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1. INTRODUCTION

J. D. Geanakoplos and H. M. Polemarchakis (1986)—henceforth, GP—showed that

when real assets are traded in two-period economies with more than a single good, and

markets are incomplete, then the equilibrium allocation is constrained suboptimal, i.e.,

even if the “planner” is restricted to using only the existing assets to obtain the realloca-

tion, he is able to induce an improvement over the equilibrium allocation. This result has

become a cornerstone for subsequent research in the area; in particular, it sheds light into

the open question of analyzing the optimality of equilibrium allocations in pure exchange

OLG economies with sequentially incomplete markets when price effects are allowed for.

The key feature of the proof by GP is to show that (i) with incomplete markets,

the ratios of marginal utilities of income across states differ generically across agents, a

result which they use to show that (ii) with more than a single commodity, a price effect

can be induced in such a way as to cause a welfare improvement. To prove result (i)

above, GP perturb asset prices at equilibrium when the degree of market incompleteness

equals one. However, since prices are not fundamentals that parameterize the economy,
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a generic result cannot be obtained in such a way. Accordingly we provide, in section 5,

an alternative proof of result (i) above which does not depend on the dimension of the

market incompleteness and in which utilities and endowments are perturbed.

Also, the original proof by GP of result (ii) above, though correct and brilliant, skips

many details in order to shorten the presentation. We believe that understanding the

problem requires one to have the relevant details and, accordingly, provide them and

complete the arguments following the sketches given by GP. In this respect, our endeavor

pursues to allow the reader to appreciate better the nature of the contribution of GP.

To prove that a welfare improvement is derived from a relative price effect, one must

show that a property of linear independence is generically satisfied for a set of vectors

derived from the income effect vectors.3 To guarantee that this property holds, an upper

bound needs to be imposed on the number of agents, as GP do, which in turn requires that

the number of agents relative to the number of goods in the economy be sufficiently small.

This is controversial since, from the competitive equilibrium perspective, one usually

has in mind an economy where the number of agents is large relative to the number of

commodities. Citanna, Kajii and Villanacci (1998)—henceforth, CKV—have proved the

GP result without imposing an upper bound on the number of agents. However, their

description of the intervention differs from the one used by GP in that (a) agents are

allowed to retrade the assets allocated at the intervention, and (b) the planner makes

lump-sum transfers in some goods. As we show, the result by CKV follows precisely

because feature (b) allows for a direct control of the income effect vectors.

The rest of the paper is structured as follows. Section 2 presents the model and no-

tation. Section 3 presents the tools that permit us to analyze the effects of the asset

reallocation. In section 4 we obtain two linear independence results derived from the de-

scription of the economy. Section 5 deals with the marginal utilities of income of the agents

when markets are incomplete. Section 6 presents a technical result on linear algebra, and

section 7 completes the proof.

2. THE MODEL

We consider a multigood, two-period (t = 0, 1), exchange economy under uncertainty

in which one state s from a finite set of states S = {0, 1, . . . , S} occurs at date 1. There is

a finite set I = {0, 1, . . . , I} of two-period lived agents who consume only at date 1 and

reallocate their income across states by trading securities at date 0. The set of commodities

is L = {0, 1, . . . , L}. Since there are L+ 1 commodities available in each state s ∈ S, the

commodity space is R
n with n = (L+ 1)(S + 1).

Each agent i ∈ I is described by (i) a consumption set X i ⊂ R
n, (ii) an initial

endowment vector of the L+ 1 goods in each state s, ωi := (ωi
0, ω

i
1, . . . , ω

i
S), where ωi

s :=

(ωi
0s, ω

i
1s, . . . , ω

i
Ls) and ωi

ls denotes the endowment of commodity l ∈ L that agent i has

in state s, and (iii) a utility function ui : X i → R defined over consumption bundles xi :=

3For each agent, an income effect vector reflects the changes in his demand of commodities as a
consequence of changes in his income.
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(xi
0, x

i
1, . . . , x

i
S) ∈ X i, where xi

s := (xi
0s, x

i
1s, . . . , x

i
Ls) and xi

ls denotes the consumption

of commodity l by agent i in state s. Let zi := [xi − ωi] denote the excess demand of

agent i. Let ω := (ω0, ω1, . . . , ωI) ∈ R
n(I+1) and x := (x0, x1, . . . , xI) ∈ R

n(I+1) denote,

respectively, a vector of endowments and an allocation of commodities.

There is a set A = {0, 1, . . . , A} of inside real assets which pay a return in terms of

commodity 0 in each state s ∈ S denoted, for a ∈ A, by ra(s) ∈ R. For a ∈ A, we define

ra := (ra(0), ra(1), . . . , ra(S)) ∈ R
S+1, the payoff vector of asset a. For s ∈ S, we define

r(s) := (r0(s), r1(s), . . . , rA(s)) ∈ R
A+1, the vector of asset returns in state s. Let

R :=




[r(0)]T

[r(1)]T

...
[r(S)]T


 =

[
r0 r1 . . . rA

]
=




r0(0) r1(0) . . . rA(0)
r0(1) r1(1) . . . rA(1)

...
...

...
r0(S) r1(S) . . . rA(S)




be the corresponding matrix of returns, of dimension (S + 1) × (A+ 1).

We denote the quantity of asset a held by agent i by θi
a ∈ R, a portfolio of agent i

by θi := (θi
0, θ

i
1, . . . , θ

i
A) ∈ R

A+1, and an allocation of assets by θ := (θ0, θ1, . . . , θI) ∈

R
(A+1)(I+1).

We assume throughout the paper that

Assumption A.1—Endowments and Preferences of the Agents: For each i ∈ I; (i)

ωi ∈ R
n
++, (ii) ui is C2, strictly increasing, and differentiably strictly quasi-concave, and

(iii) if U i(k) := {y ∈ R
n : ui(y) ≥ ui(k)}, then U i(k) ⊂ R

n
++ for each k ∈ R

n
++.

Assumption A.2—Asset Structure: (i) R has full column rank, (ii) there exists a

portfolio θ ∈ R
A+1 such that R · θ > 0,4 (iii) A < S, and (iv) each set of A + 1 rows of

R is linearly independent.

Assumptions A.1 and A.2 are standard. Assumption A.1 (iii) says that the closure of the

indifference curves of each agent does not intersect the boundary of R
n
+. Also, we have

assumed that the asset market is incomplete, Assumption A.2 (iii), so that if 〈R〉 :={
τ ∈ R

S+1 : τ = R · θ, θ ∈ R
A+1
}

then 〈R〉 ⊂ R
S+1 with 〈R〉 6= R

S+1, i.e., the asset

structure does not allow agents to transfer income fully across states.

To ease part of the proof we assume that utilities satisfy a vN-M utility form.

Assumption A.3—Additively Separable Utilities: For each agent i ∈ I, there is a

Bernoulli utility function vi : R
L+1
+ → R, and a probability distribution (ρi

s)s∈S ∈ R
S+1
+ ,

such that ui(xi) :=
∑

s∈Sρ
i
sv

i(xi
s) for each xi ∈ X i.

We denote the vector of commodity prices by p := (p0, p1, . . . , pS) ∈ R
n
+, where ps :=

(p0s, p1s, . . . , pLs) and pls is the price of commodity l in state s. Let q := (q0, q1, . . . , qA) ∈

4When comparing two vectors x and y of the same dimension we use the symbols “<”, and “≤” to
indicate xk ≤ yk for each k but x 6= y, and xk ≤ yk for each k respectively.
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R
A+1 denote the vector of asset prices, where qa is the price of asset a. We choose commod-

ity 0 as numeraire and normalize its price to 1 in each state s ∈ S. Analogously, we nor-

malize the price of asset 0 by setting q0 := 1. Let P :=
{
p ∈ R

n
+ : p0s = 1 for each s ∈ S

}

and Q :=
{
q ∈ R

A+1 : q0 = 1
}

denote, respectively, the normalized price domain for

commodities and for assets.

For two vectors α = (α1, α2, . . . , αw) and β = (β1, β2, . . . , βw), with w ∈ N, where, for

each k = 1, . . . , w, αk and βk lie in some Euclidean space such that the product αk · βk is

well defined, we define the box product α�β := (α1 · β1, α2 · β2, . . . , αw · βw).

For a commodity price vector p ∈ P and an asset price vector q ∈ Q, we define the

contingent spot-financial market budget set of agent i by

Bi(p, q) :=
{
(xi, θi) ∈ X i × R

A+1 : q · θi ≤ 0, p� (xi − ωi) ≤ R · θi
}
.

Since we will obtain a generic result, we have to work with a set of economies rather

than with only one. Such a set is obtained via a parameterization of the economy based on

both fundamentals, utilities and endowments. So, the characteristics of the economy are

summarized by the collection of utility functions and endowment vectors of the agents;

let (u, ω) := (u0, . . . , uI , ω0, . . . , ωI). We denote the space of utility functions by U and

the space of endowment vectors by Ω. Let Γ := U ×Ω denote the space of economies that

we consider; i.e., we obtain a parameterized family of economies. We say that a set of

economies is generic if it is an open set of full measure in the space Γ.

Now we can define equilibrium

Definition 1—CE: We say that (x∗, θ∗, p∗, q∗) is a Competitive Equilibrium (CE) of

the economy (u, ω) ∈ Γ if

(i) (a)
∑

i(x
i∗ − ωi) ≤ 0;

(b)
∑

i θ
i∗ = 0,

(ii) for each i ∈ I;

(a) (xi∗ , θi∗) ∈ Bi(p∗, q∗);

(b) if ui(xi) > ui(xi∗) for some xi and some θi, then (xi, θi) /∈ Bi(p∗, q∗).

For i ∈ I, let (f i, ζ i) : P × Q → X i × R
A+1 denote the function defined by the fact

that, for each (p, q) ∈ P ×Q, (f i(p, q), ζ i(p, q)) solves the problem

max
{(xi,θi)}

ui(xi) subject to q · θi ≤ 0 and p� (xi − ωi) ≤ R · θi.

Let the function F : P × Q → R
n defined by F (p, q) :=

∑
i[f

i(p, q) − ωi] for each

(p, q) ∈ P ×Q denote the aggregate excess demand function for goods with spot-financial

markets. Also, let the function Ψ : P×Q → R
A+1 defined by Ψ(p, q) :=

∑
i ζ

i(p, q) for each

(p, q) ∈ P ×Q denote the aggregate excess demand function for assets with spot-financial

markets.

For a commodity price vector p ∈ P and a portfolio θi ∈ R
A+1, we define the contingent

spot market budget set of agent i by

B̃i(p, θi) :=
{
xi ∈ X i : p� (xi − ωi) ≤ R · θi

}
.
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For i ∈ I, let gi : P×R
A+1 → X i denote the function defined, for each (p, θi) ∈ P×R

A+1,

by

gi(p, θi) := arg max
{
ui(xi) : xi ∈ B̃i(p, θi)

}
.

Definition 2—CM-CE: Given an allocation of assets θ ∈ R
(A+1)(I+1) such that∑

i θ
i = 0, we say that (x∗∗, p∗∗) is a Spot Market Competitive Equilibrium (SM-CE) of

the economy (u, ω) ∈ Γ if

(i)
∑

i(x
i∗∗ − ωi) ≤ 0,

(ii) for each i ∈ I; xi∗∗ = gi(p∗∗, θi).

Let the function G : P × R
(A+1)(I+1) → R

n defined by G(p, θ) :=
∑

i[g
i(p, θi) − ωi] for

each (p, θ) ∈ P ×R
(A+1)(I+1) denote the aggregate excess demand function for goods with

spot markets.

Remark 1: Consider a pair (p, q) ∈ P ×Q. For each i ∈ I, we have that if (xi, θi) ∈

Bi(p, q), then xi ∈ B̃i(p, θi). Therefore, if (x∗, θ∗, p∗, q∗) is a CE, then (x∗, p∗) is a SM-CE

for the asset allocation θ∗.

Remark 2: By invoking Walras’ law, we shall consider markets for just L commodities

in each state, and for A assets; commodity 0 and asset 0 correspond to the “dropped”

markets. Therefore, for i ∈ I, we denote by f̂ i = (f i
10, . . . , f

i
L0, . . . , f

i
1S, . . . , f

i
LS) the

truncation of f i, and by F̂ = (F10, . . . , FL0, . . . , F1S, . . . , FLS) and Ψ̂ = (Ψ1, . . . ,ΨA),

respectively, the truncation of F and the truncation of Ψ, each of them being defined on

the normalized price domain P ×Q. Analogously, let ĝi = (gi
10, . . . , g

i
L0, . . . , g

i
1S, . . . , g

i
LS)

and Ĝ = (G10, . . . , GL0, . . . , G1S, . . . , GLS) denote, respectively, the truncation of gi and

the truncation of G, both of them being defined on the normalized price domain P .

Let x̂i = (xi
10, . . . , x

i
L0, . . . , x

i
1S, . . . , x

i
LS), ω̂i = (ωi

10, . . . , ω
i
L0, . . . , ω

i
1S, . . . , ω

i
LS), and ẑi =

(zi
10, . . . , z

i
L0, . . . , z

i
1S, . . . , z

i
LS) denote, respectively, the truncation of xi, the truncation of

ωi, and the truncation of zi.

The notion of optimality used is the benchmark for incomplete asset markets. It applies

the concept of Pareto efficiency to the economy above, but imposing that any alternative

allocation be traded in the existing markets. This yields the criterion of constrained Pareto

optimality, due to Stiglitz (1982), and Newbery and Stiglitz (1982).

Definition 3—CS: An allocation (x, θ) is Constrained Suboptimal (CS) if there exists

an alternative allocation (x̃, θ̃), and a price vector p ∈ P such that

(i) (x̃, p) is a SM-CE for the asset allocation θ̃,

(ii) (a) ui(x̃i) ≥ ui(xi) for each i ∈ I;

(b) uj(x̃j) > uj(xj) for some j ∈ I.

So, an allocation is CS if a (benevolent) “central planner” is able, by redistributing agents’
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assets and by allowing agents to retrade only goods, to induce a new equilibrium allocation

of goods that Pareto dominates the original allocation. Of course, there will be also a new

supporting equilibrium price vector associated with the new equilibrium allocation, as

stated in Definition 3.

We can now state the GP result.

Theorem 1—The GP Result: Assume A.1, A.2, and A.3, and that 0 < 2L ≤ I < LS,

and A ≥ 1. Then there exists a generic set of economies Γ̃ ⊂ Γ such that, for each economy

(u, ω) ∈ Γ̃, each CE is CS.

3. PRELIMINARIES

The objective of this section is to present the problem as one of intervention by a

“central planner” and to introduce the tools which will allow us to interpret its effects on

the agents’ welfare. As a first step, we present two results on the generic regularity of the

set of economies described.

To do this, we need first to set a notational convention. For any function H parame-

terized by the fundamentals of the economy (u, ω), Hy denotes the function H such that

parameter y ∈ {u, ω, (u, ω)} is fixed; e.g., (F̂ , Ψ̂)(u,ω) denotes the (truncated) aggregate

excess demand function for goods and assets for the specific economy (u, ω) ∈ Γ, and

(F̂ , Ψ̂)u denotes the (truncated) aggregate excess demand function for goods and assets

for an economy with a fixed utility parameter u ∈ U when the endowment ω ∈ Ω is

allowed to vary.

Proposition 1—Generic Regularity: Assume A.1, A.2 (i) and (ii), then, for each

u ∈ U , there exists a generic set ̺(u) ⊂ Ω such that, for each ω ∈ ̺(u), (F̂ , Ψ̂)u is a

continuously differentiable function with respect to ω.

Proof: (GP) Q.E.D.

Let Γ1 := {(u, ω) ∈ Γ : u ∈ U , ω ∈ ̺(u)} denote the generic set of economies identified

in Proposition 1.

Since, by Proposition 1, equilibria are locally isolated (i.e., for each equilibrium, there

is no other equilibrium arbitrarily close to it, so that each equilibrium depends in a contin-

uous manner on the fundamentals of the economy), utility functions can be perturbed by

the addition of a quadratic term in a way such that the linear term subsequently added to

the vector of the first derivatives amounts to zero at the equilibrium allocation. Therefore,

the perturbation leaves unaffected demand but it changes the matrix of second derivatives

of the utility function. Using this fact, it can be shown that any perturbation of each of

the derivatives Dpĝ
i, i ∈ I, by the addition of a symmetric matrix, can be induced by

adding a suitably chosen quadratic term to the utility function of agent i.5 GP use this

5See, e.g., Geanakoplos and Polemarchakis (1980).
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result to prove the next proposition.

Proposition 2—Generic Strong Regularity: Assume A.1, A.2 (i) and (ii), then there

exists a generic set of economies Γ2 ⊂ Γ1 such that, for each (u, ω) ∈ Γ2 and each feasible

asset allocation θ ∈ R
(A+1)(I+1), the Jacobian matrix DpĜ(p∗, θ), evaluated at the SM-CE

prices p∗ ∈ P associated with θ, is invertible.

Proof: (GP) Q.E.D.

We will now introduce a (benevolent) “central planner”, who reallocates the existing

assets before trade takes place. After that intervention, agents are allowed to trade in

the markets for goods to the point where a new equilibrium in the commodity markets is

achieved. However, they are not allowed to retrade the portfolio they were assigned; i.e.,

the original equilibrium is a CE and the new equilibrium is a SM-CE associated with the

new asset allocation. We must show that, for a generic set of economies, the allocation of

commodities induced by the new asset reallocation is Pareto improving.

The asset redistribution directly affects the income of the agents and, since more than a

single good is traded, also changes commodity prices in the spot markets at date 1. Both

types of effects change the budget sets of the agents and therefore their consumption

possibilities. However, intuitively we can see that the direct effect of any feasible asset

reallocation on the income of the agents does not permit a Pareto improvement since

only a redistribution of a fixed amount of income takes place, so that improving an agent

necessarily implies harming another. Therefore, we should concentrate on analyzing the

effects on welfare due to the price effect that results from the reallocation of assets.

Given a pair (p, q) ∈ P ×Q, consider the optimization problem of an agent i ∈ I

(P) max
{(xi,θi)}

ui(xi) subject to q · θi ≤ 0 and p� (xi − ωi) ≤ R · θi.

The first order conditions for an interior solution (xi, θi) are

(c1) µi[q]T = λi ·R,

(c2) Dxiui(xi) = p�λi,

where µi and λi = (λi
0, λ

i
1, . . . , λ

i
S) are, respectively, the Lagrange multipliers correspond-

ing to the budget constraints on assets and on the spot market for agent i in each state s.

From (c2) above, by noting that dui(xi) := Dxiui(xi) · dxi, the change in utility of agent

i due to a marginal change in his consumption plan is

(1) dui(xi) = λi · [p�dxi].

Now we can consider the changes induced by such an asset perturbation on the agents’

consumption plans. So, by taking infinitesimal perturbations of θi that induce changes on
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xi and on p, and by computing the total differential of the contingent spot market budget

constraint of agent i at the solution, we have

(2) p�dxi = R · dθi − dp� (xi − ωi),

a condition that must be satisfied by the changes induced by the asset reallocation. Then,

by combining equations (1) and (2), we obtain

(3) dui(xi) = λi ·R · dθi − λi · (xi − ωi) �dp.

The first element in equation (3) above reflects the direct effect of the asset reallocation

on the utility of agent i due to a perturbation of his income, and the second reflects the

contribution due to the change in relative prices. We turn now to a more detailed analysis

of this price effect.

Consider an initial CE (x∗, θ∗, p∗, q∗) of an economy (u, ω) ∈ Γ2. By noting Remark 1

and that the budget constraints of problem (P) above hold with equality at the solution,

given Assumption A.1, we have that Ĝ(p∗, θ∗) = 0. Now, by considering infinitesimal

perturbations on p∗ and on θ∗, and by computing the total differential, we obtain

DpĜ(p∗, θ∗) · dp+DθĜ(p∗, θ∗) · dθ = 0.

From the Strong Regularity result, Proposition 2, we know that, for economies (u, ω) ∈ Γ2,

DpĜ(p∗, θ∗) is invertible so that, by applying the Implicit Function Theorem,

(4) dp = −
[
DpĜ(p∗, θ∗)

]−1

·DθĜ(p∗, θ∗) · dθ

holds in a neighborhood of the initial SM-CE (x∗, p∗) associated with θ∗. Hence, our

problem has been reduced to specifying an asset perturbation where the change in utility

of each agent i ∈ I is given by (3), and the change in prices is determined by the matrix

DθĜ(p∗, θ∗), of dimension L(S + 1) × (A+ 1)(I + 1), that appears in equation (4).

For the original SM-CE (x∗, p∗) associated with the initial asset allocation θ∗, by ap-

plying equation (3) combined with equation (4) to each agent i ∈ I (considering truncated

bundles), we obtain the matrix equation

(5) du(x∗) =

(
λ̃∗ · R̃ + λ̃∗ · ψ(x∗) �

[
DpĜ(p∗, θ∗)

]−1

·DθĜ(p∗, θ∗)

)
· dθ,

where du(x∗) := (du0(x0∗), du1(x1∗), . . . , duI(xI∗)) ∈ R
I+1, and

λ̃∗ :=




[λ0∗]T [0]T . . . [0]T

[0]T [λ1∗]T . . . [0]T

...
...

...
[0]T [0]T . . . [λI∗]T


 , R̃ :=




R 0 . . . 0
0 R . . . 0
...

...
...

0 0 . . . R


 , and

ψ(x∗) :=




ẑ0∗ 0 . . . 0
0 ẑ1∗ . . . 0
...

...
...

0 0 . . . ẑI∗


 ,

8



with λ̃ being of dimension (I + 1)× (S+ 1)(I + 1), R̃ being of dimension (S+ 1)(I + 1)×

(A+ 1)(I + 1), and ψ(x∗) being of dimension L(S + 1)(I + 1) × (I + 1).

For the given SM-CE (x∗, p∗), and for θ∗, let O(x∗, p∗, θ∗) denote the matrix, of di-

mension (I + 1) × (A+ 1)(I + 1), defined by

(6) O(x∗, p∗, θ∗) := λ̃∗ · ψ(x∗) �

[
DpĜ(p∗, θ∗)

]−1

·DθĜ(p∗, θ∗).

Also, for i ∈ I, let V i
s (p∗) = (V i

1s(p
∗), . . . , V i

Ls(p
∗)) ∈ R

L denote the vector of income

effects of agent i in state s at p∗; i.e.,

V i
ls(p

∗) :=
∂ĝi

ls

∂wi
s

(p∗, θi∗) where wi
s := r(s) · θi for i ∈ I and s ∈ S,

the change, at the given SM-CE, on the demand of good l ∈ L\{0} by agent i in state s due

an infinitesimal change of his income in that state. We set V i(p∗) := (V i
0 (p∗), . . . , V i

S(p∗)) ∈

R
L(S+1). Now, since, for i ∈ I, l ∈ L \ {0}, s ∈ S, and a ∈ A, we have

∂ĝi
ls

∂θi
a

(p∗, θi∗) = ra(s)V
i
ls(p

∗),

the matrix Dθĝ
i(p∗, θi∗), of dimension L(S + 1) × (A+ 1)(I + 1), can be written as

(7) Dθĝ
i(p∗, θi∗) =

[
0 . . . 0 r0 �V i(p∗) r1 �V i(p∗) . . . rA �V i(p∗) 0 . . . 0

]
,

where the non-null columns correspond to the changes in the demand of agent i due to

the changes in the portfolio of that agent while the null vectors correspond to the changes

induced by the variations in the portfolio of agents other than i.

We turn now to specify the asset reallocation that we consider.

The proposed asset reallocation is such that agent 0 gifts asset 0 to each agent j ∈ I\{0}

and gifts asset 1 to agent 1. Let τ j
a ∈ R denote a transfer of asset a that agent j ∈ I \ {0}

receives from agent 0. The changes in asset holdings associated with the asset reallocation

are then denoted by ∆θ = (∆θ0,∆θ1, . . . ,∆θI) ∈ R
(A+1)(I+1) and specified by

∆θ0 := (−
I∑

j=1

τ j
0 ,−τ

1
1 , 0, . . . , 0), ∆θ1 := (τ 1

0 , τ
1
1 , 0, . . . , 0),

and by

∆θm := (τm
0 , 0, 0, . . . , 0) for each m ∈ I \ {0, 1} ,

so that the vector ∆θ has I + 1 non-zero entries that can be set “independently.” Let

τ := (τ 1
0 , τ

2
0 , . . . , τ

I
0 , τ

1
1 ) denote a vector of asset transfers that must be chosen to lie in the

space of transfers T := R
I+1.

Remark 3: By using the proposed asset reallocation, for each ∆θ ∈ R
(A+1)(I+1), there

is a unique τ ∈ T that fully specifies ∆θ.
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With this intervention, by noting (7), we obtain the changes induced in the demand

of the agents:

(a) Dθĝ
0(p∗, θ0∗) · ∆θ = −r0 �V 0(p∗)

∑I

j=1 τ
j
0 − r1 �V 0(p∗)τ 1

1 ;

(b) Dθĝ
1(p∗, θ1∗) · ∆θ = r0 �V 1(p∗)τ 1

0 + r1 �V 1(p∗)τ 1
1 ;

(c) Dθĝ
m(p∗, θm∗) · ∆θ = r0 �V m(p∗)τm

0 for each m ∈ I \ {0, 1}.

Then, since DθĜ(p∗, θ∗) · ∆θ =
∑

iDθĝ
i(p∗, θi∗) · ∆θ, we obtain, for an asset reallocation

∆θ specified by means τ ∈ T ,

(8) DθĜ(p∗, θ∗) · ∆θ = A(p∗) · τ,

where A(p∗) denotes the matrix, of dimension L(S + 1) × (I + 1), specified by

(9) A(p∗) :=
[
r0 � [V 1(p∗) − V 0(p∗)] r0 �

[
V I(p∗) − V 0(p∗)

]
r1 � [V 1(p∗) − V 0(p∗)]

]
.

From equation (5), using the matrix specified in (6), and taking into account the

proposed reallocation, we have that

du(x∗) =
(
λ̃∗ · R̃ + O(x∗, p∗, θ∗)

)
· ∆θ.

So, our objective is to analyze whether for a generic set of economies the rank of matrix

(λ̃∗ · R̃ + O(x∗, p∗, θ∗)), of dimension (I + 1) × (A+ 1)(I + 1), equals (I + 1) so that, by

choosing appropriately the vector ∆θ, any du(x∗) ∈ R
I+1 can be generated. A standard

argument shows that the rank of matrix λ̃∗ · R̃ cannot be I + 1 since it only captures the

effect of a pure redistribution of income. It follows that to prove Theorem 1, it suffices to

show that matrix O(x∗, p∗, θ∗) has rank I + 1 for a generic set of economies. By noting

Remark 3 and by using (6) together with (8), we obtain that, for each ∆θ ∈ R
(A+1)(I+1),

there is a unique τ ∈ T such that

O(x∗, p∗, θ∗) · ∆θ = λ̃∗ · ψ(x∗) �

[
DpĜ(p∗, θ∗)

]−1

· A(p∗) · τ.

Then, it suffices to show that the matrix Φ(x∗, p∗, θ∗), of dimension (I + 1) × (I + 1),

specified by

Φ(x∗, p∗, θ∗) := λ̃∗ · ψ(x∗) �

[
DpĜ(p∗, θ∗)

]−1

· A(p∗),

where A(p∗) is the matrix specified in (9), has rank I+1 for a generic set of economies. To

prove this, we will show that, generically, there is no δ ∈ ∆I+1 :=
{
y ∈ R

I+1
+ :

∑
k yk = 1

}

such that δ · Φ(x∗, p∗, θ∗) = [0]T.

The proof will be completed in two steps.

Step 1: We will show, in Proposition 4, that generically any matrix obtained by dropping

from A(p∗) the vectors that correspond to any state has rank I + 1.

Step 2: We will show in section 7 that, for δ ∈ ∆I+1, by suitably perturbing (u, ω), we

can alter as we wish at least LS entries (that correspond to at least S states) of the
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vector δ · λ̃∗ ·ψ(x∗) � [DpĜ(p∗, θ∗)]−1, leaving [DpĜ(p∗, θ∗)]−1 unchanged. To do so, we use

a result from linear algebra provided in Lemma 1, together with (i) the result on linear

independence given in Proposition 3, and (ii) the property in Proposition 5, whereby there

is a set of L+ 1 agents {i0, i1, . . . , iL} ⊂ I, such that, given δ := (δi0 , δi1 , . . . , δiL) ∈ ∆L+1,

generically, 0 6= δi0 · λ
i0
s

∗
6= δim · λim

s

∗
for at least S states, for each m ∈ {1, 2, . . . , L}.

4. LINEAR INDEPENDENCE OF THE INCOME EFFECTS

In this section we obtain two properties of linear independence that the set of vec-

tors
{
V 0, V 1, . . . , V I

}
generically satisfies. These results require that L > 0 and that

preferences not be quasi-linear since otherwise income effects are absent.

Proposition 3: Assume A.1, A.2 (i) and (ii), then, for each subset of L + 1 agents,

{i0, i1, . . . , iL} ⊂ I, and for each s ∈ S, the set of vectors

{
V i1

s (p∗) − V i0
s (p∗), V i2

s (p∗) − V i0
s (p∗), . . . , V iL

s (p∗) − V i0
s (p∗)

}

is linearly independent, for a CE price p∗ of an economy in some generic set Γ3 ⊂ Γ.

Proof: Consider an arbitrary subset of L+ 1 agents {i0, i1, . . . , iL} ⊂ I, and a given

state s ∈ S. Define the matrix, of dimension L× L,

Πs(p
∗) :=

[
V i1

s (p∗) − V i0
s (p∗) V i2

s (p∗) − V i0
s (p∗) . . . V iL

s (p∗) − V i0
s (p∗)

]
,

and let σs : P ×Q× ∆L → R
L(S+1) × R

A × R
L be the function specified by

σs(p, q, δ) :=
[
(F̂ , Ψ̂)(p, q), δ · Πs(p

∗)
]

for each (p, q, δ) ∈ P×Q×∆L. Since utility functions can be perturbed without changing

their first derivatives at the equilibrium allocation, we are able to change V i
s (p∗) for any

i ∈ I and for any s ∈ S, maintaining (F̂ , Ψ̂)(p∗, q∗) unaltered at the CE prices (p∗, q∗).

Therefore, by applying a transversality argument, we know that σs(u,ω) is transverse to

zero for each (u, ω) ∈ Γ3, where Γ3 ⊂ Γ is a generic set. Now, given that the dimension of

the range of σs(u,ω) exceeds that of the domain, by applying the Regular Value Theorem,

σ−1
s (u,ω)(0) = ∅ for each (u, ω) ∈ Γ3. Therefore, Πs(p

∗) has rank L for a generic set of

economies Γ3.

The result follows by noting that s was chosen arbitrarily. Q.E.D.

Notice that, if this property holds, then, for any given s ∈ S, the set of vectors

{V i1
s (p∗) − V i0

s (p∗), V i2
s (p∗) − V i0

s (p∗), . . . , V iL
s (p∗) − V i0

s (p∗)} span R
L.

For i ∈ I \ {0}, a ∈ {0, 1}, and s ∈ S, let κa,i
s (p∗) denote the vector, with LS

coordinates, obtained from ra � [V i(p∗) − V 0(p∗)] by dropping the L coordinates that

correspond to state s.
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Proposition 4: Assume A.1, A.2 (i), (ii), and (iv), then, for each s ∈ S, the set of

vectors
{
κ0,1

s (p∗), . . . , κ0,I
s (p∗), κ1,1

s (p∗)
}

is linearly independent for a CE price p∗ of an

economy in some generic set Γ4 ⊂ Γ.

Proof: Pick a state s ∈ S. We decompose the proof into two steps.

Step 1: From Assumption A.2 (iv) we know that the rank of each matrix of size (A +

1) × (A + 1) obtained by removing from matrix R any set of S − A rows equals A + 1.

Thus, any set of vectors obtained by considering, for each of the assets in A, the same

A+ 1 coordinates of their corresponding vectors of payoffs is linearly independent. Since

A + 1 ≥ 2, we can choose two vectors from the set {r0, r1, . . . , rA} such that they are

linearly independent when restricted to any subset, of size A + 1, of their coordinates.

Furthermore, since S ≥ A+1, we know that these two vectors are also linearly independent

when restricted to S arbitrarily chosen coordinates. This result guarantees, in addition,

that not all the coordinates of any of the vectors derived in that way equal zero.6

Consider, without loss of generality, that r0, r1 ∈ R
S+1 are the vectors chosen as

described above. It follows that the vectors κ0,1
s (p∗), κ1,1

s (p∗) are linearly independent since

by multiplying r0 and r1 by [V 1(p∗) − V 0(p∗)] according to the box product, the vectors

r0 and r1 are affected by the same proportion in the same coordinates so that no relative

change across the coordinates is induced.

Step 2: Define the matrix Σs(p
∗) :=

[
κ0,1

s (p∗) . . . κ0,I
s (p∗) κ1,1

s (p∗)
]
, of dimension LS×

(I + 1). Also, let βs : P ×Q× ∆I+1 → R
L(S+1) × R

A × R
LS be the function specified by

βs(p, q, δ) :=
[
(F̂ , Ψ̂)(p, q),Σs(p

∗) · δ
]

for each (p, q, δ) ∈ P×Q×∆I+1. Since we can perturb utility functions in a way such that

[V i(p∗) − V 0(p∗)], and thus also κ0,i
s (p∗) and κ1,1

s (p∗), for each i ∈ I \ {0}, are changed,

maintaining (F̂ , Ψ̂)(p∗, q∗) unaffected at the CE prices (p∗, q∗), we obtain that βs(u,ω) ⋔ 0

for each (u, ω) ∈ Γ4, where Γ4 ⊂ Γ is a generic set. Now, since the dimension of the range

of βs(u,ω) exceeds that of the domain, for each (u, ω) ∈ Γ4 there is no δ ∈ ∆I such that

Σs(p
∗) · δ = 0 so that rank[Σs(p

∗)] = I + 1.

The result yields since state s was chosen arbitrarily. Q.E.D.

Remark 4: Since the linear independence property in Proposition 4 is stated for at

least LS of the coordinates of the vectors in a set of size I+1, then I+1 ≤ LS appears as

6In their proof GP claim that by assuming that there exists a portfolio θ ∈ R
A+1 such that r(s) ·θ 6= 0

for each s ∈ S, and (possibly) by relabelling assets, one obtains that r0(s) 6= 0 for each s ∈ S. However,
easy examples show that such an implication fails to hold. Notice, e.g., that each set of 2 rows of the
matrix

R =




0 1
1 0
1 1




is linearly independent, that there exists a portfolio θ = (1, 1) such that r(s) · θ 6= 0 for each s = 0, 1, 2,
and that yet not all the coordinates of the two payoff vectors are different from zero. Nevertheless, the
proof does not make use neither of that assumption nor of that result stated by GP.
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a necessary condition for this result to hold. By assuming that I < LS, such a condition is

satisfied. CKV do not impose an upper bound on the number of agents. They can achieve

the constrained suboptimality result so long as they consider a policy with lump-sum

transfers among agents in period 0. This allows them to control directly the income effect

vectors of the agents. Without direct transfers of goods, since the welfare of agents is

affected by inducing changes in L(S + 1) relative prices, it is clear that there must be

a bound on the number of agents. Indeed Mas-Colell (1987) provides an example that

shows that Theorem 1 does not hold if the upper bound on I is removed.

5. MARGINAL UTILITY OF INCOME

In this section we obtain two properties of the agents’ marginal utilities of income.

The first of them shows that, generically, the agents’ ratios of marginal utilities across

states do not coincide, a fact that is strictly derived from the market incompleteness. This

fact also drives the result stated in the second property.

Proposition 5: Assume A.1, A.2 (i), (iii), and (iv), then, at each CE of an economy

in a generic set of economies Γ5 ⊂ Γ, we have

λi∗
s

λi∗
s′
6=
λj∗

s

λj∗
s′

for each i, j ∈ I, such that i 6= j and each s, s′ ∈ S such that s 6= s′.

Proof: Define the set YR :=
{
y ∈ R

S+1 : y ·R = [0]T
}
. From Assumption A.2 (i) and

(iii), we know that rank(R) = A + 1 and S + 1 > A + 1 so that YR is generated by a

vector space of dimension greater than or equal to one. Fix an arbitrary s̃ ∈ S, consider

a subset of A + 1 states Ŝ ⊂ S \ {s̃}, ordered as s0, s1, . . . , sA, set m̂s := 0 for each

s /∈ Ŝ such that s 6= s̃, and let m̂s̃ 6= 0 be an arbitrary number. Then, the equation

−ŷs̃ · r(s̃) =
∑

s∈ bS ŷs · r(s) has a solution since, by Assumption A.2 (iv), each set of A+ 1

vectors that can be extracted from the set {r(0), r(1), . . . , r(S)} is linearly independent

so that they span R
A+1. It follows that we can pick a vector ŷ ∈ YR \ {0} even though at

least one coordinate is arbitrarily pre-specified.

Now, consider a CE of an economy (u, ω) ∈ Γ. For an agent i ∈ I, we have that

µi∗[q∗]T = λi∗ ·R specifies the condition (c1) obtained earlier for his optimal choice of an

asset portfolio. Take two agents, i, j ∈ I, i 6= j, and two states s, s′ ∈ S, s 6= s′. Perturb the

utility function of agent i in a way such that a vector denoted by η = (η0, η1, . . . , ηS) ∈ R
n,

where ηs := (η0s, η1s, . . . , ηLs) for each s ∈ S, is added to the derivative Dxiui(xi∗), and,

accordingly, the vector λi∗ is perturbed by the addition of a vector ∆λi. Using condition

(c2), obtained earlier, for the optimal choice of goods of agent i we know that the vectors

η and ∆λi must satisfy the equality η = p∗ �∆λi.

By the properties of the set YR, it is possible to choose a ∆λi ∈ MR such that either

∆λi
s 6= 0 or ∆λi

s′ 6= 0. We use this to construct the utility perturbation described above.
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That perturbation does not affect the optimal choice of assets of agent i since

(λi∗ + ∆λi) ·R = λi∗ ·R + ∆λi ·R = λi∗ ·R + [0]T = λi∗ ·R.

In addition, we must compensate the change induced in the demand of agent i. We do

this by adding the appropriate amount to his vector of endowments ωi so as to leave his

excess demand unaffected.

Now, define the matrix, of dimension 2 × 2,

Υij
ss′(p

∗) :=

[
λi

s

∗
λj

s

∗

λi
s′
∗
λj

s′
∗

]
,

and let ϕij
ss′ : P ×Q× ∆2 → R

L(S+1) × R
A × R

2 be the function specified by

ϕij
ss′(p, q, δ) := [(F̂ , Ψ̂)(p, q), δ · Υij

ss′(p
∗)]

for each (p, q, δ) ∈ P × Q × ∆2. Since the perturbation of utilities and endowments

specified above changes the vector (λi
s

∗
, λi

s′
∗
) leaving (F̂ , Ψ̂)(p∗, q∗) unaffected at the CE

prices (p∗, q∗), then ϕij
ss′ (u,ω) ⋔ 0 for each (u, ω) ∈ Γ5, where Γ5 ⊂ Γ is a generic set. Now,

since the dimension of the range of ϕij
ss′ (u,ω) exceeds that of the domain, by applying the

Regular Value Theorem, we obtain that, for such a set of economies, there is no δ ∈ ∆2

such that δ · Υij
ss′(p

∗) = [0]T, i.e., the rank of matrix Υij
ss′(p

∗) is 2, as required. Q.E.D.

Proposition 6: Assume A.1, A.2 (i), (iii), and (iv), then, given δ := (δi0 , δi1 , . . . , δiL) ∈

∆L+1 such that δi0 6= 0, there exists a set of L+ 1 agents, {i0, i1, . . . , iL} ⊂ I, such that,

at each CE of an economy in a generic set Γ5 ∈ Γ, we have 0 6= δi0λ
i0
s

∗
6= δimλ

im
s

∗
for at

least S states, for each m ∈ {1, 2, . . . , L}.

Proof: Since, from Assumption A.1, the problem (P) has only interior solutions, then

λi
s

∗
6= 0 for each i ∈ I and each s ∈ S at a CE.

Consider an agent i0 ∈ I, a subset of states S̃ ⊂ S such that #S̃ := S, and pick a

δ := (δi0 , δi1 , . . . , δiL) ∈ ∆L+1 such that δi0 6= 0. By assuming that I ≥ 2L, we are able to

either

(a) extract from I\{i0} a set of agents {i1, i2, . . . , iL} ⊂ I\{i0} for which δi0λ
i0
s

∗
6= δimλ

im
s

∗

for each m ∈ {1, 2, . . . , L} and each s ∈ S̃, so that the result stated in Proposition 6 holds,

or

(b) extract from I \ {i0} a set of agents {j1, j2, . . . , jL} ⊂ I \ {i0} such that δjm
λjm

s̄

∗
=

δi0λ
i0
s̄

∗
, for each m ∈ {1, 2, . . . , L}, for some s̄ ∈ S̃. Then, by using the result stated in

Proposition 5, we know that λ
jm
s̄

∗

λ
jm
s

∗ 6= λ
i0
s̄

∗

λ
i0
s

∗ for each m ∈ {1, 2, . . . , L}, for each s ∈ S \ {s̄},

and for each (u, ω) ∈ Γ5. Therefore, by specifying the set S̄ := S \ {s̄}, we obtain that

δi0λ
i0
s

∗
6= δimλ

im
s

∗
for each m ∈ {1, 2, . . . , L}, for each s ∈ S̄, for each (u, ω) ∈ Γ5, as

required. Q.E.D.

6. A RESULT FROM LINEAR ALGEBRA

We will exploit the following Lemma in the next section.
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Lemma 1: Given a set of L non-zero numbers {a0, a1, . . . , aL} such that a0 6= am

for each m ∈ {1, 2, . . . , L}, and a set of L linearly independent vectors of dimension L,

{v1, . . . , vL}, any vector a0

∑L

m=1 αmυm −
∑L

m=1 amαmυm, of dimension L, can be gener-

ated by suitably choosing the set of numbers {α1, α2, . . . , αL}.

Proof: (GP)

7. PROOF OF THE RESULT

In this section we provide the proof of Theorem 1 by making use of the various argu-

ments presented up to now.

First, we specify the generic set of economies that are strongly regular, Proposition 2,

and for which the results stated in Proposition 3, Proposition 4, and Proposition 6 are

satisfied as Γ̂ := ∩5
k=2Γk.

Consider a CE (x∗, θ∗, p∗, q∗) of a given economy (u, ω) ∈ Γ̂. Let us recall that the

key procedure to prove Theorem 1 is to show that the matrix Φ(x∗, p∗, θ∗) defined in

section 3 has full rank for a generic set of economies. Since we are interested in proving a

generic feature, we need to perturb the economy (u, ω). We do this by setting an additive

perturbation that induces (u, ω) to move to a neighboring economy, that is,

(u, ω) 7−→ (u, ω) + (∆u,∆ω),

where ∆ω and ∆u denote, respectively, the perturbation to endowments and the pertur-

bation to utilities.

Let us describe first the perturbation to endowments.

Consider a set of L + 1 agents {i0, i1, . . . , iL} ⊂ I and a subset of states S̃ ⊂ S,

#S̃ = S, ordered as s1, . . . , sS. Set {s̄} := S \ S̃. Consider, for each s ∈ S̃, an arbitrary

set of numbers {γ1s, γ2s, . . . , γLs}. Then, the vector ∆ω is specified as:

(a) ∆ωi := 0 for each i /∈ {i0, i1, . . . , iL},

(b) for each m ∈ {1, 2, . . . , L} and each s ∈ S̃;

∆ωim
s =

(
∆ωim

0s , (∆ω
im
1s , . . . ,∆ω

im
Ls)
)

:=
(
∆ωim

0s , γms

[
V im

s (p∗) − V i0
s (p∗)

]T)
,

and ∆ωim
s̄ := 0,

(c) for each s ∈ S̃;

∆ωi0
s =

(
∆ωi0

0s, (∆ω
i0
1s, . . . ,∆ω

i0
Ls)
)

:=

(
∆ωi0

0s,−
L∑

m=1

γms

[
V im

s (p∗) − V i0
s (p∗)

]T
)
,

and ∆ωi0
s̄ := 0.

In addition, for each m ∈ {0, 1, . . . , L} and each s ∈ S̃, ∆ωim
0s is specified as to satisfy

∆ωim
0s +

L∑

l=1

p∗ls∆ω
im
ls = 0,
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so that the income of agent im in state s ∈ S̃ remains unaffected.

For i ∈ I, let ∆ẑi denote the change induced in the excess demand of agent i by

the perturbation of endowments. We note that the perturbation to endowments does not

change the optimal choices of any agent since it leaves unaffected the budget constraints

of the agents in each state. Also, it satisfies

(i) ∆ẑi = 0 for each i /∈ {i0, i1, . . . , iL},

(ii) ∆ẑim
s = γms [V im

s (p∗) − V i0
s (p∗)] for each m ∈ {1, 2, . . . , L} and each s ∈ S̃,

(iii) ∆ẑi0
s = −

∑L

m=1 γms [V im
s (p∗) − V i0

s (p∗)] for each s ∈ S̃, and

(iv) ∆ẑim
s̄ = 0 for each m ∈ {0, 1, . . . , L}.

These changes on the excess demands of the agents translate into a change of the matrix

ψ(x∗) which we denote by ∆ψ(x∗). Then, for an arbitrary vector δ := (δ0, δ1, . . . , δI) ∈

∆I+1 we obtain the change induced in δ · λ̃∗ · ψ(x∗) by the specified perturbation on

endowments as

δ · λ̃∗ · ∆ψ(x∗) =
I∑

i=0

δiλ
i∗ · ∆ẑi =

L∑

m=0

δimλ
im∗

· ∆ẑim

since ∆ẑi = 0 for each i /∈ {i0, i1, . . . , iL}.

Upon substituting for each ∆ẑim , we obtain

δ · λ̃∗ · ∆ψ(x∗) = −δi0

(
λi0∗

s1

L∑

m=1

γms1

[
V im

s1
(p∗) − V i0

s1
(p∗)

]T
. . . [0]T . . .

. . . λi0∗

sS

L∑

m=1

γmsS

[
V im

sS
(p∗) − V i0

sS
(p∗)

]T
)

+
L∑

m=1

δim

(
λim∗

s1
γms1

[
V im

s1
(p∗) − V i0

s1
(p∗)

]T
. . . [0]T . . .

. . . λim∗

ss
γmsS

[
V im

sS
(p∗) − V i0

sS
(p∗)

]T
)

=

(
− δi0λ

i0∗

s1

L∑

m=1

γms1

[
V im

s1
(p∗) − V i0

s1
(p∗)

]T

+
L∑

m=1

δimλ
im∗

s1
γms1

[
V im

s1
(p∗) − V i0

s1
(p∗)

]T

. . . [0]T . . .

− δi0λ
i0∗

sS

L∑

m=1

γmsS

[
V im

sS
(p∗) − V i0

sS
(p∗)

]T

+
L∑

m=1

δimλ
im∗

sS
γmsS

[
V im

sS
(p∗) − V i0

sS
(p∗)

]T
)

so that there are S + 1 blocks of L dimensional row vectors of which one block, the one

that corresponds to state s̄, is a vector of zeros.
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We recall that to complete the proof of Theorem 1 we must demonstrate that, for a

generic set of economies, there is no δ ∈ ∆I+1 such that

δ · Φ(x∗, p∗, θ∗) = δ · λ̃∗ · ψ(x∗) � [DpĜ(p∗, θ∗)]−1 · A(p∗) = [0]T.

So, let δ ∈ ∆I+1 be such that δi0 > 0 for some i0 ∈ I. Use the result in Proposi-

tion 6 to specify a set of L + 1 agents, denoted {i0, i1, . . . , iL}, and a set of states S̃,

such that 0 6= δi0λ
i0
s

∗
6= δimλ

im
s

∗
for each s ∈ S̃ and each m ∈ {1, 2, . . . , L}. Use

the specified set of agents and the set S̃ of states to construct the endowment per-

turbation specified above with {γ1s, γ2s, . . . , γLs}, s ∈ S̃, being arbitrary numbers. For

each s ∈ S̃, apply Lemma 1 with δimλ
im
s

∗
playing the role of am, m ∈ {0, 1, . . . , L},

with {γ1s, γ2s, . . . , γLs} playing the role of {α1, α2, . . . , αL}, and with the set of vectors

{V i1
s (p∗) − V i0

s (p∗), V i2
s (p∗) − V i0

s (p∗), . . . , V iL
s (p∗) − V i0

s (p∗)} playing the role of {v1, . . . , vL}.

The Lemma can be applied by invoking the spanning result obtained Proposition 3. It

follows that any vector δ · λ̃∗ · ∆ψ(x∗) with LS non-zero coordinates can be generated

by suitably picking the set of numbers {γ1s, γ2s, . . . , γLs} for each s ∈ S̃ since LS of its

coordinates can be controlled independently.

The perturbation of endowments specified above also changes the matrix DpĜ(p∗, θ∗)

which we now analyze. Consider a given state s ∈ S̃. For i ∈ I, let ∆Dps
[ĝi

s(p
∗, θi∗) − ω̂i

s]

and ∆Dps
Ĝs(p

∗, θ∗) denote the changes induced, respectively, in the matricesDps
[ĝi

s(p
∗, θi∗)−

ω̂i
s] and Dps

Ĝs(p
∗, θ∗), by the perturbation of endowments. The Slutsky decomposition of

the matrix Dps
[ĝi

s(p
∗, θi∗) − ω̂i

s] gives us7

Dps
[ĝi

s(p
∗, θi∗) − ω̂i

s] = λi
s

∗
Ki

s(p
∗) − V i

s (p∗) · [ĝi
s(p

∗, θi∗) − ω̂i
s]

T,

where Ki
s(p

∗) is a symmetric matrix of dimension L × L. We note that λi
s

∗
, Ki

s(p
∗) and

V i
s (p∗) for i ∈ I and s ∈ S are not affected by the specified perturbation of endow-

ments since income, and hence demand, are not affected. Now, by making use of the

induced changes to the excess demands of the agents, ∆ẑi
s, and the fact that, for s ∈ S,

∆Dps
Ĝs(p

∗, θ∗) =
∑

i ∆Dps
[ĝi

s(p
∗, θi∗) − ω̂i

s], we obtain that

∆Dps
Ĝs(p

∗, θ∗) = −
L∑

m=0

V im
s (p∗) ·

[
∆ẑim

s

]T
=

− V i0
s

L∑

m=1

γms

[
V im

s (p∗) − V i0
s (p∗)

]T
+

L∑

m=1

V im
s γms

[
V im

s (p∗) − V i0
s (p∗)

]T
=

L∑

m=1

γms

[
V im

s (p∗) − V i0
s (p∗)

]
·
[
V im

s (p∗) − V i0
s (p∗)

]T
.

To ease the notational burden, relabel each coordinate [V im
ls (p∗)− V i0

ls (p∗)] as bimls for each

m ∈ {1, 2, . . . , L} and each l ∈ L \ {0}. By writing out the product above, we obtain the

7See, e.g., Geanakoplos and Polemarchakis (1980).

17



matrix of dimension L× L,

(10) ∆Dps
Ĝs(p

∗, θ∗) =




∑L

m=1 γmsb
im
1s b

im
1s

∑L

m=1 γmsb
im
1s b

im
2s . . .

∑L

m=1 γmsb
im
1s b

im
Ls∑L

m=1 γmsb
im
2s b

im
1s

∑L

m=1 γmsb
im
2s b

im
2s . . .

∑L

m=1 γmsb
im
2s b

im
Ls

...
...

...∑L

m=1 γmsb
im
Lsb

im
1s

∑L

m=1 γmsb
im
Lsb

im
2s . . .

∑L

m=1 γmsb
im
Lsb

im
Ls


 ,

which happens to be symmetric.

Let us now describe the perturbation to utilities, ∆u. Consider an agent i ∈ I, and

construct ∆u by placing a quadratic term, that we now describe, in the coordinate that

corresponds to agent i, and by placing zeros in the other coordinates. This quadratic term

is such that the linear term subsequently added to the vectors of first derivatives of ui

amounts to zero at the CE. Hence, it leaves aggregate demand unaffected, but changes

the matrix of second derivatives of ui.8 Furthermore, this quadratic term induces, for each

s ∈ S, a change in the matrix Ki
s(p

∗) by the addition of a symmetric matrix that cancels

out with the matrix in (10) above.

Since, from Assumption A.3, a variation of ps only affects excess demand at state s,

we have that the perturbation (∆u,∆ω) specified above is such that [DpĜ(p∗, θ∗)]−1 is

not changed. Therefore, it generates the vector δ · λ̃∗ ·∆ψ(x∗) � [DpĜ(p∗, θ∗)]−1 as desired

for at least LS of its coordinates. Now, from the result stated in Proposition 4, any

matrix obtained from A(p∗) by dropping the vectors that correspond to any state has at

least I + 1 linearly independent rows and thus we can choose the perturbation (∆u,∆ω)

as to generate non-zero entries in those components of δ · λ̃∗ · ψ(x∗) � [DpĜ(p∗, θ∗)]−1

that correspond to some set of I + 1 linearly independent rows from A(p∗). It follows

that δ · λ̃∗ · ψ(x∗) � [DpĜ(p∗, θ∗)]−1 · A(p∗) 6= [0]T is guaranteed. Then, by applying a

transversality argument, we obtain that δ · Φ(x∗, p∗, θ∗) 6= [0]T for each (u, ω) ∈ Γ̃, where

Γ̃ ⊂ Γ̂ is a generic set.

Since δ was chosen arbitrarily, it follows that the matrix Φ(x∗, p∗, θ∗) has rank I + 1

for a generic set of economies Γ̃. This completes the proof of Theorem 1.

Remark 5: The GP result holds for a generic set of economies. Of course, there are

non-generic economies for which some CE are not CS. As in GP, consider an economy

(u, ω) ∈ Γ for which there is a CE such that no agent trades any good at any state. Then,

clearly, the last term in equation (3) amounts to zero and, therefore, the contribution to

the change of utility of each agent due to the change in relative prices vanishes. So, given

a reallocation of asset holdings dθ, du(x∗) only captures the effect of a pure redistribution

of income and, therefore, no improvement can be induced. However, we know that the

economy (u, ω) belongs to a non-generic set since, by changing slightly the parameter ω,

we move to a new economy such that some agents trade at each CE, which implies that

the set that contains (u, ω) is not open.

8It is known that by adding a suitable quadratic term to ui, one can induce any perturbation of the
matrix Ki

s(p
∗), for i ∈ I and s ∈ S, by the addition of a symmetric matrix. See, e.g., Geanakoplos and

Polemarchakis (1980).
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Remark 6: One would like to know whether the bound on the number of agents is

tight. If LS < I+1 ≤ L(S+1), then the argument given to prove Theorem 1 fails to hold.

To see this notice that, since the result obtained in Proposition 6 is in terms of ratios

across states, one state must be dropped and used as a reference. Therefore, we are able

only to control LS coordinates of the vector δ · λ̃∗ · ∆ψ(x∗). Therefore, to show that the

matrix Φ(x∗, p∗, θ∗) has rank I + 1, the set of vectors{
r0 � [V 1(p∗) − V 0(p∗)], r0 � [V I(p∗) − V 0(p∗)], r1 � [V 1(p∗) − V 0(p∗)]

}

needs to be linearly independent when considering any LS coordinates of them, which

can be achieved only if I + 1 ≤ LS, a condition which is satisfied by imposing I < LS as

stated in the hypotheses of Theorem 1.
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