18)

Equation (18) implicitly imposes B(τ)σλ1 < 0, which is the condition that mean
excess bond returns are positive. We set E(eτ,t)/

√
V ar(eτ,t) = 0.3, which is a typical ratio

for predictable excess returns in Table I. We set the unconditional mean and standard
deviation of the instantaneous interest rate to 5.5 percent and 2.9 percent respectively.
These values correspond to the moments of the three-month bill yield over 1952 through
1998. In this model, V ar(rt) = V ar(xt). Plugging the standard deviation into (18)
produces θ = 0.87 percent. Therefore δ0 = 4.63 percent to fit the mean instantaneous
interest rate.

The requirement that the mean of xt is small relative to its standard deviation gives
the model little flexibility in producing short-term interest rates that are below average.
The instantaneous interest rate rt cannot be less than δ0, or 4.63 percent. But over the
period 1952 through 1998, three-month yields have ranged from 0.6 to 16 percent. Put
differently, the model’s parameters and the observed variation in short-term interest rates
over this period imply a range of xt from −4.0 to 11.4; the implied xt is negative in more
than 40 percent of the monthly observations. Nonnegativity in implied values of xt requires
θ > 4.9 percent. With such a θ, the model would have the flexibility to fit the wide range
of short-term interest rates observed in the data, but the ratio E(eτ,t)/

√
V ar(eτ,t) would

exceed 1.6.
We can also think about this model’s restriction on the behavior of interest rates

in terms of skewness in expected excess returns. In order to produce a small value of

13



E(eτ,t)/
√

V ar(eτ,t), the model will generate expected excess returns that are always pos-
itive, usually very close to zero, and occasionally well above zero. But as noted in Section
1, observed expected excess returns are not so positively skewed; they range from positive
to negative.

2.2. Multifactor models

Multifactor models are better at fitting the behavior of expected excess bond returns.
For example, it is simple to generate a near-zero value of E(eτ,t)/

√
V ar(eτ,t) for a specified

maturity, while retaining substantial flexibility in fitting term structure shapes. In a mul-
tifactor CIR model, the only requirement is prices of risk (elements of Λt) with different
signs. If one element of Λt is positive and another negative, then at some maturity the
factor loadings will weight these prices of risk such that E(eτ,t) = 0 and V ar(eτ,t) > 0.

However, completely affine models will not produce near-zero values of E(eτ,t)/
√

V ar(eτ,t)
for all maturities while also allowing for a wide variety of term structure shapes. To slightly
oversimplify, the intuition is that long-maturity bond yields are affected by only one factor–
the factor with the greatest persistence under the equivalent martingale measure. Thus we
can use the earlier intuition developed for one-factor models to conclude that multifactor
models cannot reproduce the observed behavior of long-maturity yields.

The reason why only a single factor will affect long-maturity bond yields is practical,
not theoretical. There are a variety of types of shocks that affect the term structure (e.g.,
level, slope, twist), and multifactor models capture this variety through factors that die out
at different rates under the equivalent martingale measure. In principle, we could construct
a model with multiple factors affecting long-bond yields. The only requirement is to force
the factors to share the same low speed of mean reversion. But by doing so, we weaken
the major advantage of multifactor models—the ability to fit different kinds of shocks to
the term structure. Thus such a model would produce a poor fit of term structure data
relative to a model in which each factor had its own speed of mean reversion.

The failure of completely affine models to fit the empirical behavior of bonds can
be seen in the parameter estimates of three-factor completely affine models in Dai and
Singleton (2000). They use U.S. dollar interest rate swap yields to estimate the same
general three-factor completely affine models that are estimated in this paper. I use the
parameters of their preferred model and the swap yields to produce implied time series
of the state vector and expected excess returns to bonds. The results of this exercise,
which are not reported in any table, indicate the model captures the combination of low
mean and high volatility for expected excess returns. However, in over one-quarter of the
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observations in their data, the implied value of the state vector violates a nonnegativity
constraint. The violations tend to occur when the long end of the term structure is well
below its average. Thus the results in Dai and Singleton support the conclusion that
completely affine models do not simultaneously fit the behavior of expected excess returns
to bonds and the variety of term structure shapes in the data.

3. Estimation of essentially affine models

3.1. Three-factor affine models

All of the affine models estimated in this paper have three underlying factors (n = 3).
Litterman and Scheinkman (1991) find that three factors explain the vast majority of
Treasury bond price movements. This is fortunate, because general three-factor affine
models are already computationally difficult to estimate owing to the number of parame-
ters. Adding another factor would have made this investigation impractical. Seven models
are estimated: Four completely affine models and three essentially affine models. A com-
pletely affine model is estimated for each possible number of factors that do not affect the
instantaneous volatility of Xt (from three to zero). The canonical form discussed in Section
1.7 is used. The estimated models are, in their terminology, A0(3) through A3(3). The
other models that are estimated are the essentially affine generalizations of A0(3), A1(3),
and A2(3). (Recall A3(3) has no essentially affine generalization.)

The estimated models share the following expressions for the instantaneous interest
rate, the physical dynamics of Xt, and the price of risk vector:

rt = δ0 + δ1Xt,1 + δ2Xt,2 + δ3Xt,3, (19a)

d


 Xt,1

Xt,2

Xt,3


 =





 (Kθ)1

(Kθ)2
(Kθ)3


 −


 k11 k12 k13

k21 k22 k23

k31 k32 k33





Xt,1

Xt,2

Xt,3





 dt + StdWt, (19b)

St(ii) =
√

αi + ( βi1 βi2 βi3 )Xt, (19c)

Λt = St


λ11

λ12

λ13


 + S−

t


 λ2(11) λ2(12) λ2(13)

λ2(21) λ2(22) λ2(23)

λ2(31) λ2(32) λ2(33)


 Xt. (19d)

Depending on the model, various restrictions are placed on the parameters in (19a) through
(19d).

15



3.2. The data

I use month-end yields on zero-coupon Treasury bonds (interpolated from coupon
bonds) calculated using the method in McCulloch and Kwon (1991). Their sample, which
ends in February 1991, is extended by Bliss (1997). The entire data set covers the period
January 1952 through December 1998.4 I restrict my attention to maturities less than or
equal to ten years owing to the large number of missing observations for longer-maturity
bonds.

In order to perform both in-sample and out-of-sample tests, I estimate term-structure
models using data from 1952 through 1994. The final four years of data are reserved for
constructing out-of-sample forecast errors.

3.3. The estimation technique

I estimate these models using quasi maximum likelihood (QML), which is particularly
easy to implement with completely and essentially affine models. Although QML does
not use all of the information in the probability density of yields, it fully exploits the
information in the first and second conditional moments of the term structure. Thus QML
will capture the tension in affine models between fitting conditional means and conditional
variances.

Another advantage of QML (which it shares with maximum likelihood and related
techniques) is that there is a positive probability that estimated model could actually
generate the observed time series of term structures. This is an important concern in
estimating affine term structure models. As the discussion in Section 2 highlighted, there
is a tradeoff between fitting the coefficients of variation in expected excess bond returns
and fitting the variety of term structure shapes observed in the data. A model estimated
with QML will guarantee that the time-t state vector implied by time-t yields is in the state
vector’s admissible space (to avoid a likelihood of zero). By contrast, consider techniques
such as Efficient Method of Moments (EMM) that compare sample moments from the data
with population moments simulated from the model. These techniques do not require that
the estimated term structure model be sufficiently flexible to reproduce the term structure
shapes in the data. The parameters of the model in Dai and Singleton (2000), which were
estimated with EMM, illustrate this point.

4 Bliss and McCulloch-Kwon use slightly different filtering procedures, thus the yields
they report over periods of overlapping data do not match exactly. This raises the issue
of where to splice the series together. I use the yields in McCulloch and Kwon over their
entire sample period and use the Bliss data after February 1991.
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I implement QML following Fisher and Gilles (1996), which contains further details.
I assume that at each month-end t, t = 1, . . . , T , yields on n bonds are measured without
error. (Recall n is the dimension of the state vector.) These bonds have fixed times-to-
maturity τ1, . . . , τn. Yields on k other bonds are assumed to be measured with serially
uncorrelated, mean-zero measurement error. The variance-covariance matrix of this mea-
surement error is the constant matrix V .

To compute the log-likelihood value for a candidate parameter vector, stack the
perfectly-observed yields in the vector Yt and the imperfectly-observed yields in the vector
Ỹt. Denote the parameter vector by Θ. Given Θ, Yt can be inverted using (4) to form an
implied state vector X̂t, as in (20).

X̂t = H−1
1 (Yt − H0). (20)

In (20), H0 is an n-vector with element i given by A(τi)/τi and H1 is an n × n matrix
with row i given by B(τi)/τi. The candidate parameter vector is required to be consistent
with Yt. This is enforced by requiring X̂t to be in the admissible space for Xt, which is
equivalent to requiring that the diagonal elements of St in (19c) be real.

Given X̂t, implied yields for the other k bonds can be calculated. Stack them in
ˆ̃Yt. The month t measurement error vector is then εt = ˆ̃Yt − Ỹt. To compute the quasi-
likelihood value, assume that the one-period-ahead conditional distribution of the state
variables is multivariate normal and equal to

fX(Xt+1|Xt).

The mean and variance-covariance matrix of Xt+1 can be computed using the results
in the Appendix, thus fX(Xt+1|Xt) is known. Then the distribution of Yt+1 conditional
on Yt is

fY (Yt+1|Yt) =
1

|det(H1)|fX(X̂t+1|X̂t).

Also assume that the measurement error is jointly normally distributed with distribution
fε(εt). The log likelihood of observation t is then

lt(Θ) = log fY (Yt|Yt−1) + log fε(εt). (21)

Stationarity is imposed on the model by requiring that the eigenvalues of K are
positive, allowing fY (Y1|Y0) to be set equal to the unconditional distribution of Yt. The
estimated parameter vector Θ∗ is chosen to solve
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max
Θ

L(Θ) =
T∑

t=1

lt(Θ).

In the estimation that follows, I assume that the bonds with no measurement error are
those with maturities of six months, two years, and ten years. This choice was motivated
by the desire to span as much of the term structure as possible without assuming that
the three-month yield, which exhibits some idiosyncratic behavior, is observed without
error. The bonds with measurement error fill in the gaps in this term structure, with
maturities of three months, one year, and five years. The variance-covariance matrix of
the measurement error is estimated using its Cholesky decomposition:

E(εtε
′
t) = V = CC′. (22)

There are six elements to be estimated in the lower triangular matrix C. An earlier
version of the paper assumed a diagonal structure for V . Although the results of the
more general structure strongly reject the assumption that these measurement errors are
uncorrelated, the parameter estimates of the rest of the model are largely unaffected by
the form chosen for V .

It is, however, important to include these additional bond yields in the estimation
procedure. Earlier versions of this paper did not include bond yields measured with error.
The earlier results showed that the general three-factor models studied here–especially
the essentially affine models–can produce wildly implausible term structure shapes. These
shapes happen to intersect with observed term structures at three maturities: the maturi-
ties associated with the bonds measured without error. By including bonds measured with
error, the likelihood values associated with these implausible term structures are penalized
heavily.

3.4. The maximization technique

The QML functions for these models have a large number of local maxima. The most
important reason for this is the lack of structure placed on the feedback matrix K. Similar
QML values can be produced by very different interactions among the elements of the
state vector. Another reason is that the feasible parameter space is not convex for any
model with nonconstant volatilities. A feasible parameter vector satisfies the requirement
that the diagonal elements of St are real for all t. Because I use the canonical form of
Section 1.7, this requirement is satisfied when X̂t,i ≥ 0 for i ≤ m. (Recall that m is
the number of state variables that affect the instantaneous volatility of Xt.) Therefore
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the requirement imposes m× T restrictions on the parameter vector. The restrictions are
nonlinear functions of the parameters and the data. These problems led to the following
maximization technique.

Step 1. Randomly generate a parameter vector from a multivariate normal distribution
with a diagonal variance-covariance matrix. The means and variances were arbitrarily set
to ‘plausible’ values.

Step 2. Use (20) to calculate X̂t for all t.
Step 3. If the parameter vector is not feasible, return to step 1; otherwise proceed.
Step 4. Use Simplex to determine the parameter vector that maximizes the QML

value.
Step 5. Using the final parameter vector from step 4 as a starting point, use NPSOL

to make any final improvements in the QML value.

This procedure is repeated until Steps 4 and 5 are reached 1,000 times. For most of
the estimated models, there was little improvement in the QML value after the first few
hundred iterations.

3.5. Specification tests

These specification tests use the fact that QML estimation can be viewed as a GMM
estimator. The moments are the first derivatives of the quasi log likelihood function with
respect to the parameter vector, resulting in an exactly-identified model. By imposing
overidentifying moment conditions we can test the adequacy of the model.

3.5.1. Tests of nested models

Recall that for m < n, the completely affine model Am(n) is nested in a corresponding
essentially affine model. The essentially affine version has an additional n(n − m) free
parameters corresponding to the bottom n − m rows in the matrix λ2. We can test the
null hypothesis that these free parameters are all equal to zero, using the GMM version of a
likelihood ratio test. A textbook discussion is in Greene (1997). Define the column vector
ht(Θ) as the derivative of (21) with respect to the parameter vector Θ, and define the
column vector h(Θ) as the mean of these T vectors. Define the (inverse of) the weighting
matrix Wt as the mean of the outer product of the single-period derivatives:

W−1
t (Θ) = (1/T )

T∑
t=1

ht(Θ)ht(Θ)′. (23)

19



Denote the parameter vector for the essentially affine model estimated by QML as Θ∗
0.

Denote a restricted parameter vector Θ1 as a parameter vector that imposes the completely
affine restriction on λ2. Choose it to solve

q = min
Θ1

Th(Θ1)′Wt(Θ∗
0)h(Θ1). (24)

The results of Hansen (1982) imply that under the null hypothesis, q is distributed as
χ2((n − m)n). Similar tests can be used to evaluate other parametric restrictions on the
estimated models. These other tests are discussed in more detail in Section 4.

3.5.2. Testing the covariance between forecast errors and the term structure slope

This test asks whether the yield forecasts produced by the estimated models include
the information in the slope of the term structure. Given a parameter vector Θ associated
with a particular model, the implied state vector X̂t−∆ is given by inverting yields observed
at time t−∆. The ∆-period-ahead conditional mean E(Xt|X̂t−∆) can then be constructed.
Given this expected state vector, expected ∆-period-ahead bond yields and associated
forecast errors can also be constructed. We need some notation for forecast errors. Denote
by et,∆,τi

the forecast error realized at time t for a τi-maturity bond, where the forecast is
made at time t − ∆. The forecast errors for v bonds of different maturities are stacked in
the vector et,∆.

et,∆ ≡ ( et,∆,τ1 et,∆,τ2 . . . et,∆,τv
)′

If an estimated term structure model does not make systematic forecast errors, fore-
casts of time-t yields made at time t−∆ should have forecast errors uncorrelated with any
variable known at time t − ∆. This motivates the specification test. Denote the slope of
the yield curve at time t − ∆ by st−∆. If the model is correctly specified,

E [(et,∆ − et,∆)(st−∆ − st−∆)] = 0. (25)

Equation (25) contains v moment conditions which can be used as overidentifying
restrictions in GMM estimation of an affine model. The other moment conditions are
standard QML moments, which are the derivatives of (21) with respect to each element of
the parameter vector. The weighting matrix is calculated at the QML parameter estimates,
which are consistent under the null hypothesis that the model is correctly specified. Then
an analogue to q in (24) is calculated. Again from the results of Hansen (1982), this value
is distributed as χ2(v) under the null hypothesis.
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The use of overlapping observations in these moment conditions produces sample
moments that exhibit serial correlation. Therefore the weighting matrix does not take
the simple form of (23). I experimented with a variant of Hansen and Hodrick (1980)’s
weighting matrix, but in practice the matrix was typically not positive definite. I therefore
adopted the approach of Newey and West (1987).

To implement this test I set ∆ = 1/2, so that six-month-ahead forecasts are examined.
This horizon was chosen arbitrarily. A cursory investigation of other forecast horizons
indicated that the results of the specification tests were insensitive to this choice. I used
eight lags in the Newey-West calculation of the weighting matrix; experimentation with
similar lag lengths did not materially affect the results. I set v = 3, and form forecasts for
maturities of six months, two years, and ten years. (These are the same maturities that
are assumed to have no measurement error.) The slope of the term structure is measured
by the difference between the five-year bond yield and the three-month bond yield. The
first six observations are dropped to account for the length of the forecast horizon.

4. Results

4.1. An overview

Table II reports the QML values for each estimated model. Results for ten models are
shown. The first seven model specifications are labeled “unrestricted.” This means that
the only parameter restrictions imposed are those implied by the canonical form. These
restrictions are either normalizations or requirements of no-arbitrage. To both limit the
danger of overfitting and to aid in the interpretation of the parameter estimates, more
parsimonious specifications are also estimated. These “preferred” specifications will be
discussed after the unrestricted specifications are considered.

Among the unrestricted models, the completely affine A0(3) model has the lowest QML
value, indicating that it provides the worst overall fit to the first and second conditional
moments of yields. This is not surprising, given that the model cannot generate time-
variation in either expected returns or conditional variances of yields. The completely
affine A3(3) model has the highest QML value, followed closely by the essentially affine
and completely affine A2(3) models. These are the models with the greatest flexibility in
fitting variations in conditional volatilities.

The first specification test reveals that the unrestricted completely affine A0(3) model
is overwhelmingly rejected by its more general essentially affine counterpart. The corre-
sponding test statistic for the completely affine A1(3) is smaller, but still overwhelmingly
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rejects the model. The A2(3) completely affine model has a QML value almost indistin-
guishable from that of its essentially affine counterpart, and its additional restrictions are
not rejected.

The reason for the decrease in the χ2 statistics as m increases is the decrease in
additional flexibility offered by essentially affine models as m increases. Recall from (19d)
that the difference between completely and essentially affine models is in the elements of
λ2. When m = 0 all elements of λ2 are free. When m = 1 the top row of λ2 is set to zero.
When m = 2 only the bottom row of λ2 is free. Thus an increase in m provides for greater
flexibility in fitting conditional variances of yields but also provides for less flexibility (in
an essentially affine model) in fitting expected excess returns to bonds.

Related evidence is reported for the second specification test. Only the essentially
affine A0(3) model passes this test. For all other models, the slope of the term structure
is too strongly correlated with the forecast errors to satisfy the null hypothesis that the
correlation is zero.

To limit the size of the paper, I report more detailed information for only three of the
models. They are the essentially affine A0(3), A1(3), and completely affine A2(3) models.
The first is of particular interest because of its forecasting ability, the second illustrates
the tradeoff between forecasting ability and fitting conditional variances, while the third
is the completely affine model that does the best at forecasting, as measured by the χ2

statistic on the second specification test.

For each of these models, I estimate specifications that are more parsimonious than the
unrestricted specifications. I first computed the t-statistics for the unrestricted parameter
estimates. I then set to zero all parameters for which the absolute t-statistics did not
exceed one and reestimated the models.5 This procedure eliminated five parameters from
the completely affine A2(3) model and seven parameters from both the essentially affine
A0(3) model and the essentially affine A1(3) model. For each preferred model, a joint test
of the parameter restrictions is constructed using an analogue to (24). The test statistics
and corresponding p-values are reported in the “First Test Stat” column.6

5 With the completely affine A2(3) model, the parameter β32 was set to one instead of
zero.

6 The test statistic for the essentially affine A1(3) model suggests a rejection of the
preferred model in favor of the unrestricted model. However, the large test statistic appears
to be a consequence of approximation errors in numerical computation of the derivative
of the log-likelihood function with respect to k32. The Numerical Recipes dfridr routine
(a robust method for calculating derivatives and estimates of errors in the derivatives)
reported large errors regardless of the initial stepsize. Because the estimate of parameter
in the unrestricted model was nearly zero, and setting it to zero had a negligible effect on
the QML likelihood function, I set it to zero in the preferred model.
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Parameter estimates for these preferred models are in Tables III through V. To con-
serve space, parameter estimates for the other models are not reported in the paper, and
are are available on request. The parameters from (19a) through (19d) are reported along
with parameters of the Cholesky decomposition in (22).

Table III reports the parameter estimates for the A0(3) essentially affine model. The
canonical form imposes a lower triangular structure on K and imposes α = 1, β = 0,
Kθ = 0. Table IV reports the parameter estimates for the A1(3) essentially affine model.
One feature of this table deserves mention. The parameter (Kθ)2 is nonzero, but no
standard error is reported. This is the result of two normalizations imposed on the model:
θ2 = θ3 = 0. The normalizations are imposed by setting (Kθ)2 and (Kθ)3 to the necessary
values given K. Other restrictions imposed in the canonical form are α1 = k12 = k13 =
0, α2 = α3 = β11 = 1, and βij = 0, i ≥ 1, j > 1. Finally, Table V reports the parameter
estimates for the A2(3) completely affine model. In the canonical form of the A2(3) model,
α1 = α2 = β33 = 0, α3 = β11 = β22 = 1, βij = 0 for i < 3, i 6= j, and λ2 = 0. The
preferred specification sets β31 = 0 and β32 = 1, so that the second state variable drives
the conditional volatilities of both the second and third state variables. The element (Kθ)3
is nonzero with no standard error because θ3 = 0 in the canonical model.

4.2. An analysis of forecast errors

The estimated models, combined with month t bond yields, can be used to construct
forecasts of month t+ i bond yields. Here we examine the accuracy of these forecasts, both
in-sample and out-of-sample. The in-sample period is January 1952 through December
1994. The out-of-sample period is January 1995 through December 1998. We focus on
bonds with maturities of six months, two years, and ten years, and forecast horizions of
three, six, and twelve months. Forecast accuracy is measured by the root mean squared
forecast error (RMSE). In-sample RMSEs are reported in Table VI and out-of-sample
RMSEs are reported in Table VIII. In Tables VII (in-sample) and IX (out-of-sample),
forecast errors are regressed on the slope of the yield curve to determine whether the
forecast method captures the forecasting power of the slope.

We need benchmarks to use in evaluating forecast accuracy. The simplest benchmark
is a random walk. The month t yield on a τ -maturity bond is used as a forecast of the
month t+ i yield on a τ -maturity bond. The RMSEs associated with this forecast method
are reported in the “RW” columns of Tables VI and VIII. Note that the tables report
different patterns in RMSEs across bonds. In the earlier period, yields were more volatile,
with volatility declining with maturity. In the later period, yield volatility was higher at
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long maturities than at short maturities. Thus the out-of-sample period should provide a
good test of the robustness of the estimated affine models.

A more sophisticated benchmark uses OLS regressions that predict future changes in
yields with the current slope of the term structure. The regression is

Yτ,t+i − Yτ,t = b0 + b1(Y5yr,t − Y3mo,t) + eτ,t+i. (26)

The parameters of (26) are estimated using in-sample data. The equation is then
used to construct forecasts and forecast errors for both the in-sample and out-of-sample
periods. The resulting RMSEs are in the columns labeled “OLS” in Table VI and Table
VIII. Although the in-sample RMSE for the regression is guaranteed to be no larger than
the random walk RMSE, that is not true out-of-sample. Indeed, for eight of the nine
combinations of maturity and forecast horizon, the out-of-sample OLS RMSE exceeds
that of the random walk.

The in-sample parameter estimates from (26) are reported in Table VII in the column
labeled “RW.” This may seem like a misprint (why aren’t they labeled “OLS”?), but
recall that Table VII reports the parameter estimates of regressions of forecast errors
on the month t slope of the yield curve. With the random walk method of forecasting,
the regression examined in Table VII is identical to the regression used to produce OLS
forecasts. The results document that short-maturity yields tend to rise and long-maturity
yields tend to fall when the slope is steeper than average, although the statistical evidence
at the short end is weak. These results correspond to the standard violations of the
expectations hypothesis of interest rates.

This violation is also apparent in the behavior of bond yields in the out-of-sample
period. The “RW” column in Table IX reports the results of estimating (26) from January
1995 through December 1998. The point estimates are typically more negative than their
counterparts in Table VII, although the t-statistics are smaller owing to fewer observations.

The final six columns in Table VI through Table IX examine the forecasting ability
of various affine models. The results document that the completely affine A2(3) model
is a failure at forecasting future interest rates. Table VI reports that in-sample, both
the unrestricted and preferred specifications produce forecasts that are worse than those
produced by the assumption that yields follow random walks. This unimpressive perfor-
mance is mirrored by the performance of the other completely affine models examined in
this paper. For every estimated model, the assumption that yields follow a random walk
produces superior in-sample forecasts for each of these maturities and forecast horizons.
(These additional results are not reported in any table.)
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The regressions reported in Table VII show that the forecast errors of the completely
affine A2(3) model are strongly negatively correlated with the slope of the term structure.
The parameter estimates are more negative than are the corresponding parameter estimates
in the random walk case. The model completely misses the forecasting information in the
slope of the term structure. When the term structure is more steeply sloped than usual,
the OLS forecast is that long-maturity yields will fall, but the model forecasts that the
yields will rise. Put differently, the model is consistent with the expectations hypothesis,
and the observed bond yields are not.

This poor forecasting performance carries over to the out-of-sample period. Table
VIII documents that the unrestricted specification produces forecasts that are inferior to
random-walk forecasts in five of the nine combinations of maturity and forecast horizon.
The preferred specification does even worse, producing inferior forecasts for seven of the
nine combinations. The point estimates in Table IX confirm that the model’s forecasts
get the wrong sign of the relationship between the slope of the term structure and future
changes in yields.

The essentially affine models produce dramatically better forecasts. The most success-
ful forecasting model, both in-sample and out-of-sample, is the essentially affine, completely
Gaussian model. Table VI documents that within the sample, both the unrestricted and
preferred A0(3) models outforecast the OLS regressions (and therefore also outforecast the
random walk assumption) for each combination of maturity and forecast horizon. Table
VIII makes the same point out-of-sample. Moreover, these forecasts capture the predictive
power of the term-structure slope. In Tables VII and IX, the only evidence for predictabil-
ity of forecast errors is in the out-of-sample forecast errors for ten-year bonds at the twelve
month horizon.

The essentially affine A1(3) model is not quite as successful as the Gaussian model
at forecasting. From Table VI, we see that in-sample forecasts from both the unrestricted
and preferred specifications are typically superior to random-walk forecasts, but outforecast
OLS regressions for only half of the maturity/horizon combinations. Moreover, from Table
VIII, the forecast errors are negatively correlated with the slope of the yield curve. The
statistical strength of this negative correlation rises as both the bond’s maturity and the
forecasting horizon lengthen.

An examination of Table VIII indicates that this essentially affine model performs
somewhat better out-of-sample. Forecasts from the preferred specification are superior to
random-walk and OLS forecasts at all maturities and forecast horizons. Nonetheless, Table
IX indicates that the model’s out-of-sample forecast errors are negatively correlated with
the slope of the yield curve. Thus the model misses some of the explanatory power of the
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term-structure slope.

The general pattern in these forecasts is that forecasting ability falls as the ability to
fit time-variation in conditional variances rises. The A0(3) model, although its forecasting
ability is superior, has the lowest QML value among the three considered here because it
implies that yield volatilities are constant through time. Notwithstanding its poor fore-
casting performance, the A2(3) model has a much higher QML value than the either of the
essentially affine models discussed here because of its ability to fit variations in volatilities.
In the next subsection we consider more explicitly the tradeoff between forecasting power
and time-varying volatilities.

4.3. The predictability of excess returns and volatilities

A few diagrams help shed light on the behavior of these competing models. Figure
1 is a graphical summary of the behavior of the preferred essentially affine A0(3) model.
Panel A displays instantaneous effects that one-standard-deviation shocks to each factor
have on the term structure of yields. The three shocks can be interpreted as a level shock
(the long dashes), a slope shock (the solid line), and a twist (the short dashes). Panel B
displays the (nonexistent) instantaneous effect of these shocks on yield variances.

Panel C displays the effect that these shocks have on bonds’ instantaneous expected
excess returns (over rt). There are two distinct types of shocks to expected returns. The
short dashes correspond to the twist shock in Panel A. This shock has a strong effect on
instantaneous expected returns, but it is also very short-lived. (This latter fact cannot
be seen in the panel.) Thus this shock is responsible for high-frequency fluctuations in
expected excess returns.

The other type of shock to expected excess returns corresponds to the slope shock in
Panel A. It is more persistent (this also cannot be seen in the panel), and thus accounts for
more persistent fluctuations in expected returns. The combined effects of these shocks on
expected excess returns to two-year bonds are displayed in Panel E. Panel F is the same
plot for ten-year bonds. These latter panels show that expected excess returns fluctuate
sharply and widely around zero. For example, the expected instantaneous excess return
in Panel E has a mean of 1.25 percent and a standard deviation of 3.09 percent.

Because this model is so successful at forecasting future yields, it is worth a more
careful examination. An intuitive way to interpret shocks to bond yields is to decompose
the shocks into shocks to expected future short-term interest rates and shocks to expected
excess returns. This decomposition is straightforward, thus I will not discuss it in detail
here. Instead, I will simply summarize the results.
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A positive level shock corresponds to an immediate, near-permanent increase in short-
term interest rates. The half-life of the shock to short-term interest rates is more than
eleven years. Because the shock does not substantially alter investors’ required excess
returns to bonds, short-maturity and long-maturity bond yields respond in the same way
to this shock.

A positive slope shock corresponds to an immediate increase in short-term interest
rates that lasts about as long as a business cycle. The half-life of the shock is four years.
Because short-term interest rates are expected to decline over time, the shock lowers the
slope of the term structure. The shock also lowers expected excess returns to bonds by
affecting the price of risk vector. We can see this in the parameters of λ2 in Table III.
An increase in the first factor (the slope factor) affects the price of risk of the third factor
(the level factor) through element (3,1) of λ2. This decrease in expected returns further
decreases the slope of the term strucure because longer-maturity bond returns are more
sensitive than shorter-maturity bond returns to level shocks, and thus to the price of risk
of level shocks.

Twists are very similar to the “ft” factor in the two-factor example discussed in Section
2. A twist shock has basically no effect on current or future short-term interest rates.
Instead, the shock changes investors’ required excess returns to bonds by affecting the
price of risk associated with the level and slope factors. The half-life of such a shock is less
than three months. We can call this a “flight to quality” shock. Investors experience short-
lived periods of unwillingness to hold risky Treasury instruments, thus driving expected
excess bond returns higher.

Figure 2 contains information about the preferred essentially affine A1(3) model. Panel
A displays a level shock, a slope shock, and a twist shock. The solid line is the level shock,
and it affects the conditional variance of yields, as shown in Panel B. The long-dashed
line is the twist shock, and in Panel C we see its strong effect on expected excess returns.
However, Panel C also indicates that the other two shocks have little effect on expected
excess returns. The net effect is that in Panels E and F, the fluctuations in expected excess
returns are less volatile than the fluctuations in the corresponding panels in Figure 1. For
example, the expected instantaneous excess return in Panel E has a mean of 1.90 percent
and a standard deviation of 1.85 percent.

Why does a shock to the slope affect expected excess returns in Figure 1 but not in
Figure 2? The answer is that the channel that operates in the model underlying Figure 1
is unavailable in the model underlying Figure 2. Panel C in Figure 1 reflects a relationship
between shocks to the slope and shocks to the price of risk of level shocks. These cross-
factor relationships are more limited in the essentially affine A1(3) model. In the canonical
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form, the first factor drives conditional volatilities, thus its price of risk cannot be affected
by any other factors. Figure 2 indicates that this first factor is the level factor; shocks to
the slope cannot affect its price of risk. Therefore this model produces poorer forecasts of
future bond yields than does the essentially affine A0(3) model.

Figure 3 displays the same panels for the preferred completely affine A2(3) model.
The model generates a richer pattern of time-variation in volatilities than do the other
two models. The cost of these more accurate measures of volatility is an inability to fit
expected excess returns. Expected excess returns in Panels E and F are always positive,
never large, and not volatile. For example, the expected instantaneous excess return in
Panel E has a mean of 0.79 percent and a standard deviation of 0.41 percent. Moreover,
these expected excess returns roughly track the instantaneous interest rate displayed in
Panel D. Because higher short-term rates typically correspond to lower slopes, the figure
indicates that expected excess returns move inversely with the slope of the yield curve; but
this is counterfactual.

The results discussed in this section indicate that the completely affine A2(3) model
fails to reproduce the behavior of expected excess returns to Treasury bonds. The same
conclusion holds for the other completely affine models estimated in this paper that are not
discussed in detail here. The models systematically fail to capture the large fluctuations in
expected excess returns to bonds. Essentially affine models do a better job of reproducing
the behavior of expected excess returns, although the magnitude of the improvement is in-
versely related to the ability of the models to fit the time-variation in conditional variances
of yields.

5. Concluding comments

Recent term structure research has concentrated on what I call completely affine mod-
els. This paper documents that completely affine models do not forecast future yields well
over the nearly fifty year period examined here. They consistently underestimate future
returns to bonds when the term structure is more steeply-sloped than usual; put differently,
these models do not reproduce the well-known failure of the expectations hypothesis.

Essentially affine models generalize completely affine models. They allow greater
flexibility in fitting variations in the price of interest rate risk over time, while retaining
the affine time-series and cross-sectional properties of bond prices. One of the essentially
affine models investigated in this paper—the pure Gaussian model—generates reasonable
forecasts of future yields, in the sense that the predictive power of the term structure is
subsumed within the model’s forecasts.
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The forecast accuracy of this Gaussian model allows us to properly interpret the usual
level, slope, and twist yield-curve factors in terms of their predictions for future short-term
interest rates and excess returns to longer-term bonds. Level shocks correspond to near-
permanent changes in interest rates and only minimal changes in expected excess returns.
Slope shocks correspond to business-cycle-length fluctuations in both interest rates and
expected excess returns to bonds, while twist shocks correspond to short-lived “flight to
quality” variations in expected excess returns. In other words, twist shocks do not affect
current or expected future short-term interest rates; they are pure shocks to risk premia.

Essentially affine models are not magic bullets. The models cannot capture time-
variation in conditional variances without giving up part of their flexibility in fitting time-
variation in the price of interest rate risk. It remains to be seen whether an essentially
affine model can be constructed that reproduces the time-variation observed in both the
conditional variances of yields and expected returns to bonds.
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Appendix. First and second moments of affine state variables

This appendix describes closed-form representations for first and second conditional
moments of a state vector that follow the affine process of (12a) and (2). The results are
an application (and a specialization) of the results in Fisher and Gilles (1996).

Assume that K can be diagonalized, or

K = NDN−1, D diagonal. (A1)

The diagonal elements of D are denoted di, . . . , dn. A discussion of computing moments
when K cannot be diagonalized is in Fisher and Gilles (1996).

The approach taken here is to compute the first and second conditional moments of
a linear transformation of Xt. The transformation is chosen so that the feedback matrix
K is diagonal under the transformation. The linear transformation is then reversed to
calculate the conditional moments of Xt. Define

X∗
t ≡ N−1Xt. (A2)

Then the dynamics of X∗
t are, from (12a), (2), (A1), and (A2),

dX∗
t = D(θ∗ − X∗

t ) + Σ∗S∗
t dWt, (A3)

where

S∗
t(i,i) =

√
αi + β∗

i
′X∗

t ,

θ∗ = N−1θ,

Σ∗ = N−1Σ,

β∗ = βN.

We now calculate the first and second moments of X∗
t . Some notation is helpful. If

Z is an n-vector, the n × n diagonal matrix in which element (i, i) equals Zi is denoted
diag(Z). If Z is a diagonal matrix, the diagonal matrix in which element (i, i) equals eZii

is denoted eZ . Finally, the n-vector β•i is column i of β.

1. Conditional mean

The expectation of X∗
T conditional on X∗

t is given by
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E[X∗
T |X∗

t ] = θ∗ + e−D(T−t)(X∗
t − θ∗). (A4)

Because e−D(T−t) is diagonal, this expectation can also be simply expressed element-by-
element:

E[X∗
T |X∗

t ] = θ∗i + e−di(T−t)(X∗
t,i − θ∗i ). (A4′)

Another useful way to express (A4) is by separating the terms that depend on X∗
t from

the terms that do not:

E[X∗
T |X∗

t ] =
(
I − e−D(T−t)

)
θ∗ + e−D(T−t)X∗

t . (A4′′)

Given this conditional mean of X∗
T , we reverse the transformation to express the

conditional mean of XT .

E[XT |Xt] = NE[X∗
T |Xt] = N

(
I − e−D(T−t)

)
θ∗ + Ne−D(T−t)N−1Xt.

Note that the conditional mean of XT could be expressed directly in terms of the
parameters of (12a); no transformation into X∗

t is required, because the above expression
is equivalent to

E[XT |Xt] =
(
I − e−K(T−t)

)
θ + e−K(T−t)Xt

where e−K(T−t) is the fundamental matrix associated with −K(T − t). The value of the
approach taken here is that (A4′) is used in determining the conditional variance-covariance
matrix of Xt.

2. Conditional variance

The matrix Σ∗S∗
t S∗

t
′Σ∗′ is the instantaneous variance-covariance matrix of the trans-

formed state vector. We can write this as

Σ∗S∗
t S∗

t
′Σ∗′ = Σ∗diag(α∗)Σ∗′ +

n∑
i=1

Σ∗ diag(β∗
•i) Σ∗′

X∗
t,i

≡ G0 +
n∑

i=1

GiX
∗
t,i

(A5)

where G0 ≡ Σ∗diag(α∗)Σ∗′
and the n x n matrices Gi are defined as [Σ∗diag(β∗

•i)Σ
∗′

].
Define the n × n matrix F (t, s) as
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F (t, s) ≡ G0 +
n∑

i=1

Gi[E(X∗
s |X∗

t )]i.

This matrix is the instantaneous variance-covariance matrix of X∗
s , but evaluated at the

expectation of X∗
s (conditional on time-t information) instead of at the true value of X∗

s .
Using (A4′), this matrix can be expressed as

F (t, s) = G0 +
n∑

i=1

Gi[θ∗i + e−di(s−t)(X∗
t,i − θ∗i )]. (A6)

Fisher and Gilles show the conditional variance of X∗
T can be written as

V ar[X∗
T |X∗

t ] =
∫ T

t

e−D(T−s)F (t, s)e−D(T−s)ds. (A7)

Substituting (A6) into (A7) produces (A8):

V ar[X∗
T |X∗

t ] =
∫ T

t

e−D(T−s)G0e
−D(T−s)ds+

n∑
i=1

[
θ∗i

∫ T

t

e−D(T−s)Gie
−D(T−s)ds

]
+

n∑
i=1

[
(X∗

t,i − θ∗i )
∫ T

t

e−D(T−s)Gie
−D(T−s)e−di(s−t)ds

]
.

(A8)

If f(j, k) maps (j, k) into the scalar value f , the notation {f(j, k)} denotes the matrix
with element (j, k) given by f(j, k). The conditional variance can then be written as

V ar[X∗
T |X∗

t ] =
∫ T

t

{
[G0]j,ke(s−T )(dj+dk)

}
ds+

n∑
i=1

[
θ∗i

∫ T

t

{
[Gi]j,ke(s−T )(dj+dk)

}
ds

]
+

n∑
i=1

[
(X∗

t,i − θ∗i )
∫ T

t

{
[Gi]j,ke(s−T )(dj+dk)−di(s−t)

}
ds

]
.

(A9)

Integrating (A9) produces (A10).
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V ar[X∗
T |X∗

t ] =
{
(dj + dk)−1[G0]j,k

(
1 − e−(T−t)(dj+dk)

)}
n∑

i=1

[
θ∗i

{
(dj + dk)−1[Gi]j,k

(
1 − e−(T−t)(dj+dk)

)}]
+

n∑
i=1

[
(X∗

t,i − θ∗i )
{
(dj + dk − di)−1[Gi]j,k(e−di(T−t) − e−(dj+dk)(T−t))

}]
(A10)

Note that by collecting terms, the variance-covariance matrix in (A10) can be rewritten
in terms of the individual elements of X∗

t as in (A11)

V ar[X∗
T |X∗

t ] = b0 +
n∑

i=1

biX
∗
t,i. (A11)

The n × n matrices bi, i = 0, . . . , n depend on the horizon T − t. We now calculate the
conditional variance of XT using the notation of (A11). Since

V ar(XT |Ω) = NV ar(X∗
T |Ω)N ′

we have

V ar(XT |Xt) = Nb0N
′ +

n∑
i=1


 n∑

j=1

NbjN
′N−1

j,i


 Xt,i.
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Table I
Regressions of excess returns to Treasury bonds

July 1961 through December 1998

Monthly excess returns to portfolios of Treasury coupon bonds are regressed on the previous
month’s term-structure slope and an estimate of the interest rate volatility during the previous
month. The slope of the term structure is measured by the difference between five-year and three-
month zero-coupon yields (interpolated from coupon bonds). Monthly volatility is measured by
the square root of the sum of squared daily changes in the five-year zero-coupon bond yield.
Asymptotic t-statistics, adjusted for generalized heteroskedasticity, are in parentheses. There are
449 monthly observations.

Maturity Mean excess Coef on Std. dev. of
(years) return (%) slope volatility fitted excess rets

0 < m ≤ 1 0.011 0.027 0.116 0.036
(1.76) (0.96)

1 < m ≤ 2 0.045 0.085 0.413 0.119
(1.85) (1.27)

2 < m ≤ 3 0.064 0.132 0.582 0.179
(1.88) (1.20)

3 < m ≤ 4 0.074 0.187 0.706 0.241
(2.38) (1.35)

4 < m ≤ 5 0.063 0.214 0.692 0.265
(2.37) (1.16)

5 < m ≤ 10 0.094 0.296 0.804 0.354
(2.69) (1.08)
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Table II
Statistical comparison of estimated models

Three-factor affine models are estimated with quasi maximum likelihood (QML). The data con-
sist of month-end yields on zero-coupon bonds with maturities between three months and ten
years, from January 1952 through December 1994. The models differ in the number of factors
m that affect the instantaneous variance of yields and in the flexibility of the price of risk pa-
rameterization. Essentially affine models allow the price of risk to vary independently from the
instantaneous variance of yields, while completely affine models do not. “Unrestricted” models
impose no restrictions on the parameters other than those required by no-arbitrage. “Preferred”
models drop parameters that contribute little to the models’ QML values.

Two specification tests are reported. The first is of the null hypothesis that the model’s parameter
restrictions are true. For “unrestricted” models, the test compares completely affine models to
their more general essentially affine counterparts. For “preferred” models, the test compares the
preferred model to its unrestricted counterpart. The second tests the null hypothesis that the six-
month-ahead yield forecast errors for bonds of three different maturities are uncorrelated with the
slope of the term structure at the time the forecasts are made. Under the null, the test statistics
are distributed as χ2(number of param restrictions) and χ2(3) respectively.

Number of First Test Stat Second Test Stat
Model Type m Free Params QML value (p-value) (p-value)

Unrestricted

Completely 0 19 15171.94 62.689 12.297
(0.000) (0.006)

Completely 1 23 15380.31 26.133 18.521
(0.000) (0.000)

Completely 2 24 15395.74 0.860 9.938
(0.835) (0.019)

Completely 3 25 15396.34 33.482
(0.000)

Essentially 0 28 15196.45 2.385
(0.596)

Essentially 1 29 15392.47 16.639
(0.001)

Essentially 2 27 15396.04 11.381
(0.010)

Preferred

Completely 2 19 15393.55 1.238 10.406
(0.941) (0.015)

Essentially 0 21 15190.68 3.443 1.449
(0.841) (0.694)

Essentially 1 22 15387.91 17.882 14.361
(0.013) (0.002)
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Table III
Parameter estimates for the preferred essentially affine A0(3) model

The model is defined in equation (19). With this version of the model, α is a vector of ones and
both β and Kθ are identically zero. The matrix C is the Cholesky decomposition V = CC′ of the
variance-covariance matrix of the cross-sectional errors in fitting yields on bonds with maturities
of three months, one year, and five years. Parameters are estimated with QML. Asymptotic
standard errors are in parentheses.

Constant term

δ0 0.044
(0.025)

Index number (i)
Parameter 1 2 3

δi 0.01895 0.00790 0.00992
(0.00223) (0.00218) (0.00051)

k1i 0.564 0 0
(0.047)

k2i 0 3.257 0
(0.672)

k3i −0.545 0 0.062
(0.202) (0.051)

λ1i −0.625 −0.235 −0.207
(0.146) (0.099) (0.057)

λ2(1i) 0 1.742 0
(0.254)

λ2(2i) 0 −1.711 0
(0.717)

λ2(3i) 0.648 0.297 −0.061
(0.206) (0.186) (0.051)

C1i 0.00227 0 0
(0.00013)

C2i −0.00050 0.00084 0
(0.00007) (0.00004)

C3i 0 −0.00017 0.00093
(0.00006) (0.00004)
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Table IV
Parameter estimates for the preferred essentially affine A1(3) model

The model is defined in equation (19). With this version of the model, α1 = β12 = β13 = 0,
α2 = α3 = β11 = 1, and the first row of λ2 is zero. The matrix C is the Cholesky decomposition
V = CC′ of the variance-covariance matrix of the cross-sectional errors in fitting yields on bonds
with maturities of three months, one year, and five years. Parameters are estimated with QML.
Asymptotic standard errors are in parentheses.

Constant term

δ0 0.014
(0.005)

Index number (i)
Parameter 1 2 3

δi 0.00088 0.00118 0.00256
(0.00021) (0.00053) (0.00124)

(Kθ)i 0.155 −1.910 0
(0.048)

k1i 0.031 0 0
(0.020)

k2i −0.383 0.594 5.340
(0.235) (0.053) (3.833)

k3i 0 0 2.832
(0.490)

β2i 10.269 0 0
(9.96)

β3i 0.291 0 0
(0.261)

λ1i −0.042 −3.844 0
(0.020) (2.415)

λ2(2i) 39.334 0 5.259
(53.816) (3.647)

λ2(3i) 0 0 −1.311
(0.565)

C1i 0.00227 0 0
(0.00013)

C2i −0.00049 0.00084 0
(0.00007) (0.00004)

C3i 0 −0.00016 0.00094
(0.00006) (0.00004)
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Table V
Parameter estimates for the preferred completely affine A2(3) model

The model is defined in equation (19). With this version of the model, α1 = α2 = 0, α3 = β11 =
β22 = β32 = 1, the remaining elements of the β matrix are zero, and λ2 is a matrix of zeros.
The matrix C is the Cholesky decomposition V = CC′ of the variance-covariance matrix of the
cross-sectional errors in fitting yields on bonds with maturities of three months, one year, and five
years. Parameters are estimated with QML. Asymptotic standard errors are in parentheses.

Constant term

δ0 0.018
(0.004)

Index number (i)
Parameter 1 2 3

δi 0.00066 0.00136 0.00598
(0.00021) (0.00050) (0.00077)

(Kθ)i 0 0.222 −2.299
(0.103)

k1i 0.172 −0.295 0
(0.064) (0.056)

k2i −0.197 0.406 0
(0.066) (0.059)

k3i 0.564 −1.669 1.721
(0.279) (0.234) (0.176)

λ1i −0.042 0 −0.208
(0.018) (0.058)

C1i 0.00227 0 0
(0.00013)

C2i −0.00049 0.00084 0
(0.00007) (0.00004)

C3i 0 −0.00017 0.00094
(0.00006) (0.00004)
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Table VI
Comparison of in-sample forecasting performance

This table reports root mean squared errors (RMSE) for month t forecasts of month t + i bond
yields. Eight different forecast methods are compared. The column labeled “RW” (random walk)
uses month t yields as forecasts of future yields. The column labeled “OLS” uses a univariate OLS
regression to form forecasts, where the dependent variable is change in the yield from t to t+i and
the regressor is the month t slope of the yield curve. The final six columns use either completely
affine (C.A.) or essentially affine (E.A.) three-factor models to form forecasts. Preferred models
are restricted versions of unrestricted models. The models differ in the number of factors j that
are allowed to affect conditional volatility (Aj(3)).

The regression and affine models are estimated using data from January 1952 through December
1994 and the forecasts are produced over the same period (in-sample forecasts). The slope of the
yield curve is the five-year zero-coupon yield less the three-month zero-coupon yield. Bond yields
are measured in decimal form (i.e., 0.04 corresponds to 4 percent/year).

Unrestricted Preferred
Bond Forecast C. A. E. A. C. A. E. A.
Maturity Horizon RW OLS A2(3) A0(3) A1(3) A2(3) A0(3) A1(3)

6 mo 3 1.023 1.020 1.045 1.009 1.019 1.048 1.009 1.019

2 yr 3 0.871 0.869 0.880 0.837 0.847 0.883 0.837 0.853

10 yr 3 0.549 0.532 0.554 0.526 0.543 0.554 0.528 0.547

6 mo 6 1.376 1.370 1.418 1.342 1.367 1.427 1.345 1.368

2 yr 6 1.154 1.149 1.173 1.091 1.121 1.181 1.089 1.133

10 yr 6 0.760 0.722 0.774 0.711 0.756 0.772 0.713 0.764

6 mo 12 1.803 1.797 1.843 1.731 1.798 1.868 1.742 1.798

2 yr 12 1.541 1.529 1.566 1.450 1.527 1.583 1.445 1.544

10 yr 12 1.109 1.018 1.137 1.011 1.121 1.131 1.009 1.133
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Table VII
The relation between in-sample forecast errors and the yield-curve slope

Various models are used to produce month t forecasts of month t + i bond yields and the corre-
sponding forecast errors are constructed. This table reports parameter estimates from regressions
of forecast errors on the month t slope of the yield curve. Six forecast methods are compared. The
column labeled “RW” (random walk) uses month t yields as forecasts of future yields. Therefore
the forecast error regression is simply a regression of changes in bond yields from t to t + i on
the month t yield-curve slope. The final six columns use either completely affine (C.A.) or essen-
tially affine (E.A.) three-factor models to form forecasts. Preferred models are restricted versions
of unrestricted models. The models differ in the number of factors j that are allowed to affect
conditional volatility (Aj(3)).

The regression and affine models are estimated using data from January 1952 through December
1994 and the forecasts are produced over the same period (in-sample forecasts). The slope of the
yield curve is the five-year zero-coupon yield less the three-month zero-coupon yield. Asymptotic
t-statistics, in parentheses, are adjusted for generalized heteroskedasticity and moving average
residuals.

Unrestricted Preferred
Bond Forecast C. A. E. A. C. A. E.A.
Maturity Horizon RW A2(3) A0(3) A1(3) A2(3) A0(3) A1(3)

6 mo 3 0.072 -0.182 -0.041 -0.135 -0.182 0.019 -0.124
(0.73) (-1.84) (-0.42) (-1.39) (-1.83) (0.19) (-1.27)

2 yr 3 -0.043 -0.182 -0.043 -0.134 -0.183 0.013 -0.129
(-0.52) (-2.22) (-0.54) (-1.69) (-2.22) (0.16) (-1.63)

10 yr 3 -0.125 -0.159 -0.027 -0.141 -0.158 -0.018 -0.140
(-2.72) (-3.50) (-0.61) (-3.19) (-3.49) (-0.39) (-3.15)

6 mo 6 0.118 -0.324 -0.085 -0.252 -0.326 0.015 -0.233
(0.91) (-2.55) (-0.69) (-2.03) (-2.53) (0.12) (-1.88)

2 yr 6 -0.082 -0.326 -0.091 -0.261 -0.330 -0.003 -0.249
(-0.76) (-3.17) (-0.91) (-2.60) (-3.17) (-0.03) (-2.51)

10 yr 6 -0.220 -0.280 -0.049 -0.255 -0.280 -0.031 -0.252
(-3.45) (-4.48) (-0.78) (-4.14) (-4.46) (-0.50) (-4.09)

6 mo 12 0.129 -0.567 -0.208 -0.484 -0.575 -0.058 -0.453
(0.70) (-3.30) (-1.21) (-2.74) (-3.30) (-0.33) (-2.60)

2 yr 12 -0.158 -0.551 -0.191 -0.486 -0.560 -0.069 -0.462
(-1.06) (-3.86) (-1.32) (-3.26) (-3.86) (-0.48) (-3.15)

10 yr 12 -0.410 -0.506 -0.135 -0.480 -0.507 -0.101 -0.472
(-3.62) (-4.53) (-1.22) (-4.24) (-4.52) (-0.92) (-4.19)
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Table VIII
Comparison of out-of-sample forecasting performance

This table reports root mean squared errors (RMSE) for month t forecasts of month t + i bond
yields. Eight different forecast methods are compared. The column labeled “RW” (random walk)
uses month t yields as forecasts of future yields. The column labeled “OLS” uses a univariate OLS
regression to form forecasts, where the dependent variable is change in the yield from t to t+i and
the regressor is the month t slope of the yield curve. The final six columns use either completely
affine (C.A.) or essentially affine (E.A.) three-factor models to form forecasts. Preferred models
are restricted versions of unrestricted models. The models differ in the number of factors j that
are allowed to affect conditional volatility (Aj(3)).

The regression and affine models are estimated using data from January 1952 through December
1994, while the forecasts are produced over January 1995 through December 1998 (out-of-sample
forecasts). For each bond there are 48 − i forecasts and associated errors. The slope of the yield
curve is the five-year zero-coupon yield less the three-month zero-coupon yield. Bond yields are
measured in decimal form (i.e., 0.04 corresponds to 4 percent/year).

Unrestricted Preferred
Bond Forecast C. A. E. A. C. A. E. A.
Maturity Horizon RW OLS A2(3) A0(3) A1(3) A2(3) A0(3) A1(3)

6 mo 3 0.298 0.298 0.325 0.281 0.288 0.350 0.281 0.284

2 yr 3 0.499 0.511 0.501 0.454 0.458 0.523 0.457 0.450

10 yr 3 0.484 0.498 0.476 0.460 0.457 0.485 0.469 0.453

6 mo 6 0.400 0.413 0.483 0.373 0.399 0.548 0.365 0.385

2 yr 6 0.652 0.675 0.656 0.565 0.576 0.711 0.566 0.560

10 yr 6 0.669 0.693 0.647 0.623 0.616 0.669 0.636 0.606

6 mo 12 0.484 0.523 0.621 0.434 0.488 0.778 0.421 0.455

2 yr 12 0.762 0.787 0.759 0.608 0.635 0.879 0.600 0.606

10 yr 12 0.815 0.829 0.764 0.724 0.719 0.811 0.738 0.698
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Table IX
The relation between out-of-sample forecast errors and the yield-curve slope

Various models are used to produce month t forecasts of month t + i bond yields and the corre-
sponding forecast errors are constructed. This table reports parameter estimates from regressions
of forecast errors on the month t slope of the yield curve. Six forecast methods are compared. The
column labeled “RW” (random walk) uses month t yields as forecasts of future yields. Therefore
the forecast error regression is simply a regression of changes in bond yields from t to t + i on
the month t yield-curve slope. The final six columns use either completely affine (C.A.) or essen-
tially affine (E.A.) three-factor models to form forecasts. Preferred models are restricted versions
of unrestricted models; model parameters that add little to the model’s QML value are set to
zero. The models differ in the number of factors j that are allowed to affect conditional volatility
(Aj(3)).

The regression and affine models are estimated using data from January 1952 through December
1994, while the forecasts are produced over January 1995 through December 1998 (out-of-sample
forecasts). For each bond, there are 48 − i forecasts and associated errors. The slope of the
yield curve is the five-year zero-coupon yield less the three-month zero-coupon yield. Asymptotic
t-statistics, in parentheses, are adjusted for generalized heteroskedasticity and moving average
residuals.

Unrestricted Preferred
Bond Forecast C. A. E. A. C. A. E.A.
Maturity Horizon RW A2(3) A0(3) A1(3) A2(3) A0(3) A1(3)

6 mo 3 0.121 -0.206 0.039 -0.074 -0.220 0.113 -0.064
(1.04) (-1.71) (0.35) (-0.66) (-1.82) (1.01) (-0.57)

2 yr 3 -0.151 -0.268 -0.002 -0.108 -0.284 0.056 -0.104
(-0.76) (-1.37) (-0.01) (-0.59) (-1.45) (0.30) (-0.57)

10 yr 3 -0.265 -0.280 -0.107 -0.220 -0.286 -0.112 -0.219
(-1.42) (-1.51) (-0.59) (-1.23) (-1.55) (-0.61) (-1.22)

6 mo 6 0.034 -0.497 -0.094 -0.272 -0.525 0.014 -0.258
(0.20) (-2.48) (-0.56) (-1.65) (-2.59) (0.09) (-1.56)

2 yr 6 -0.380 -0.560 -0.153 -0.324 -0.588 -0.071 -0.318
(-1.11) (-1.68) (-0.52) (-1.10) (-1.75) (-0.24) (-1.08)

10 yr 6 -0.552 -0.571 -0.305 -0.485 -0.583 -0.307 -0.483
(-1.60) (-1.68) (-0.92) (-1.49) (-1.71) (-0.91) (-1.49)

6 mo 12 -0.086 -0.825 -0.245 -0.482 -0.882 -0.116 -0.468
(-0.35) (-3.22) (-1.09) (-2.28) (-3.39) (-0.52) (-2.19)

2 yr 12 -0.844 -1.037 -0.500 -0.734 -1.088 -0.405 -0.727
(-2.27) (-3.00) (-1.55) (-2.39) (-3.13) (-1.24) (-2.35)

10 yr 12 -1.085 -1.083 -0.737 -0.977 -1.105 -0.730 -0.975
(-3.75) (-3.89) (-2.58) (-3.68) (-3.95) (-2.52) (-3.66)
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Figure 1. Summary of the estimated essentially affine A0(3) model

Panels A through C display the instantaneous responses of yields, variances, and expected excess
returns (over rt) to one-standard-deviation shocks to each of the three factors. Panels D through
F display fitted expected instantaneous returns over the sample period January 1952 through
December 1994. Panel D is the instantaneous interest rate. Panels E and F are the instantaneous
expected excess returns to the two-year and ten-year bonds.
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Figure 2. Summary of the estimated essentially affine A1(3) model

Panels A through C display the instantaneous responses of yields, variances, and expected excess
returns (over rt) to one-standard-deviation shocks to each of the three factors. Panels D through
F display fitted expected instantaneous returns over the sample period January 1952 through
December 1994. Panel D is the instantaneous interest rate. Panels E and F are the instantaneous
expected excess returns to the two-year and ten-year bonds.
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Figure 3. Summary of the estimated completely affine A2(3) model

Panels A through C display the instantaneous responses of yields, variances, and expected excess
returns (over rt) to one-standard-deviation shocks to each of the three factors. Panels D through
F display fitted expected instantaneous returns over the sample period January 1952 through
December 1994. Panel D is the instantaneous interest rate. Panels E and F are the instantaneous
expected excess returns to the two-year and ten-year bonds.
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