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LINEAR PROGRAMMING-BASED ESTIMATORS
IN SIMPLE LINEAR REGRESSION

DANIEL PREVE† AND MARCELO C. MEDEIROS‡

Abstract. In this paper we introduce a linear programming estimator (LPE) for the

slope parameter in a constrained linear regression model with a single regressor. The LPE

is interesting because it can be superconsistent in the presence of an endogenous regressor

and, hence, preferable to the ordinary least squares estimator (LSE). Two different cases

are considered as we investigate the statistical properties of the LPE. In the first case,

the regressor is assumed to be fixed in repeated samples. In the second, the regressor is

stochastic and potentially endogenous. For both cases the strong consistency and exact

finite-sample distribution of the LPE is established. Conditions under which the LPE

is consistent in the presence of serially correlated, heteroskedastic errors are also given.

Finally, we describe how the LPE can be extended to the case with multiple regressors

and conjecture that the extended estimator is consistent under conditions analogous

to the ones given herein. Finite-sample properties of the LPE and extended LPE in

comparison to the LSE and instrumental variable estimator (IVE) are investigated in a

simulation study. One advantage of the LPE is that it does not require an instrument.
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1. Introduction

The use of certain linear programming estimators in time series analysis is well docu-

mented. See, for instance, Davis & McCormick (1989), Feigin & Resnick (1994) and Feigin,

Kratz & Resnick (1996). LPEs can yield much more precise estimates than traditional

methods such as conditional least squares (e.g. Datta, Mathew & McCormick 1998, Nielsen

& Shephard 2003). The limited success of these estimators in applied work can be par-

tially explained by the fact that their point process limit theory complicates the use of

their asymptotics for inference (e.g. Datta & McCormick 1995).

In regression analysis, it is well known that the ordinary least squares estimator is

inconsistent for the regression parameters when the error term is correlated with the

explanatory variables of the model. In this case an instrumental variables estimator or

the generalized method of moments may be used instead. In economics, such endogenous

explanatory variables could be caused by measurement error, simultaneity or omitted

variables. To the authors’ knowledge, however, there has so far been no attempt to

investigate the statistical properties of LP-based estimators in a cross-sectional setting. In

this paper we show that LPEs can, under certain circumstances, be a preferable alternative

to LS and IV estimators for the slope parameter in a simple linear regression model. We

look at two types of regressors which are likely to be of practical importance. First, we

introduce LPEs to the simple case of a non-stochastic regressor. Second, we consider

the general case of a stochastic, and potentially endogenous, regressor. For both cases

we establish the strong consistency and exact finite-sample distribution of a LPE for the

slope parameter.

The LPE can be used in situations where the regressor is strictly positive. For example,

in empirical finance, we can consider regressions involving volatility and volume. In

labor economics a possible application is the regression between income and schooling,

for example.
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The remainder of the paper is organized as follows. In Section 2 we establish the strong

consistency and exact finite-sample distribution of the LPE when 1) the explanatory

variable is non-stochastic, and 2) the explanatory variable is stochastic and potentially

endogenous. In Section 3 we discuss how our results can be extended to other endogenous

specifications and give conditions under which the LPE is consistent in the presence of

serially correlated, heteroskedastic errors. We also describe how the LPE can be extended

to the case with multiple regressors. Section 4 reports the simulation results of a Monte

Carlo study comparing the LPE and extended LPE to the LSE and IVE. Section 5

concludes. Mathematical proofs are collected in the Appendix. An extended Appendix

available on request from the authors contains some results mentioned in the text but

omitted from the paper to save space.

2. Assumptions and Results

Non-Stochastic Explanatory Variable. The first regression model we consider is yi = βxi + ui

ui = α + εi, i = 1, ..., n

where the response variable yi and the explanatory variable xi are observed, and ui is

the unobserved non-zero mean random error. β is the unknown regression parameter of

interest. We assume that {xi} is a nonrandom sequence of strictly positive reals, whereas

{ui} is a sequence of independent identically distributed (iid) nonnegative random vari-

ables (RVs). For ease of exposition we assume that E(ui) = α. The potentially unknown

distribution function Fu of ui is allowed to roam freely subject only to the restriction that

it is supported on the nonnegative reals. A well known continuous probability distribution

with nonnegative support is the Weibull distribution, which can approximate the shape

of a Gaussian distribution quite well.
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A ‘quick and dirty’ estimator of the slope parameter, based on the nonnegativity of the

random errors, is given by

β̂ = min
{y1

x1

, ...,
yn
xn

}
. (1)

This estimator has been used to estimate β in certain constrained first-order autoregressive

time series models, yi = βxi+ui, with xi = yi−1 (e.g. Datta & McCormick 1995, Nielsen &

Shephard 2003). As it happens, (1) may be viewed as the solution to the linear program-

ming problem of maximizing the objective function f(β) = β subject to the n constraints

yi − βxi ≥ 0. Because of this we will sometimes refer to β̂ as a LPE. Regardless if the

regressor is stochastic or non-stochastic, (1) is also the maximum likelihood estimator

(MLE) of β when the errors are exponentially distributed. What is interesting, however,

is that β̂ consistently estimates β for a wide range of error distributions, thus the LPE is

also a quasi-MLE.

Assumption 1 holds throughout the section.

Assumption 1. Let yi = βxi + ui (i = 1, ..., n) where ui = α + εi and

(i) {xi} is a nonrandom sequence of strictly positive reals,

(ii) 0 is not a limit point of S ≡ {x1, x2, ...},

(iii) {ui} is an iid sequence of nonnegative RVs,

(iv) inf {u : Fu(u) > 0} = 0,

(v) E(εi) = 0.

Note that β can be any real number and that conditions (iii) and (v) combined imply

that the mean of ui is α ≥ 0. Since β̂n−β = Rn, where Rn = min {ui/xi}, it is clear that

P (β̂n − β ≤ z) = 0 for all z < 0 and, hence, the LPE is positively biased. Moreover, as

(1) is nonincreasing in the sample size its accuracy either remains the same or improves

as n increases. Proposition 1 gives the exact distribution of the LPE in the case of a

non-stochastic regressor.
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Proposition 1. Under Assumption 1,

P (β̂n − β ≤ z) = 1−
n∏
i=1

[1− Fu(xiz)].

The proof of the proposition follows from the observation that

P (β̂n − β ≤ z) = P (Rn ≤ z)
(i)
= 1− P (u1 > x1z, ..., un > xnz),

and condition (iii) of Assumption 1. By condition (iv), Fu(u) > 0 for every u > 0 implying

that β̂ consistently estimates β.1 Intuitively, this is because the left-tail condition on ui

implies that the probability of obtaining an error arbitrarily close to 0 is non-zero and,

hence, that (1) is likely to be precise in large samples.

Corollary 1. Under Assumption 1, β̂n
a.s.→ β as n→∞.

From Corollary 1 it follows that α (the unknown mean of the error term) can be

consistently estimated by

α̂ =
1

n

n∑
i=1

(yi − β̂xi), (2)

the sample mean of the residuals, under fairly weak conditions.2

It is worth noting that the MLE of β satisfies the stochastic inequality β̂ML ≤ β̂.

Regardless if xi is stochastic or non-stochastic, in some cases the LPE will be equal to

β̂ML. For instance, it is readily verified that if the random errors are 1) exponentially

distributed with non-zero density function (1/a) exp{−u/a} for u ≥ 0

β̂ML = β̂, âML = α̂, (3)

and 2) uniformly distributed on the interval [0, b]

β̂ML = β̂, b̂ML = max {yi − β̂xi}. (4)

1If xi instead is assumed to be strictly negative then the estimator max {yi/xi} is strongly consistent for
β.
2If, under Assumption 1, α <∞ and if n−1

∑n
i=1 xi is O(1) as n→∞.
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As an illustration of Proposition 1 in action, Corollary 2 shows that the exact distribu-

tion of β̂−β when the errors are Weibull distributed, and the regressor is non-stochastic,

is also Weibull. The Weibull distribution, with distribution function 1 − exp {−(u/a)b}

for u ≥ 0, nests the well known exponential (b = 1) and Rayleigh (b = 2) distributions.

Corollary 2. Let the regression errors be Weibull distributed. Then, under Assumption

1,

P (β̂n − β ≤ z) = 1− exp

{
−
[

z

a(
∑n

i=1 x
b
i)
−1/b

]b}
,

if z ≥ 0 and 0 otherwise. Hence, β̂n − β is Weibull with scale parameter a(
∑n

i=1 x
b
i)
−1/b

and shape parameter b.

For example, in view of Corollary 2 with b = 1 it is clear that

n∑
i=1

xi(β̂n − β),

is exponentially distributed with scale parameter a. Moreover, by (3) and basic results of

large sample theory, the statistic

1

α̂n

n∑
i=1

xi(β̂n − β),

is asymptotically standard exponential.

Stochastic Explanatory Variable. The second regression model we consider is
yi = βxi + ui

xi = vi + γui

ui = α + εi

where {vi} is an iid sequence of nonnegative RVs, {ui} and {vi} are mutually independent,

and γ ≥ 0 such that Cov(xi, ui) = γVar(ui). The parameter γ is potentially unknown.

For this model the explanatory variable and error are uncorrelated if and only if γ = 0.
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In this case E(yi|xi) = βxi + α. Here γ > 0 is a typical setting in which the LSE of β is

inconsistent.3

Assumption 2 holds throughout the section.

Assumption 2. Let yi = βxi + ui (i = 1, ..., n) where ui = α + εi and

(i) xi = vi + γui for some γ ≥ 0,

(ii) {ui} and {vi} are mutually independent iid sequences of nonnegative RVs,

(iii) inf {u : Fu(u) > 0} = 0,

(iv) P (vi = 0) = 0,

(v) E(εi) = 0.

Conditions (i) through (iv) ensures that xi is strictly positive and, hence, that (1) is

well-defined. Also for this case the exact distribution of the LPE can be obtained. For

ease of exposition, we only give the result for the important special case when the related

distributions are continuous.

Proposition 2. Let ui and vi be (absolutely) continuous RVs with pdfs fu and fv, respec-

tively, and let 1{·} denote the indicator function. Then, under Assumption 2,

P (β̂n − β ≤ z) = 1− [1− Fz(z)]n, (5)

where

Fz(z) = 1{z>0}

∫ z

0

∫ ∞
0

xfv(x)fu(tx)dxdt,

if γ = 0 and

Fz(z) = 1{0<z<1/γ}

∫ z

0

∫ ∞
0

xfv(x− γtx)fu(tx)dxdt+ 1{z≥1/γ},

otherwise.

3More specifically, β̂LS
p→ β + γVar(ui)/[Var(vi) + γ2Var(ui)] as n→∞ provided the variances exist.
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For a simple example, consider the case when ui and vi are standard exponentially

distributed RVs and γ is non-zero. Then, in view of Proposition 2,

Fz(z) = 1{0<z<1/γ}

∫ z

0

∫ ∞
0

x exp{−x[1 + (1− γ)t]}dxdt+ 1{z≥1/γ}.

Hence, if γ 6= 1

Fz(z) = 1{0<z<1/γ}

∫ z

0

1

[1 + (1− γ)t]2
dt+ 1{z≥1/γ}

= 1{0<z<1/γ}

(
1

1− γ
− 1

(1− γ)[1 + (1− γ)z]

)
+ 1{z≥1/γ}.

Similarly, if γ = 1 then Fz(z) = 1{0<z<1}z + 1{z≥1} and zi is uniformly distributed on

(0, 1).

Once Fz(z) is obtained the mean and variance of β̂n may be calculated from Equa-

tion (5). To illustrate that the LPE can be superconsistent (and hence superior to the

LSE), Table 1 reports the exact mean and variance of β̂n under various distributional

specifications for ui and xi. More specifically, the table gives three examples of the ratio

distribution Fz(z) of zi = ui/xi where ui and xi are independent (γ = 0) and follow the

same family of distributions. The first case is the exponential distribution. The second

and third cases are the uniform and Rayleigh distributions, respectively. The results for

the mean can be used to bias-correct β̂n. The results for the variance imply that β̂n is

n-consistent in the first two cases, and
√
n-consistent in the last. It is easy to see that the

LPE can be superconsistent also in the presence of an endogenous regressor. For instance,

if γ = 1 in the example following Proposition 2 then Var(β̂n) = n(n+ 1)−2(n+ 2)−1. Next

we establish the strong consistency of β̂.

Proposition 3. Under Assumption 2, β̂n
a.s.→ β as n→∞.
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Table 1. Ratio distributions with accompanying moments of β̂n. Fz(z) is
the cdf of the ratio z = u1/x1, with parameter θ = θu/θx, on which the
moments are based. Results hold for γ = 0 and n > 2. Γ(·) is the gamma
function.

Ratio Fz(z), z > 0 E(β̂n − β) Var(β̂n − β)

Exp(θu)
Exp(θx)

1− 1
1+θ−1z

θ
n−1

θ2n
(n−2)(n−1)2

U(0,θu)
U(0,θx)

1
2θ
z, z ≤ θ

1− θ
2z
, z > θ

2θ
n+1

[
1 + 1

(n−1)2n

]
O( 1

n2 )

Ra(θu)
Ra(θx)

1− 1
1+θ−2z2

θ
√
π

2
Γ(n−1/2)

Γ(n)
θ2
[

1
n−1
− π

4
Γ2(n−1/2)

Γ2(n)

]
Hence, under Assumption 2, the LPE is strongly consistent in the presence of an en-

dogenous regressor. Once more, it follows that α̂ in (2) is consistent for α under fairly

weak conditions.4

3. Extensions

In the previous section we aimed for clarity at the expense of generality. For example,

in the case with a stochastic regressor, we assumed that xi = vi + γui even though other

endogenous specifications, such as xi = viu
γ
i , also are possible. In this section we discuss

how the results of Section 2 can be extended.

Serially Correlated, Heteroskedastic Errors. A proof similar to that of Theorem

3.1 in Preve (2008) shows that the LPE remains consistent for certain serially correlated

error specifications such as

ui = α + εi +

q∑
k=1

ψkεi−k,

or ui = α+εi+ψεi−1εi−2. Consistency also holds for certain heteroskedastic specifications.

Because of this, β̂ can be used to seek sources of misspecification in the errors.

Proposition 4. Let yi = βxi + σiui (i = 1, ..., n) where

(i) xi = vi + γh(σi)ui for some γ ≥ 0 and h : (0,∞)→ (0,∞),

4If, under Assumption 2, both E(vi) and α are finite.
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(ii) {vi} is an iid sequence of nonnegative RVs, mutually independent of {ui}, with

P (vi = 0) = 0,

(iii) {σi} is a deterministic sequence of strictly positive reals with sup {σi} <∞,

(iv) {ui} is a sequence of m-dependent identically distributed nonnegative RVs with

inf {u : Fu(u) > 0} = 0.

Then, β̂n
p→ β as n→∞. The endogeneity parameter γ, the map h(·) and the specification

of {σi} are potentially unknown. m ∈ N is finite and also potentially unknown.

The σi are scaling constants which express the possible heteroskedasticity. The map

h(·) allows for a heteroskedastic regressor. Condition (iii) is quite general and allows

for various standard specifications, including abrupt breaks or smooth transitions such as

σi =
√
σ2

0 + (σ2
1 − σ2

0) i
n
. If σi is not a function of n, then the convergence of β̂n is almost

surely.

Multiple Regressors. Let yi =
∑p

j=1 βjxji+ui (i = 1, ..., n) and, along the lines of Feigin

& Resnick (1994), let β̂ = (β̂1, ..., β̂p)
′ be the solution to the linear programming problem

of maximizing the objective function f(β1, ..., βp) =
∑p

j=1 βj subject to the n constraints

yi−
∑p

j=1 βjxji ≥ 0. Note that (1) is the solution to the above problem for the special case

when p = 1. The finite-sample and asymptotic properties of the extended LPE β̂ is the

subject of further research. We conjecture that the extended LPE consistently estimates

β = (β1, ..., βp)
′ under conditions analogous to Assumption 2. The proposed estimator is

easily computable using standard numerical computing environments such as MATLAB.

Our simulations indicate that the extended LPE can have very reasonable finite-sample

properties, also in the presence of heteroskedastic or serially correlated errors.5

5Sample MATLAB code can be downloaded from http://www.mysmu.edu/staff/danielpreve

http://www.mysmu.edu/staff/danielpreve/
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4. Monte Carlo Results

In this section we report simulation results concerning the estimation of the slope

parameters β1 and β2 in the regression
yi = β1x1i + β2x2i + σiui

x1i = v1i + γui

x2i = v2i + γui, i = 1, ..., n

(6)

where v1i is a chi-square RV with three degrees of freedom, v1i ∼ χ2(3), and v2i is a chi-

square RV with four degrees of freedom, v2i ∼ χ2(4). The sequences {v1i} and {v2i} are

mutually independent. We write ui ∼ U(0, b) to indicate that ui is uniformly distributed

on the interval [0, b] and consider different specifications of (6):

(i) β1 = 2.5, β2 = 0, σi = 1 and ui ∼ U(0, 10).6

(ii) Same specification as in (i) but with β2 = −1.5.

(iii) β1 = 2.5, β2 = 0, σi =
√

0.25 + 0.75 i
n

and ui ∼ U(0,
√

12) with Var(ui) = 1.

(iv) Same specification as in (iii) but with β2 = −1.5.

(v) β1 = 2.5, β2 = 0, σi = 1 and ui = wi(1 + 0.8wi−1) with iid noise wi ∼ U(0, 10).

(vi) Same specification as in (v) but with β2 = −1.5.

For the odd-numbered specifications, which are all simple regressions, we use the LPE in

(1). For the even-numbered specifications we use the extended LPE described in Section 3

and compute it using the MATLAB function linprog. We report the empirical bias and

mean squared error (MSE) over 1000 Monte Carlo replications and consider the following

estimators: the LSE, IVE and LPE. We consider different sample sizes and levels of

endogeneity. The simulation results are shown in Tables 2–7.

In general, the results indicate that the LPE has a higher bias than the IVE but a

substantially lower MSE, suggesting that the LPE has a considerably smaller variance

than the IVE. For example, for specification (v) with γ = 0.5 and n = 200 the MSE of the

6Hence, α = 5 and εi ∼ U(−5, 5) in this specification.
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IVE and LPE is 1.411 and 0.006, respectively. Similarly, the results for the extended LPE

indicate that it can be consistent in the presence of heteroskedastic or serially correlated

errors and that its variability is much lower than that of the IVE.

5. Conclusions

In this paper we have established the exact finite-sample distribution of a LPE for the

slope parameter in a constrained simple linear regression model when 1) the regressor

is non-stochastic, and 2) the regressor is stochastic and potentially endogenous. The

exact distribution may be used for statistical inference or to bias-correct the LPE. In

addition, we have shown that the LPE is strongly consistent under fairly general conditions

on the related distributions. In particular, the LPE is robust to various heavy-tailed

specifications and its functional form indicates that it can be insensitive to outliers in yi

or xi. We have also identified a number of cases where the LPE is superconsistent. In

contrast to existing results for the LPE, in a time series setting, our results in a cross-

sectional setting are valid also in the case when the slope parameter is negative.

We provided conditions under which the LPE is consistent in the presence of serially

correlated, heteroskedastic errors and described how the LPE can be extended to the case

with multiple regressors. Our simulation results indicated that the LPE and extended

LPE can have very reasonable finite-sample properties compared to the LSE and IVE,

also in the presence of heteroskedastic or serially correlated errors. Clearly, one advantage

of the LPE is that, in contrast to the IVE, it does not require an instrument.
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Table 2. Simulation Results: Univariate Regression with iid
Uniformly Distributed Errors–Specification (i).

Each table entry, based on 1000 Monte Carlo replications, reports the empirical bias/mean squared
error (MSE) of different estimators for the slope parameter β1 = 2.5 in the univariate regression
yi = 2.5x1i + ui, where x1i = v1i + γui, v1i ∼ χ2(3) and ui ∼ U(0, 10). The following estimators
are considered: the ordinary least squares estimator (LSE), the instrumental variable estimator
(IVE) and the linear programming estimator (LPE). For the IVE, the variable v1i is used as an
instrument. Finally, for both the LSE and IVE an intercept is included in the regression equation.
Different sample sizes (n) and levels of endogeneity (γ) are considered.

γ = 0

LSE IVE LPE

β1 β2 β1 β2 β1 β2

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 -0.001 0.031 – – -0.001 0.031 – – 0.067 0.009 – –
100 0.008 0.015 – – 0.008 0.015 – – 0.032 0.002 – –
200 -0.002 0.007 – – -0.002 0.007 – – 0.016 0.001 – –
500 0.002 0.003 – – 0.002 0.003 – – 0.007 0.000 – –
1000 -0.000 0.002 – – -0.000 0.002 – – 0.003 0.000 – –
2000 0.000 0.001 – – 0.000 0.001 – – 0.002 0.000 – –

γ = 0.25

LSE IVE LPE

β1 β2 β1 β2 β1 β2

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 0.335 0.144 – – -0.019 0.033 – – 0.065 0.008 – –
100 0.332 0.124 – – -0.003 0.014 – – 0.033 0.002 – –
200 0.323 0.112 – – -0.003 0.008 – – 0.017 0.001 – –
500 0.322 0.107 – – 0.001 0.003 – – 0.007 0.000 – –
1000 0.320 0.104 – – -0.001 0.001 – – 0.003 0.000 – –
2000 0.325 0.103 – – -0.001 0.001 – – 0.002 0.000 – –

γ = 0.5

LSE IVE LPE

β1 β2 β1 β2 β1 β2

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 0.542 0.316 – – -0.023 0.035 – – 0.065 0.008 – –
100 0.538 0.291 – – -0.006 0.015 – – 0.033 0.002 – –
200 0.519 0.275 – – -0.006 0.007 – – 0.017 0.001 – –
500 0.519 0.272 – – -0.002 0.003 – – 0.007 0.000 – –
1000 0.519 0.270 – – 0.001 0.001 – – 0.003 0.000 – –
2000 0.516 0.267 – – -0.001 0.001 – – 0.002 0.000 – –

γ = 1

LSE IVE LPE

β1 β2 β1 β2 β1 β2

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 0.590 0.356 – – -0.025 0.043 – – 0.058 0.006 – –
100 0.586 0.348 – – -0.016 0.019 – – 0.032 0.002 – –
200 0.583 0.342 – – -0.003 0.008 – – 0.016 0.001 – –
500 0.584 0.339 – – -0.002 0.003 – – 0.007 0.000 – –
1000 0.583 0.340 – – -0.002 0.001 – – 0.003 0.000 – –
2000 0.581 0.338 – – -0.002 0.001 – – 0.002 0.000 – –
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Table 3. Simulation Results: Bivariate Regression with iid
Uniformly Distributed Errors–Specification (ii).

Each table entry, based on 1000 Monte Carlo replications, reports the empirical bias/mean squared
error (MSE) of different estimators for the slope parameters β1 = 2.5 and β2 = −1.5 in the bivariate
regression yi = 2.5x1i − 1.5x2i + ui, where x1i = v1i + γui, x2i = v2i + γui, with v1i ∼ χ2(3) and
v2i ∼ χ2(4), and ui ∼ U(0, 10). The following estimators are considered: the ordinary least squares
estimator (LSE), the instrumental variable estimator (IVE) and the extended linear programming
estimator (LPE). For the IVE, the variables v1i and v2i are used as instruments. Finally, for both the
LSE and IVE an intercept is included in the regression equation. Different sample sizes (n) and levels
of endogeneity (γ) are considered.

γ = 0

LSE IVE LPE

β1 β2 β1 β2 β1 β2

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 0.000 0.031 -0.006 0.024 0.000 0.031 -0.006 0.024 0.098 0.035 0.012 0.019
100 -0.008 0.015 -0.004 0.012 -0.008 0.015 -0.004 0.012 0.043 0.007 0.008 0.004
200 -0.001 0.007 0.001 0.006 -0.001 0.007 0.001 0.006 0.026 0.002 0.002 0.001
500 0.002 0.003 0.001 0.002 0.002 0.003 0.001 0.002 0.011 0.000 0.001 0.000
1000 0.000 0.001 -0.001 0.001 0.000 0.001 -0.001 0.001 0.005 0.000 0.000 0.000
2000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.003 0.000 0.000 0.000

γ = 0.25

LSE IVE LPE

β1 β2 β1 β2 β1 β2

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 0.313 0.128 0.237 0.076 -0.008 0.034 -0.010 0.024 0.092 0.028 0.015 0.014
100 0.311 0.110 0.228 0.062 -0.006 0.015 -0.009 0.012 0.049 0.009 0.003 0.005
200 0.308 0.102 0.230 0.058 0.000 0.007 -0.000 0.005 0.025 0.002 0.003 0.001
500 0.301 0.094 0.228 0.054 -0.002 0.003 0.001 0.002 0.010 0.000 0.001 0.000
1000 0.301 0.092 0.226 0.052 -0.002 0.001 -0.001 0.001 0.005 0.000 0.000 0.000
2000 0.303 0.092 0.227 0.052 0.001 0.001 0.000 0.001 0.003 0.000 0.000 0.000

γ = 0.5

LSE IVE LPE

β1 β2 β1 β2 β1 β2

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 0.446 0.220 0.333 0.126 -0.014 0.033 -0.020 0.026 0.088 0.027 0.012 0.014
100 0.448 0.213 0.329 0.115 -0.009 0.017 -0.002 0.011 0.049 0.008 0.006 0.004
200 0.438 0.197 0.325 0.109 -0.005 0.008 -0.005 0.006 0.024 0.002 0.003 0.001
500 0.436 0.192 0.325 0.107 -0.000 0.003 -0.002 0.002 0.010 0.000 0.001 0.000
1000 0.435 0.190 0.323 0.105 0.001 0.002 -0.003 0.001 0.006 0.000 0.000 0.000
2000 0.433 0.188 0.324 0.106 0.000 0.001 -0.001 0.001 0.003 0.000 0.000 0.000

γ = 1

LSE IVE LPE

β1 β2 β1 β2 β1 β2

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 0.408 0.176 0.310 0.104 -0.039 0.050 -0.021 0.036 0.078 0.022 0.018 0.013
100 0.411 0.174 0.303 0.096 -0.008 0.017 -0.012 0.013 0.049 0.009 0.003 0.005
200 0.406 0.167 0.305 0.095 -0.004 0.008 -0.005 0.006 0.025 0.002 0.002 0.001
500 0.404 0.164 0.306 0.094 -0.006 0.003 -0.002 0.002 0.010 0.000 0.002 0.000
1000 0.407 0.164 0.304 0.093 -0.000 0.001 -0.000 0.001 0.004 0.000 0.001 0.000
2000 0.406 0.165 0.304 0.092 -0.001 0.001 -0.001 0.001 0.003 0.000 0.000 0.000
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Table 4. Simulation Results: Univariate Regression with Het-
eroskedastic Errors–Specification (iii).

Each table entry, based on 1000 Monte Carlo replications, reports the empirical bias/mean squared
error (MSE) of different estimators for the slope parameter β1 = 2.5 in the univariate regression
yi = 2.5x1i +σiui, where x1i = v1i +γui, v1i ∼ χ2(3), σ2

i = 0.25+0.75 i
n and ui ∼ U(0,

√
12). The

following estimators are considered: the ordinary least squares estimator (LSE), the instrumental
variable estimator (IVE) and the linear programming estimator (LPE). For the IVE, the variable
v1i is used as an instrument. Finally, for both the LSE and IVE an intercept is included in the
regression equation. Different sample sizes (n) and levels of endogeneity (γ) are considered.

γ = 0

LSE IVE LPE

β1 β2 β1 β2 β1 β2

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 -0.000 0.003 – – -0.000 0.003 – – 0.018 0.008 – –
100 -0.000 0.001 – – -0.000 0.001 – – 0.008 0.000 – –
200 0.002 0.001 – – 0.002 0.001 – – 0.004 0.000 – –
500 0.000 0.000 – – 0.000 0.000 – – 0.002 0.000 – –
1000 0.000 0.000 – – 0.000 0.000 – – 0.001 0.000 – –
2000 -0.000 0.000 – – -0.000 0.000 – – 0.000 0.000 – –

γ = 0.25

LSE IVE LPE

β1 β2 β1 β2 β1 β2

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 0.031 0.004 – – -0.000 0.003 – – 0.017 0.001 – –
100 0.029 0.002 – – -0.001 0.001 – – 0.009 0.000 – –
200 0.029 0.001 – – -0.001 0.001 – – 0.004 0.000 – –
500 0.028 0.001 – – -0.001 0.000 – – 0.002 0.000 – –
1000 0.028 0.001 – – -0.000 0.000 – – 0.001 0.000 – –
2000 0.029 0.001 – – 0.000 0.000 – – 0.000 0.000 – –

γ = 0.5

LSE IVE LPE

β1 β2 β1 β2 β1 β2

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 0.060 0.006 – – -0.001 0.003 – – 0.017 0.001 – –
100 0.056 0.004 – – -0.003 0.001 – – 0.009 0.000 – –
200 0.057 0.004 – – 0.001 0.001 – – 0.004 0.000 – –
500 0.056 0.003 – – -0.000 0.000 – – 0.002 0.000 – –
1000 0.056 0.003 – – 0.000 0.000 – – 0.001 0.000 – –
2000 0.056 0.003 – – 0.000 0.000 – – 0.000 0.000 – –

γ = 1

LSE IVE LPE

β1 β2 β1 β2 β1 β2

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 0.108 0.014 – – -0.005 0.003 – – 0.016 0.001 – –
100 0.107 0.013 – – -0.001 0.001 – – 0.009 0.000 – –
200 0.104 0.011 – – -0.002 0.001 – – 0.004 0.000 – –
500 0.104 0.011 – – 0.000 0.000 – – 0.002 0.000 – –
1000 0.104 0.011 – – 0.000 0.000 – – 0.001 0.000 – –
2000 0.103 0.011 – – -0.000 0.000 – – 0.000 0.000 – –
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Table 5. Simulation Results: Bivariate Regression with Het-
eroskedastic Errors–Specification (iv).

Each table entry, based on 1000 Monte Carlo replications, reports the empirical bias/mean squared
error (MSE) of different estimators for the slope parameters β1 = 2.5 and β2 = −1.5 in the bivariate
regression yi = 2.5x1i − 1.5x2i + σiui, where x1i = v1i + γui, x2i = v2i + γui, with v1i ∼ χ2(3) and
v2i ∼ χ2(4), σ2

i = 0.25 + 0.75 i
n and ui ∼ U(0,

√
12). The following estimators are considered: the

ordinary least squares estimator (LSE), the instrumental variable estimator (IVE) and the extended
linear programming estimator (LPE). For the IVE, the variables v1i and v2i are used as instruments.
Finally, for both the LSE and IVE an intercept is included in the regression equation. Different sample
sizes (n) and levels of endogeneity (γ) are considered.

γ = 0

LSE IVE LPE

β1 β2 β1 β2 β1 β2

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 -0.002 0.003 -0.001 0.002 -0.002 0.003 -0.001 0.002 0.026 0.002 0.002 0.001
100 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.013 0.001 0.001 0.000
200 0.001 0.001 -0.001 0.000 0.001 0.001 -0.001 0.000 0.007 0.000 0.001 0.000
500 -0.001 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 0.003 0.000 0.000 0.000
1000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000
2000 0.000 0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.001 0.000 0.000 0.000

γ = 0.25

LSE IVE LPE

β1 β2 β1 β2 β1 β2

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 0.031 0.003 0.025 0.003 -0.000 0.002 0.002 0.002 0.028 0.003 0.001 0.001
100 0.029 0.002 0.021 0.001 -0.001 0.001 0.002 0.001 0.014 0.001 0.001 0.000
200 0.030 0.002 0.021 0.001 0.001 0.001 0.000 0.001 0.007 0.000 0.001 0.000
500 0.028 0.001 0.021 0.001 -0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000
1000 0.028 0.001 0.021 0.001 -0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000
2000 0.029 0.001 0.021 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000

γ = 0.5

LSE IVE LPE

β1 β2 β1 β2 β1 β2

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 0.060 0.006 0.044 0.004 -0.001 0.003 -0.001 0.002 0.025 0.002 0.003 0.001
100 0.057 0.005 0.042 0.003 0.001 0.001 -0.000 0.001 0.014 0.001 0.001 0.000
200 0.055 0.004 0.042 0.002 -0.001 0.001 0.000 0.001 0.007 0.000 0.000 0.000
500 0.055 0.003 0.042 0.002 -0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000
1000 0.055 0.003 0.041 0.002 -0.000 0.000 -0.000 0.000 0.001 0.000 0.000 0.000
2000 0.054 0.003 0.041 0.002 -0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000

γ = 1

LSE IVE LPE

β1 β2 β1 β2 β1 β2

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 0.100 0.012 0.078 0.008 -0.004 0.003 -0.000 0.002 0.024 0.002 0.004 0.001
100 0.100 0.011 0.074 0.006 -0.000 0.001 0.000 0.001 0.013 0.001 0.001 0.001
200 0.098 0.010 0.072 0.006 -0.000 0.001 -0.001 0.001 0.007 0.000 0.001 0.000
500 0.096 0.010 0.071 0.005 -0.000 0.000 -0.001 0.000 0.003 0.000 0.000 0.000
1000 0.096 0.009 0.072 0.005 -0.001 0.000 -0.000 0.000 0.001 0.000 0.000 0.000
2000 0.095 0.009 0.072 0.005 -0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000
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Table 6. Simulation Results: Univariate Regression with Se-
rially Correlated Errors–Specification (v).

Each table entry, based on 1000 Monte Carlo replications, reports the empirical bias/mean squared
error (MSE) of different estimators for the slope parameter β1 = 2.5 in the univariate regression
yi = 2.5x1i + ui, where x1i = v1i + γui, v1i ∼ χ2(3) and ui = wi(1 + 0.8wi−1) with iid noise
wi ∼ U(0, 10). The following estimators are considered: the ordinary least squares estimator (LSE),
the instrumental variable estimator (IVE) and the linear programming estimator (LPE). For the
IVE, the variable v1i is used as an instrument. Finally, for both the LSE and IVE an intercept
is included in the regression equation. Different sample sizes (n) and levels of endogeneity (γ) are
considered.

γ = 0

LSE IVE LPE

β1 β2 β1 β2 β1 β2

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 0.052 1.419 – – 0.052 1.419 – – 0.263 0.136 – –
100 0.006 0.646 – – 0.006 0.646 – – 0.119 0.029 – –
200 0.019 0.335 – – 0.019 0.335 – – 0.060 0.007 – –
500 -0.012 0.131 – – -0.012 0.131 – – 0.024 0.001 – –
1000 -0.007 0.064 – – -0.007 0.064 – – 0.012 0.000 – –
2000 0.001 0.032 – – 0.001 0.032 – – 0.006 0.000 – –

γ = 0.25

LSE IVE LPE

β1 β2 β1 β2 β1 β2

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 3.199 10.323 – – -0.593 4.342 – – 0.232 0.102 – –
100 3.193 10.247 – – -0.180 1.108 – – 0.117 0.027 – –
200 3.196 10.242 – – -0.088 0.380 – – 0.062 0.007 – –
500 3.196 10.225 – – -0.029 0.131 – – 0.024 0.001 – –
1000 3.204 10.275 – – -0.012 0.071 – – 0.011 0.000 – –
2000 3.204 10.271 – – -0.008 0.031 – – 0.006 0.000 – –

γ = 0.5

LSE IVE LPE

β1 β2 β1 β2 β1 β2

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 1.883 3.555 – – -0.614 33.279 – – 0.195 0.067 – –
100 1.879 3.536 – – -0.369 8.628 – – 0.108 0.021 – –
200 1.882 3.546 – – -0.241 1.411 – – 0.057 0.006 – –
500 1.882 3.543 – – -0.061 0.186 – – 0.023 0.001 – –
1000 1.882 3.545 – – -0.034 0.078 – – 0.012 0.000 – –
2000 1.882 3.544 – – -0.014 0.032 – – 0.006 0.000 – –

γ = 1

LSE IVE LPE

β1 β2 β1 β2 β1 β2

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 0.983 0.968 – – 0.212 18.330 – – 0.177 0.049 – –
100 0.984 0.969 – – 0.002 16.321 – – 0.100 0.017 – –
200 0.984 0.969 – – -0.145 22.566 – – 0.056 0.005 – –
500 0.984 0.969 – – -0.252 3.497 – – 0.023 0.001 – –
1000 0.984 0.969 – – -0.071 0.162 – – 0.011 0.000 – –
2000 0.984 0.969 – – -0.032 0.044 – – 0.006 0.000 – –
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Table 7. Simulation Results: Bivariate Regression with Seri-
ally Correlated Errors–Specification (vi).

Each table entry, based on 1000 Monte Carlo replications, reports the empirical bias/mean squared error
(MSE) of different estimators for the slope parameters β1 = 2.5 and β2 = −1.5 in the bivariate regression
yi = 2.5x1i − 1.5x2i + ui, where x1i = v1i + γui, x2i = v2i + γui, with v1i ∼ χ2(3) and v2i ∼ χ2(4),
and ui = wi(1 + 0.8wi−1) with iid noise wi ∼ U(0, 10). The following estimators are considered: the
ordinary least squares estimator (LSE), the instrumental variable estimator (IVE) and the extended
linear programming estimator (LPE). For the IVE, the variables v1i and v2i are used as instruments.
Finally, for both the LSE and IVE an intercept is included in the regression equation. Different sample
sizes (n) and levels of endogeneity (γ) are considered.

γ = 0

LSE IVE LPE

β1 β2 β1 β2 β1 β2

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 0.047 1.533 -0.037 1.055 0.047 1.533 -0.037 1.055 0.362 0.469 0.038 0.240
100 0.037 0.746 -0.019 0.532 0.037 0.746 -0.019 0.532 0.198 0.145 0.011 0.064
200 0.012 0.330 0.023 0.236 0.012 0.330 0.023 0.236 0.093 0.031 0.012 0.016
500 0.010 0.129 -0.009 0.093 0.010 0.129 -0.009 0.093 0.036 0.005 0.002 0.002
1000 0.007 0.066 0.003 0.049 0.007 0.066 0.003 0.049 0.017 0.001 0.003 0.000
2000 -0.001 0.032 0.003 0.025 -0.001 0.032 0.003 0.025 0.009 0.000 0.000 0.000

γ = 0.25

LSE IVE LPE

β1 β2 β1 β2 β1 β2

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 1.992 4.146 1.493 2.389 -0.342 8.125 -0.291 3.731 0.340 0.427 0.023 0.241
100 2.018 4.172 1.482 2.287 -0.164 1.195 -0.139 0.758 0.187 0.113 0.007 0.055
200 2.009 4.083 1.494 2.276 -0.099 0.430 -0.088 0.320 0.096 0.029 0.005 0.013
500 2.002 4.028 1.499 2.265 -0.032 0.142 -0.015 0.100 0.037 0.004 0.002 0.002
1000 2.005 4.030 1.499 2.255 -0.022 0.062 -0.008 0.048 0.018 0.001 0.001 0.001
2000 1.999 4.003 1.502 2.263 -0.008 0.033 -0.016 0.025 0.009 0.000 0.001 0.000

γ = 0.5

LSE IVE LPE

β1 β2 β1 β2 β1 β2

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 1.095 1.250 0.837 0.748 -0.004 24.035 0.186 19.156 0.262 0.243 0.057 0.149
100 1.094 1.220 0.836 0.719 -0.312 17.710 -0.289 14.171 0.158 0.098 0.023 0.056
200 1.102 1.228 0.829 0.701 -0.270 1.757 -0.212 1.211 0.085 0.025 0.010 0.012
500 1.099 1.215 0.832 0.698 -0.074 0.224 -0.076 0.150 0.041 0.006 -0.001 0.003
1000 1.104 1.222 0.827 0.686 -0.029 0.080 -0.033 0.055 0.017 0.001 0.002 0.001
2000 1.104 1.220 0.827 0.686 -0.021 0.033 -0.009 0.024 0.009 0.000 0.001 0.000

γ = 1

LSE IVE LPE

β1 β2 β1 β2 β1 β2

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

50 0.560 0.326 0.430 0.197 0.322 13.875 0.430 10.342 0.245 0.216 0.015 0.129
100 0.568 0.329 0.423 0.185 0.269 10.957 -0.030 14.681 0.128 0.058 0.025 0.034
200 0.566 0.324 0.424 0.183 0.091 13.125 0.151 6.518 0.082 0.022 0.006 0.012
500 0.566 0.322 0.424 0.181 -0.161 3.937 -0.101 2.023 0.034 0.004 0.004 0.002
1000 0.566 0.320 0.425 0.181 -0.133 0.423 -0.108 0.290 0.019 0.001 0.000 0.001
2000 0.566 0.321 0.424 0.180 -0.042 0.057 -0.033 0.039 0.010 0.000 0.000 0.000
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APPENDIX

Proof of Corollary 1. Note that β̂n
a.s.→ β iff Rn

a.s.→ 0. By condition (ii), 0 is not a limit

point of S, hence, there exists a δ > 0 such that the two sets (−δ, δ) and S are disjoint.

Let c = δ/2 and let ε > 0 be arbitrary. Then, in view of Proposition 1,

P (|Rn| > ε) =
n∏
i=1

[1− Fu(xiε)]
(i)−(ii)

≤ [1− Fu(cε)]n.

By (iv), Fu(u) > 0 for every u > 0. Hence, Rn
p→ 0 as n → ∞. Finally, since R1, ..., Rn

forms a stochastically decreasing sequence, it follows that Rn
a.s.→ 0. �

Proof of Proposition 2.

P (β̂n − β ≤ z)
(ii)
= 1− P (u1/x1 > z)n = 1− [1− P (u1/x1 ≤ z)]n

= 1− [1− Fz(z)]n,

where Fz(z) is the cdf of z = u1/x1. Let fu1,x1(u, x) denote the joint pdf of u1 and

x1 = v1 + γu1, and fu1(u) the marginal pdf of u1. Denote by fx1|u1=u(x) the conditional

pdf of x1 given that u1 = u. Then, for u > 0

fu1,x1(u, x) = fx1|u1=u(x)fu1(u) = fv1(x− γu)fu1(u), (7)
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where fv1(v) is the pdf of v1. By Theorem 3.1 in Curtiss (1941),

fz(z) = F ′z(z) =

∫ ∞
−∞
|x|fu1,x1(zx, x)dx

(ii)
=

∫ ∞
0

xfu1,x1(zx, x)dx. (8)

Now consider the case when γ > 0. By (7) and (8),

fz(z) =

∫ ∞
0

xfv1(x− γzx)fu1(zx)dx,

for 0 < z < 1/γ and zero otherwise. Hence,

Fz(z) = 1{0<z<1/γ}

∫ z

0

∫ ∞
0

xfv1(x− γtx)fu1(tx)dxdt+ 1{z≥1/γ}.

The proof when γ = 0 is analogous. �

Proof of Proposition 3. Let ε > 0 be arbitrary. Then,

P (|Rn| > ε)
(i)
= P [u1 > ε(γu1 + v1), ..., un > ε(γun + vn)]

(ii)

≤ P (u1 > εv1, ..., un > εvn)
(ii)
= P (u1 > εv1)n.

A simple proof by contradiction, based on a geometric argument, shows that P (u1 >

εv1) < 1. Hence, Rn
p→ 0 as n→∞ and once more the strong convergence of β̂n = β+Rn

follows. �
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