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Abstract

This article proves the asymptotic efficiency of the Dickey Fuller (DF) test
when the Data Generating Process of the variable under consideration is
in fact mean stationary with breaks. Monte Carlo simulations show that
asymptotic properties remain valid for sample sizes of practical interest.
We illustrate its performance by studying inflation rate series, a variable
that should be stationary if the monetary authority follows an effective
inflation targeting regime: shocks are short-lived, therefore, inflation fluc-
tuates randomly around pre-specified targets.
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1 Introduction

Whether or not inflation follows a stationary process is an important and con-
flicting issue for a broad range of economic analyses and policymaking questions.
For instance, evidence that inflation behaves as a stationary process may imply
that it is being controlled by certain monetary policy—the monetary authority is
able to offset shocks that might induce significant deviations from a pre-specified
inflation target. Moreover, if inflation rates are I(1), then price levels would be
I(2). This in turn implies—for the long-run PPP relationship to hold—that
either price levels and nominal exchange rate are cointegrated of order 2,2, de-
note CI(2, 2) or price levels are CI(2, 1) and that this linear combination is
cointegrated with the nominal exchange rate.
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The literature dealing with the statistical properties of inflation rate series is
vast, and these have been analyzed from different perspectives. Gregoriou and
Kontonikas (2006) actually assert that the inflation process in economies where
the Central Bank adopted an explicit inflation targeting monetary policy should
be stationary around the target, and find evidence to support their claim by
running a Unit Root (UR) test that allows for a non-linear mean reverting pro-
cess in the alternative. Lai (1997) uses a modified DF test based on weighted
symmetric least square estimation to show that the use of different data fre-
quencies and different prices indexes to measure inflation can lead to conflicting
evidence; his empirical results show considerable evidence of stationarity for
monthly inflation rates, and mixed evidence for quarterly inflation rates. Along
the same lines, Culver and Papell (1997) and Basher and Westerlund (2006)
accept the null hypothesis of stationarity by using a panel data UR test. In
contrast, Bai and Ng (2004) focus on the common trend component of inflation,
rather than on the series themselves and find mixed evidence with a new testing
methodology, known as PANIC. A further possibility, as considered by Hassler
and Wolters (1995) and Arize, Malindretos, and Nam (2005), is that inflation
follows long memory processes; this would explain why standard tests fail to
reject the UR hypothesis. Persistence shifts in inflation have also been studied
and there appears to be a changes of regime in the series from an I(1) pro-
cess to a mean stationary one (Sollis 2001, Taylor 2005, Chiquiar, Noriega, and
Ramos-Francia 2007). Nevertheless, these results should be regarded with cau-
tion; Cavaliere and Taylor (2006) identified severe size distortions in persistence
tests in the presence of a volatility shift.
The considerable effort devoted to discriminate between UR from stationarity
has led to the current plethora of UR tests, yet, as Phillips and Xiao (1998) have
pointed out: “The immense literature and diversity of UR tests can at times be
confusing even to the specialist and presents a truly daunting prospect to the
uninitiated. In consequence, much empirical work makes use of the simplest
testing procedures because it is unclear from the literature [...] wich tests if any
are superior...”
Hence, the standard DF remains the most popular methodology when testing
for stationarity. Nevertheless, DF test is subject to certain amount of criticism
which, in turn, has led theorists and practitioners to be skeptical about the
conclusions to be drawn from it. In particular, Perron (1989) showed that the
effectiveness of the UR tests decreases significantly in the presence of structural
breaks. This is, if the true Data Generating process (DGP) of economic time
series is in fact broken-trend stationary, tests of UR would under-reject the null
hypothesis.
The effects of structural breaks in UR tests have been widely studied in the
corresponding literature. In Kim, Leybourne, and Newbold’s (2004) study of the
DF auxiliary regression with constant and trend using a broken trend stationary
DGP; they observed that the nature and location of the break significantly
affects the DF test. Montañés and Sansó (2001) studied the performance of the
DF test using the same trend stationary process together with the inclusion of
a seasonal pattern using dummy variables; they showed that, in spite of the
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seasonal component, the DF tends to reject the UR null hypothesis. Montañés
(1997) showed that Perron’s UR test is asymptotically efficient in the case of
breaking date misspecification when a mean stationary variable is analyzed.
Montañés and Reyes (1998) analyzed the asymptotic properties of the DF test
when the process under analysis has a break in the trend function; they found
that the DF test is biased towards the non-rejection of the UR hypothesis for
small sample sizes. To our knowledge, no research has yet been carried out to
analyze the performance of the DF test in relation to mean stationary processes
with level breaks, a plausible DGP for series such as controlled inflation.
The contribution of this article is that of demonstrating that the standard DF
test is asymptotically effective when used to differentiate between an I(1) and
a mean stationary process with breaks; both are relevant DGPs when studying
inflation1. In addition, we show that the asymptotic results also apply in finite
samples—although the effects that autocorrelation, location and break size on
the DF test are not negligible in relatively small samples—by means of a Monte
Carlo study.
The article is organized as follows: in Section 2, we show the asymptotic be-
havior of the DF test as well as several particularly revealing properties of the
asymptotic expressions. Section 3 presents Monte Carlo simulations. Section 4
presents an empirical application of the DF test using inflation rate series for
the OECD countries, whilst conclusions are drawn in Section 5. Mathematical
derivations are provided in the Appendix.

2 The validity of the DF test in the presence of

structural breaks

We are interested in testing stationarity of a time series generated by:

xt = µx +

Nx∑

i=1

θxDUi,t + uxt (1)

where µx is a constant,uxt = φzuxt−1 + ǫu, |φx| < 1, ǫu is iid(0, σ2
ǫ ), and DUi,t

are dummy variables allowing changes in the mean, that is, DUi,t = 1(t > Tbi
),

where 1(·) is the indicator function, and Tbi
is the unknown date of the ith

break in x. We define the break fraction as λi = (Tbi
/T ) ∈ (0, 1), where T is the

sample size. We use an AR(1) structure for the innovations uxt as in Kim, Lee,
and Newbold (2004) and Noriega and Ventosa-Santaulària (2006), although it
can also be assumed that innovations obey the (general-level) conditions stated
in Phillips (1986). If we use the following four DF auxiliary regressions

∆xt = δxt−1 + ut (2)

1Under the null, inflation contains a UR; this implies an uncontrolled inflation process.
Under the alternative, inflation follows a mean stationary process with level breaks; this
implies that monetary policy actions ensure that inflation oscillates randomly around specific
inflation targets—although the target may change throughout time.
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∆xt = α + δxt−1 + ut (3)

∆xt = α + δxt−1 + βt + ut (4)

∆xt = α + δxt−1 + βt + γ∆xt−1 + ut, (5)

we can assert the following proposition:

Proposition 1 Let xt be generated by DGP 1 and be used to estimate regres-
sion (2), (3), (4) or (5). Hence, the t-statistic associated with δ̂ diverges:

tδ̂ = Op

(
T

1

2

)

Proof: See appendix

Remark 1 Where only one break exists, the asymptotic t-statistic associated
with δ̂ in equation (2) is:

T−
1

2 tδ̂
p→ −

√
σ2

u
(1−ρ1x)

2[µ2
x
+θx(1−λx)(2µx+θx)]+σ2

x
(1+ρ1x) ,

where
p→ indicates convergence in probability and ρ1x is the first autocorrelation

of xt.

Figure 1.a clearly illustrates the implication of the formula of the asymptotic t-
statistic associated with δ̂ in equation (2): where the structural break is positive,
the DF test decreases its power, the larger the size of the break and the smaller
the break fraction. Furthermore, where the structural break is negative, the
DF test decreases its power when there is an increase in the size of the break
only when (µx < −θx); analogously, an increase in the break fraction biases the
DF test toward the acceptance of the null hypothesis if (−2µx

θx

< 1). Similarly,
figure 1.b shows that positive autocorrelation decreases the power of the test,
and negative autocorrelation biases the DF test toward the rejection of the null
hypothesis. The Monte Carlo section will show that the problems such as an
increase in autocorrelation, the size and location of the breaks can be overcome
by increasing the sample size.

3 A Monte Carlo study

We present a Monte Carlo study in which the finite sample behavior of the
DF test is analyzed in the case where the variable under examination is mean
stationary with breaks—see equation (1). Table (1) shows the rejection rates of
the null hypothesis of the DF test with neither constant nor time trend. The
computed parameter values selected were similar to those obtained in empirical
estimates. Sample sizes range from T = 25 to T = 500, whilst the number
of replications is R=10,000. The results in this table are consistent with the
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Figure 1: t–statistic behavior according to the size and location of the break,
and the degree of autocorrelation in the noise

theoretical results obtained in the previous section: firstly, columns 2 and 3
exemplify the effect of autocorrelation. The only difference between the DGPs
in these two columns is that the first uses i.i.d innovations whereas the second
uses an stationary AR(1) process. It is clear that rejection rates decrease in the
presence of positive autocorrelation. Secondly, columns 4 and 5 illustrate that
with an smaller positive break, rejection rates are greater, in the case of small
sample sizes at least; and thirdly, columns 6 and 7 show the location of the
break effect. With a positive break, the smaller the break fraction, the smaller
the rejection rates.

T DGP1 DGP2 DGP3 DGP4 DGP5 DGP6

25 0.83 0.03 0.26 0.00 0.17 0.92
50 0.99 0.07 0.93 0.00 0.88 0.99
100 1.00 0.26 1.00 0.18 1.00 1.00
250 1.00 0.97 1.00 1.00 1.00 1.00
500 1.00 1.00 1.00 1.00 1.00 1.00

Table 1: Monte Carlo Experiment

The values of the parameters in the DGPs are as follows: All DGPs σǫ = 0.02, µx = 0.05
DGP1: λ1 = 0.25 λ2 = 0.75 θ1 = 0.09 θ2 = −0.09 ρx = 0
DGP2: λ1 = 0.25 λ2 = 0.75 θ1 = 0.09 θ2 = −0.09 ρx = 0.9
DGP3: λ1 = 0.50 θ1 = 0.195 ρx = 0 DGP4: λ1 = 0.50 θ1 = 0.495 ρx = 0
DGP5: λ1 = 0.10 θ1 = 0.15 ρx = 0 DGP6: λ1 = 0.90 θ1 = 0.15 ρx = 0
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4 Empirical evidence

Theoretical results discussed earlier are illustrated by way of an empirical ap-
plication; we analyze the results of the DF test applied to inflation rate series
corresponding to the 30 OECD countries. Quarterly inflation rate series2 were
constructed from monthly Consumer Price Index data retrieved from the In-
ternational Monetary Fund’s International Financial Statistics data; the data
span for these countries varies, the maximum sample period being 1957:01 to
2005:12.
Results of the DF test—with a constant, time trend and one lag3—shown in
Table (2) attest the asymptotic properties of the DF test. For all the countries
presented in this table (except Italy), evidence in favor of broken mean station-
arity is stronger the larger the sample size. It is important to notice that the
DF tests were performed to allow for first order autocorrelation only—we de-
cided to use the specification studied in our asymptotic results, in the kowledge
that the tests could suffer a consequent from loss of power4, nevertheless, in
several cases, the null is rejected for sample sizes as small as 25. As shown in
the Monte Carlo section, rejection rates found empirically are high for sample
sizes of practical interest.

5 Conclusions

Structural breaks do affect the performance of UR tests. Nevertheless, we have
shown the robustness of the DF test in the presence of structural breaks where
the DGP of the series under analysis is mean stationary with breaks. In that
case the t–statistic of the DF test diverges at rate

√
T implying that the null

will, at some point, be rejected. However, our asymptotic results prove that the
DF test is sensitive not only to the size of breaks, but also to their sign and
their location, as well as to autocorrelation.
Monte Carlo experiments and empirical evidence show that the DF test provides
adequate results when the sample size is sufficiently large. In fact, the DF is
more sensitive to the presence of autocorrelation, regardless of the type of the
break, although this phenomenon can also be alleviated by increasing the size
of the sample or simply by running an Augmented DF test. UR testing can be
reliably performed using a simple DF test if the sample size is large enough. In
the specific case of inflation rates, the alternative of broken mean stationarity

2Quarterly inflation series were computed as the logged differences of CPI at three-monthly
intervals. For Australia and New Zealand we have quarterly CPIs; the quarterly inflation series
are the logged differences of successive quarters.

3The test was also performed under different specifications (DF with intercept, as well as
intercept and time trend), providing similar results. Due to space constraints, we report this
specification only and a subsample of countries. The other results are available upon request.

4As it is well known, UR tests generally suffer from two problems: low power and size
distortions. In particular, loss of power occurs when the innovations have an autocorrelated
structure, that is, they can be represented as an AR(p) polynomial. If the DF test does
not adequately correct the autocorrelation in the disturbances, we should expect such loss of
power—we will under-reject the null when in fact it is false.
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Country Sample period Observations used in the test (N)
25 50 100 150 195

Austria 1957:01-2005:12 H∗∗

a H∗∗∗

a H∗∗∗

a H∗∗∗

a H∗∗∗

a

Czech Republic 1993:01-2005:12 H0 H∗∗

a

Finland 1957:01-2005:12 H0 H∗∗

a H∗∗∗

a H∗∗∗

a H∗∗∗

a

France 1957:01-2005:12 H∗

a H∗∗∗

a H∗∗∗

a H∗∗∗

a H∗∗∗

a

Grecce 1957:01-2005:12 H∗∗

a H∗∗∗

a H∗∗∗

a H∗∗∗

a H∗∗∗

a

Hungary 1976:01-2005:12 H∗∗

a H∗∗∗

a H∗∗∗

a

Iceland 1983:01-2005:12 H∗∗

a H∗∗∗

a H∗∗∗

a

Ireland 1997:01-2005:12 H0 H∗

a

Italy 1957:01-2005:12 H∗

a H∗∗

a H∗∗∗

a H∗

a H∗∗

a

Korea 1970:01-2005:12 H0 H∗

a H∗∗∗

a H∗∗∗

a

Norway 1957:01-2005:12 H0 H∗∗∗

a H∗∗∗

a H∗∗∗

a H∗∗∗

a

Poland 1988:01-2005:12 H∗

a H∗∗∗

a H∗∗∗

a

Slovakia 1993:01-2005:12 H∗∗

a H∗∗∗

a

Sweden 1957:01-2005:12 H∗∗

a H∗∗∗

a H∗∗∗

a H∗∗∗

a H∗∗∗

a

Switzerland 1957:01-2005:12 H0 H∗

a H∗∗∗

a H∗∗∗

a H∗∗∗

a

Turkey 1969:01-2005:12 H∗

a H∗

a H∗∗∗

a H∗∗∗

a

United Kingdom 1957:01-2005:12 H∗∗

a H∗∗∗

a H∗∗∗

a H∗∗∗

a H∗∗∗

a

United States 1957:01-2005:12 H∗

a H∗∗

a H∗∗

a H∗∗

a H∗∗∗

a

Table 2: Results of the Dickey-Fuller test with intercept, time trend and one
lag. Note: the *, **, and *** denote statistical significance at the 10%, 5% and 1% level
respectively.

may be understood as the existence of an inflation targeting regime with time-
varying inflation targets.

A Appendix

Proof of Proposition 1. We present a guide on how to obtain the order in
probability of one of the four t-statistics appearing in proposition (1), by using

the DF regression (2) for which ∆xt =
∑Nx

i=1 θiDPit + uxt − uxt−1 where
DPi,t = DUi,t −DUi,t−1. The other three cases follow the same steps. Proof as
such was provided with the aid of Mathematica 4.1 software. The corresponding
codes are available at http://www.ventosa-santaularia.com/VSG 06b.zip.
We shall now describe the process involved in establishing the aforementioned
proof. The DF regression equation shall be ∆xt = α + δxt−1 + ut in ma-

trix form: ∆X = X1β + u. The vector of OLS estimators is β̂ = (α̂ δ̂)′ =

(X ′

1X1)
−1X ′

1∆X, and the t-statistic of interest tbδ = δ̂
[
σ̂2

u(X ′

1X1)
−1
22

]−1/2
, where

(X ′

1X1)
−1
22 is the 2nd diagonal element of (X ′

1X1)
−1 and σ̂2

u = T−1
∑T

t=1 û2
t =

T−1
∑T

t=1

(
∆xt − α̂ − δ̂xt−1

)2

. tbδ is a function of the following expressions:
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∑T
t=1 ∆xt = Op (1)

∑T
t=1 (∆xt)

2
= Op (T )∑T

t=1 xt−1 = Op (T )
∑T

t=1 x2
t = Op (T )∑T

t=1 ∆xtxt−1 = Op (T )
∑T

t=1 xt−1 · t = Op

(
T 2

)
∑T

t=1 ∆xt · t = Op (T )
∑T

t=1 ∆xt∆xt−1 = Op (T )

We can fill the matrix (X ′

1X1) as well as the vector (X ′

1Y ) and then compute the

OLS parameter estimates β = (X ′

1X1)
−1

X ′

1∆X and the t-statistic associated
with δ. The program computes the asymptotics5.
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