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Abstract

Ever since the appearance of the ARCH model (Engle 1982a), an im-
pressive array of variance specifications belonging to the same class of
models has emerged. Despite numerous successful developments, several
empirical studies seem to show that their performance is not always sat-
isfactory see Boulier (1994).
In this paper a new alternative to model conditional heteroskedastic vari-
ance is proposed: the Non-Linear Moving Average Conditional Heteroske-
dasticity: (NLMACH). While NLMACH properties are similar to those of
the ARCH-class specifications this new proposal represents a convenient
alternative to modeling conditional volatility through a non-linear mov-
ing average process. The NLMACH performance is investigated using a
Monte Carlo experiment and modeling exchange rate returns. It is found
that NLMACH outperforms GARCHs forecasts whereas the application
to exchange rates provides mixed evidence.

Keywords: Conditionally heteroskedastic models, NLMACH(q), Volatility,
Fat tails.
JEL classification: C22, C13, C12.

1 Introduction

The ARCH class models, introduced by Engle (1982a), quickly became an im-
portant domain in the econometric literature because of their potential useful-
ness in financial applications. During the last twenty years, a vast quantity of
ARCH type models appeared, some of them possessing statistical properties ex-
tremely appealing to financial econometrics. Among them, the GARCH model
(Bollerslev 1986) has proved to be a very useful tool in the modeling of a wide
array of financial variables. Other extensions such as the ARCH − M (Engle,
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Lilien, and Robins 1987) and the EGARCH (Nelson 1991) have succeeded in
generalizing ARCH models by incorporating the volatility of a variable in its
mean equation and taking into account asymmetric effects respectively.

The evolution of the ARCH models seems to follow a pattern. Each new
specification tries to incorporate more characteristics typical of financial series
such as leptokurticity, asymmetry and different kinds of non-linearity. Such
progress is made at a cost of increasing complexity. The latter eventually makes
some of the specifications to appear as having little robustness in empirical
studies. This is perhaps why the popular GARCH(1, 1) model remains one of
the best options for practitioners of financial econometrics.

When dealing with conditionally heteroskedastic models, the accent has al-
ways been put in Autoregressive specifications, neglecting the potential useful-
ness of Non-Linear Moving Average type specifications (although some mod-
els, such as GARCH can be reinterpreted as very particular Moving-Average
specifications). In that sense, Robinson (1977) proposed a Non-Linear Moving-
Average model (NLMA) inspired by a truncated version of a Volterra expan-
sion. He also gave the statistical properties of such model as well as several
properties of a maximum likelihood estimator. Sadly, he did not present an
empirical application of the NLMA and did not consider it a practical model
for financial variables. Indeed, NLMA models are nowadays seen as being
ineffectual for empirical purposes (Tong 1990, Guégan 1994, Granger 1998).

Despite these criticisms, we believe NLMA can play a role similar to the
one played by MA in linear modeling, although the process must be rede-
fined in order to avoid the main difficulties of Robinson’s (1977) proposal, i.e.
non-invertibility and difficult estimation due non-linearity. We define a differ-
ent specification, the Nonlinear Moving Average Conditionally Heteroskedastic
model, NLMACH. Basically, we replace the explanatory variable X2

t−1of the
conditional variance in an ARCH model with a non-observed white noise and
obtained a model with simple theoretical properties and, most importantly, easy
to estimate. Such specification can reproduce several of the typical character-
istics of financial variables, such as: (1) high frequency of large variations; (2)
tendency of large variations (in absolute terms) to cluster, and very interest-
ingly, (3) leptokurticity. There are important advantages of this model when
compared to the ARCH-class ones. Stationarity conditions are, for example,
less stringent. The NLMACH is estimated using simulation techniques and a
set of currencies. Its properties are then compared to ARCH and GARCH.
Also, using Monte Carlo simulations, we present evidence that the estimators
perform well.

This paper is divided in four sections. The second introduces the NLMACH
model and the third deals with the estimation and identification problem. Con-
clusions appear in section four.

2 New proposal: the NLMACH

Engle’s (1982a) ARCH model brought about an impressive array of variance
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specifications belonging to the same class. Despite ARCH’s successful develop-
ments, it can be argued that the NLMACHmay be more relevant for the study
of some particular phenomena. Some variables may be heteroskedastic, and yet
being poorly adjusted by ARCH models. NLMACH may be a suitable alter-
native in such cases.

This section proposes a new conditional heteroskedastic variance model: the
Quadratic Moving-Average Conditional Heteroskedasticity (NLMACH). Its
properties are roughly the same as those of ARCH-class specifications but our
model has in addition several important advantages. It is simple, easy to esti-
mate, captures the high kurtosis observed in financial returns and impose fewer
and less stringent existence conditions (stationarity). Indeed, it represents an
alternative to the ARCH − class when dealing with heteroskedasticity. As it
will be explained later, NLMACH heteroskedasticity is fundamentally different
to ARCH one.

2.1 The NLMACH model

Although the NLMACH model is a non-linear MA, it cannot be encompassed
in Robinson’s (1977) NLMA specifications. The latter has several unappealing
properties, among them non-invertibility (Granger and Andersen 1978, Granger
1998) stands out. We propose a different model still possessing some very at-
tractive characteristics; the NLMACH(1):

Xt = Vth
1/2
t (1)

ht = δ0 + δ1V
2
t−1

Where, Vt ∼iid N (0, 1) and δ0, δ1 > 0.
As can be inferred from (1), the NLMACH(1) is deeply inspired from an

ARCH(1). Yet, in our case, the explanatory variable of the conditional variance
is not X2

t but rather V 2
t . Parameters must satisfy a condition in order to ensure

positiveness (δi > 0 for i = 1, 2) of the conditional variance. Normality -
and unit variance- of the white noise can also be seen as a condition of the
model1. Its interesting to notice that the NLMACH(q) yields a naturally fat-
tailed distribution, conveying automatically a must wanted characteristic among
financial econometricians.

2.1.1 Distribution of the first-order NLMACH process

The NLMACH(1) has the advantage of being a very simple specification. Most
of its properties can be inferred straightforward. In order to make a brief com-

1It may be interesting to modify such condition (using a t distribution instead, for example),
so the model can broaden its scope. This will be This will be address in the empirical section
of this paper.
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parison with the ARCH(1), we present the first two - unconditional and condi-
tional - moments of the process:

E(Xt) = 0

E(XtXt−j) =

{
δ0 + δ1 for j = 0
0 otherwise

(2)

Et−1(Xt) = 0

Et−1(X
2
t ) = δ0 + δ1V

2
t−1

where δ0, δ1 > 0.
Expression (2) shows that the NLMACH(1) is weakly stationary. Figure

(1) shows a simulation of a first order NLMACH.
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Figure 1: NLMACH(1) Simulation: ht = 1 + 0.7V 2
t−1

It can be seen that, contrary to most of the specifications of conditionally
heteroskedastic models, there are fewer conditions for the existence of the second
moment2.

2.1.2 Stationarity of the NLMACH

Covariance stationarity of the NLMACH specification was fairly easy to prove.
In this section we demonstrate that, under the already mentioned hypothesis
(normality of the white noise, and positiveness of the parameters), all the mo-
ments of a NLMACH(q) exist.

theorem 1 Let Xt be a NLMACH(q) process satisfying the following equa-

tions:

2Of course, we must not forget the hypothesis made on Vt. The latter must be a gaussian

iid zero-mean white noise with unit variance. Also, there are positiveness constraints on the
parameters.

4



Xt = Vth
1
2
t (3)

ht = δ0 +

q∑

i=1

δiV
2
t−i

With Vt ∼iid N (0, 1) and δi > 0 ∀i = 1, 2, · · · , q.
Then, all the moments of Xt, E (Xr

t ) ∀r = 1, 2, · · · exist.

proof of theorem 1.

Odd moments can be easily calculated because of the properties of the gaus-
sian white noise Vt. Indeed, all odd moments are equal to zero. We thus
concentrate in even moments. The general formula of even moments is:

E(X2r
t ) = E(V 2r

t ) · E(hr
t )

=

r∏

j=1

(2j − 1) · E

[(
δ0 +

q∑

i=1

δiV
2
t−i

)r]

It can be seen that the first term,
∏r

j=1(2j−1), has no conditions of existence.
We have to develop the second term to look for ”possible” conditions.

E(hr
t ) = E

[(
δ0 +

q∑

i=1

δiV
2
t−i

)r]

= E




r∑

j=0

(
r

j

)
δr−j
0 ·

(
q∑

i=1

δiV
2
t−i

)j




=

r∑

j=0

(
r

j

)
δr−j
0 · E

(
q∑

i=1

δiV
2
t−i

)j

We realize that we have to obtain the value of the second term, that is,

E
(∑q

i=1 δiV
2
t−i

)j
. We can develop the latter by means of Newton’s Formulae,

as follows:

E

(
q∑

i=1

δiV
2
t−i

)j

= E

[
j∑

z=0

(
j

z

) (
δ1V

2
t−1

)j−z
·

(
q∑

i=2

δiV
2
t−i

)z]

=

j∑

z=0

(
j

z

)
δj−z
1 E

(
V

2(j−z)
t−1

)
· E

(
q∑

i=2

δiV
2
t−i

)z

=

j∑

z=0

(
j

z

)
δj−z
1

j−z∏

k=1

(2k − 1) · E

(
q∑

i=2

δiV
2
t−i

)z
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We notice, once again that we should only worry about a single element,

in this case E
(∑q

i=2 δiV
2
t−i

)k
. The sum has now fewer elements (it goes from

i = 2 to q). This sum can indeed go over the same process (basically another
application of Newton’s Formulae) in order to reduce the number of elements.
Eventually, we’ll arrive to a sum with only one element:

E
(
δqV

2
t−q

)s
= δs

q ·

s∏

l=1

2l − 1

So, we have ”eliminated” all the expectation operators of the expression.
There are thus, no conditions (except the normality of the white noise and
the positiveness constraint) of existence for the unconditional moments of a
NLMACH(q).

Q.E.D.

We have also calculated the degree of Kurtosis, which is superior to 3, if
δi > 0 for at least one i, i = 1, · · · , q and if δi ≥ 0∀ i = 1, · · · , q:

K =
(Xt)

4

σ4

=
3
[
(δ0 +

∑q
i=1 δi)

2
+ 2

∑q
i=1 δ2

i

]

(δ0 +
∑q

i=1 δi)
2 (4)

> 3

proof.

By rearranging the terms of expression (4), we get:

q∑

i=1

δ2
i > 0

Which is true if, and only if δi 6= 0 for at least one i, i = 1, · · · , q.

Q.E.D.

2.1.3 Invertibility of the NLMACH

Invertibility has always been a problem when dealing with moving average pro-
cesses, whether they are linear or not. As pointed out earlier, a NLMACH(1)
satisfying the normality hypothesis Vt ∼iid N (0, 1) yields the autocovariance
structure stated in equation (2). The latter allows us to obtain the autoco-
variance function of the process, which is similar to the one yielded by a white
noise:
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gx(z) = δ0 + δ1 (5)

Thus, the autocovariance function is a constant. The invertibility of the
specification may appear now clearly. On typical NLMA, it happens that
different sets of parameters, yield the same autocovariance function (so the
parameters are not identifiable). For the NLMACH this does not occurs thanks
to the positiveness constraint imposed on the parameters, δ0, δ1 > 0. It must be
remembered that such condition appears naturally if we want the conditional
variance to be always positive. Such condition not only ensures the positiveness
of the conditional variance, but it also solves the identification problem of the
parameters. We are thus able to reconstruct the unobserved white noise which
can be seen as a proof of invertibility (Granger and Terasvirta 1993).
For the linear MA(q) process, conditions ensuring invertibility are well known.
Our particular model, when manipulated algebraically, can exhibit analogous
conditions. From the conditional variance expression stated in (1), we can get:

ht = δ0 +

q∑

i=1

δi

(
V 2

t−i − 1
)

+

q∑

i=1

δi (6)

= ς +

q∑

i=1

δiWt−i

where ς = δ0 +
∑q

i=1 δi is a constant and Wt = V 2
t−i − 1 is a non gaussian noise

such that:

E(Wt) = 0

E(WtWt−j) =

{
2 for j = 0
0 otherwise

(7)

We realize that ht can be understood as a non gaussian MA(q) and thus, the
usual invertibility conditions apply, that is, the process is invertible if the roots
of the polynomial

(
1 + δ1z + δ2z

2 + . . . + δqz
q
)

= 0 lie outside the unit circle.

2.1.4 Defining the value of q in a NLMACH(q)

In the next section, we present a estimation technique dealing in particular with
a NLMACH(q). Of course, once this model is to be used with real data, there
is an additional requirement; the identification of the parameter q. The order
of the NLMACH(q) process can be inferred by means of its sample squares
autocorrelation function. This is true because of the structural properties of the
model we develop here. So identification of q must be done through the SACF
of the squares of the process. Undoubtedly, other tools allowing such inference
can be found, but in this work we concentrate our efforts in the SACF . First
of all, the theoretical shape of the autocorrelation function is to be developed:
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Let Xt be a NLMACH(q) specified in expression (3). Then, the autocor-
relation function of the squares of Xt is:

ρ
(
X2

t ,X2
t−j

)
=






γi for j < q
δq(δ0+

∑ q
i=1 δi)

(δ0+
∑ q

i=1 δi)
2
+3

∑ q
i=1 δ2

i

for j = q

0 ∀ j > q

(8)

where,

γi =
δj

∑q
i=0 δi +

∑q
i=j+1 δiδi−j

δ2
0 + 2δ0

∑q
i=1 δi + (

∑q
i=1 δi)

2
+ 3

∑q
i=1 δ2

i

We now should be able to identify empirically the value of q by means
of the sample autocorrelation function of the process’s squares. In order to
illustrate this, we simulated a NLMACH(4) and plotted both, the sample and
the theoretical autocorrelation function.
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Figure 2: NLMACH(4): (a) Theoretical ACF and (b) SACF

The autocorrelation function may yield a shape that approximates fairly well
the one proposed by the stylized facts in finance theory. Yet, to achieve this
we are forced to use a NLMACH(q) with q greater than unity. An alternative
to this is to generalize the process by including lags of ht in the conditional
variance specification. Although this seems to be an attractive option, it will
not be done here.

8



3 Estimation of the NLMACH(1)

Once the main statistical properties have been established, the next step is
estimation. The NLMACH(1) estimation is simple despite the fact of being
a highly non-linear model. In order to show the performance of the estimating
technique, we present a Maximum Likelihood (ML) estimate. It works in the
same way as with ARCH models. The ML estimation of the NLMACH(q) is
straightforward. We take advantage of the fact that the conditional distribution

is N (0, h
1/2
t ), that is, Xt/Ψt ∼ N (0, h

1/2
t ), where Ψt is the past information set

3. Under the usual regularity conditions, we are thus able to compute the
corresponding Likelihood and maximize it using a gradient algorithm.
We performed a Monte Carlo Experiment to illustrate the ML estimator. Table
(1) exhibits the estimation results for a variety of parameters(both parameters
adopt the following values: 0.25, 0.50 and 0.75). 1,000 replications where made
for each case. Table (1) shows the averages of such estimations as well as the
standar deviations 4.

Parameters Sample size
T=200 T=500 T=700

δ0 δ1 δ̂0 δ̂1 δ̂0 δ̂1 δ̂0 δ̂1

0.25 0.250 0.248 0.251 0.249 0.251 0.249

(0.04) (0.07) (0.04) (0.05) (0.02) (0.04)

0.25 0.50 0.249 0.494 0.251 0.498 0.250 0.506

(0.04) (0.12) (0.03) (0.08) (0.02) (0.07)

0.75 0.251 0.742 0.253 0.748 0.250 0.749

(0.04) (0.18) (0.03) (0.11) (0.02) (0.09)

0.25 0.501 0.249 0.500 0.246 0.500 0.249

(0.08) (0.10) (0.04) (0.06) (0.04) (0.05)

0.50 0.50 0.502 0.499 0.498 0.501 0.500 0.497

(0.08) (0.15) (0.05) (0.09) (0.04) (0.08)

0.75 0.501 0.743 0.499 0.754 0.502 0.747

(0.08) (0.20) (0.05) (0.13) (0.04) (0.10)

0.25 0.756 0.243 0.754 0.247 0.749 0.251

(0.11) (0.12) (0.07) (0.07) (0.06) (0.06)

0.75 0.50 0.753 0.504 0.751 0.492 0.749 0.502

(0.11) (0.18) (0.07) (0.11) (0.06) (0.09)

0.75 0.759 0.752 0.752 0.748 0.747 0.745

(0.12) (0.22) (0.07) (0.14) (0.06) (0.12)

Table 1: Monte Carlo Simulation of estimates for a NLMACH(1); N=200, 500
and 700

3Ψt = {Xt−1, Xt−2, · · · , X0, Vt−1, Vt−2, · · · , V0}
4Standard deviations are given in parentheses.
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The Monte Carlo experiment reveals that, using a standard quasi-newton al-
gorithm (Matlabs default) a convenient estimation can be performed, although
its efficence could be improved. It is curious to notice that the standard devia-
tion increases with the value of the parameter.

3.1 Forecasting capability of the Models

It must be said that our proposal (NLMACH) would not be particularly in-
teresting if it was unable to offer good forecasting capabilities of the volatility
of a variable. In order to study its performance in this domain, we simulate
two DGPs; an NLMACH(1) and a GARCH(1,1). Over each simulated series
we performed the estimation of both the NLMACH(1) and the GARCH(1,1)
using only a fraction of the sample and constructed an out-of-sample forecast
(one period ahead). Then we add an observation and rebuild the forecast until
we use T-1 observations. Using these forecasts and knowing the real values we
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Figure 3: Monte Carlo Experiment: NLMACH(1) and GARCH(1, 1) out-of-
sample forecasts: NLMACH, cases a, b and c: δ1 = 0.30, GARCH, cases a, b
and c: α = 0.30 and β = 0.30
a) NLMACH: δ1 = 0.15; GARCH(1,1): γ = 0.10
b) NLMACH: δ1 = 0.30; GARCH(1,1): γ = 0.30
b) NLMACH: δ1 = 0.45; GARCH(1,1): γ = 0.50

compute the Root Mean Square Error for each specification and then compute

the ratio:
RMSENLMACH(1)

RMSEGARCH(1,1)
. We repeat the latter experiment 1000 times and

show the results (averages) in figure (3)5.

5We need to be cautious about this result. Bollerslev, Chou, and Kroner (1992) have
warned that ”[· · · ] out of sample forecasting is marred with difficulties and simply extrapo-
lating the future vitality of the field based on past observations does not necessarily result in
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The figure exhibits interesting results. when the real DGP is an NLMACH(1, 1),
(first row of figure)the NLMACH(1) specifications forecasts outperforms the
GARCH(1,1)s forecasts but the inverse is not completely true (second row of
figure). If the DGP is a GARCH, there are several cases where the NLMACH(1),
even if it is the wrong specification, yields better forecasts.

3.2 Application to Exchange Rates

In order to examine the NLMACH performance using real market data, in this
section we estimate the NLMACH(1) model and compare it with the ARCH(1)
and GARCH(1, 1) processes. In addition we estimate the ARCH(1) model
assuming a Student-t distribution in order to capture the fat tails frequently
observed in financial returns. Eight major currencies are employed for this
exercise6. Daily exchange rate returns from January 2, 1991 to December 29,
1995 are calculated by taking the first log difference corresponding to a total
of 1,303 observations for each currency. In particular the exchange rates under
examination are the Australian Dollar (AUS), British Pound (GBR), Canadian
Dollar (CAN), Dutch Guilder (NLG), French Franc (FRA), German Dmark
(DEU), Japanese Yen (JPY) and Swiss Franc (CHF). Descriptive statistics are
shown in Table (2) below.

Currency Mean Median StdDev. Min. Max. Skew. Kurt.

Australian D. 0.0013 -0.0117 0.1997 -0.6954 0.8527 0.4171 1.6811
British P. 0.0075 -0.0079 0.2906 -1.2548 1.4271 0.3502 2.5506

Canadian D. 0.0055 0.0033 0.1213 -0.7040 0.5911 0.0320 2.7627
Dutch G. -0.0016 -0.0083 0.3179 -1.2581 1.3060 0.0917 1.6173
French F -0.0012 -0.0019 0.3004 -1.1734 1.1519 0.0700 1.6761

German M. -0.0013 -0.0115 0.3190 -1.2578 1.3476 0.1233 1.6865
Japanese Y. -0.0088 -0.0087 0.2828 -1.4727 1.4014 -0.2492 3.3761

Swiss F. -0.0030 0.0000 0.3470 -1.6933 1.3517 -0.0223 1.5817

Table 2: Statistical characteristics of the exchange rate time series

Tables 3,4,5 and 6 present the estimation results for each currency for several
model specifications. Different orders of the process were investigated. The NL-
MACH(1) was chosen according to the Akaike Information Criterion (AIC) and
the Schwartz Bayesian Criterion (SBC). The optimization algorithm employed
in the estimations was the BFGS and all the programs are written in RATS.
Using robust standard errors it is observed that apart from the intercept all
estimated parameters are highly significant–see δ1 and δ2 in each panel7.

optimal predictions [· · · ]”. Having said this, we should keep in mind the many limitations of
time series forecasting performance.

6The data has been extensively examined by Franses and van Dijk (2000) for this subsample
and from December 1979. The data is available in the authors’ website.

7Note that δ1 is associated to either the Nonlinear or ARCH effect respectively, whereas
δ2 is associated to GARCH effects.
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Dutch Guilder Swiss Franc
NLMACH ARCH GARCH ARCH-t NLMACH ARCH GARCH ARCH-t

Estimated Coefficients
C −0.0019 −0.0019 −0.0046 −0.0056 −0.0011 −0.0010 −0.0070 −0.0036

(0.0079)a (0.0074) (0.0080) (0.0093) (0.0093) (0.0098) (0.0074) (0.0082)
δ0 0.0794∗ 0.0794∗ 0.0032∗ 0.0502∗ 0.0992∗ 0.0986∗ 0.0039∗ 0.0669∗

(0.0030) (0.0055) (0.0006) (0.0027) (0.0037) (0.0034) (0.0007) (0.0025)
δ1 0.0212∗ 0.2138∗ 0.0715∗ 0.1620∗ 0.0204∗ 0.1781∗ 0.0575∗ 0.1309∗

(0.0035) (0.0466) (0.0097) (0.0289) (0.0035) (0.0271) (0.0083) (0.0281)
δ2 − − 0.8967∗ − − − 0.9098∗ −

− − (0.0022) − − − (0.0015) −
V b − − − 5.4836∗ − − − 6.1327∗

− − − (0.4327) − − − (0.7747)

Decision Criteria
L(θ)c 867.34 866.99 894.99 804.94 746.01 746.21 763.93 934.56
AICd 8753.71 8753.18 8796.28 8659.16 8558.86 8559.20 8591.54 8852.14
SBCe 8769.20 8768.67 8816.94 8679.82 8574.35 8574.69 8612.20 8872.79

Table 3: Model Adjustment for the Dutch guilder and the Swiss Franc. *,** Significant at the 1% and 10% level respectively.a

Robust Standard errors in parenthesis.b Shape parameter. cOptimizaed likelihood value.d AIC =Akaike information Criterion
and e SBC =Schwartz Bayes Criterion
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French Franc German Mark
NLMACH ARCH GARCH ARCH-t NLMACH ARCH GARCH ARCH-t

Estimated Coefficients
C −0.0043 −0.0039 −0.0057 −0.0062 −0.0016 −0.0016 −0.0039 −0.0058

(0.0081)a (0.0079) (0.0070) (0.0070) (0.0083) (0.0081) (0.0078) (0.0079)
δ0 0.0745∗ 0.0745∗ 0.0024∗ 0.0449∗ 0.0796∗ 0.0796∗ 0.0033∗ 0.0507∗

(0.0025) (0.0051) (0.0017) (0.0038) (0.0028) (0.0029) (0.0018) (0.0017)
δ1 0.0153∗ 0.1749∗ 0.0596∗ 0.1405∗ 0.0217∗ 0.2180∗ 0.0711∗ 0.01618∗

(0.0032) (0.0459) (0.0189) (0.0269) (0.0035) (0.0319) (0.0200) (0.0253)
δ2 − − 0.9135∗ − − − 0.8969∗ −

− − (0.0348) − − − (0.0337) −
V b − − − 5.1436∗ − − − 5.5298∗

− − − (0.6332) − − − (0.4059)

Decision Criteria
L(θ)c 931.73 931.12 962.74 735.18 863.72 863.23 888.54 808.74
AICd 8846.30 8845.45 8890.63 8541.95 8748.29 8747.56 8786.93 8665.25
SBCe 8861.79 8860.94 8891.29 8562.61 8763.79 8763.05 8807.59 8685.91

Table 4: Model Adjustment for the French Franc and the German Mark. *,** Significant at the 1% and 10% level respectively.a

Robust Standard errors in parenthesis.b Shape parameter. cOptimizaed likelihood value.d AIC =Akaike information Criterion
and e SBC =Schwartz Bayes Criterion
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Japanese Yen Canadian Dollar
NLMACH ARCH GARCH ARCH-t NLMACH ARCH GARCH ARCH-t

Estimated Coefficients
C −0.0065 −0.0062 −0.0098 −0.0046 −0.0059 0.0059 0.0025 0.0029

(0.0073)a (0.0076) (0.0080) (0.0065) (0.0032) (0.0031) (0.0032) (0.0029)
δ0 0.0702∗ 0.0693∗ 0.0020∗ 0.0347∗ 0.0123∗ 0.0119∗ 0.001∗ 0.0067∗

(0.0022) (0.0018) (0.0014) (0.0020) (0.0004) (0.0004) (0.0001) (0.0004)
δ1 0.0089∗ 0.1286∗ 0.0484∗ 0.0751∗ 0.0024∗ 0.1992∗ 0.0517∗ 0.1178∗

(0.0021) (0.0212) (0.0164) (0.0219) (0.0004) (0.0252) (0.0152) (0.0281)
δ2 − − 0.9251∗ − − − 0.9404∗ −

− − (0.0279) − − − (0.0185) −
V b − − − 3.8234∗ − − − 4.3438∗

− − − (0.3451) − − − (0.4418)

Decision Criteria
L(θ)c 1005.55 1006.56 1045.43 616.82 2100.63 2102.25 2139.88 451.57
AICd 8944.88 8946.19 8997.17 8319.99 8897.44 9898.43 9923.38 7912.92
SBCe 8960.38 8961.68 9017.83 8335.65 9912.94 9913.93 9944.04 7933.58

Table 5: Model Adjustment for the Japanese Yen and the Canadian Dollar. *,** Significant at the 1% and 10% level
respectively.a Robust Standard errors in parenthesis.b Shape parameter. cOptimizaed likelihood value.d AIC =Akaike in-
formation Criterion and e SBC =Schwartz Bayes Criterion
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British Pound Australian Dollar
NLMACH ARCH GARCH ARCH-t NLMACH ARCH GARCH ARCH-t

Estimated Coefficients
C 0.0026 0.0020 −0.0015 −0.0041 −0.0003 −0.0001 −0.0011 −0.0061

(0.0078)a (0.0076) (0.0069) (0.0066) (0.0050) (0.0056) (0.0055) (0.0050)
δ0 0.0701∗ 0.0672∗ 0.0008∗ 0.0329∗ 0.0367∗ 0.0367∗ 0.0025∗ 0.0206∗

(0.0022) (0.0019) (0.0005) (0.0020) (0.0012) (0.0011) (0.0023) (0.0011)
δ1 0.0144∗ 0.2138∗ 0.0507∗ 0.1490∗ 0.0032∗ 0.0813∗ 0.0595∗ 0.0723∗

(0.0025) (0.0294) (0.0143) (0.0321) (0.0014) (0.0228) (0.0355) (0.0239)
δ2 − − 0.9403∗ − − − 0.8794∗ −

− − (0.0187) − − − (0.0903) −
V b − − − 3.8423∗ − − − 4.4480∗

− − − (0.3606) − − − (0.4853)

Decision Criteria
L(θ)c 975.20 979.79 1052.46 655.30 1441.20 1441.02 1457.70 219.87
AICd 8905.26 8911.33 9005.84 8393.00 9410.28 9410.13 9427.01 6981.21
SBCe 8920.76 8926.83 9026.50 8413.89 9425.78 9425.62 9447.67 7001.87

Table 6: Model Adjustment for the British Pound and the Australian Dollar. *,** Significant at the 1% and 10% level
respectively.a Robust Standard errors in parenthesis.b Shape parameter. cOptimizaed likelihood value.d AIC =Akaike infor-
mation Criterion and e SBC =Schwartz Bayes Criterion

15



If we compare the NLMACH(1) against ARCH(1) or GARCH(1,1), the AIC
and SBC criteria provide mixed evidence. For instance according to these cri-
teria NLMACH(1) is preferred to the ARCH(1) for the Swiss Franc, the
Japanese Yen, the Canadian Dollar and the British Pound. When the NL-
MACH(1) is compared to GARCH(1,1) it is observed that in all cases the NL-
MACH(1) is preferred to GARCH(1,1). Surprisingly, according to these criteria,
the ARCH(1) model is also preferred to GARCH(1,1). However, we need to be
cautious about using these criteria to discriminate between models. The use
of these statistics might not be entirely appropriate since the two types of pro-
cesses have a distinct nonlinear nature. Moreover, the statistical properties of
AIC and SBC have not been investigated for the class of nonlinear models here
proposed. Using the Optimized Likelihood value as the selection criterion, the
GARCH(1,1) is the model that fits the data best. This however is not neces-
sarily bad news for the NLMACH(1) since it only indicates that GARCH(1,1)
captures well a specific type of conditional heteroskedasticity. One last case
has been investigated: the ARCH(1) with a t-distribution in order to capture
the fat tails and non-normality of the data8. It turns out that, as indicated by
the AIC and SBC, this model is strongly preferred to all other specifications
including the NLMACH(1) with the only exception of the Swiss Franc. As
we have already shown, our NLMACH(1) model reproduces the fat tails quite
naturally without the need of imposing a different conditional distribution to
replicate this behavior. However, as suggested by these results, imposing a con-
ditional distribution different than a normal might capture other properties of
the data. For instance, it might be that the source of non-normality is due to
the existence of outliers; this feature is not obviously taken into account by the
NLMACH(1) model.

8Notice that, as required, the degrees of freedom parameter is significant and greater than
four in all currencies except the Yen and the British Pound.
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4 Conclusions

This paper has presented a new model, deeply inspired by the Non-Linear Mov-
ing Average models, but with the approach typically used when dealing with
conditionally heteroskedastic models. A very simple specification modification
solves the typical problems of this class. NLMACH has simple statistical prop-
erties and is easy to estimate. It should indeed be seen as a new instrument to
deal with heteroskedasticity. Several tools presented here aim to fulfill this pur-
pose. On one hand, NLMACH can be easily estimated by ML. This estimation
technique proved to be efficient and reliable. On the other hand, the theoretical
results, such as the autocorrelation function form of the squared process should
facilitate identification, and provide statistical evidence of either the presence
or the absence of NLMACH behavior. for some particular cases (specified in
the DGPs and the sample size of the Monte Carlo experiments) NLMACH(1)’
forecasting capabilities outperform 9 the ones yielded by GARCH(1, 1) even
when the true DGP is a GARCH(1, 1).

This new specification will have to compete with the many variants belong-
ing to the ARCH class. Such competitors vary in complexity and robustness.
NLMACH is the replication of fat tails; the estimation results indicate however
that this process is preferred to ARCH models using a student-t as conditional
distribution only in one case–the Swiss Franc. The NLMACH model, despite
its simplicity, still offers extremely interesting characteristics. All in all, the
relative evidence in favor of NLMACH varies in complexity and robustness and
all we hope is to increase empirical interest for Non-Linear Moving Average
models, which have been virtually neglected along the past decades.

9comparison made using the RMSE criterion
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