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Abstract

Balanced (exponential) growth cannot be generalized to a concept which would

not require knife-edge conditions to be imposed on dynamic models. Already the

assumption that a solution to a dynamical system (i.e. time path of an economy)

satisfies a given functional regularity (e.g. quasi-arithmetic, logistic, etc.) imposes

at least one knife-edge assumption on the considered model. Furthermore, it is

always possible to find divergent and qualitative changes in dynamic behavior of the

model – strong enough to invalidate its long-run predictions – if a certain parameter

is infinitesimally manipulated.

Keywords and Phrases: knife-edge condition, balanced growth, regular growth,

bifurcation, growth model, long-run dynamics

JEL Classification Numbers: C62, O40, O41
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Non-technical summary

on the assumed parameter values and/or functional forms in the model. Thus, if

the model is constructed by “reverse engineering”, i.e. designed to fit empirically

observed macro-scale regularities, knife-edge conditions are inevitable. In other

words: if we start out with some empirical growth regularity which we would like

to be reproduced as an equilibrium outcome of some model, that model would have

to be so specific that a slightest deviation from the required functional form, if

sufficiently smartly designed, would completely ruin its predictions.

7

Non-technical summary

In the history of modeling growth regularities, the first notice that balanced growth

requires models to rely on restrictive assumptions is probably due to Uzawa (1961).

His steady-state growth theorem indicates that for a simple neoclassical model to

deliver balanced growth, the production function must be Cobb-Douglas or technical

change must be purely labor-augmenting.

Another milestone in the development of this line of discussion is the “linearity

critique” of endogenous growth models (Jones, 2005a). The crux of this argument

is that if the vital growth-driving linearity (a knife-edge assumption) is relaxed,

exponential growth ceases to be obtained unless exponential population growth is

additionally assumed. Exponential population growth is, however, just another

knife-edge assumption. Otherwise, growth rates gradually fall to zero with time.

The linearity critique has been extended to allow for cross-equation parameter

restrictions in multi-sector growth models by Li (2000) and Christiaans (2004). Re-

cently, a general argument that balanced growth requires knife-edge conditions to

be imposed on growth models has been formulated and proved by Growiec (2007a).

Given this background, the primary objective of the current paper is to show

that balanced (exponential) growth cannot be generalized to a concept which would

not require knife-edge conditions to be imposed on growth models. Indeed, making

the assumption that a solution to a dynamical system (i.e. the time path of the

economy) satisfies a given (non-trivial and sufficiently smooth) functional regularity

necessarily imposes at least one knife-edge assumption on the considered model. It

is true regardless of the type of regularity we would like to impose; what matters is

that the presumed functional form must be given in advance.

The second substantive result of this paper is a proof that it is always possible to

extend the formulation of a given model in a way that infinite divergence in results

appears over the long run if a certain parameter is infinitesimally manipulated.

Furthermore, if the given model predicts unbounded growth, qualitative changes in

dynamic behavior of the model in response to infinitesimal shifts in that parameter

are also necessarily observed and infinite divergence follows already in finite time.

Hence, this paper has shown that whatever type of long-run growth regularity is

to be reproduced by the model (it may be arbitrarily general, allowing an arbitrary

number of free parameters), one has to impose some specific knife-edge restrictions
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1

There are, in principle, two ways of dealing with the problem of knife-edge as-

sumptions in growth models. First, one may stick to the BGP requirement and try

to find growth-driving knife-edge conditions of form which is most plausible empiri-

cally. This path has been followed, among others, by Jones (2003) who judged that a

linear equation of population growth is the most plausible one and proceeded to build

a semi-endogenous growth model with endogenous fertility.1 A similar approach has

been taken by Connolly and Peretto (2003). Furthermore, recent empirical evidence

shows that it could also be plausible that, even more so than in the population

equation, the crucial knife-edge condition should be placed in the knowledge pro-

duction function, following the Schumpeterian formulation (Ha and Howitt, 2007;

Madsen, 2008). In the light of these results, Schumpeterian R&D-based growth

models provide an accurate representation of the growth process, and the knife-edge

assumptions they make are (at least approximately) empirically relevant.

The apparent second way of dealing with knife-edge assumptions in growth mod-

els is to generalize the concept of exponential growth to allow more general and flex-

ible forms of temporal evolution of variables. Perhaps the most prominent idea in

this field is the concept of regular (quasi-arithmetic, less-than-exponential) growth.

This idea, put forward by Mitra (1983) and developed by Asheim et al. (2007) and

Groth, Koch, and Steger (2008), will be discussed in more detail in the following

sections.

One of the statements made in works dealing with regular growth is that gener-

alizing exponential growth helps get rid of knife-edge assumptions. This is not true.

As we shall see shortly, such step can only change the type of knife-edge assumptions

imposed on the model. Of course, this alone could be a significant development since

the new knife-edge assumptions may be markedly more plausible empirically.2 Ex-

tending the concept of exponential growth cannot eliminate the need for knife-edge

assumptions, however, no matter how many consecutive generalizations are applied.

1Solow (2003) casts doubt on the Jones’ (2003) bon-mot : “it is a biological fact of nature that
people reproduce in proportion to their number”. He writes: “I am doubtful about this, for two
reasons. The first is that birth rates can and probably do depend on population size, and that is a
nonlinearity. Fertility is surely a social phenomenon in rich societies. (...) Furthermore, there are
various environmental and social factors that lead to logistic curves.”

2Generalizing exponential growth may also help eliminate some of the required knife-edge
conditions if the original formulation featured multiple ones.
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1 Introduction

One of the aspects present in the debate on sources and limitations of long-run

growth is the prevalence of knife-edge conditions in certain classes of growth models.

According to Uzawa (1961), technical change must be purely labor-augmenting in

neoclassical growth models if balanced growth is to be obtained. Much more recently,

the fact that endogenous growth models rely on linear differential equations for the

existence of a balanced growth path (BGP) has sparked the “linearity critique” (cf.

Jones, 2005a), according to which there is no a priori reason to assume that in a

given equation of form:

Ẋ = αXφ, (1)

the parameter φ would be exactly equal to 1, guaranteeing the existence of a BGP.

Indeed, sufficiently small deviations from φ = 1 will never be rejected on purely

statistical premises, no matter what type of real-world data is used in the empirical

work. But it is the exact linearity of (1), or purely labor-augmenting technical

change in the case of neoclassical growth models, which is conducive to balanced

(exponential) growth.

This argument was further developed by Li (2000), Christiaans (2004), and

Growiec (2007a), eventually indicating that in fact, a generalized version of the

linearity critique holds for any growth model which is capable of generating expo-

nential growth: it is the assumption of exponential growth itself which gives rise

to knife-edge requirements. In the current paper, we provide a significant gener-

alization of this result: we demonstrate that knife-edge conditions are necessary if

any type of (sufficiently smooth) pre-determined growth regularity is going to be

derived. We also add a further amplification of this finding by proving that even in-

finitesimal departures from the benchmark parametrization of a given growth model

– if sufficiently smartly designed – could result in qualitatively different, divergent

dynamics of the model, thereby ruining the pre-defined long-run growth regularity.

Let us clarify the conceptual base from the beginning. Throughout the paper,

we shall use the following definition (cf. Growiec, 2007a).

Definition 1 A knife-edge condition is a condition imposed on parameter values

such that the set of values satisfying this condition has an empty interior in the

space of all possible values.

8
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Furthermore, if the given model predicts unbounded growth, qualitative changes in

dynamic behavior of the model in response to infinitesimal shifts in that parameter

are also necessarily observed and infinite divergence follows already in finite time.

One well-known example of such unstable and bifurcative behavior is the one

of equation (1): if φ > 1, X diverges to infinity in finite time (no matter how

tiny the difference between φ and 1 is); if φ < 1, however, then growth is less-

than-exponential and growth rates gradually fall down to zero.4 Only for φ = 1

can balanced growth be sustained. In the light of our results, however, exponential

growth is not special at all in giving rise to so enormous changes in the dynamic

behavior of the model when a certain parameter is infinitesimally manipulated. This

in fact happens for all possible functional forms of the considered model, as long as

it predicts unbounded growth. Moreover, these changes are generically qualitative,

giving rise to bifurcations in the modes of dynamic behavior.

All relevant theorems will be proven in Section 2. In Section 3 we will refer to

regular, less-than-exponential growth as an important application of the theorems.

We will also generalize that concept, proposing a specification which nests regular

3By “sufficient smoothness” of a functional regularity we generally mean local Lipschitz conti-
nuity in the vicinity of zero. This condition is sufficient for our theorems to hold, but there may
also exist functional forms which do not have this property, but for which the theorems hold as
well.

4The equation Ẋ = αXφ with φ < 1 gives rise to regular (quasi-arithmetic) growth as discussed
e.g. by Groth, Koch, and Steger (2008). As we shall see shortly, regular growth is subject to such
bifurcative behavior as well.
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2

growth as a special case. We will then show how to extend this procedure ad

infinitum, allowing ever larger classes of functions but never getting rid of knife-

edge assumptions. We will also discuss the important cases of logistic growth as

well as more-than-exponential growth. Section 4 concludes with a discussion of our

results and their methodological consequences for modeling long-run growth.

2 The theorems

This section is devoted to proving the principal results of this paper. We shall first

show that if a given dynamic model is supposed to satisfy a predefined growth regu-

larity, it must contain at least one knife-edge condition. Then, we will show why such

knife-edge conditions should always be associated with instabilities and bifurcations

once manipulations in model parameters are allowed, even if these manipulations

were arbitrarily small.

2.1 The inevitability of knife-edge conditions in growth mod-

els

Let us consider a very general form of a continuous-time model of economic growth.

Its dynamics are ruled by a system of autonomous differential equations of order m:

F (X, Ẋ, ..., X(m)) = 0, X(0), Ẋ(0), ..., X(m−1)(0) given. (2)

By X = (X1, X2, ..., Xn) we denote a vector of n state variables. Each i-th variable

Xi is assumed to be at leastm times continuously differentiable with respect to time.

By Ẋ = X(1) we denote a vector of Xi’s first order time derivatives, by X(p) a vector

of their p-th time derivatives, and by X̂ = Ẋ/X a vector of their growth rates.5 It

is assumed that all Xi’s are strictly positive; m and n are arbitrary positive integers.

It is also assumed that F ∈ C1(R(m+1)n,Rn). We shall concentrate on autonomous

differential equations only, since it is natural for economists to look for general laws

that are valid irrespective of time. We assume that all solutions to (2) are well

defined for all t ≥ 0.
5Provided that X > 0, the vector X̂ is also a vector of their first order log-time derivatives.

The definition of X̂ which we consider here is however more general since it applies to negative
X’s as well. In fact, we will frequently refer to negative X’s in this paper.
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A further remark is that in (2), we ignore control (choice, decision) variables.

Although these are vital ingredients of economic models which include optimization

– as most contemporary growth models do – they can be ruled out from present

considerations, since we are interested in the long-run dynamics only.

We shall also pose another function, G ∈ C1(R(m+1)n,Rn), capturing the prede-

fined growth regularity. Precisely, the condition G(X, Ẋ, ..., X(m)) = 0 is the partic-

ular regularity imposed on the solution {X(t)}∞t=0 to the model (2). We shall assume

that G is locally Lipschitz continuous for all arguments (X, Ẋ, ..., X(m)) satisfying

the equality G(X, Ẋ, ..., X(m)) = 0.

Throughout the analysis, we will use the standard supremum norm on C1(R(m+1)n,Rn),

defined as ||F ||C1(R(m+1)n,Rn) = ||F ||∞+||DF ||∞ = supY ∈R(m+1)n ||F (Y )||+supY ∈R(m+1)n

||DF (Y )||. The vector norm ||F (Y )|| could in principle be any norm defined on Rn;

analogously, ||DF (Y )|| could be any matrix norm defined on the space of n×(m+1)n
matrices of real numbers.

Under the above assumptions, the following theorem holds.

Theorem 1 (The inevitability of knife-edge conditions in growth models)

The set F of functions F ∈ C1(R(m+1)n,Rn) such that G(X(t), Ẋ(t), ..., X(m)(t)) = 0

for some solution {X(t)}∞t=0 to F (X, Ẋ, ..., X(m)) = 0 has an empty interior in

C1(R(m+1)n,Rn).

Proof. Let {X(t)}∞t=0 solve the system of differential equations: G(X, Ẋ, ..., X(m)) =

0. Since G is locally Lipschitz continuous at X(t), Ẋ(t), ..., X(m)(t), we know that

such a time path exists and is locally unique. Since it is locally unique for all t ≥ 0,
it is also globally unique.

Since this time path {X(t)}∞t=0 is also a particular solution of the considered

growth model, we obtain:

Φ(t) ≡ F (X(t), Ẋ(t), ..., X(m)(t)) = 0, ∀t ≥ 0. (3)

To show that the set of functions F satisfying (3) has an empty interior, consider

a family of functions Fε such that Fε(X, Ẋ, ..., X(m)) = F (X, Ẋ, ..., X(m)) + εe1 for

ε > 0. Of course, ||Fε − F ||C1(R(m+1)n,Rn) = ε → 0 as ε → 0. On the other hand, for

all ε > 0,

Φε(t) ≡ Fε(X(t), Ẋ(t), ..., X
(m)(t)) = εe1 = 0, ∀t ≥ 0. (4)
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Thus, Fε /∈ F for all ε > 0 so F has an empty interior. 
When put in plain English, Theorem 1 states that if one requires the solution

of her model to satisfy a predefined functional regularity, then one must impose

some knife-edge restriction on her model, regardless of the type of regularity.6 The

parameter values and functional forms assumed in the model must satisfy this knife-

edge condition for the predefined growth regularity to hold.

Please note that the restriction that F and G are both functions of X’s up to

their m-th derivatives is not restrictive: if F would take as arguments p derivatives

of X, and G would take r, one could simply define m = max{p, r} and the same
proof would follow.

Theorem 1 is a vast generalization of the main result presented in Growiec

(2007a), i.e. that modeling exponential growth necessarily requires imposing knife-

edge conditions on growth models. Indeed, one of the possible growth regularities

captured by this theorem is that of exponential growth, i.e. G(X, Ẋ, Ẍ) =
˙̂

X =

Ẍ
X
−


Ẋ
X

2

= 0. Hence, from Theorem 1 it follows that if a model is supposed to

deliver exponential (balanced) growth, it must contain at least one knife-edge con-

dition. With this paper we are able to go much further, however, and prove that

even a substantial generalization of the notion of presumed growth regularity can-

not change the fundamental fact that knife-edge conditions are necessary in growth

models.

2.2 Instability and bifurcations

One of the aspects of the debate on knife-edge conditions in growth economics is

their relation to bifurcations and instabilities. As is apparent in a number of specific

examples discussed in the literature (e.g. Li, 2000; Jones, 2001, 2003, 2005a), in the

long run (that is, as t→∞), even smallest deviations in values of certain (appropri-
ately chosen) exogenous parameters may give rise to qualitatively different modes

of dynamic behavior of the model, completely ruining the presupposed growth regu-

6Our argument is not completely general. Please note that the proof of Theorem 1 re-
quires the regularity G ∈ C1(R(m+1)n,Rn) to be locally Lipschitz continuous for all arguments
(X, Ẋ, ..., X(m)) satisfying the equality G(X, Ẋ, ..., X(m)) = 0. Local Lipschitz continuity is a
sufficient condition for the theorem to hold, but it may also hold for some particular classes of G

functions which do not have this property.
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larities. This finding was used in this literature to indicate how fragile the dynamics

of certain classes of models are, and on which particular parametric assumptions

these models hinge for the ability to generate balanced growth. Divergent dynamics

and bifurcations appear not only in the models discussed in these contributions,

however; neither is their occurence limited to models of balanced growth. In this

subsection we will actually prove, thereby significantly amplifying Theorem 1, that

in fact all models which are built in order to replicate a predefined long-run growth

regularity, give rise to bifurcations with respect to certain parameters.7

Let us first discuss the following complementary theorem: in the long run, even

tiniest changes in parameter values might be infinitely magnified. This does not

imply qualitative differences in the model behavior yet, but signifies that those dif-

ferences are quantitatively divergent. Thus, it strongly indicates the fragility of

maintaining any presupposed growth regularity over the long run if model parame-

ters are subject to (even arbitrarily small) disturbances.

Theorem 2 (Divergence) Let {X(t)}∞t=0 be a time path of a dynamic model econ-

omy summarized by (2). Assume that either there exists i = 1, 2, ..., n such that

Xi(t) → ∞ or there exists i = 1, 2, ..., n such that Xi(t) → X̄i. Under these as-

sumptions, there exists a more general class of functions Fφ(X, Ẋ, ..., X(m)), Fφ ∈
C1(R(m+1)n,Rn), such that Fφ = F for φ = 0, but for all φ = 0,

sup
t≥0
||Fφ(X(t), Ẋ(t), ..., X

(m)(t))− F (X(t), Ẋ(t), ..., X(m)(t))|| =

= sup
t≥0
||Fφ(X(t), Ẋ(t), ..., X

(m)(t))|| = +∞. (5)

Proof. In case Xi(t)→∞ with t→∞ for some i = 1, 2, ..., n, it suffices to take

Fφ(X, Ẋ, ..., X(m)) = F (X, Ẋ, ..., X(m)) + φX.

Clearly, Fφ = F for φ = 0, but for all φ = 0, supt≥0 ||Fφ(X(t), Ẋ(t), ..., X
(m)(t))|| =

supt≥0 φ||X|| = +∞.

If however there exists a finite-valued vector X̃ > 0 such that Xi(t) ≤ X̃i for all

t ≥ 0 and i = 1, 2, ...n, and ∃(i = 1, 2, ..., n)Xi(t)→ X̄i then one can use

Fφ(X, Ẋ, ..., X(m)) = F (X, Ẋ, ..., X(m)) +
φ

|X̄p −X|
7A special case of this result has been proven and illustrated in phase diagrams by Growiec

(2007b).
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(m)(t))− F (X(t), Ẋ(t), ..., X(m)(t))|| =

= sup
t≥0
||Fφ(X(t), Ẋ(t), ..., X
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Clearly, Fφ = F for φ = 0, but for all φ = 0, supt≥0 ||Fφ(X(t), Ẋ(t), ..., X
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φ

|X̄p −X|
7A special case of this result has been proven and illustrated in phase diagrams by Growiec

(2007b).

14

where p = argmini=1,2,...,n X̄i among those variables which converge to steady state

values. Then Fφ = F for φ = 0 but for all φ = 0, supt≥0 ||Fφ(X(t), Ẋ(t), ..., X
(m)(t))|| =

supt≥0 φ|| 1
|X̄p−X| || = +∞. 

It follows that in the long run, no matter how tiny φ = 0 is, it is sufficiently

large to generate infinite divergence of the manipulated model from the benchmark

model with φ = 0, as long as the benchmark model implies unbounded growth or

convergence to a steady state.

Theorem 2 does not imply qualitative changes in the behavior of variables be-

cause infinite divergence predicted by this theorem could also be generated with

quantitative differences only, e.g. by two cases of exponential growth, albeit with

different growth rates.

The changes in model dynamics following infinitesimal manipulations in values of

certain parameters are indeed qualitative, though. In fact, all knife-edge assumptions

in growth models should be associated with certain bifurcations. We find that if the

original model, specified as (2), is able to generate unbounded growth – that is, to

have ||X(t)|| → ∞ as t → ∞ which makes at least one economic variable grow

unboundedly – then by infinitesimal manipulations, one can turn her model either

into (i) a model which implies convergence to a bounded set, or (ii) a model which

generates explosive growth rendering infinite levels of variables in finite time. This

finding is stated formally as the following Theorem:8

Theorem 3 (Bifurcations) Let {X(t)}∞t=0 be a time path of a dynamic model

economy summarized by (2). Assume further that there exists i = 1, 2, ..., n such

that Xi(t) → ∞. Under these assumptions, there exists a more general class of

functions Fφ(X, Ẋ, ..., X(m)), Fφ ∈ C1(R(m+1)n,Rn) such that Fφ = F for φ = 0,

such that there exists a solution for the equality Fφ(X, Ẋ, ..., X(m)) = 0 in the time

domain t ∈ [0, Tφ) with Tφ > 0 and possibly Tφ = +∞ – which we denote {Xφ(t)}
Tφ
t=0

– and finally, such that for all φ = 0:

∃(0 < Tφ < +∞) ∃(i = 1, 2, ..., n) lim
t→Tφ

Xφ,i(t) = +∞ for φ > 0,

∃(X̄φ ∈ Rn) ∀(t > 0) 0 < Xφ(t) < X̄φ for φ < 0.

8Please note that the theorem is stated in continuous time. It cannot be replicated directly in
discrete time because divergence to infinity in finite time is not well-defined in discrete time.
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domain t ∈ [0, Tφ) with Tφ > 0 and possibly Tφ = +∞ – which we denote {Xφ(t)}
Tφ
t=0

– and finally, such that for all φ = 0:

∃(0 < Tφ < +∞) ∃(i = 1, 2, ..., n) lim
t→Tφ

Xφ,i(t) = +∞ for φ > 0,

∃(X̄φ ∈ Rn) ∀(t > 0) 0 < Xφ(t) < X̄φ for φ < 0.

8Please note that the theorem is stated in continuous time. It cannot be replicated directly in
discrete time because divergence to infinity in finite time is not well-defined in discrete time.

15

where p = argmini=1,2,...,n X̄i among those variables which converge to steady state

values. Then Fφ = F for φ = 0 but for all φ = 0, supt≥0 ||Fφ(X(t), Ẋ(t), ..., X
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Proof. It is sufficient to consider the case m = 1 because for m > 1, one could

use the theorem fundamental to ordinary differential equations (cf. Arnold, 1975),

substitute Yi = X(i) for all i = 1, 2, ...,m − 1, arrange these variables in a common
vector YΣ ≡ [X, Y1, ..., Ym−1]

 and write the resultant system of equations:

Ẋ = Y1,

Ẏ1 = Y2,
...

F (X, Y1, ..., Ym−1, Ẏm−1) = 0

as FΣ(YΣ, ẎΣ) = 0. Thus, sticking to the original notation, we can consider the

simplest case of F (X, Ẋ) = 0 with X(0) given without any loss of generality.

Now, using the Implicit Function Theorem and the assumptions that (i) a solu-

tion {X(t)}∞t=0 to F (X, Ẋ) = 0 exists and (ii) F is continuously differentiable, we

find that an explicit form Ẋ = Φ(X) exists almost everywhere. Let us denote the

(dense) set of points where such form exists as A ⊂ Rn
+.

We will now posit a function Fφ(X, Ẋ) such that for all X ∈ A, the equality
Fφ(X, Ẋ) = 0 is equivalent to:

Ẋ = Φ(X) + φXψ, ψ > 1,

and such that Fφ = F for all X /∈ A. The solution to Fφ(X, Ẋ) = 0 will be denoted

as {Xφ(t)}.
Clearly, Fφ = F if φ = 0.

If φ > 0 then for all i = 1, 2, ..., n, it holds that 0 < Φi(X) < φXψ
i provided that

Xi is sufficiently large (otherwise the benchmark model would imply either explosive

dynamics or bounded dynamics, neither of which is allowed). Let us pick p such

that p = argmaxi=1,2,...,n Xφ,i. From the model specification we are sure that this

double inequality will hold for some coordinate of Xφ at some time t0 > 0. Then

from t0 on, we have that

Xφ,p(t) >
�
(1− ψ)φt+Xφ,p(0)

1−ψ
 1

1−ψ , (6)

where the right-hand side of (6) is the solution to the differential equation Ẋφ,p =

φXψ
φ,p. Since ψ > 1, from the RHS we find that Xφ,p will reach infinity at or before
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as FΣ(YΣ, ẎΣ) = 0. Thus, sticking to the original notation, we can consider the
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Tmax,φ =

Xφ,p(0)1−ψ

φ(ψ−1)
. In conclusion, ∃(0 < Tφ < Tmax,φ) limt→Tφ Xp(t) = +∞ for all

φ > 0.

If φ < 0 then for all i = 1, 2, ..., n, Ẋφ,i < 0 for Xφ,i sufficiently large (otherwise

the original model would imply explosive dynamics which is not allowed). Since also

Xφ,i > 0 for all i by definition, it follows that for all i, Xφ,i must be confined to a

bounded interval in R+. 

Intuitively speaking, the idea behind Theorem 3 is to construct two“φ-variations”

of the benchmark model which nevertheless give rise to qualitatively different modes

of dynamic behavior. The benchmark model is the one with φ = 0 which gives rise

to the predefined growth regularity. The first type of variation has φ > 0 and implies

explosive growth yielding infinite X’s in finite (arbitrarily short) time. The second

type of variation has φ < 0 and implies convergence to a bounded set – possibly

(but not necessarily) a steady state.

Please note that Theorem 3 does not apply to models whose benchmark formu-

lations already imply bounded dynamics such as convergence to a steady state.

Let us now present one typical application of Theorem 3: one of any growth pat-

tern summarized by Ẋ = Q(X), implying that X(t)→ ∞ as t → ∞. Provided that
we have ruled out explosions to infinity in finite time (that is, finite-time singularities,

cf. Johansen and Sornette, 2001), adding a quadratic term as in Ẋ = Q(X) + φX2

will then for sure guarantee that (i) there will be convergence to a bounded set in-

stead of unbounded growth whenever φ < 0, and that (ii) there will be a finite-time

explosion whenever φ > 0. We are thus observing a bifurcation around φ = 0.

Examples like this can be easily multiplied: for example, in Section 3.1 we will

present an interesting bifurcation appearing in the case of regular (quasi-arithmetic)

growth. It turns out that exponential growth generated by linear differential equa-

tions is thus not special at all in giving rise to spectacular explosions or growth de-

cays if a smallest, but sufficiently smartly designed, nonlinearity is added (cf. Jones,

2005a). In fact, the same result follows for models capturing any other predefined

(sufficiently smooth) growth regularity.
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tern summarized by Ẋ = Q(X), implying that X(t)→ ∞ as t → ∞. Provided that
we have ruled out explosions to infinity in finite time (that is, finite-time singularities,

cf. Johansen and Sornette, 2001), adding a quadratic term as in Ẋ = Q(X) + φX2
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3 Applications of the theorems

All special cases included below can be summarized in short corollaries to Theorem

1: obviously, the knife-edge character of each particular type of growth regularity

follows directly from that theorem. We feel, however, that since the economic role of

each of this examples is potentially large, they should be elaborated in more detail.

We shall first limit the scope of our analysis to a case of a single state variable.

This restriction will be relaxed afterwards.

3.1 Regular growth

Regular (quasi-arithmetic) growth is defined (e.g. Asheim et al., 2007; Groth, Koch,

and Steger, 2008) as a time path of the economy, such that a variable x satisfies the

following differential equation:9

ˆ̂x = −βx̂, ∀t ≥ 0. (7)

The parameter β ≥ 0 is called the damping coefficient since it indicates the rate of
damping in the growth process. The above specification nests as special cases: (i)

exponential growth (in the limit case of no damping, β = 0), (ii) arithmetic growth

(β = 1) as well as (iii) stagnation, x ≡ const (β = +∞).
Simple calculus shows that the solution to (7) is given by

x(t) = x(0)(1 + x̂(0)βt)1/β. (8)

The concept of regular growth is certainly an important concept worth further

investigation and development: apart from the notable field of environmental and

resource economics (e.g. Mitra, 1983; Asheim et al., 2007) and the recent contribu-

tion of Groth, Koch, and Steger (2008), very little has been said yet about economies

which exhibit less-than-exponential growth. Yet, potential applications of this reg-

ularity include, among others, such important fields in growth theory as (i) R&D-

based semi-endogenous growth models where the ideas accumulation function takes

the form discussed by Jones (2005a), (ii) growth models with learning-by-doing, and

(iii) models with embodied investment-specific technological change.10

9Throughout the remainder of the paper, we will use the notation ˆ̂x = ˙̂x
x̂ = ẍ

ẋ −
ẋ
x .

10See Groth, Koch, and Steger (2008) for a precise elaboration of these three cases.
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To see that, despite the claims present in some works, the requirement of regular

growth imposes knife-edge restrictions on the presumed model, it is enough to apply

Theorem 1 to G(x, ẋ, ẍ) = ˆ̂x+ βx̂ = ẍ
ẋ
+ (β − 1) ẋ

x
.

Alternatively, one could also use the function ϕR : R+ → R+ defined as

ϕR(x) = c1 exp
�
c2x

β

, c1, c2 > 0. (9)

The function ϕR is continuously differentiable, strictly increasing, and such that

ϕR(x)→∞ when x→∞.
The trick inherent in using ϕR is that when y = ϕR(x), then x follows reg-

ular growth with a coefficient β if and only if y grows exponentially at a rate

g = c2x(0)
ββx̂(0). ϕR is thus a smooth transformation of regular growth paths

into exponential growth paths. The smoothness of ϕR implies that the knife-edge

character of exponential growth in y is automatically inherited by regular growth in

x. Any model which gives rise to regular growth with a coefficient β must involve

at least one knife-edge condition.

Furthermore, in the case of regular (quasi-arithmetic) growth with ẋ = αx1−β,

β > 0, we observe an interesting bifurcative property, predicted by Theorem 3.

Obviously, in this example it is obtained that x(t) → ∞ as t → ∞, but if one
however adds constant-rate depreciation to this picture, so that ẋ = αx1−β + φx

with φ < 0, she gets that x(t) converges to a finite steady state. This result holds

for all φ < 0. On the other hand, if φ > 0 we get a case where growth ceases to be

quasi-arithmetic but becomes instead exponential in the limit; in result, dynamics

à la Jones and Manuelli (1990) follow. Clearly, the depreciation rate of factor x,

denoted as (−φ), or equivalently, the constant-returns-to-scale production rate φ, is

a source of bifurcation here: the dynamic behavior of x(t) is qualitatively different

in the case φ = 0 compared to the cases where φ > 0 or φ < 0.

It must also be noted that β does not have to be fixed a priori for our results to

hold. In fact, the regular growth pattern has the knife-edge property regardless of

whether we know β beforehand or this parameter is free. To see this, differentiate

(7) sidewise and obtain
ˆ̂
x̂ = ˆ̂x. (10)

This is, of course, an equality restriction of form G(x, ẋ, ẍ, x(3)) = 0. The only

difference between (7) and (10) is that (10) is formulated at the level of third instead

of second derivatives.
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Equation (10) indicates the way in which regular growth may be generalized. In

the following subsection, we shall replace the factor of unity multiplying ˆ̂x on the

right hand side of (10), with an arbitrary parameter φ > 0 and demonstrate that

such a growth regularity has the same knife-edge property despite nesting (10) as

its special case.

3.2 Generalized regular growth

The concept of regular growth can be easily generalized to allow one more degree

of freedom and yet to give rise to equally smooth a growth pattern. The proposed

generalization consists in allowing the parameter φ > 0 in

ˆ̂x = −βx̂φ (11)

to deviate from unity. Obviously, the special case φ = 1 brings us back to regular

growth. Furthermore, if β is not known a priori, equation (11) can be expressed

more generally, at the level of third derivatives, as

ˆ̂
x̂ = φˆ̂x, (12)

thereby generalizing equation (10). Solving (11) for the explicit time path x(t), we

obtain:

x(t) = x(0) exp


(βφt+ x̂(0)−φ)

φ−1
φ

β(φ− 1)
− x̂(0)1−φ

β(φ− 1)


. (13)

Generalized regular growth has been illustrated graphically in Figure 1.

Two qualitatively different cases of dynamic behavior of x are found here. If

φ ≥ 1 then x(t)→∞ as t→∞. If φ < 1, however, then x(t) is uniformly bounded

from above, converging from below to the finite value of x̄:

∀(φ ∈ (0, 1)) lim
t→∞

x(t) = x̄ = x(0) exp


x̂(0)1−φ

β(1− φ)


. (14)

It must be pointed out that if φ < 1 then x(t) is bounded regardless of the value of β.

Hence, the condition φ = 1 assumed in the regular growth case sets up a bifurcation

in the sense that it delineates two cases of qualitatively different behavior of x(t)

(the cases of φ < 1 and φ > 1). This is precisely the bifurcation property of regular

growth announced above.
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Figure 1: Generalized regular growth. Time paths of variables satisfying (11). We

assumed x(0) = x̂(0) = 1 in all cases. Left panel: case β = 0.5 (more-than-

arithmetic growth). Right panel: case β = 4 (less-than-arithmetic growth). Please

note that x(t) is bounded from above if φ < 1. In the current figure, the limiting

values are x̄ ≈ 786 (left panel) and x̄ ≈ 2.3 (right panel).

Equation (11) imposes a growth regularity of form G(x, ẋ, ẍ) = ˆ̂x+ βx̂φ = 0. It

thus places a knife-edge condition on the class of models capable of capturing this

regularity (Theorem 1).

To see the correspondence between generalized regular growth and exponen-

tial growth, one could use the function ϕG : R+ → R+ (case φ > 1) or ϕG :
0, x(0) exp


x̂(0)1−φ

β(1−φ)


→ R+ (case φ < 1), given by the uniform formula:

ϕG(x) = c1 exp

c2(ln(x/C))

φ
φ−1


, c1, c2 > 0, (15)

where C = x(0) exp

− x̂(0)1−φ

(φ−1)β


. The function ϕG is a continuously differentiable

and strictly increasing bijection.11 It is easily found that x grows according to

generalized regular growth with parameters (β, φ) if and only if y = ϕG(x) grows

exponentially at a rate

g = c2βφ


β(φ− 1)

C

 φ
1−φ

. (16)

The smoothness of the transformation ϕG implies that the knife-edge character

of exponential growth in y is inherited by generalized regular growth in x. The knife-
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Figure 1: Generalized regular growth. Time paths of variables satisfying (11). We
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edge property of exponential or regular growth is thus shared by generalized regular

growth as well, even though the current specification is markedly more general.

3.3 Nested specifications

By construction, generalized regular growth nests regular growth which in turn nests

exponential and arithmetic growth as special cases. How come that all these growth

regularities require knife-edge conditions despite the obvious relation of inclusion?

The crucial reason for this outcome is that relaxing a particular knife-edge re-

striction is always a partial solution: it is not about eradicating restrictions but

about pushing them “one level deeper”. In the cases discussed above, this clearly

applied to consecutive derivatives of the imposed growth regularities: for exponen-

tial growth, the second log-derivative12 must be zero (Growiec, 2007a); for regular

growth, the third log-derivative must be equal to the second log-derivative (Eq.

(10)); for generalized regular growth, the fourth log-derivative must be equal to the

third log-derivative, etc. It is easy to invent further generalizations in this man-

ner, involving fifth, sixth, seventh derivatives, etc., so forth ad infinitum. It must

be noted, however, that despite introducing an additional degree of freedom at each

consecutive level of extra generality, some knife-edge condition must still be imposed

on the mapping F in order for the model to deliver a solution which would replicate

the imposed regularity.

One intuition for this result is the following. By generalizing the imposed growth

regularity, we capture one more dimension of the parameter space. The whole

parameter space is, however, infinite dimensional, so its entirety cannot be covered

by any iterative procedure of this sort.

3.4 Logistic growth

Set aside exponential growth and stagnation, the logistic growth pattern would prob-

ably be the one most often mentioned in the literature. The concept comes from

12Recall that dubbing X̂ a “log-derivative” is only a convention used for simplicity. The exact
definition of what we call the “log-derivative” here is X̂ = Ẋ/X which applies to both positive
and negative X’s. The exact log-derivative d ln X

dt is equal to X̂ wherever it exists; it is however
well-defined for positive X’s only.
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natural sciences where the simple logistic law is a very accurate tool for describing

growth of natural populations as it incorporates both proportional multiplication

when the population is small and the limiting impact of the finite environmental

carrying capacity when the population is large (Smith, 1974). In economics, logis-

tic laws have been used relatively rarely; the few notable exceptions include Brida,

Mingari Scarpello and Ritelli (2006) as well as Brida and Accinelli (2007) who in-

corporate logistic population laws in the Solow and the Ramsey growth models,

respectively.

Furthermore, in the important class of growth models dealing with the Demo-

graphic Transition and the transition from the Malthusian stagnation regime to the

modern balanced growth regime, population dynamics could be arguably well ap-

proximated by logistic-type curves provided that we assume population to stabilize

asymptotically (see e.g. Jones, 2001).

The logistic law is characterized by

ẋ = Ax(B − x), A,B > 0, with x(0) ∈ (0, B). (17)

It is easily solved as:

x(t) =
B

1 + Ce−At
, with C =

B

x(0)
− 1. (18)

As it was indicated above for the case of generalized regular growth with φ < 1, also

here is the variable x(t) bounded from above: limt→∞ x(t) = B. The parameter B

is thus straightforwardly interpreted as the environmental carrying capacity (or the

level of satiation).

The knife-edge character of logistic growth follows by application of Theorem

1 to (17). There exists however also an intriguing mutual correspondence between

logistic and exponential growth paths. Following the lines of examples presented

above, let us now define a function ϕL : (0, B)→ R+ as:

ϕL(x) = c1


x

B − x

g/A

. (19)

ϕL is continuously differentiable, strictly increasing, and such that ϕ(x)→∞ when

x → B−. It is obtained that x follows logistic growth with coefficients A and B

if and only if y = ϕL(x) grows exponentially at a rate g. The smoothness of ϕL
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implies that the knife-edge character of exponential growth in y is directly inherited

by logistic growth in x. Hence, perhaps a little surprisingly, logistic growth is also

subject to the critique of knife-edge conditions.

3.5 Double exponential growth

It is sometimes counterfactually presumed by economists that if the growth rate of

some variable falls down to zero with time, the variable itself must converge to a

finite constant. The concept of regular growth is a perfect counterexample to such

an assertion. Analogously, there also exists a fallacious belief that, under continuous

time, if the growth rate of a variable explodes to infinity, the variable itself will reach

infinity in finite time (there will be a finite-time singularity). This belief comes as an

extrapolation of the often discussed functional specification (1) with φ > 1, being

the standard quantification of increasing returns to scale. This result is usually

referred to as puzzling, cognitively unattractive, and having empirically implausible

implications (see Solow, 1994). Historical time series of several demographic and

economic variables observed over last two centuries can be fitted by functions leading

to a finite-time singularity with astonishingly good accuracy, though (Johansen and

Sornette, 2001).13

Growth can nevertheless be faster than exponential and yet not lead to finite-

time singularities. One example of such a growth regularity, predicting the growth

rate to diverge to infinity, is the pattern of double exponential growth, summarized

by the differential equation:

ẋ = gx lnx, g > 0, x(0) > 1. (20)

Straightforward integration yields:

x(t) = x(0)e
gt

(21)

which is, of course, well defined for all t ≥ 0, and thus no finite-time singularity

occurs.

By Theorem 1, the growth regularity imposed by (20) gives rise to knife-edge

requirements. This could also be illustrated with the use of the logarithmic function

13Curiously, Johansen and Sornette’s (2001) estimations uniformly indicate that if no transition
to a new dynamic regime occurs, the singularity will take place at 2052± 10 years.
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ϕM : (1,+∞) → R+: ϕM(x) = lnx. Obviously, ϕM is continuously differentiable,

strictly increasing, and such that ϕ(x) → ∞ when x → ∞. Hence, it is obtained
that x follows double exponential growth (with x̂(t) = g lnx(0)egt → ∞ as t → ∞)
if and only if y = ϕM(x) grows exponentially at a rate g. The smoothness of ϕM

implies that the knife-edge character of exponential growth in y is directly inherited

by double exponential growth in x.

As a side remark, we note that by replacing lnx in ϕM by ln(lnx), ln(ln(lnx)),

etc., we can easily generate triple, quadruple, etc. exponential growth paths gener-

ating ever faster growth without implying finite-time singularities, and thus being

an attractive compromise between the functional forms estimated by Johansen and

Sornette (2001) and the common intuition on economic plausibility.

3.6 Multiple variables

The above examples have been, for the sake of clarity, presented in the simplest case

of a single variable x(t). There is, however, no difficulty at all to extend these results

to n variables by putting all x’s in an n-dimensional vector X(t) and applying all

required transformations ϕz, where z ∈ {R,G,L,M}, to the particular coefficients of
the vector, Xi(t). As long as we impose particular growth patterns on each variable

separately and thus rule out inter-equation restrictions, the properties of Y = ϕ(X)

are inherited directly from the properties of each separate coefficient Yi = ϕzi
(Xi).

It is also straightforward to allow different variables Xi to follow different growth

regularities, as long as all these regularities are well defined a priori.

For multi-dimensional regularities with inter-equation restrictions, the method

of specifying smooth transformations ϕi, i = 1, 2, ..., n which we used above does

not work but the knife-edge character of each growth regularity still follows by the

virtue of Theorem 1.

4 Discussion

In the history of modeling growth regularities, the first notice that balanced growth

requires models to rely on restrictive assumptions is probably due to Uzawa (1961).14

14“Growth on the knife edge” is also a well-known property of the Harrod–Domar growth model
(Harrod, 1939; Domar, 1946) which laid the first foundations for modern economic growth theory.
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(Harrod, 1939; Domar, 1946) which laid the first foundations for modern economic growth theory.
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His steady-state growth theorem15 indicates that for a simple neoclassical model to

deliver balanced growth, the production function must be Cobb-Douglas or technical

change must be purely labor-augmenting. The obvious knife-edge character of both

requirements was recently supplemented by theoretical arguments why technical

change could be endogenously purely labor-augmenting in equilibrium (Acemoglu,

2003; Jones, 2005b). These works do not solve the Uzawa’s fundamental problem of

highly restrictive knife-edge conditions, though (cf. Jones, 2005a; Growiec, 2008).16

Another milestone in the development of this line of discussion is the linearity

critique of endogenous growth models (Jones, 2005a). The crux of this argument

is that if the vital growth-driving linearity (a knife-edge assumption) is relaxed,

exponential growth ceases to be obtained unless exponential population growth is

additionally assumed. Exponential population growth is, however, just another

knife-edge assumption. Otherwise, growth rates gradually fall to zero with time.

The linearity critique has been extended to allow for cross-equation parameter

restrictions in multi-sector growth models by Li (2000) and Christiaans (2004). Re-

cently, a general argument that balanced growth requires knife-edge conditions to

be imposed on growth models has been formulated and proved by Growiec (2007a).

One type of conclusion following from this literature is that in order to get rid of

knife-edge conditions, one should generalize the very restrictive concept of balanced

(exponential) growth. We have however shown in this paper that this idea is, in

fact, misguided: whatever number of generalizations of balanced growth (e.g. regular

growth, generalized regular growth; logistic growth, generalized logistic growth, etc.)

is allowed, there will always remain some knife-edge assumption necessary to obtain

the particular growth regularity. Even more worryingly, there will always remain

some exogenous parameter which could not be altered, even by tiniest amounts,

under the threat of blowing the model up, both qualitatively and quantitatively.

Knife-edge conditions (taken in the form of constant marginal returns to physical capital) were not
in the focus of those two important early contributions, though.

15The Uzawa’s steady-state growth theorem has been recently proved again by Schlicht (2006)
who completed the proof by markedly simpler means than Uzawa (1961) did in his original contri-
bution. A discussion of the theorem and both proofs has been provided by Jones and Scrimgeour
(2008).

16The objective of Acemoglu (2003) and Jones (2005b) was, of course, not to get rid of knife-edge
assumptions but to provide sound economic explanations why purely labor-augmenting technical
change could indeed be an equilibrium outcome.

26

His steady-state growth theorem15 indicates that for a simple neoclassical model to

deliver balanced growth, the production function must be Cobb-Douglas or technical

change must be purely labor-augmenting. The obvious knife-edge character of both

requirements was recently supplemented by theoretical arguments why technical

change could be endogenously purely labor-augmenting in equilibrium (Acemoglu,

2003; Jones, 2005b). These works do not solve the Uzawa’s fundamental problem of

highly restrictive knife-edge conditions, though (cf. Jones, 2005a; Growiec, 2008).16

Another milestone in the development of this line of discussion is the linearity

critique of endogenous growth models (Jones, 2005a). The crux of this argument

is that if the vital growth-driving linearity (a knife-edge assumption) is relaxed,

exponential growth ceases to be obtained unless exponential population growth is

additionally assumed. Exponential population growth is, however, just another

knife-edge assumption. Otherwise, growth rates gradually fall to zero with time.

The linearity critique has been extended to allow for cross-equation parameter

restrictions in multi-sector growth models by Li (2000) and Christiaans (2004). Re-

cently, a general argument that balanced growth requires knife-edge conditions to

be imposed on growth models has been formulated and proved by Growiec (2007a).

One type of conclusion following from this literature is that in order to get rid of

knife-edge conditions, one should generalize the very restrictive concept of balanced

(exponential) growth. We have however shown in this paper that this idea is, in

fact, misguided: whatever number of generalizations of balanced growth (e.g. regular

growth, generalized regular growth; logistic growth, generalized logistic growth, etc.)

is allowed, there will always remain some knife-edge assumption necessary to obtain

the particular growth regularity. Even more worryingly, there will always remain

some exogenous parameter which could not be altered, even by tiniest amounts,

under the threat of blowing the model up, both qualitatively and quantitatively.

Knife-edge conditions (taken in the form of constant marginal returns to physical capital) were not
in the focus of those two important early contributions, though.

15The Uzawa’s steady-state growth theorem has been recently proved again by Schlicht (2006)
who completed the proof by markedly simpler means than Uzawa (1961) did in his original contri-
bution. A discussion of the theorem and both proofs has been provided by Jones and Scrimgeour
(2008).

16The objective of Acemoglu (2003) and Jones (2005b) was, of course, not to get rid of knife-edge
assumptions but to provide sound economic explanations why purely labor-augmenting technical
change could indeed be an equilibrium outcome.

26



Discussion

WORKING PAPER No. 68 2�

4

His steady-state growth theorem15 indicates that for a simple neoclassical model to

deliver balanced growth, the production function must be Cobb-Douglas or technical

change must be purely labor-augmenting. The obvious knife-edge character of both

requirements was recently supplemented by theoretical arguments why technical

change could be endogenously purely labor-augmenting in equilibrium (Acemoglu,

2003; Jones, 2005b). These works do not solve the Uzawa’s fundamental problem of

highly restrictive knife-edge conditions, though (cf. Jones, 2005a; Growiec, 2008).16

Another milestone in the development of this line of discussion is the linearity

critique of endogenous growth models (Jones, 2005a). The crux of this argument

is that if the vital growth-driving linearity (a knife-edge assumption) is relaxed,

exponential growth ceases to be obtained unless exponential population growth is

additionally assumed. Exponential population growth is, however, just another

knife-edge assumption. Otherwise, growth rates gradually fall to zero with time.

The linearity critique has been extended to allow for cross-equation parameter

restrictions in multi-sector growth models by Li (2000) and Christiaans (2004). Re-

cently, a general argument that balanced growth requires knife-edge conditions to

be imposed on growth models has been formulated and proved by Growiec (2007a).

One type of conclusion following from this literature is that in order to get rid of

knife-edge conditions, one should generalize the very restrictive concept of balanced

(exponential) growth. We have however shown in this paper that this idea is, in

fact, misguided: whatever number of generalizations of balanced growth (e.g. regular

growth, generalized regular growth; logistic growth, generalized logistic growth, etc.)

is allowed, there will always remain some knife-edge assumption necessary to obtain

the particular growth regularity. Even more worryingly, there will always remain

some exogenous parameter which could not be altered, even by tiniest amounts,

under the threat of blowing the model up, both qualitatively and quantitatively.

Knife-edge conditions (taken in the form of constant marginal returns to physical capital) were not
in the focus of those two important early contributions, though.

15The Uzawa’s steady-state growth theorem has been recently proved again by Schlicht (2006)
who completed the proof by markedly simpler means than Uzawa (1961) did in his original contri-
bution. A discussion of the theorem and both proofs has been provided by Jones and Scrimgeour
(2008).

16The objective of Acemoglu (2003) and Jones (2005b) was, of course, not to get rid of knife-edge
assumptions but to provide sound economic explanations why purely labor-augmenting technical
change could indeed be an equilibrium outcome.

26

In the end of the day, it turns out that the problem of knife-edge conditions in

growth models is, in principle, methodological. This paper has shown that whatever

type of long-run growth regularity is to be reproduced by the model (it may be

arbitrarily general, allowing an arbitrary number of free parameters), one has to im-

pose some specific knife-edge restrictions on the assumed parameter values and/or

functional forms in the model. Thus, if the model is constructed by “reverse engi-

neering”, i.e. designed to fit empirically observed macro-scale regularities, knife-edge

conditions – which are by Theorems 2 and 3 so restrictive that even slightest devi-

ations from them would overturn both qualitative and quantitative features of the

model – are inevitable. In other words: if we start out with some empirical growth

regularity which we would like to be reproduced as an equilibrium outcome of some

model, that model would have to be so specific that a slightest deviation from the

required functional form, if sufficiently smartly designed, would completely ruin its

predictions.

We can think of three possible, mutually exclusive, interpretations for this result.

Since the first two are somewhat self-critical, and the last one is probably overly

revolutionary, we suppose that for pragmatical reasons, neither of them would prevail

over the long run. They might, however, be used as interesting starting points for

further discussion. These interpretations are as follows:

1. The long run with t → ∞ is irrelevant to growth economics; only finite time

spans should be analyzed instead. It seems that this approach is favored by

Temple (2003) who proposes not to over-emphasize long-run properties of

growth models: “restrictive assumptions are useful precisely because they al-

low us to abstract from matters not directly relevant to the problem at hand,

and to carry out experiments holding certain variables constant. (...) [U]sing

models for this purpose casts a rather different light on the role of knife-edge

assumptions.”(p. 500) For Temple (2003), exponential growth (or any other

presupposed growth pattern) is an assumption of convenience rather than a

potentially significant result. One fact favoring this interpretation is that for

t bounded, Theorem 2 does not hold and deviations from the required growth

regularity may be kept within “reasonable” bounds when model parameters

are manipulated. These bounds are strongly and non-linearly dependent on

the time span in question, though, becoming the less reasonable the longer is
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the considered time perspective. Most worryingly, by increasing the exogenous

parameter ψ > 1 in the proof of Theorem 3, we can construct “φ-deviations”

from the benchmark model able to blow the model up to infinity not only in

finite time, but also in an arbitrarily short interval of time.

2. The concept of knife-edge conditions is useless as means of criticizing eco-

nomic models. Knife-edge conditions are inevitable in modeling empirically

observed phenomena and so are qualitative changes in dynamic behavior of

the model if some parameters are manipulated; this should not be questioned.

Hence, the associated “instability” result should be ignored, perhaps with the

hope that the type of distortions (that is, arbitrarily small shifts in the values

of model’s exogenous parameters) mentioned in Theorems 2 and 3 will never

occur in reality. Some other criterion such as the relation of inclusion could

be used instead for discriminating among economic models: inclusion makes

it clear which functional form is more restrictive than the other. The down-

side of using inclusion as a means of discriminating between models is that a

vast multiplicity of modeling assumptions are not nested and thus cannot be

compared. This could possibly open up the possibility to use Bayesian testing

procedures to discriminate between non-nested models using real-world data.

3. All dynamic models designed to reproduce empirically observed macro-scale

regularities are methodologically flawed, because infinitesimal deviations in

parameter settings will always be able to change their predictions strongly

enough to invalidate them. This interpretation suggests that the only way to

avoid this methodological problem would be to gather micro-level rather than

macro-level data, plug these findings directly into the model’s low-level mech-

anisms, and deal with cumbersome aggregation procedures in order to obtain

meaningful and robust predictions at the macro scale.17

The current article does not provide any formal means for discriminating be-

tween the three above interpretations of the main results contained herein. While

t → ∞ might not be a reasonable time perspective, there remains significant uncer-

17This interpretation provides an argument in favor of the agent-based modeling (ABM) method-
ology which has however rarely been used in macroeconomics yet (see the remarkable exception
due to Axtell, 1999, though).
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tainty if the qualitative and quantitative divergence results presented in Theorems

2 and 3 will manifest themselves in 5 or in 555 years. In the first case, one could

probably conclude that her model is methodologically flawed while in the other case

it is probably not. Similarly, while the concept of knife-edge conditions might be

too general to discriminate between candidate explanations of a certain economic

phenomenon, at the same time it might be useful as means of assessment where

the fundamental “growth engine” of a model is located and what type of distortions

(shifts in parameter values) could be most threatening for the sustainment of the

current growth regime.

Finally, one should ask oneself one important question: Could it be that we are

living in a world where none of the distortions to the growth mechanism mentioned

in Theorems 1–3 can ever appear? In such case, the methodological issues discussed

above would be void. But are we able to construct an empirical test able to assess

whether such distortions have indeed ever appeared, given the long-standing problem

of model uncertainty? For now, this question remains open.
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Appendix: discrete time version of Theorem 1

A result analogous to Theorem 1 holds also for models set up in discrete time. Let

us now consider a very general form of a discrete-time model of economic growth.

Its dynamics are ruled by a system of autonomous difference equations of order m:

F (Xt, Xt−1, ..., Xt−m) = 0, X−m+1, X−m+2, ..., X0 given. (22)

This time, we do not even have to impose any particular restriction on the class of

functions F and G applicable here. The space of all mappings F : R(m+1)n → Rn

is thus going to be considered our “parameter space” and denoted by P . We shall
endow the space P with the usual supremum metric but without ruling out functions

that are divergent with respect to this metric. We shall assume that all solutions to

(22) are well defined for all t = 0, 1, 2, ...

Theorem 4 (Discrete time version) The set F of functions F : R(m+1)n → Rn

such that G(Xt, Xt−1, ..., Xt−m) = 0 for some solution {Xt}t=0,1,2,... to F (Xt, Xt−1, ...,

Xt−m) = 0 has an empty interior in P.

Proof. Let {Xt}t=0,1,2,... solve the system of difference equations: G(Xt, Xt−1, ...,

Xt−m) = 0. Since this time path {Xt}t=0,1,2,... is also a particular solution of the

considered growth model, we obtain:

Φ(t) ≡ F (Xt, Xt−1, ..., Xt−m) = 0, ∀t = 0, 1, 2, ... (23)

To show that the set of functions F satisfying (23) has an empty interior, consider
a family of functions Fε ∈ P such that Fε(Y0, Y1, ..., Ym) ≡ F (Y0, Y1, ..., Ym) + εe1

for ε > 0. Of course, ||Fε − F ||C1(R(m+1)n,Rn) = ε → 0 as ε → 0. On the other hand,

for all ε > 0,

Φε(t) ≡ Fε(Xt, Xt−1, ..., Xt−m) = εe1 = 0, ∀t = 0, 1, 2, ... (24)

Thus, Fε /∈ F for all ε > 0 so F has an empty interior. 
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