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Abstract

This paper analyses the asymptotic and finite sample implications of a mixed
nonstationary behavior among the dependent and explanatory variables in a
linear spurious regression model. We study the cases when the nonstationarity
in the dependent variable is deterministic (stochastic), while the nonstationarity
in the explanatory variable is stochastic (deterministic). In particular, we derive
the asymptotic distribution of statistics in a spurious regression equation when
one variable follows a difference stationary process (a random walk with and
without drift), while the other is characterized by deterministic nonstationarity
(a linear trend model with and without structural breaks in the trend function).
We find that the divergence rate is sensitive to the assumed mixture of non-
stationarity in the data generating process, and the phenomenon of spurious
regression itself, contrary to previous findings, depends on the presence of a
linear trend in the regression equation. Simulation experiments and real data
confirm our asymptotic results.
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1 Introduction
It is well documented by now that the phenomenon of spurious regression is
present under different forms of nonstationarity in the data generating process
(DGP ). It has been shown that when the variables yt and xt are nonstationary,
independent of each other, ordinary least squares applied to the regression model

yt = α+ δxt + ut

have the following implications: 1) the estimator of δ (bδ) does not converge
to its true value of zero, and 2) the t-statistic for testing the null hypothesis
H0 : δ = 0 (tδ) diverges, thus indicating the presence of an asymptotic spurious
relationship between yt and xt.
The rate at which tδ diverges depends on the type of nonstationarity present

in the process generating yt and xt. In Phillips (1986), where a driftless random
walk is assumed for both variables, the t-statistic is Op(T

1/2). For the case of a
random walk with drift, Entorf (1997) shows that tδ diverges at rate T . More
recently, Kim, Lee and Newbold (2004) (KLN henceforth) show that the phe-
nomenon of spurious regression is still present even when the nonstationarity in
individual series is of a deterministic nature: they find that, under a linear trend
stationary assumption for both variables, the t-statistic is Op(T

3/2). Extending
KLN’s results, Noriega and Ventosa-Santaulària (2005) (NVS hereafter), show
that adding breaks in the DGP still generates the phenomenon of spurious re-
gression, but at a reduced divergence rate; i.e. tδ is O(T

1/2) under either single
or multiple breaks in each variable. In all these works, the implicit assumption
is that both variables share the same type of nonstationarity, either stochastic
(Phillips, Entorf), or deterministic (KLN, NVS).3

This paper analyses the implications of a mixed nonstationary behavior
among the dependent and explanatory variables. We develop the asymptotic
theory for the cases when the nonstationarity in yt is deterministic (stochastic),
while the nonstationarity in xt is stochastic (deterministic). In particular, we
derive the limit distribution of statistics in the above regression equation when
the DGP has mixed forms of nonstationarity: one variable follows a difference
stationary process (a random walk with and without drift), while the other is
characterized by deterministic nonstationarity (a linear trend model with and
without structural breaks in the trend function).
Indeed, recent empirical studies show that macroeconomic time series differ

in the nature of their nonstationary behavior. For instance, in a multi-country
study with historical data on real per capita GDP, Perron (1992) finds that some
series are well characterized as (broken) trend-stationary (I(0) around a linear
trend, and I(0) around a linear trend with one structural break), while others

3Some related papers share this same feature: Marmol (1995, 1996, 1998), Cappuccio and
Lubian (1997), Granger et. al. (1998) and Tsay and Chung (1999).
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follow a unit root process. For the U.S. economy, Perron (1997) finds that real,
nominal and real per capita GNP, employment, industrial production, nomi-
nal wage, and the money stock, stochastic nonstationarity (a unit root) can be
rejected in favor of deterministic nonstationarity (a model with one structural
break in the trend function); on the other hand, the consumer price index, ve-
locity, interest rate and GNP deflator follow an I(1) process. Similar results are
reported in Lumsdaine and Papell (1997) (US data) and Mehl (2000) (Japanese
data) when testing the null of a unit root against a deterministic nonstationary
alternative with two structural breaks in the trend function. Noriega and de
Alba (2001) also find mixed forms of nonstationarity (I(1) and I(0) with one
break) using macro data under both classical and Bayesian approaches.
Looking ahead to the results reported below, we find that the divergence

rate is sensitive to the assumed mixture of nonstationarity in the DGP , and
the phenomenon of spurious regression itself depends on the presence of a linear
trend in the regression equation, and on the presence of structural breaks in the
DGP . For instance, if the dependent variable is I(1) while the explanatory is
I(0) without breaks, a spurious relationship will show up both asymptotically
and in finite samples, unless a linear trend is included in the regression model.
We show this using asymptotic theory, simulation experiments, and real (macro)
data. The rest of the paper is organized as follows. Section 2 reports asymptotic
results for spurious regression under mixed forms of nonstationarity. Section 3
deals with experimental and empirical results. Last section concludes.

2 Asymptotics for spurious regressions
In a simple regression equation, stochastic nonstationarity may be a feature of
the dependent variable, while deterministic nonstationarity of the explanatory
variable, or viceversa. Since this can not be known a priori, we consider both
possibilities: the dependent variable follows a trend-stationary (TS) process,
while the explanatory variable follows a difference stationary (DS) one, and
viceversa. Under difference stationarity, we study the cases of a unit root process
with and without a drift, while under trend-stationarity we study the cases of a
linear trend with and without multiple structural breaks in both level and slope
of trend. These four types of nonstationary behavior for economic time series
have been found to be empirically relevant in the literature, as argued above.
The following assumption summarizes the DGP s considered below for both

the dependent and the explanatory variables.

Assumption. The DGP s for {yt, xt}∞t=1 are as follows:

DGP A1
yt = µy + βyt+ uyt
xt = xt−1 + uxt = x0 + Sxt

DGP A2
yt = µy + βyt+ uyt
xt = µx + xt−1 + uxt = x0 + µxt+ Sxt
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DGP A3
yt = µy +

PNy
i=1 θiyDUiyt + βyt+

PMy
i=1 γiyDTiyt + uyt

xt = µx + xt−1 + uxt = x0 + µxt+ Sxt

DGP B1
xt = µx + βxt+ uxt
yt = yt−1 + uyt = y0 + Syt

DGP B2
xt = µx + βxt+ uxt
yt = µy + yt−1 + uyt = y0 + µyt+ Syt

DGP B3
xt = µx +

PNx
i=1 θixDUixt + βxt+

PMx
i=1 γixDTixt + uxt

yt = µy + yt−1 + uyt = y0 + µyt+ Syt

where, for z = x, y, Szt =
Pt

i=1 uzi, z0 is an initial condition, uzt = φzuzt−1 +
εzt, |φz| < 1, εzt are iid(0, σ2z) independent of each other, and DUizt, DTizt are
dummy variables allowing changes in the trend’s level and slope respectively,
that is, DUizt = 1(t > Tbiz) and DTizt = (t − Tbiz)1(t > Tbiz), where 1(·) is
the indicator function, and Tbiz is the i

th unknown date of the break in z. We
denote the break fraction as λz = (Tbz/T ) ∈ (0, 1).
We maintain the same structure for the innovations uyt and uxt as in KLN,

although it can also be assumed that innovations obey the (general-level) condi-
tions stated in Phillips (1986, p. 313). As will be shown below: 1) the relevant
limiting expressions do not depend on initial conditions (z0), and 2) they depend
on σ2z only under DGP s i2, i = A,B.

We begin by considering the following spurious ordinary least squares re-
gression model:

yt = bα1 + bδ1xt + but (1)

used as a vehicle for testing the null hypothesis H0 : δ1 = 0.
The following theorems collect the asymptotic behavior of the estimated

parameters and associated t−statistics in model (1) when the dependent and
explanatory variables have mixed forms of nonstationarity, according to the
DGP s in the Assumption. Proofs and definitions for some of the objects in the
next theorems are collected in the Appendix.

Theorem 1A. Let yt and xt be generated according to the DGP Ai, i =
1, 2, 3, and denote the corresponding OLS estimates of α1 and δ1 in (1) by bα1A(i)
and bδ1A(i). Then, as T →∞:
Case (1): DGP A1.

a) T−1bα1A(1) d→ 1
2βyN1D

−1
1

b) T−1/2bδ1A(1) d→ 1
2βyN2x (σxD1)

−1

c) T−1/2tα1A(1)
d→ N1

¡
1
3D2x

R
W 2

x

¢−1/2
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d) T−1/2tδ1A(1)
d→
√
3N2xD

−1/2
2x

Case (2): DGP A2

a) T−1/2bα1A(2) d→ σx
βy
µx
N3x

b) bδ1A(2) p→ βy
µx

c) T−1/2tα1A(2)
d→ 1

2N3xD
−1/2
2x

d) T−1tδ1A(2)
d→ µx

σx
(12D2x)

−1/2

Case (3): DGP A3

a) T−1bα1A(3) p→ 24V4y

b) bδ1A(3) p→ (βy + 24V5y)µ
−1
x

c) T−1/2tα1A(3)
p→ 12V4yG

−1/2
6y

d) T−1/2tδ1A(3)
p→ (βy + 24V5y)(12G6y)

−1/2

Theorem 1B. Let yt and xt be generated according to the DGP Bi, i =
1, 2, 3, and denote the corresponding OLS estimates of α1 and δ1 in (1) by bα1B(i)
and bδ1B(i). Then, as T →∞:
Case (1): DGP B1.

a) T−1bα1B(1) d→ −σyN3y

b) T 1/2bδ1B(1) d→ σy
βx
6N2y

c) T−1/2tα1B(1)
d→ −N3y (4D2y)

−1/2

d) T−1/2tδ1B(1)
d→
√
3N2yD

−1/2
2y

Case (2): DGP B2.

a) T−1/2bα1B(2) d→ −σyN3y

b) bδ1B(2) p→ µy
βx

c) T−1/2tα1B(2)
d→ −12N3yD

−1/2
2y

d) T−1tδ1B(2)
d→ µy

σy
(12D2y)

−1/2

5



Case (3): DGP B3.

a) T−1bα1B(3) p→ µy (V2x − βxV4x)
£
2βx

¡
1
48βx + V5x

¢
− 2V3x

¤−1
b) bδ1B(3) p→ µy

¡
1
24βx + V5x

¢ £
2βx

¡
1
48βx + V5x

¢
− 2V3x

¤−1
c) T−1/2tα1B(3)

p→ (V2x − βxV4x)
£¡

1
12V1x − V 2

4x

¢ ¡
β2x + βxG1x +G3x + 6G4x

¢¤−1/2
d) T−1/2tδ1B(3)

p→
¡
1
24βx + V5x

¢ £
3
¡
1
12V1x − V 2

4x

¢¤−1/2
Parts b) of the theorems show that, for DGP i1, i = A,B, the (normalized)

estimated spurious parameter either goes to infinity (DGP A1), or collapses
to zero (DGP B1). For the rest, it converges to well defined limits. Parts d)
show that the spurious regression phenomenon is present under all DGP s, but
occurs at a faster rate under DGP i2, i = A,B, which correspond to the models
studied by Nelson and Plosser (1982). More over, the limiting distribution of
the t-statistic for the hypothesis H0 : δ = 0 is symmetrical across DGP s Aj,
and Bj, j = 1, 2.
We now consider the case of a (spurious) OLS regression which allows for a

linear trend. As discussed in KLN (2003), when the trend components in the
individual series are sufficiently large to be detected, the applied researcher will
run the following regression

yt = bα2 + bβ2t+ bδ2xt + but (2)

where yt and xt are generated from the DGP s in the Assumption. The next
theorems present the relevant asymptotic results.

Theorem 2A. Let yt and xt be generated according to the DGP Ai, i =
1, 2, 3, and denote the corresponding OLS estimates of α2, β2, and δ2 in (2) bybα2A(i), bβ2A(i), and bδ2A(i). Then, as T →∞:
Case (1): DGP A1.

a) bα2A(1) p→ µy

b) bβ2A(1) p→ βy

c) Tbδ2A(1) d→ σy
σx
N4xD

−1
2x

d) T−1/2tα2A(1)
d→ µy

σy

³
D2x

D3

´1/2
e) T−3/2tβ2A(1)

d→ βy
σy

³
D2x

12D1

´1/2
f) tδ2A(1)

d→ N4xD
−1/2
2x
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Case (2): DGP A2.

a) bα2A(2) p→ µy

b) bβ2A(2) p→ βy

c) Tbδ2A(2) d→ σy
σx
N4xD

−1
2x

d) T−1/2tα2A(2)
d→ µy

σy

³
D2x

D3

´1/2
e) T−1tβ2A(2)

d→ βy
µx

σx
σy
D
1/2
2x

f) tδ2A(2)
d→ N4xD

−1/2
2x

Case (3): DGP A3.

a) T−1bα2A(3) d→
£
1
2G2yD3 −G1yN1 +G5yN3x

¤
D−12x

b) T−1/2bβ2A(3) d→ µx
£
24
¡
V4y

R
Wy + V5y

R
rWy

¢
−G5y

¤
(σxD2x)

−1

c) T−1/2bδ2A(3) d→
£
G5y − 24

¡
V4y

R
Wy + V5y

R
rWy

¢¤
(σxD2x)

−1

d) T−1/2tα2A(3)
d→
¡
1
2G2yD3 −G1yN1 +G5yN3x

¢ £
D3σu(A3)

¤−1/2
e) T−1/2tβ2A(3)

d→
£
24
¡
V4y

R
Wy + V5y

R
rWy

¢
−G5y

¤ £
σu(A3)

¤−1/2
f) T−1/2tδ2A(3)

d→
£
G5y − 24

¡
V4y

R
Wy + V5y

R
rWy

¢¤ £
σu(A3)

¤−1/2
Theorem 2B. Let yt and xt be generated according to the DGP Bi, i =

1, 2, 3, and denote the corresponding OLS estimates of α2, β2, and δ2 in (2) bybα2B(i), bβ2B(i), and bδ2B(i), Then, as T →∞:
Case (1): DGP B1.

a) T−1/2bα2B(1) d→ −σyN3y

b) bβ2B(1) d→ −σy
σx
N4yβx

c) bδ2B(1) d→ σy
σx
N4y

d) T−1/2tα2B(1)
d→ −σxN3y

£¡
µ2x + 4σ

2
x

¢
D2y

¤−1/2
e) tβ2B(1)

d→ −N4yD
−1/2
2y

f) tδ2B(1)
d→ N4yD

−1/2
2y
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Case (2): DGP B2.

a) T−1/2bα2B(2) d→ −σyN3y

b) bβ2B(2) d→ µy −
σy
σx
N4yβx

c) bδ2B(2) d→ σy
σx
N4y

d) T−1/2tα2B(2)
d→ −σxN3y

£
D2y

¡
µ2x + 4σ

2
x

¢¤−1/2
e) tβ2B(2)

d→
h
σx
σy

µy
βx
−N4y

i
D
−1/2
2y

f) tδ2B(2)
d→ N4yD

−1/2
2y

Case (3): DGP B3.

a) T−1/2bα2B(3) d→ 24σy
¡
V2x

R
rWy − 2V1x

R
Wy + V4xG5x

¢
G−16x

b) bβ2B(3) p→ µy

c) T 1/2bδ2B(3) d→ σy
£
24
¡
V4x

R
Wy + V5x

R
rWy

¢
−G5x

¤
G−16x

d) T−1/2tα2B(3)
d→
¡
V2x

R
rWy − 2V1x

R
Wy + V4xG5x

¢ ¡
2
p
σu(B3)V1x

¢−1
e) T−1tβ2B(3)

d→ µyG6x

n
24σy

¡
σu(B3)

£
4 (V3x − βxV5x)− 1

12β
2
x

¤¢1/2o−1
f) T−1/2tδ2B(3)

d→
£
24
¡
V4x

R
Wy + V5x

R
rWy

¢
−G5x

¤ ¡
48σu(B3)

¢−1
Parts f) of the theorems show that the spurious regression parameter t-

statistic only diverges to infinity under structural breaks; otherwise, it has a
well defined limit. Hence, a spurious relationship will be present only under
DGP i3, i = A,B. Note that, as opposed to the case of no trend in the re-
gression, the spurious regression coefficient (and its t-statistic) converges to the
same distribution across DGP s ij, i = A,B; j = 1, 2. Table A1 in the Appen-
dix presents a summary of results concerning orders in probability of relevant
statistics.

3 Experimental and empirical results
We computed rejection rates of the t-statistic for testing the null hypotheses
H0 : δj = 0, j = 1, 2, in equations (1) and (2), respectively, using a 1.96 critical
value (5% level) for a standard normal distribution.
In order to asses the usefulness of our limit theory in finite samples, rejec-

tion rates were based on both the asymptotic formulae and simulated data, for
samples of size T = 50, 100, 250, 500, 1000, 10000, under each one of the DGP s
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in the Assumption. The value of the parameters in the DGP s are as follows4:
σz = 1, φz = 0 (but see below), µz = 0, or 0.5, depending on the DGP con-
taining a drift or not, βz = 0.03 if the DGP contains a nonzero slope, and,
whenever breaks are present, Mz = 2 and γi = 0.03, i = 1, ...,Mz, for z = x, y.
Breaks occur at 10% and 30% of total data length. The number of replications
is 10, 000.
The simulation experiments reveal a remarkable agreement in rejection rates

between analytical results and simulated ones, as shown in Table 1. The only
discrepancy occurs for the multibreaks model with trend (DGP s i3, i = A,B),
for T < 500. Results also indicate that the rejection rates for the cases of the
model without trend can be very high, even for values of the sample size as
small as 50. Hence, in these cases, the phenomenon of spurious regression is
likely to be present also in small (empirically relevant) samples.

Table 1
Rejection Rates for tδ; DGP s Aj, j = 1, 2, 3.

Sample DGP A1 DGP A2 DGP A3
size no trend trend no trend trend no trend trend

theo sim theo sim theo sim theo sim theo sim theo sim

50 0.83 0.82 0.05 0.06 1.00 0.82 0.06 0.06 1.00 0.99 0.69 0.06
100 0.88 0.87 0.05 0.05 1.00 1.00 0.05 0.05 1.00 1.00 0.77 0.15
250 0.92 0.93 0.04 0.06 1.00 1.00 0.05 0.04 1.00 1.00 0.86 0.67
500 0.95 0.94 0.05 0.04 1.00 1.00 0.05 0.05 1.00 1.00 0.89 0.86
1,000 0.96 0.96 0.05 0.04 1.00 1.00 0.05 0.05 1.00 1.00 0.93 0.92
10,000 0.99 0.99 0.05 0.05 1.00 1.00 0.05 0.05 1.00 1.00 0.98 0.98

Rejection Rates for tδ; DGP s Bj, j = 1, 2, 3.
Sample DGP B1 DGP B2 DGP B3
size no trend trend no trend trend no trend trend

theo sim theo sim theo sim theo sim theo sim theo sim

50 0.83 0.45 0.05 0.06 1.00 0.82 0.04 0.05 1.00 0.99 0.69 0.06
100 0.87 0.81 0.05 0.05 1.00 1.00 0.05 0.05 1.00 1.00 0.78 0.16
250 0.92 0.91 0.04 0.05 1.00 1.00 0.05 0.05 1.00 1.00 0.86 0.67
500 0.95 0.94 0.05 0.05 1.00 1.00 0.05 0.05 1.00 1.00 0.90 0.85
1,000 0.96 0.96 0.05 0.05 1.00 1.00 0.05 0.05 1.00 1.00 0.92 0.92
10,000 0.99 0.99 0.05 0.05 1.00 1.00 0.05 0.05 1.00 1.00 0.98 0.97

Note: theo and sim stand for theoretical (based on the corresponding theorem), and simulated.

When including a linear trend in the regression model, however, rejection
rates for DGP s ij, i = A,B; j = 1, 2 do fluctuate around the nominal level, for
any sample size. Hence, assuming no breaks in theDGP , the inclusion of a linear

4We experimented with different values of the parameters, location and number of breaks,
and obtained very similar results.
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trend eliminates the spurious regression phenomenon, not only asymptotically,
but also in finite samples.
As can be seen from the theorems, the limiting distribution of tδ depends on

σ2z under DGP s i2, i = A,B. To asses the effect of autocorrelation, a simulation
experiment was performed to compute rejection rates for DGP i2, i = A,B
using φz = 0.1, 0.5, 0.9. Results revealed that rejection rates are greater that
60% even in the case of a sample as small as T = 50, and φz = 0.9.
As the analytical results show, the presence of a linear trend in the regression

equation ensures a well defined limit for the distribution of tδ2 , under DGP s
ij, i = A,B; j = 1, 2. Figure 1 shows that this limit closely resembles a stan-
dard normal distribution. The Monte Carlo experiments used to generate the
depicted densities were based on 1) A non-parametric estimation using 10,000
simulated data samples of 100 observations (labeled T = 100), under DGP B2,
and regression equation (2), with parameter values: σz = 1, φz = 0, µz = 0.5,
βy = 0.03, for z = x, y; and 2) A non-parametric estimation using 30,000 repli-
cations and the asymptotic distributions of tδ2 (labeled Asymptotic), for DGP
B2, as stated in Theorem 2B. Additionally, a standard normal distribution is
included for comparison purposes.

Non-parametric estimation of tδ2 , for DGP B2.

To assess the empirical relevance of the above results, we utilize long, low
frequency data of (log) real per capita GDP series from 1870 to 1986 for 10 coun-
tries: Australia, Canada, Denmark, France, Germany, Italy, Norway, Sweden,
the United Kingdom and the United States5. According to Perron (1992), a
unit root in the autoregressive representation can be rejected at the 5% level for
Australia, Canada, Denmark, France, Germany and the U.K., when allowance
is made for a single structural break in the trend function. For Italy, Norway
and Sweden, the unit root can not be rejected; while for the U.S. there is neither
a unit root nor a structural break. Hence, for the U.S., real per capita output is

5This data set was kindly provided by Pierre Perron, and is the same as used by Kormendi
and Meguire (1990), Perron (1992) and Perron and Zhu (2002).
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I(0), for Italy, Norway and Sweden, I(1), and for the remaining countries I(0)
with one break.
As predicted in theorems 1A and 1B, when regression equation (1) is esti-

mated, a spurious relationship will prevail asymptotically, and, as our simulation
experiment shows, this relationship will hold also in small samples. On the other
hand, when regression equation (2) is run under DGP s ij, i = A,B; j = 1, 2, no
spurious regression will be present, as shown by theorems 2A and 2B, and the
simulations. Table 2 present the results of estimating (1) and (2) by OLS, to
test the null hypothesis H0 : δ = 0, using pairs of variables according to DGP
B2 (note that the same results are obtained under DGP A2).

Table 2
Significance of tδ under DGP B2

yt xt Only Constant Constant and Trend

I(1) I(0) bδ t− stat bδ t− stat

Italy USA 0.948 22.70*** 0.004 0.018
Norway USA 1.126 34.04*** -0.035 -0.215
Sweden USA 1.270 53.39*** 0.023 0.306

Note: *** indicates rejection at the 1% level

As expected, inclusion of a linear trend does eliminate the spurious rela-
tionship between U.S output and the other three GDP variables. Table 3 gives
empirical support of findings reported in theorem 2B under DGP B3.

Table 3
Significance of tδ under DGP s B3

yt xt Only Constant Constant and Trend

I(1) I(0) + break bδ t− stat bδ t− stat

Australia 1.585 36.19*** 1.112 14.29***
Canada 0.912 29.97*** 0.859 6.76***

Italy Denmark 0.955 39.26*** 1.843 18.03***
France 1.137 59.19*** 1.000 22.66***
Germany 0.894 42.80*** 0.849 13.93***
UK 1.463 40.06*** 1.750 12.96***

Australia 1.772 33.33*** 0.821 16.65***
Canada 1.056 41.58*** 0.532 5.70***

Norway Denmark 1.099 64.39*** 1.132 12.16***
France 1.256 39.31*** 0.632 14.86***
Germany 1.013 48.23*** 0.585 13.24***
UK 1.681 63.24*** 1.259 13.75***

Australia 1.862 23.73*** 0.328 10.68***
Canada 1.168 47.57*** 0.218 4.74***

Sweden Denmark 1.215 89.66*** 0.569 13.90***
France 1.333 27.79*** 0.239 9.05***
Germany 1.093 36.47*** 0.248 10.27***
UK 1.828 48.74*** 0.484 8.85***
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In these regressions, a spurious relationship is present whether a linear trend
is included or not, since one of the variables (the explanatory one in this case)
underwent a structural break in the trend function.

4 Conclusions
This paper has presented an analysis of the spurious regression phenomenon
when there is a mix of deterministic and stochastic nonstationarity among the
dependent and the explanatory variables in a linear regression model. It has
shown that: 1) the asymptotic distribution of the t-statistic for testing a spuri-
ous relationship is sensitive to the assumed mixture of nonstationarity, and 2)
the phenomenon of spurious regression itself depends on the presence of a linear
trend in the regression equation and on the presence of structural breaks in the
DGP .
Thus, if it is believed that there might be a form of mixed nonstationarity

(DS and TS with no breaks) among the dependent and explanatory variables
in a regression equation, to avoid the phenomenon of a spurious relationship, a
linear trend should be included in such regression model; otherwise, a spurious
relationship will be present under any mix of DGP s. However, when structural
breaks are a feature of the data (either in the dependent or the explanatory
variable), the presence of a spurious relationship is unambiguous whether the
regression model includes a linear trend or not.
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5 Appendix
Proof of Theorems

The proofs were assisted by the software Mathematica 4.1. The correspond-
ing codes are available from the authors upon request. Below, we describe the
steps involved in the computerized calculations.

Write either regression model yt = α1 + δ1xt + ut or yt = α2 + β2t+ δ2xt + ut
in matrix form: y = Xβ+u. The vector of OLS estimators, bβ = (X 0X)−1X 0y,
is a function of the following objects:

For DGP Ai, i = 1, 2.PT
t=1 yt =

1
2βyT

2 + (µy +
1
2βy)T +ΣuyT

1/2PT
t=1 y

2
t =

1
3β

2
yT

3+(12β
2
y+µyβy)T

2+2βyΣtuyT
3/2+

¡
µ2y +

1
6β

2
y +Σu2y + µyβy

¢
T

+2µyΣuyT
1/2PT

t=1 tyt =
1
3βyT

3 + 1
2(µy + βy)T

2 +ΣtuyT
3/2 +

¡
1
2µy +

1
6βy

¢
T

For DGP A1.PT
t=1 xt = ΣsxT

3/2 + x0TPT
t=1 x

2
t = Σs2xT

2 + 2x0ΣsxT
3/2 + x20TPT

t=1 txt = ΣsxT
5/2 + 1

2x0T
2 + 1

2x0TPT
t=1 ytxt = βyΣtsxT

5/2 + 1
2x0βyT

2 + µyΣsxT
3/2 +

¡
x0µx +

1
2x0βy +Σsxuy

¢
T

+x0ΣuyT
1/2

For DGP Ai, i = 2, 3.PT
t=1 xt =

1
2µxT

2 +ΣsxT
3/2 + (x0 +

1
2µx)TPT

t=1 x
2
t =

1
3µ

2
xT

3+2µxΣtsxT
5/2+( 12µ

2
x+Σs2x+ x0µx)T

2+2x0ΣsxT
3/2+(x20

+1
6µ

2
x + x0µx)TPT

t=1 txt = ΣtsxT
5/2 + 1

2x0T
2 + 1

2x0T

For DGP A2.PT
t=1 ytxt =

1
3βyµxT

3 + βyΣtsxT
5/2 +

¡
1
2x0βy +

1
2µxµy +

1
2µxβy

¢
T 2+¡

µxΣtuy + µyΣsx
¢
T 3/2+

¡
x0µy +

1
2x0βy +

1
2µxµy +

1
6µxβy +Σsxuy

¢
T+x0ΣuyT

1/2

For DGP A3.PT
t=1 yt =

1
2

¡
βy +G2y

¢
T 2+

h
1
2βy +

PM
i=1 θi(1− λi) +

1
2

PM
i=1 γi(1− λi) + µy

i
T

+ΣuyT
1/2PT

t=1 y
2
t =

¡
1
3β

2
y +

1
3G3y +G4y

¢
T 3 +O(T 2)
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PT
t=1 tyt =

¡
1
3βy +

1
6G1y

¢
T 3 +O(T 2)PT

t=1 ytxt = µx
¡
1
3βy +

1
6G1y

¢
T 3 +

³
βyΣtsx +

PMy

i=1 γiΣts1sx

´
T 5/2 +O(T 2)

with

Σuy = T−1/2
PT

t=1 uyt
Σtuy = T−3/2

PT
t=1 tuyt

Σu2y = T−1
PT

t=1 u
2
yt

Σsx = T−3/2
PT

t=1 Sxt
Σs2x = T−2

PT
t=1 S

2
xt

Σtsx = T−5/2
PT

t=1 tSxt
Σsxuy = T−1

PT
t=1 Sxtuyt

Σts1sx = T−5/2
³PT

t=Tb+1
tSxt − λi

PT
t=Tb+1

Sxt

´
(For DGP Bi, i = 1, 2, 3, simply invert the roles of x and y). Using these expres-
sions, Mathematica computes the limiting distribution of the parameter vector
by factoring out (X 0X)−1X 0y in powers of the sample size. In this way, the
orders in probability can be determined, and the limiting expression obtained,
by retaining only the asymptotically relevant terms, upon a suitable normaliza-
tion. The expressions presented in the theorems result from the factorization of
these limits. The proof of theorems 2A and 2B follows the same steps.

Definitions. We make notational economies by writing the various stochastic
processes without the argument. Integrals are understood to be taken over the
interval [0, 1], and with respect to Lebesgue measure, unless otherwise indicated.
Thus, we use, for instance, Wz,

R
Wz, and

R
rWz in place ofWz(r),

R 1
0
Wz(r)dr,

and
R 1
0
rWz(r)dr, where Wz(r) is the standard Wiener process on r ∈ [0, 1].

For z = x, y,

N1 =
R
W 2

x − 2
R
rWx

R
Wx

N2z = 2
R
rWz −

R
Wz

N3z = 6
R
rWz − 4

R
Wz

N4x =
R
WxdWy +N3xWy(1)− 6N2x

¡
Wy (1)−

R
Wy

¢
N4y =

R
WydWx +N3yWx(1)− 6N2y

¡
Wx (1)−

R
Wx

¢
D1 =

R
W 2

x −
¡R

Wx

¢2
D2z =

R
W 2

z − 12
R
rWz

¡R
rWz −

R
Wz

¢
− 4

¡R
Wz

¢2
D3 = 4

R
W 2

x − 12
¡R

rWx

¢
2

G1z =
PMz

i=1 γiz(1− λiz)
2(λiz + 2)

G2z =
PMz

i=1 γiz(1− λiz)
2

G3z =
PMz

i=1 γ
2
iz(1− λiz)

3
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G4z =
PMz−1

i=1

PMz

j=i+1 γizγjz
£
2
3(1− λu(i,j))

3 + λd(i,j)(1− λu(i,j))
2
¤

G5z =
PMz

i=1 γiz
R 1
λiz
(r − λiz)Wz

G6z =
1
3G3z −G1z

¡
1
3G1z −G2z

¢
+ 2G4z −G22z

V1x =
1
12

¡
1
3G3x −

1
12G

2
1x + 2G4x

¢
V2x =

¡
− 1
24G2xG1x +

1
12G3x +

1
2G4x

¢
V3x =

1
4

¡
1
4G

2
2x − 1

3G3x − 2G4x
¢

V4z =
1
12

¡
G2z − 1

2G1z
¢

V5z =
1
24 (2G1z − 3G2z)

σu(A3) = 2G1yG5yN2x −G25y +D2x

¡
2G4y +

1
3G3y

¢
− 1

4G
2
2yD3 − 1

3G
2
1yD1

−G2yG5yN3x +G2yG1yN1

σu(B3) =
R
Wy

¡
V2x

R
rWy − V1x

R
Wy

¢
− 1

48

¡
G25x +G6x

R
W 2

y

¢
+ V3x

¡R
rWy

¢2
+G5x

¡
V4x

R
Wy − V5x

R
rWy

¢
λu(i,j) = max(λz,i, λz,j), i, j = 1, 2, ...,Mz

λl(i,j) = min(λz,i, λz,j)

λd(i,j) = λu(i,j) − λl(i,j)

Table A1
DGP s, regression models and orders in probability of statistics

Process for y
Process for x

Regression bδ tδ

I(1)
I(0) + trend

yt = α+ δxt + ut
xt = α+ δyt + ut
yt = α+ βt+ δxt + ut
xt = α+ βt+ δyt + ut

Op(T
−1/2)

Op(T
1/2)

Op(1)
Op(T )

Op(T
1/2)

Op(T
1/2)

Op(1)
Op(1)

I(1) + drift
I(0) + trend

yt = α+ δxt + ut
xt = α+ δyt + ut
yt = α+ βt+ δxt + ut
xt = α+ βt+ δyt + ut

Op(1)
Op(1)
Op(1)
Op(T )

Op(T )
Op(T )
Op(1)
Op(1)

I(1) + drift
I(0) + trend

+breaks

yt = α+ δxt + ut
xt = α+ δyt + ut
yt = α+ βt+ δxt + ut
xt = α+ βt+ δyt + ut

Op(1)
Op(1)
Op(T

−1/2)
Op(T

1/2)

Op(T
1/2)

Op(T
1/2)

Op(T
1/2)

Op(T
1/2)
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