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1 INTRODUCTION 1

1 Introduction

Cooperative games or coalitional games (with or without transferable utility)

deal with situations is which cooperation among some or all members of a

group of players or agents is worthwile in the sense that it generates payoffs

to cooperating groups. Apart from modelling the cooperation possibilities

and the determination of the payoffs the main question thereby is to find

allocation methods of payoffs to individuals that are fair is some yet to be

specified sense.

In the case where utility is assumed to be freely transferable among individ-

uals the coalitional game is exhaustively described by specifying a payoff for

each group that can eventually form. If we denote the non-empty finite set

of all players by N then possible groups are the subsets {S |S ⊆ N }, usually

referred to as coalitions. A coalitional game with transferable utility (a TU

game) can then be defined as a pair (N, v), where v : {S |S ⊆ N } → R,

such that v (∅) = 0, is the function that assigns to each coalition its payoff

as a real number. If it so happens that, for example, all players agree to

cooperate, thus N – the grand coalition – forms, the the value v(N) is to be

devided between them in a ”fair” fashion. Depending on how the principle

of fairness of this allocation is actually modelled various so-called solution

concepts have been defined since the first introduction of coalitional games

by John von Neumann and Oskar Morgenstern in [vNM44].

A more general model of such situations of cooperation is given by coalitional

games with non-transferable utility (NTU games) as introduced by Robert
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J. Aumann and Bezalel Peleg in [AP60]. In this framework we assume that

coalitions are not able to freely transfer utility among their members and

thus the specification of the overall (or sum) payoff to coalitions is no longer

appropriate. We rather have to determine the set of all possible payoffs

for every coalition, thus a coalitional game with non-transferable utility is

given by a pair (N, V ), where N is the grand coalition as before and V :

{S |S ⊆ N } ⇒ R
N is a correspondence that defines a set V (S) of possible

payoffs for every coalition S ⊆ N . Again the task is to develop solution

concepts that yield fair allocations, i.e. a (possibly empty or single-valued)

subset of V (N), the possible payoffs for the grand coalition.

Many convincing solution concepts for TU games have been developed which

all consider different types of fairness notions. As – technically – the class of

all TU games is a subclass of the class of all NTU games1 it seems natural

to try to extend the definitions of known solution concepts from the TU case

to the NTU case. This has been done for some solution concepts while other

still withstand from a satisfactory extension.

The concept of the Core, that can be traced back to the work of Edge-

worth ([Edg81]), has apparently the most canonical extension to the NTU

case. Even the results concerning the conditions for the existence, i.e. non-

emptiness, of it are quite similar in nature (see Bondareva ([Bon63]) and

Shapley ([Sha67]) for the TU case and Scarf ([Sca67]) and Billera ([Bil70b],

[Bil71]) for the NTU case). The Shapley value, introduced by Lloyd S. Shap-

ley in [Sha53], has already two main extensions to the NTU case, one given by

1That means that every TU game can be as well formulated as an NTU game.
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Shapley himself in [Sha69] and the other by Michael Maschler and Guillermo

Owen in [MO89] and [MO92]. Various approaches to NTU bargaining sets

(which concept has also many variants in the TU context, see, for example,

[AM64], [DM67], and [Mas92] for an extensive survey and many references to

the existing literature) were given by Peleg ([Pel63]), Billera ([Bil70a]), Ass-

cher ([Ass76] and [Ass77]), and Yarom ([Yar85]). The kernel ([DM65]) and

the prekernel ([MPS72]) for TU games were introduced as solution concepts

that were originally meant to help to understand properties of the bargaining

sets. Suggestions for an extension of these concepts to NTU games can be

found in [OZ00] and [SS98].

The kernel and the prekernel for TU games use the auxiliary concept of the

excess of a coalition. This is also the basis for that solution concept that

will be the main subject of the present thesis, which is intended to serve as

a contribution to the extension of the (pre-)nucleolus of David Schmeidler

([Sch69]) to NTU games. This task has previously been undertaken by Ehud

Kalai in [Kal75] by extending the concept of the excess of a coalition, which is

a function that for each coalition S maps payoffs to the ”satisfaction” of the

coalition with its share of the payoff. It is widely accepted that the canonical

candidate for this function is2 e (S, x) = v(S)−x(S) for every coalition S ⊆ N

and every payoff vector x ∈ RN . Thus a negative excess means satisfaction

of coalition S with the payoff x (S gets more than it could achieve by its own

means) while a positive excess means dissatisfaction. In other words, the

excess of a coalition is determined as the difference of the proposal (x(S))

to what the coalition can guarantee itself without the cooperation of other

2with the notational convention that x(S) :=
∑
i∈S xi ∀S ⊆ N,∀x ∈ RN .
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players (v(S)). Roughly speaking, the nucleolus is that point that minimizes

the excess of each coalition (thus maximizes its satisfaction) as much as

possible whereat the least satisfied coalitions are always treated favoredly.

It is immediately clear from the definition that this simple form of an excess

function cannot easily be reformulated within the NTU context where the

possibilities for coalitions are described as sets rather than as real numbers.

Kalai formulated properties that excess functions for NTU games should

satisfy in order to measure satisfaction of coalitions appropriately. The result

of this approach is a class of excess functions each of its members yielding an

NTU nucleolus. These nucleoli share some properties with the TU nucleolus

while fail to satisfy others although Kalai’s properties for excess functions

can be seen as extensions of the properties of the TU excess function.

In an attempt to define other excess functions for NTU games that yield

NTU prenucleoli that share as many properties with the TU prenucleolus

as possible we formulate different requirements for NTU excess functions to

satisfy and thereby describe (actually axiomatize, i.e. uniquely characterize

it) another class of NTU excess functions (called β-excess functions) yield-

ing different NTU prenucleoli (called β-prenucleoli). By this approach we

preserve a good deal of the properties of the TU prenucleolus like single-

valuedness and validness of the Kohlberg criterion ([Koh71]) which is a quite

elegant characterization of the nucleolus that reveals a further insight into

the ”minimization of dissatisfaction”-property.

In a recent paper, Chang and Chen ([CC02]) consider a class of so-called

affine excess functions and its subclass of C-excess functions. The latter is
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a superclass of the β-excess functions and contains (like the class of Kalai)

excess functions that do not necessarily coincide with the TU excess on TU

games. They prove single-valuedness and validness of the Kohlberg criterion

for the resulting prenucleoli.

Besides the results that are valid for this entire class of NTU prenucleoli

we then focus an a special member of this class for which we are able to

show some additional properties that increase the resemblance to the TU

prenucleolus like covariance or the reduced game property. The first postu-

lates that if the payoffs of the game are altered by a linear transformation of

the utility scales then the solution concept should behave accordingly while

the latter is a form of stability of solution concepts that covers situations in

which (proper) subcoalitions look at the outcome of the solution on a reduced

game with them as the grand coalition and thereby might find a reason to

withdraw from N .

It is possible to define also the core of a TU game by using the excess functions

for TU games. This is also true for the NTU excess functions of Kalai with

respect to the NTU core. The new NTU excess functions that shall be

introduced in the present thesis can not serve to define the NTU core in

the same fashion but yield a different ”core”-concept for NTU games. We

are able to identify a condition that yields non-emptiness for this concept

and also for the NTU core that is similar but different to the conditions for

non-emptiness of the TU core and the NTU core.

This thesis is organized as follows. We provide the basic definitions con-

cerning TU games and NTU games, included to prenucleolus concept, along
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with some notational agreements in Chapter 2. The approach of Kalai is

introduced and discussed in Chapter 3 where we recall the main definitions

and results. We also provide an example which serves to demonstrate some

properties of Kalai’s NTU prenucleoli that we regard as drawbacks and that

motivated our new approach. This approach is introduced in Chapter 4. In

that chapter we define the concept of β-excess functions and the according

β-prenucleoli for a subclass of all NTU games. Also the basic results like

single-valuedness, the Kohlberg criterion, and continuity of the β-prenucleoli

are provided in Chapter 4, which finally contains the definition of the new

set-valued solution concept called β-core, which we already mentioned, and

an externsion of the β-prenucleoli to a more general class of NTU games.

Chapter 5 is devoted to the analysis of the special member of the class of

all β-prenucleoli for which further properties (reduced game property, mono-

tonicity, core-inclusion, covariance) are shown. Also the β-core is reconsid-

ered in connection with conditions that yield non-emptiness.
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2 Definitions and Notations

Let us first agree on some notation. The set of all subsets of a set X is

denoted by 2X . Let U be the (finite or infinite) universe of all players and

let ∅ 6= N ⊆ U be a finite subset. The subsets S ⊆ N are called coalitions,

N is called the grand coalition, 2N is the set of all coalitions of N . RN is

the set of all functions from N to R. Every RN will be identified with R|N |;

we will therefore write xi instead of x (i) for x ∈ RN and i ∈ N . The set of

all non-negative vectors in RN is denoted by RN+ , while RN++ is the set of all

strictly positive vectors. If S ∈ 2N is a coalition and x ∈ RN , we denote by

xS or by x|S the projection of x on RS :=
{
x ∈ RN |xi = 0 ∀i /∈ S

}
. The

latter notation of a projection is used in cases where there are already indices

attached to x to improve the readability.

If x, y ∈ RN , then x ≥ y means xi ≥ yi for every i ∈ N , while x > y

denotes the case where xi > yi for every i ∈ N . The scalar product of x

and y is denoted by 〈x, y〉, i.e. 〈x, y〉 :=
∑

i∈N xiyi, x, y ∈ RN . If x ∈ RN

is a vector and r ∈ R is some real number, then rx := (rxi)i∈N . The

componentwise multiplication of two vectors x, y ∈ RN is denoted by xy, i.e.

xy := (xiyi)i∈N , x, y ∈ RN . Of course
x

y
means

(
xi
yi

)
i∈N

∀x, y ∈ RN , such

that yi 6= 0 ∀i ∈ N . The vector in RN that has components all equal to 1 is

denoted by 1N and its projection 1N |S by 1S. Hence 1S is the characteristic

vector of coalition S ∈ 2N .

For λ ∈ RN and A ⊆ RN , λA is the set {λa |a ∈ A}, whereas rA for r ∈ R

is the set {ra |a ∈ A}. λ + A denotes the set {λ+ a |a ∈ A}. The relative
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interior of A is denoted by int(A) and its boundary by ∂A. If x ∈ A and

y ≤ x implies y ∈ A then A is called comprehensive. We denote the set

A ∩ RN+ by A+.

The basic definitions concerning coalitional games are now recalled. Most of

them are the standard definitions that are used in the literature.

Definition 2.1

A coalitional game with transferable utility (TU game) is a pair

(N, v), where N ⊆ U is the set of players and v : 2N → R, v (∅) = 0, is the

coalitional function that assigns to each coalition S ∈ 2N its worth v(S). Let

ΓTU be the class of all TU games.

For every game (N, v) ∈ ΓTU let

I∗ (N, v) =
{
x ∈ RN |x(N) = v(N)

}
be the set of preimputations.

Definition 2.2

Let Γ ⊆ ΓTU be a class of games. A solution concept on Γ is a mapping

σ : Γ →
⋃

(N,v)∈Γ

2I
∗(N,v)

σ (N, v) ⊆ I∗ (N, v) ,

that assigns to each game (N, v) ∈ Γ a subset σ (N, v) of the set of preimpu-

tations I∗ (N, v).
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Definition 2.3

A coalitional game with non-transferable utility (NTU game) is a

pair (N, V ), where V : 2N → 2R
N
, V (S) ( RS, is the coalitional function that

assigns to each coalition S ∈ 2N a proper subset of RS that is

• non-empty,

• closed,

• comprehensive, and that further satisfies

• V (S) ∩ RS+ is non-empty and compact.

V (S) are those outcomes that are attainable to S through cooperation. Let

ΓNTU be the class of all NTU games. If x ∈ V (S) we say that S is effective

for x. We make the assumption that max {xi |x ∈ V ({i})} = 0 for every

player i ∈ N .

Remark 2.4

Another possible way to define an NTU game is to require that every V (S)

is a subset of an |S|-dimensional space. We think that defining a game as

a correspondence in this way suits better the purposes of this thesis. Our

definition is also used in [Ros81] and [Kal75].

A subclass of ΓNTU is the class of all hyperplane games, denoted by ΓH .

In a hyperplane game, every V (S) is a halfspace (relative to RS), given by

V (S) =
{
x ∈ RS

∣∣〈xS, pSV 〉 ≤ cSV
}
,
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where pSV ∈ RS++ and cSV ∈ R+.
(
pSV
)
S∈2N

and
(
cSV
)
S∈2N

are then referred to

as the representation of the game (N, V ) ∈ ΓH . Of course, the representation

is not unique; in fact, if pSV and cSV represent V (S), then so do
1

r
pSV and rcSV

for every r ∈ R++. When it does not cause confusion we will omit the index

V if that simplifies the notation.

Those NTU games, for which V (N) is a halfspace while every other V (S), S 6=

N , is arbitrary (but satisfies of course the conditions of Definition 2.3), we

will call quasi hyperplane games and denote by ΓqH the class of all those

games.

If (N, V ) ∈ ΓqH is a quasi hyperplane game with pNV = r1N for some r ∈ R++,

i.e. ∂V (N) is parallel to the boundary of the unit simplex in RN , then (N, V )

is called simplex game3. For every simplex game (N, V ) we assume without

loss of generality that r = 1, i.e. pNV = 1N .

If (N, V ) ∈ ΓNTU is an NTU game and λ ∈ RN++, then we call (N, V ) and the

game (N, λV ) strategically equivalent under a linear transformation

of utility. Operations on games are always meant to be coalitionwise, thus

the game (N, λV ) is given by (λV ) (S) = λV (S) for every coalition S ∈

2N . When (N, V ) ∈ ΓH is a hyperplane game then for every λ ∈ RN++ the

normal vectors pSλV
(
S ∈ 2N

)
that define the respective halfspaces are given

by pSλV,i =


pSV,i
λi

, if i ∈ S

0 , if i /∈ S
∀S ∈ 2N .

3The terms ”quasi hyperplane game” and ”simplex game” are apparently non-standard

but are chosen in accordance with the geometrical contemplation.
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The class ΓTU of all TU games can be seen as a subclass of ΓNTU as the

following definition formalizes.

Definition 2.5

If (N, v) ∈ ΓTU is a TU game, then denote by (N, V v) ∈ ΓH its derived NTU

hyperplane game, i.e. (N, V v) is represented by

pSV v = 1S,

cSV v = v(S)

for every S ∈ 2N . Of course, (N, V v) is a simplex game.

If (N, V ) ∈ ΓH is a hyperplane game, such that pSV = rS1S for some rS ∈ RS++

holds true for all S ∈ 2N , then denote by
(
N, vV

)
∈ ΓTU its derived TU game,

i.e.

vV (S) =
cS

rS
∀S ∈ 2N .

Definition 2.6 (monotonic NTU games)

Let (N, V ) ∈ ΓNTU be an NTU game. V is monotonic if for all coalitions

S, T ∈ 2N with ∅ 6= S ( T and all x ∈ V (S), there exists y ∈ V (T ) with

yS ≥ x.

An equivalent formulation of Definition 2.6 is to say that V is monotonic

if the projection of V (T ) on RS contains V (S), which means that for every

payoff vector that a coalition S is effective for it is possible to assign payoffs

to the players in T \ S such that the coalition T is effective for the resulting
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payoff vector. This definition of monotonicity disregards the players in T \S

in the sense that it might be required to allocate payoffs to them that are

not individual rational in order to find a y ∈ V (T ) with yS ≥ x. If we want

to exclude such cases we get a stronger form of monotonicity which is called

individual superadditivity and defined as follows.

Definition 2.7 (individual superadditive NTU games)

Let (N, V ) ∈ ΓNTU be an NTU game. V is individual superadditive if

for every player i ∈ N , every coalition ∅ 6= S ∈ 2N\{i} and every x ∈ V (S)

there exists y ∈ V (S ∪ {i}) with yS ≥ x and yi ≥ 0.

By the comprehensiveness assumption we can replace the last two inequali-

ties by equations and hence individual superadditivity requires that V (S) ⊆

V (S ∪ {i}).

Definition 2.8

A solution concept on a class Γ ⊆ ΓNTU is a mapping

σ : Γ→
⋃

(N,V )∈Γ

2V (N)

σ (N, V ) ⊆ V (N),

that assigns to each game (N, V ) ∈ Γ a subset σ (N, V ) of the set of outcomes

V (N) for which the grand coalition is effective.

The following properties are usually regarded as minimal requirements that

solution concepts should satisfy.
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Definition 2.9

A solution concept σ on ΓNTU is called

• efficient, if σ(N, V ) ⊆ ∂V (N) for every game (N, V ) ∈ ΓNTU ,

• covariant, if for all λ ∈ RN++ and all x ∈ σ(N, V ), λx ∈ σ (N, λV )

holds true for every game (N, V ) ∈ ΓNTU , and

• anonymous, if for every game (N, V ) ∈ ΓNTU and for every injection

π : N → U it follows that σ (πN, πV ) = πσ(N, V ). The game (πN, πV )

is defined by πV (πS) = V (S) for every S ∈ 2N .4

The main solution concept in this thesis is the (pre-)nucleolus. Therefore

we will now introduce the concept of the general nucleolus. For this concept

see [MPT92] and [Pel88]. Every nucleolus considered in this thesis, e.g. the

(TU) prenucleolus, the Kalai (NTU) nucleoli or the (NTU) β-prenucleoli,

are special cases of this general concept. Theorems about existence and

uniqueness of these solution concepts are more or less simple corollaries of

theorems that are valid for the general nucleolus.

Definition 2.10 (General Nucleolus)

Let X be a finite or infinite set (endowed with a topology), let D be a finite set

and let H := {hi}i∈D , hi : X → R ∀i ∈ D, be a finite family of real-valued

functions on X. Let d := |D| <∞.
4This definition of anonymity is analog to the respective Definition in the TU case, see

[Pel88]. Note that we identify both RN and RπN with R|N |.
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Let Θ : X → R
d be defined by

Θi(x) := max {min {hj(x) |j ∈ S } |S ⊆ D, |S| = i} (1 ≤ i ≤ d, x ∈ X).

Thus Θ arranges the components of (hi(x))i∈D non-increasingly.

The set

N (H,X) := {x ∈ X |Θ(x) ≤lex Θ(y) ∀y ∈ X }

is the general nucleolus of X w.r.t. H.

Here ≤lex denotes the lexicographic order of Rd. That means that x ≤lex y if

either x = y or there exists a number k ∈ D with xi = yi for all 1 ≤ i ≤ k−1

and xk < yk.

The use of the lexicographic order on non-increasingly sorted vectors reflects

the special treatment of those coalitions with highest excess resp. lowest

satisfaction by the nucleolus.

The following results concerning the general nucleolus and the prenucleolus

of TU games are taken from [Pel88].

Theorem 2.11

• If X is non–empty and compact and hi is continuous for every i ∈ D,

then N (H,X) 6= ∅.

• If X is convex and hi is convex and continuous for every i ∈ D, then

1. N (H,X) is convex and
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2. hi(x) = hi(y) ∀x, y ∈ N (H,X),∀i ∈ D.

Proof:

See [Pel88], Theorem 5.1.3. and Theorem 5.1.5. �

We now introduce the prenucleolus of TU games, a variation of Schmeidler’s

original concept, the nucleolus ([Sch69]), that is derived by waiving the re-

quirement of individual rationality.

Definition 2.12 (Prenucleolus of TU games)

Let

PN : ΓTU →
⋃

(N,v)∈ΓTU

2I
∗(N,v)

PN (N, v) ⊆ I∗ (N, v) ∀ (N, v) ∈ ΓTU

be defined by

PN (N, v) := N
(
(v(S)− •(S))S∈2N , I

∗ (N, v)
)
, (N, v) ∈ ΓTU .

Then PN is called the prenucleolus of TU games. Let

e (S, x, v) := v(S)− x(S) ∀ (N, v) ∈ ΓTU , x ∈ RN , S ∈ 2N ,

denote the excess of coalition S at x.

Theorem 2.13

|PN (N, v)| = 1 ∀ (N, v) ∈ ΓTU .
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Proof:

Let (N, v) ∈ ΓTU be a game. It is easily checked that I∗ (N, v) is non-

empty and convex and that the excess function e (S, x, v) = v(S)− x(S), x ∈

I∗ (N, v) , S ∈ 2N , is continuous and convex (even affine linear).

Of course, I∗ (N, v) is not compact, thus the first part of Theorem 2.11 does

not apply directly to show non-emptiness of PN (N, v). But let x ∈ I∗ (N, v)

and define t := max
{
e (S, x, v)

∣∣S ∈ 2N
}

. Let

X :=
{
y ∈ I∗ (N, v)

∣∣e (S, x, v) ≤ t ∀S ∈ 2N
}
,

then X is non-empty (x ∈ X), convex and compact and

PN (N, v) = N
(
(e (S, •, v))S∈2N , X

)
6= ∅

.

The second part of Theorem 2.11 ensures e (S, x, v) = e (S, y, v) for all S ∈ 2N

and all x, y ∈ PN (N, v). From this x = y follows, thus |PN (N, v)| = 1. �

Beside the definition of the prenucleolus of TU games this solution concept

does also admit of an elegant description by characterizing the special state

if which those coalitions are whose satisfaction at the prenucleolus point is

below an arbitrarily chosen threshold. This characterization is due to Elon

Kohlberg ([Koh71])5 and can be informally described as follows. Suppose

there is an imputation x ∈ I∗(N, v) then take a look at the set S of those

5for the nucleolus, our formulation is the adoption of his results with respect to the

prenucleolus
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coalitions that attain maximal excess at this point. If it were possible to find

a vector y sucht that y(N) = 0, hence y describes a reallocation, and such

that y(S) ≥ 0 for every coalition S ∈ S then none of these coalitions has a

greater excess at x + y then at x. If furthermore there is a coalition S̄ ∈ S

with y
(
S̄
)
> 0 then x can not be the prenucleolus because S̄ can be made

better off of deviating from x ”in the direction given by y” without making

other coalitions worse off then S̄.

Hence the prenucleolus has the property that whenever there is y ∈ RN sucht

that y(N) = 0 and y(S) ≥ 0 for every coalition S attaing maximal excess

then y(S) = 0 follows for all those coalitions. Furthermore, this proposition

is also true when we also consider the set of all coalitions that attain the

second highest excess or above, third highest excess or above etc.

What we present here actually is an equivalent formulation that makes use

of the concept of balancedness of coalitions and that was also described in

[Koh71]. We do it this way because the concept of balancedness does also

play a role in further parts of this thesis.

Let (N, v) ∈ Γ be a TU game. Then

D (α, x, v) :=
{
S ∈ 2N |e (S, x, v) ≥ α

}
∀α ∈ R, x ∈ RN ,

denotes the set of all coalitions with excess greater than α.

A collection of coalitions S ⊆ 2N is said to be balanced, if there exist

balancing coefficients (δS)S∈S , δS ∈ R ∀S ∈ S, such that∑
S∈S

δS1S = 1N .
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The well-known Kohlberg characterization of the prenucleolus can now be

stated as follows.

Theorem 2.14

Let (N, v) ∈ Γ be a TU game and let x ∈ I∗ (N, v) be a preimputation.

Then x = PN (N, v) ⇔ D (α, x, v) is balanced for all α ∈ R such that

D (α, x, v) 6= ∅.

Proof:

See [Koh71]. Since this paper considers the nucleolus of a TU game, see also

[Pel88] for the proof concerning the prenucleolus. �

For shortage of notation we will say that Theorem 2.14 means that for PN

the Kohlberg criterion holds.

An important concept for solution concepts in cooperative game theory is

the reduced game property (RGP). Suppose a solution concept Φ on a class

Γ of (TU or NTU) games is agreed upon by all players. Then in a game

(N, V ) ∈ Γ a coalition S ∈ 2N not equal to ∅ or to N might want to analyse

”its own game” (S, V ∗), called the reduced game, where V ∗ is that coalitional

function that reflects in some sense the possible gains of cooperation, when

the ”outside players” N\S are payed according to Φ. Whenever the outcomes

according to Φ for players in S differ from game V to game V ∗ then some

players might prefer forming coalition S (and ”play” the game (S, V ∗)) rather

than joining in the grand coalition N .
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The solution Φ is immune against such sort of instability, if Φ (S, V ∗) =

Φ (N, V ) |S, i.e. the payoffs to the players of the ”split off” coalition S do

not change. Thus there are actually no incentives to depart from the grand

coalition. Of course, specifying the coalitional function V ∗ of the reduced

game is crucial to this concept, but by no means canonical.

We present here the definition of a reduced (TU) game that was introduced

by Davis and Maschler ([DM65])6, because it plays an important role in the

theory of the (TU) prenucleolus and we will later define an extension of this

reduced game to the class of all NTU games which will be useful in the

analysis of the (yet to be defined) NTU prenucleolus.

Definition 2.15

Let (N, v) ∈ ΓTU be a TU game, let x ∈ RN be an arbitrary vector and let

S ∈ 2N \{∅, N} be a coalition. The (TU) reduced game
(
S, vSx

)
of S w.r.t.

x is defined by

vSx (T ) := max
Q⊆N\S

{v (T ∪Q)− x(Q)} ,∀T ∈ 2S \ {∅, S}

vSx (S) := v(N)− x (N \ S)

vSx (∅) := 0.

Definition 2.16

Let Φ be a solution concept on a class Γ ⊆ ΓTU . Φ satisfies the reduced

6In fact, a slight variation of it that coincides with their original definition if x(N) =

v(N).



2 DEFINITIONS AND NOTATIONS 20

game property (RGP), if for every x ∈ Φ (N, v) and every S ∈ 2N \{∅, N}

the following is true:
(
S, vSx

)
∈ Γ and xS ∈ Φ

(
S, vSx

)
.

Lemma 2.17

The prenucleolus PN satisfies RGP on ΓTU .

For the proof [Sob75] and again [Pel88]7 are referred to.

The core is another set-valued solution concept that has been extensively

studied, both in the TU and in the NTU case. The main idea behind the

definition of the core is a form of ”internal stability”. Considering the TU

case, an imputation x is in the core of a game (N, v) if for every coalition

S the worth x(S) is greater or equal to v(S). This means that the coalition

has no incentive to deviate from the grand coalition because it is served at

least as good as it could by itself. Speaking in terms of excess functions

(Definition 2.12) we could as well say that no coalition has a strictly positive

excess at x, i.e. does not regard itself as dissatisfied. If some imputation y

yields y(S) < v(S) for some coalition S then this coalition is frequently said

to be able to improve upon y by their own means.

The fact that the core of a (TU or NTU) game can be set-valued can be

well regarded either as an advantage or as a disadvantage, depending on the

purpose the solution concept is to be used. If for a game the core consists

of more then one imputation the problem of choosing one of them might not

be easily solvable. The contrary problem might also occur since the core can

7Lemma 5.2.1 (and Corollary 5.2.2) and Theorem 5.2.7 (and Corollary 5.2.8)
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be empty. Thus it is interesting to know which (TU or NTU) games posses

an actually non-empty core. We elaborate only on the TU case here and

postpone the NTU case to section 5.4.

Definition 2.18 (TU and NTU core)

1. Let (N, v) ∈ ΓTU be a TU game. The (TU) core of (N, v) is defined

as

Core (N, v) :=
{
x ∈ I∗ (N, v)

∣∣x(S) ≥ v(S) ∀S ∈ 2N
}
.

2. Let (N, V ) ∈ ΓNTU be an NTU game. The (NTU) core of (N, V ) is

defined as

Core (N, V ) :=
{
x ∈ V (N)

∣∣∀S ∈ 2N : @y ∈ V (S) s.t. yS > xS
}
.

If a TU game (N, v) ∈ ΓTU satisfies

v(N) ≥
∑
S∈S

δSv(S)

for every balanced collection S ⊆ 2N with balancing coefficients (δS)S∈S ,

then (N, v) is called balanced. It was proved independently in [Bon63] and

[Sha67] that balancedness is a sufficient and necessary condition for the core

of a game to be non-empty.
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3 The NTU nucleoli of Kalai

The considerations about (dis-)satisfaction of coalitions with respect to pro-

posed imputations that seems best expressed via the excess functions has led

to two widely accepted solution concepts for TU games, the kernel and the

nucleolus8. It is therefore natural to look for similar concepts in the NTU

context. It is furthermore obvious that – having in mind the general nucleo-

lus and results about it – ”only” the concept of an excess function has to be

appropriately reformulated for non-transferable utility situations. But as we

hope to demonstrate convincingly hereafter this reformulation is not at all

canonical. Comparing two real numbers (v(S) and x(S)) is most naturally

done by their difference but what about – turning now to the NTU context

– a point (xS) and a subset (V (S)) both in RN? Of course it is possible to

look at their distance9. But as we will show at the end of this chapter this

can lead into trouble.

What we present in this thesis are two axiomativ approaches to the problem

of modelling satisfaction or excess concepts. The first is due to Ehud Kalai

([Kal75]) and is the focus of this chapter while the other is our suggestion

for a perhaps more convincing concept, see the chapters 4 and 5. We use

the term ”axiomatic” because both postulate a set of axioms that an NTU

excess function should satisfy and analyze the class of NTU (pre-)nucleoli

that are defined via those excess functions that fit into the axiom system.

Let us now introduce the approach of Kalai.

8and, of course, to their respective ”pre”-versions.
9See Definition 4.28 for a possible definiton of such a distance.
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Let Γ ⊆ ΓNTU be the subclass of NTU games that satify

∀S ∈ 2N : ∃aS ∈ RS such that aS ≥ x ∀x ∈ V (S). (1)

Definition 3.1 (K(alai)-excess function)

Let (N, V ) ∈ Γ be a game. The function

l(N,V ) : 2N × RN → R

is called K-excess function, if the following conditions hold for all coalitions

S ∈ 2N :

1. Independence of other coalitions[
x, y ∈ RN , xS = yS

]
⇒ l(N,V ) (S, x) = l(N,V ) (S, y).

2. Monotonicity[
x, y ∈ RN , xS < yS

]
⇒ l(N,V ) (S, x) > l(N,V ) (S, y).

3. Normalization[
x ∈ RN , xS ∈ ∂V (S)

]
⇒ l(N,V ) (S, x) = 0.

4. Continuity in x and, if we fix S and regard l(N,V ) as a function on

games, also continuity in (N, V ).

The topology on the game space that Kalai used in order to define continuity

will be described in detail in section 4.6 where we will use the same topology

for the purposes of this thesis.
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As we already mentioned earlier, one can easily see that the conditions of

Definition 3.1 are satisfied by the (TU) excess function e (S, x, v) = v(S) −

x(S) (see Definition 2.12), when they are properly reformulated within the

TU environment. But notice that TU games as members of ΓNTU do not

belong to the class Γ considered by Kalai because they violate condition (1).

This condition is only needed in order to define a metric on the game space

to be able to speak of continuity of the excess functions (4. in Definition 3.1).

If hyperplane games, which include the TU games and which all violate (1),

are to be considered it is possible to use another metric on this game space

and so condition (1) can be omitted in this case.

Definition 3.2

Let (N, V ) ∈ Γ be a game and let l(N,V ) be a K-excess function. Define the

K(alai)-nucleolus of (N, V ) w.r.t. l(N,V ) as

KN l (N, V ) := N
(
l(N,V ), IR(N, V )

)
,

where IR(N, V ) := {x ∈ V (N) |∀i ∈ N 6 ∃y ∈ V ({i}) with yi > xi} is the set

of all individual rational points of V (N).

Due to the restriction to individual rational points of V (N), Kalai is indeed

investigating a nucleolus concept rather than a prenucleolus concept.

Before we proceed, we will give some examples for K-excess functions. These

examples are visualized in Figure 1.

Example 3.3
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1. Let µ ∈ RN++ be a vector and let (N, V ) ∈ Γ be a game. Define

fµ (S, x) := f (N,V )
µ (S, x)

:= sup {t ∈ R |xS + tµS ∈ V (S)}

for every coalition S ∈ 2N and for every x ∈ RN . When the vector

µ is thought of as a direction in which coalitions are able to ”move”

from a starting point x ∈ RN then fµ (S, x) is the maximal distance

the coalition S can ”move in direction µ” without leaving V (S) or the

minimal distance S has to move when xS is not a member of V (S)

and S is ”forced back” to V (S). See the end of this chapter for an

interpretation and discussion of the notion that coalitions ”move” in

this sense from one imputation to another.

It is easily checked that fµ is indeed a K-excess function, i.e. meets the

conditions 1 to 4 of definition 3.1.

2. A special case of f (N,V ) is given by

g(N,V ) (S, x) := f
(N,V )

1N
|S|

(S, x) .

Here the direction in which to move is the ”egalitarian” one.

3. The sum of ”individual excesses” is another possibility.

h(N,V ) : 2N × RN → R

h(N,V ) (S, x) =
∑
i∈S

h
(N,V )
i (S, x) ,

where

h
(N,V )
i (S, x) := max

{
t ∈ R

∣∣xS + t1{i} ∈ V (S)
}
.
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g(S, x)

fµ(S, x)

hj(S, x)

hi(S, x)x

Figure 1: Three K-excess functions

Without going into further details, we briefly list some of the properties that

K-nucleoli have or do not have in the next two remarks.

Remark 3.4

The following two important properties of the K-nucleoli are proven in [Kal75].

• KN l (N, V ) 6= ∅ for every game (N, V ) ∈ Γ and for every K-excess

function l(N,V ).

• KN l (N, V ) ∈ Core (N, V ) for every game (N, V ) ∈ Γ, such that

Core (N, V ) 6= ∅, and for every K-excess function l(N,V ).
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Remark 3.5

1. The results on single-valuedness of the general nucleolus can not be ap-

plied to state single-valuedness of KN l for every choice of a K-excess

function l, because in general K-excess functions are not convex. Look

at g(N,V ) of example 3.3, which might even be concave. There is, how-

ever, a ”generic uniqueness” result in [Kal75], that holds under some

additional restrictions to the K-excess functions. But also an exam-

ple of a K-nucleoli that consists of three distinct points is given is that

paper.

2. The Kohlberg criterion does not hold in general. A look at the proof of

Theorem 2.14 reveals that the fact that the K-excess functions are in

general not affine linear might be the reason for this. Also see example

3.6 below for a counterexample.

3. According to a theorem in [Yan97], there is no K-excess function l such

such KN l satisfies RGP. Of course, we did not yet specify any reduced

(NTU) game. We postpone this until the discussion of the reduced game

property of the (NTU) prenucleolus in section 5. We only mention that

the (TU) reduced game (Defintion 2.15) has a direct analogon for NTU

games, which is used in the stated theorem.

4. KN l does not necessarily coincide with the nucleolus on the class of

TU games considered as a subclasss of ΓNTU . As mentioned earlier,

this subclass does not belong to the class Γ used by Kalai. But we have

also mentioned that his results can as well be formulated for hyperplane

games such that this question of coincidence is valid.
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S h(N,V0) (S, ν0)

{1, 2} 2
3

{1, 3} 2
3

{2, 3} 2
3

N 0

{1}, {2}, {3} −1
3

Table 1: K-excesses w.r.t. the K-nucleolus of V0

Example 3.6

Let N = {1, 2, 3} and let V0 the hyperplane game where (omitting the sub-

script V0) pS = (1, 1, 1)|S ∀S ∈ 2N and

cS =


1 , if |S| ≥ 2

0 , if |S| < 2

∀S ∈ 2N .

Then ν0 := KN h (N, V0) = 1
3

(1, 1, 1) and the K-excesses are given in Table

1 (we use h(N,V ) as K-excess function, see 3. in example 3.3).

When we change the game by decreasing p
{1,2}
1 and p

{1,3}
1 , see Figure 2, then,

as p{1,2} and p{1,3} approach
(

1
2
, 1, 0

)
and

(
1
2
, 0, 1

)
, respectively, the K-nucleoli

of the according games approach x :=
(

3
4
, 1

8
, 1

8

)
. So by a continuity argument

this point is a candidate for the K-nucleolus of the game (N, V1), in which

p{1,2} =
(

1
2
, 1, 0

)
and p{1,3} =

(
1
2
, 0, 1

)
. The respective K-excesses with respect
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1

1 2

Figure 2: The game V1

to x are given by Table 2.

From the view of the Kohlberg criterion this looks right, i.e. the collection

of coalitions that attain maximal K-excess at x is balanced and so is every

other collection attaining at least the second highest excess etc. But as we

already mentioned, the Kohlberg criterion does not necessarily hold for the

K-nucleoli and indeed we can show that x is not the K-nucleolus of the game
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S h(N,V1)(S, x)

{1, 2} 3
2

{1, 3} 3
2

{2, 3} 3
2

N 0

{2}, {3} −1
8

{1} −3
4

Table 2: K-excesses w.r.t. x in game V1

(N, V1). Let therefore ε > 0 and define xε by

xε1 := x1 − ε

xε2 := x2 +
ε

2

xε3 := x3 +
ε

2
.

Then we have xε ∈ ∂V (N). Since xε|{1,2} and xε|{1,3} constitute a line that

is parallel to ∂V ({1, 2}) and ∂V ({1, 3}), respectively, the K-excesses of the

coalitions {1, 2} and {1, 3} are the same with respect to x and to xε. But we

have

h(N,V1) ({2, 3} , xε) < h(N,V1) ({2, 3} , x)

from which it follows that x is not the K-nucleolus of the game (N, V1). Ac-

tually, it is y :=
(
0, 1

2
, 1

2

)
= x

3
4 . The K-excesses with respect to y are given



3 THE NTU NUCLEOLI OF KALAI 31

in Table 3.

S h(N,V1) (S, y)

{1, 2} 3
2

{1, 3} 3
2

{2, 3} 0

{1}, N 0

{2}, {3} −1
2

Table 3: K-excesses w.r.t. y in game V1

This example shows the non-validness of the Kohlberg criterion and some

form of discontinuity of the K-nucleolus. This unwanted behavior can also

be observed for other K-excess functions.

Now that we have introduced the approach of Kalai towards an extension

of the (pre-)nucleolus concept to NTU games we end this chapter with a

discussion of its main drawback (in the present auhtor’s view, of course).

Have again a look at example 3.6. We do certainly not want to disqualify a

solution concept by just looking at its result on one game, but we think that

some general points can indeed be shown thereby.

The fact that the ”limit point” x =
(

3
4
, 1

8
, 1

8

)
is not the K-nucleolus of the

game V1 is due to the fact that the coalitions {1, 2} and {1, 3} could (vir-
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tually) transfer utility according to the definiton of the points xε without

changing their respective excesses10 I.e., a payoff of
(

3
4
, 1

8

)
11 yields the same

excess to coalition {1, 2} as
(
0, 1

2

)
and this, we think, is incompatible with

the interpretation of the excess as a measure of (dis-)satisfaction.

2

1

x0

x
3
4

x−27

Figure 3: Three points with equal excess

Take a look at figure 3. Why would the coalition, say {1, 2} be equally sat-

isfied with x0 =
(

3
4
, 1

8
, 1

8

)
and x

3
4 =

(
0, 1

2
, 1

2

)
resp. with their relevant part

thereof? In the TU case the coalition compares what is proposed (x(S))

to what might be (v(S)) and expresses its excess via the difference between

these values. The interpretation of this K-excess function is quite different.

The coalition does not compare the proposed outcome to their own possi-

bilities (V ({1, 2})) but to what they could achieve given the proposal (for

10and the fact that the excess of coalition {2, 3} is decreased thereby.
11We only consider the relevant part of the payoff vector, thus abusing the notation a

little.
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example
(
0, 1

2

)
), i.e. they look at the distance of this point to the boundary

of V ({1, 2}). This is flawed in two ways. First the coalition ignores most

of their possibilities by only considering the proposal and the nearby part of

the boundary of V ({1, 2}). On the contrary, the coalition should compare

the proposal with everything else that is reachable. This becomes even more

obvious when we notice that the point, say, x−27 =
(
−261

4
, 135

8
, 135

8

)
also

yields the sames excess of 3
2

to coalition {1, 2} (see figure 3 again).

The only explanation for this might be that the huge ”gain” of player 2

exactly outweighs the huge ”loss” of player 1 so that the coalition is again at

the same satisfaction level (this is exactly what this specific K-excess function

proposes). This is indeed valid in the TU case where utility can be freely

transferred between players and thus only the sum of the individual outcomes

matters. What we will propose in the next chapter uses this possibility of

transfers between players but of course the ”real” transfer rates as given by

the shape of V (N), the possible outcomes for the grand coalition, must be

used for this. The K-excess functions completely ignore these transfer rates

which is our second objection against them. Coalitions have to determine

their (dis-)satisfaction with respect to proposals for the grand coalition so if

there are transfer rates to be considered then surely the that rates are given

by V (N), resp. ∂V (N) to be more exact, are the only valid ones.

However, we have based our discussion of the K-excess functions and the

motivation for the need of another approach on one example game and one

specific K-excess function. This procedure can itself be criticized since many

known solution concepts for TU or NTU games produce strange or coun-
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terintuitive results on suitably constructed games. But to our knowledge

there does not exist in the literature any K-excess function that is not very

closed connected to the distance of the proposal to the boundary of the set

of possible outcomes and hence to which our objectives do not apply. The

examples we have chosen to demonstrate our objectives are therefore indeed

representative for every K-excess function we know of.

See [CLT95] or [Pec98] for examples of papers utilizing Kalai’s excess func-

tions.
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4 β-excess functions and β-prenucleoli

The previous section showed that Kalai’s excess functions, although based on

rather intuitive axioms, did not exhaustively establish a theory of nucleoli-

like solution concepts for NTU games. In this section we will develope a new

class of excess functions and investigate (in Chapter 5) in detail a member

of this class with yields an (NTU) prenucleolus with some nice properties.

For the remainder of this section the class of NTU games under consideration

is ΓqH , the class of all quasi hyperplane games, thus for every game (N, V ) ∈

ΓqH we have pN ∈ RN and cN ∈ R such that V (N) =
{
x ∈ RN

∣∣〈x, pN〉 ≤ cN
}

and every V (S), S ∈ 2N \ {N}, merely satisfies the conditions formulated in

Definition 2.3. We will develop all the necessary theory for this class of NTU

games in the first instance and propose an extension to general NTU games

in section 4.7.

4.1 β-excess functions

We will now introduce the key concept of the new (NTU) excess functions.

Definition 4.1

Let (N, V ) ∈ ΓNTU be a game. The set

XN :=
{

(xS)S∈2N

∣∣xS ∈ RS ∀S ∈ 2N
}

is the set of all payoff configurations of the game (N, V ).
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Definition 4.2

A function

β : ΓNTU →
⋃

(N,V )∈ΓNTU

XN ,

s.t. β (N, V ) ∈ XN ∀ (N, V ) ∈ ΓNTU and β(N, V )N ∈ ∂V (N), that assigns

to each NTU game a payoff configuration is called reference function. For

each coalition S ∈ 2N the point β (N, V )S ∈ RS is called reference point of

S. Let B denote the set of all reference functions.

Instead of β (N, V )S we will use the notation β(N,V )(S) (or even β(S) when

there is no danger of confusion) to distinguish from the notation of projection.

The purpose of introducing the concept of reference points and reference

functions is to identify a ”point of indifference” for every coalition, that

means a point x ∈ RS yielding an excess of zero to coalition S. Such an x is

therefore a point at which the coalition is neither satisfied nor dissatisfied12.

Although the concept of a reference function resembles somehow a solution

concept itself13, it is meant as a mere auxiliary concept. Note that so far we

did not impose any conditions on β such as β(S) ∈ V (S) or the like.

Once a point of indifference is chosen for a coalition S (we will later discuss

the way this can or should be done), there are of course other points in RS

yielding equal excess to it. Another important feature of the excess function

we are about to introduce is the way those points are characterized. This

12or, in other words, is indifferent between satisfaction and dissatisfaction.
13For example, the Harsanyi solution for NTU games ([Har63]) is defined as a function

from games into payoff configurations.
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characterization is based on the following considerations. Technically the

domain of any excess function for coalition S ∈ 2N is RN , but the (dis-)-

satisfaction of the coalition only depends on the outcome for this coalition

and ignores the payments to the complementary coalition (compare Axiom

1 of Kalai in Definition 3.1). Thus no notion of envy is incorporated into the

excess concept – like in the TU context. We might call this the principle of

independence of the payoffs of other players.

Now suppose there is an imputation x ∈ ∂V (N) such that xS is a point of

indifference for the coalition S ∈ 2N . The coalition might consider a redis-

tribution of its share xS according to those transfer rates that are relevant

to them in the grand coalition, namely pNS . Since the imputation x has been

made possible through cooperation of all players and coalition S might well

be not effective for xS these transfer rates are surely the only possible basis

for any such redistribution. Of course, these are only virtual redistributions:

The imputation x ∈ V (N) has not been allocated to the players yet. It is

only a proposal which is to be checked whether or not it minimizes dissatis-

faction. We are still within the process of determining the difference between

the status quo xS and what might be, i.e. we are ”calculating dissatisfac-

tion”. Due to the principle of independence of the payoffs of other players

such a redistribution should not effect the excess of any coalition outside of

S. We argue that it should not change the excess of coalition S either.

Otherwise, i.e. when the coalition should be able to change its excess by

redistributing xS according to pNS , then the prenucleolus defined by such

an excess function would not really be a lexicographical minimizer of dis-
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satisfaction/excesses because it is in this sense not well defined what the

dissatisfaction of a coalition actually is. This we want to avoid. Therefore

we will impose another property on the new excess functions which might be

informally described as ”invariance under changes according to pNS ”. Since

the motivation we gave for this property of course also holds for imputations

x ∈ ∂V (N) such that xS is not a point of indifference for S, we might also say

that the excess function for S should have contour sets that are hyperplanes

with a normal vector proportional to pNS .

In the case that a TU game (N, v) ∈ ΓTU is under consideration, we already

know which points x ∈ RS, S ∈ 2N , are the only candidates for being a ”point

of indifference” by looking at the TU excess function e (S, x) = v(S)− x(S).

In other words, when considering (N, v) as a member of ΓNTU , i.e. as (N, V v),

then the points of indifference of S lie on the boundary of V v(S)14. This tells

us that β(S) ∈ ∂V v(S) should be satisfied, or in other words
∑
i∈S

βi(S) = v(S),

if we want to make the new excess functions compatible to the TU excess.

This motivates the next definition.

Definition 4.3

Let B ⊂ B be the set of all reference functions β ∈ B which satisfy∑
i∈S

β
(N,V v)
i (S) = v(S) ∀S ∈ 2N ,

for every TU game (N, v) ∈ ΓTU .

14thus satisfying v(S) = x(S) and therefore e(S, x) = 0.
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The following theorem states that if an excess function for NTU games should

satisfy the two properties just discussed, i.e. vanishing on β(S) for all β ∈ B

and for all S ∈ 2N and having contour sets which are hyperplanes with normal

vectors proportional to pNS , and if it is furthermore an affine linear function

that coincides with the TU excess function on ΓTU , then it is uniquely defined

for all reference functions β ∈ B.

Theorem 4.4

Let (N, V ) ∈ ΓqH be a quasi hyperplane game. Let

e := e(N,V ) : 2N × RN × B → R

be a function that satisfies

1. invariance under changes according to pNV |S:

∀x, y ∈ RN :
〈
xS, p

N
V |S
〉

=
〈
yS, p

N
V |S
〉
⇒ e (S, x, β) = e (S, y, β) ∀S ∈

2N ,∀β ∈ B,

2. zero excess at points of indifference:

e (S, β(S), β) = 0 ∀S ∈ 2N ,∀β ∈ B,

3. affine linearity:

e(S, x, β) = 〈xS, rS〉+ cS for some rS ∈ RS and cS ∈ R,∀S ∈ 2N ,∀x ∈

R
N ,∀β ∈ B, and

4. coincidence with the TU excess function on ΓTU :

If (N, v) ∈ ΓTU , then e(N,V v)(S, x, β) = v(S) − x(S) ∀S ∈ 2N , x ∈

R
N , β ∈ B.
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Then

e(S, x, β) =
∑
i∈S

(βi(S)− xi) pNV,i

=
〈
β(S)− xS, pNV |S

〉
.

Proof:

Let S ∈ 2N be a coalition and let β ∈ B be a reference function.

Claim 1

Axioms 1 and 3 imply rS = γrSp
N
V |S for some γrS ∈ R.

The proof is straightforward and omitted.

Claim 2

The value γrS in Claim 1 is negative.

Proof of Claim 2

Let (N, v) ∈ ΓTU be a TU game. Then the Axioms 3 and 4 imply (together

with Claim 1):

γrS
〈
xS, p

N
V v |S

〉
+ cS = 〈xS,−1S〉+ v(S),

which at once yields γrS < 0 because of pNV |S > 0.
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Claim 3

Claim 1 and Axiom 2 imply

e(S, x, β) = αrS
〈
β(S)− xS, pNV |S

〉
,

with αrS ∈ R++.

Proof of Claim 3

By Claim 1 we have rS = γrSp
N
V |S for some γrS ∈ R with γrS < 0 by Claim

2. By axiom 2 we have

e (S, β(S), β) = 〈β(S), rS〉+ cS

= 0

⇔ cS = −γrS
〈
β(S), pNV |S

〉
,

which yields

e(S, x, β) = 〈xS, rS〉+ cS

= γrS
〈
xS, p

N
V |S
〉
− γrS

〈
β(S), pNV |S

〉
= γrS

〈
xS − β(S), pNV |S

〉
= αrS

〈
β(S)− xS, pNV |S

〉
with αrS := −γrS > 0 and the proof of Claim 3 is complete.

Now Claim 3 together with axiom 4 yield (for any TU game (N, v) ∈ ΓTU)

e(N,V v)(S, x, β) = αrS
〈
β(S)− xS, pNV v |S

〉
= v(S)− x(S), x ∈ RN ,
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which is equivalent to

αrS

(∑
i∈S

βi(S)− x(S)

)
= v(S)− x(S), x ∈ RN .

Since β ∈ B, i.e.
∑
i∈S

β
(N,V v)
i (S) = v(S), this in turn yields αrS = 1. �

Theorem 4.4 has anticipated the next definition, which is reformulated now

for the sake of clarity.

Definition 4.5 (β-excess function)

Let (N, V ) ∈ ΓqH be a (quasi hyperplane) game. The function

e := e(N,V ) : 2N × RN × B → R

e (S, x, β) :=
∑
i∈S

(
β

(N,V )
i (S)− xi

)
pNV,i

=
〈
β(N,V )(S)− xS, pNV |S

〉
is called βββ-excess function. We sometimes also write eβ (S, x) instead of

e (S, x, β).

The previous theorem 4.4 proved that the axioms 1 – 4 uniquely determine

an excess function for NTU quasi-hyperplane games. The next lemma will

answer the question affirmatively if these axioms are logically independent,

i.e. no axiom is an implication of the others.

Lemma 4.6

The axioms of Theorem 4.4 which characterize the β-excess function are

logically independent.
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Proof:

Let β ∈ B be a reference function. We show the independence of the axioms

by giving an example of an excess function for every axiom, respectively, that

satisfies only the other axioms and is different from the β-excess function.

For notational convenience we omit the superscript β in the definitions.

Let S ∈ 2N be a coalition.

1. Let

e1(S, x) := 〈β(S)− xS, 1S〉 .

Then e1 satisfies the axioms 2, 3 and 4.

2. Let

e2(S, x) := cSV −
〈
xS, p

N
V |S
〉
.

Then e2 satisfies the axioms 1, 3 and 4.

3. Let

e3(S, x) :=
(〈
β(S)− xS, pNV |S

〉)pNV,i .
for any i ∈ N . Then e3 satisfies the axioms 1, 2 and 4.

4. Let

e4(S, x) := α
〈
β(S)− xS, pNV |S

〉
with α > 1. Then e4 satisfies the axioms 1, 2 and 3.
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It is easily checked that all excess functions ei, i = 1, 2, 3, 4, do not coincide

with the β-excess function. �

By Theorem 4.4 and Lemma 4.6 we have shown that the axioms (1) – (4)

indeed constitute an axiomatization of the β-excess function.

Remark 4.7

A look at the axioms 2 and 4 of Theorem 4.4 reveals that we can not relax the

condition β ∈ B to β ∈ B because these axioms would then be incompatible.

We nevertheless allow also β-excess functions for β ∈ B \ B to be defined,

since most of the propositions of this chapter apply to every excess functions

β ∈ B. Of course, we must be aware that we thereby possibly define β-

prenucleoli for NTU games that do not coincide with the (TU) prenucleolus

on TU games.

Apart from the axioms that axiomatize eβ, the β-excess functions also satisfy

those properties as stated by the next lemma. These properties are in fact

simple corollaries of Definition 4.5, thus the proofs are omitted.

Lemma 4.8

Let (N, V ) ∈ ΓqH be a game. For every reference function β := β(N,V ) ∈ B,

the β-excess function eβ has the following properties (compare Definition 3.1):

1. Independence of other players[
x, y ∈ RN , xS = yS

]
⇒ eβ (S, x) = eβ (S, y).
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2. Monotonicity[
x, y ∈ RN , xS < yS

]
⇒ eβ (S, x) > eβ (S, y).

3. Normalization

x ∈ RN ,
〈
xS, p

N
V |S
〉

=
〈
β(S), pNV |S

〉
⇒ eβ (S, x) = 0.

4. Continuity in x.

Note that the β-excess functions meet three of the four properties that define

the Kalai-excess functions. Of course, the contour sets of β-excess functions

generally differ from those of Kalai-excess functions.

4.2 The β-prenucleolus of quasi hyperplane games

With the definition of the β-excess functions at hand we can now apply the

general nucleolus (Definition 2.10) to define a prenucleolus on the class of

quasi hyperplane games.

Definition 4.9 (β-prenucleolus of quasi hyperplane games)

Let (N, V ) ∈ ΓqH be a quasi hyperplane game and let β ∈ B be a reference

function. The set

PNβ (N, V ) := N
((
e(N,V ) (S, •, β)

)
S∈2N

, V (N)
)

is called β-prenucleolus of quasi hyperplane games or (NTU) β-

prenucleolus for short.
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We did not restrict the set of possible candidates for the β-prenucleolus to

individual rational outcomes but to the entire set V (N). Thus we indeed

consider a pre-nucleolus concept. We will show later under which conditions

the β-prenucleoli are individual rational.

Remark 4.10

It is straightforward to see that the β-prenucleoli satisfy efficiency and anony-

mity, two of the basic properties that solution concepts should always satisfy

(Definition 2.9). We will later also consider the third property, i.e. covari-

ance.

Example 4.11

Let us introduce two reference functions and have a look at the resulting

(NTU) β-prenucleoli.

Let (N, V ) ∈ ΓH be a hyperplane game and let the reference functions β1 and

β2 be given by

β1,i(S) :=


cS

|S|pSi
, i ∈ S

0 , i /∈ S

(
S ∈ 2N , i ∈ N

)
.

and

β2,i(S) :=


cS

pSi
, i ∈ S

0 , i /∈ S

(
S ∈ 2N , i ∈ N

)
.
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j

i

cS

pSi

cS

pSj

β2(S)

β1(S)

Figure 4: Two reference functions

The number
cS

pSk
(k ∈ S) is the maximal amount that player k ∈ S can

achieve under an imputation for coalition S which is individual rational for

all players in S, i.e. is contained in V (S) ∩ RS+. β1(S), S ∈ 2N , is the mean

value of these extreme points. β2 reflects the situation where indifference

of the coalition between satisfaction and dissatisfaction is not achieved until

every player receives his maximal outcome that is possible under an individual

rational imputation for which coalition S is effective. See Figure 4 for an

illustration of these definitions.
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Let us compute the two β-prenucleoli of the game (N, V1) of example 3.6, i.e.

(N, V1) consists of N := {1, 2, 3} and the coalitional function V1, which is

given by Table 4.

S pSV1
cSV1

{1} (1, 0, 0) 0

{2} (0, 1, 0) 0

{3} (0, 0, 1) 0

{1, 2}
(

1
2
, 1, 0

)
1

{1, 3}
(

1
2
, 0, 1

)
1

{2, 3} (0, 1, 1) 1

N (1, 1, 1) 1

Table 4: The game V1 of example 3.6

The computation yields PNβ1 (N, V1) =
(

2
3
, 1

6
, 1

6

)
and PNβ2 (N, V1) = (1, 0, 0).

The resulting β-excesses for both excess functions β1 and β2 are given in Ta-

ble 5. The following remarks can be made concerning these two examples of

β-excess functions and the resulting β-prenucleoli.

1. For both β-prenucleoli the Kohlberg criterion holds, i.e. the respective

collections of coalitions with maximal excess etc. are balanced. We will

later on see that this is true in general.
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2. The excess function β2 does not coincide with the (TU) excess function,

thus β2 /∈ B. This means that PNβ2 (N, V v) for (N, v) ∈ ΓTU is in

general not equal to PN (N, v).

3. For every hyperplane game (N, V ) ∈ ΓH we have β
(N,V )
1 (S) ∈ ∂V (S),

thus β1 ∈ B holds true.

S eβ1 (S, x) eβ2 (S, x)

{1, 2} 2
3

2

{1, 3} 2
3

2

{2, 3} 2
3

2

N 0 0

{2}, {3} −1
6

0

{1} −2
3

-1

Table 5: β-excess for the β-prenucleoli of example 3.6

We now turn to the analysis of some basic properties of the (NTU) β-

prenucleoli. The first result on existence and uniqueness of PNβ follows

as directly as those about the TU prenucleolus from Theorem 2.11 about the

general nucleolus.

Theorem 4.12∣∣PNβ (N, V )
∣∣ = 1 ∀ (N, V ) ∈ ΓqH ,∀β ∈ B.
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Proof:

The proof is a straightforward modification of the proof of Theorem 2.13

about the single-valuedness of the prenucleolus of TU games. The β-excess

functions are affine linear and hence convex, V (N) is convex and the fact

that it is not compact must be treated similarly. �

The simplicty of the proof of the single-valuedness of the β-prenucleolus is

of course a consequence of the way in which we have designed the β-excess

functions – mainly of the assumption of affine linearity. These resemble

very much the TU excess and it is thus not surprising that we can directly

adopt Theorems and proofs from the TU context. But remember that we still

consider quasi hyperplane games. For those games we have already explained

the reasons for which (NTU) excess functions should be affine linear.

The next property we want to consider in relation with PNβ is covariance

(Definition 2.9). We will therefore further restrict the set of reference func-

tions that we will consider in the sequel. It turns out that if we impose a

covariance assumption on the reference functions then we can easily show

the covariance of PNβ.

Definition 4.13 (covariant reference functions)

Let Bc denote the set of all reference functions β ∈ B that furthermore satisfy

β(N,λV )(S) = λβ(N,V )(S) ∀(N, V ) ∈ ΓqH ,∀S ∈ 2N ,∀λ ∈ RN++.
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Theorem 4.14

If β ∈ Bc then PNβ (N, λV ) = λPNβ(N, V ) for every game (N, V ) ∈ ΓqH

and every λ ∈ RN++, i.e. the β-prenucleolus satisfies covariance.

Proof:

Let (N, V ) ∈ ΓqH be a game and let β ∈ Bc be a reference function. Then

e(N,λV ) (S, λx, β) =
∑
i∈S

(
β

(N,λV )
i (S)− λixi

)
· pNλV,i

=
∑
i∈S

(
λiβ

(N,V )
i (S)− λixi

)
·
pNV,i
λi

= e(N,V ) (S, x, β)

∀ S ∈ 2N , x ∈ RN .

Hence PNβ (N, λV ) = λPNβ (N, V ) ∀λ ∈ RN++. �

Remark 4.15

Both reference functions of example 4.11 are covariant.

From now on we will mostly consider reference functions in Bc. Since we know

now that PNβ is then a covariant solution concept it is no loss of generality

to assume that every quasi hyperplane game under current consideration is a

simplex game. This simplifies most of the proofs that will follow. Whenever

appropriate we will give some hints how to prove results without the covari-

ance assumption. But since we judge covariance as an essential property for

solution concepts we formulate and prove most of the results with respect to

covariant reference functions.
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We have seen is chapter 3 that for the K-nucleoli the Kohlberg criterion

(Theorem 2.14) does not hold in general contrary to the (TU) (pre-)nucleolus.

Since this criterion has both an interpretational and a technical relevance (it

is frequently used in proof of propositions about the TU (pre-)nucleolus) we

consider the validness of this criterion for the β-prenucleoli – as stated by

the following Theorem – as an important property of this solution concept.

We will give a detailed proof of the validness of the Kohlberg criterion for

the β-prenucleoli. It is in fact an adoption of the proof for the TU case which

we have omitted in Chapter 2.

Definition 4.16

Let N be a finite set and let S ⊆ 2N be a collection of subsets of N . We

say that S has property I15 if for every y ∈ RN such that y(N) = 0 and

y(S) ≥ 0 for every S ∈ S it follows that y(S) = 0 for every S ∈ S holds true.

This property is the formalization of the considerations we gave to motivate

the introduction of the Kohlberg criterion in Chapter 2. The connection

of the property I to the balancedness concept is explained by the following

Lemma.

Lemma 4.17

Let N be a finite set. A collection S ⊆ 2N of subsets of N has property I if

and only if it is balanced.

15This expression is due to [Koh71].
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Proof:

1. =⇒: Let S = {S1, . . . , Sp} be a collection that satisfy property I. Con-

sider the following linear program (P):∑
S∈S

y(S) → max!

s.t.

y(N) = 0

−y(S) ≤ 0 ∀S ∈ S

y ∈ R
N

and the dual program (D) of (P):

(u1, u2) · 0 → min!

s.t.

−u11N + u2 (1S)S∈S = −
∑
S∈S

1S

u2 ≥ 0

u1 ∈ R

u2 ∈ R
p.

Every feasible solution of (P) yields the value 0 due to property I. Since

0 ∈ RN is indeed feasible for (P), the dual program (D) has feasible and

optimal solutions as well. Hence there exist ū1 ∈ R and ū2 ∈ Rp+ such

that

−ū11N + ū2 (1S)S∈S = −
∑
S∈S

1S. (2)
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If we define (λS)S∈S via λS := ū2,i if S = Si for some i ∈ {1, . . . , p},

for every S ∈ S we have

ū11N =
∑
S∈S

(1 + λS) 1S. (3)

Now 1 + λS > 0 holds for every S ∈ S and thus by (2) also ū1 > 0.

Therefore (3) means that S is balanced.

2. ⇐=: Now let S ⊆ 2N be balanced and let (λS)S∈S be balancing coeffi-

cients for S, i.e. ∑
S∈S

λS1S = 1N . (4)

Let y ∈ RN such that y(N) = 0 and y(S) ≥ 0 for every S ∈ S.

Multiplying (4) by y we get
∑

S∈S λSy(S) = y(N) = 0. This yields

y(S) = 0 because of λS > 0 for every S ∈ S. Hence S has property I.

�

Now let β ∈ B be a reference function. For every quasi hyperplane game

(N, V ) ∈ ΓqH and every x ∈ V (N) define as before the set of all coali-

tions whose excess at x is greater or equal than α ∈ R by D (α, x, V ) :={
S ∈ 2N

∣∣e(N,V ) (S, x, β) ≥ α
}

.

Theorem 4.18

Let (N, V ) ∈ ΓqH be a game and let β ∈ Bc be a reference function. Let

x ∈ V (N) be an imputation. Then x = PNβ (N, V ) if and only if D (α, x, V )

is balanced for all α ∈ R such that D (α, x, V ) 6= ∅.
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Proof:

Let (N, V ) ∈ ΓqH be a game and assume w.l.o.g. that (N, V ) is simplex.

Let β ∈ Bc be a reference function. In view of Lemma 4.17 we proof the

Theorem by showing that x = PNβ(N, V ) if and only if every such non-

empty collection has property I.

1. =⇒: Denote by x := PNβ(N, V ) the β-prenucleolus of (N, V ). Let

α ∈ R such that D := D (α, x, V ) 6= ∅.

Let y ∈ RN such that y(N) = 0 and y(S) ≥ 0 for every S ∈ D. Define

z(t) := x+ ty, t ∈ R. Then z(t) ∈ ∂V (N) for every t ∈ R holds because

of the simplex assumption on (N, V ). Furthermore, again because of

pNV = 1N ,

eβ (S, z(t)) =
〈
β(S)− z(t)S, p

N
V |S
〉

=
〈
β(S)− xS, pNV |S

〉
−
〈
tyS, p

N
V |S
〉

=
〈
β(S)− xS, pNV |S

〉
− ty(S)︸ ︷︷ ︸

≥0

≤ eβ(S, x)

holds for every t ∈ R with t ≥ 0. Since t̄ can be chosen small enough

such that D remains the set of minimal satisfied coalitions at z (t̄), the

existence of a coalition S̄ ∈ D with y
(
S̄
)
> 0 implies that x is not the

β-prenucleolus, contrary to our assumption. Thus y(S) = 0 for every

S ∈ D.

2. ⇐=: Now let x ∈ ∂V (N) such that every non-empty D (α, x, V ) , α ∈

R, has property I. Let z := PNβ(N, V ) and y := z−x. Let e1 denote the
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maximal occuring β-excess at x and let S ∈ D (e1, x, V ) be a coalition

that attains this β-excess. We have eβ (S, z) ≤ eβ (S, x) which yields

eβ (S, z)− eβ (S, x) ≤ 0

⇔
〈
β(S)− zS, pNV |S

〉
−
〈
β(S)− xS, pNV |S

〉
≤ 0

⇔ z(S)− x(S) ≥ 0

⇔ y(S) ≥ 0

Therefore we can imply y(S) = 0 for every S ∈ D (e1, x, V ) due to

property I. An analog computation for every other occuring β-excess at

x (from 2nd highest excess to lowest successively) finally yields y(S) = 0

for every S ∈ 2N . Hence x = z = PNβ(N, V ). �

This proof is an almost verbatim copy of the proof of the Kohlberg criterion

for the TU prenucleolus in [Pel88].

Remark 4.19

A careful inspection of the use of the simplex assumption in the proof of

Theorem 4.18 reveals what can be said about those cases in which β ∈ B

is not covariant and hence simplexity can not be assumed. If we say that

S ⊆ 2N has property I(p) for p ∈ RN++ whenever 〈y, p〉 = 0 and 〈yS, pS〉 ≥ 0

for every S ∈ S imply 〈yS, pS〉 = 0 for every S ∈ S, then x = PNβ(N, V ) if

and only if every non-empty D (α, x, V ) has property I
(
pNV
)
. This was also

noticed in [CC02].

So far no severe restrictions to the choice of the reference function β were

made, i.e. Theorem 4.12 and Theorem 4.18 about single-valuedness and the
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Kohlberg criterion are true for every choice of β ∈ Bc. This fact establishes a

quite comfortable basis for the following investigations, since no matter what

subset of Bc is under current consideration, the β-prenucleolus exists, is even

single-valued and covariant and the validness of the Kohlberg criterion makes

computations of β-prenucleoli much more easier.

A question that arises in connection with every solution concept for NTU

games is its behavior on the class of TU games ΓTU . If a solution concept

on ΓNTU claims to be an extension of a solution concept on ΓTU , it has to

coincide on ΓTU with the (TU) solution it stems from, otherwise it would not

be an ”extension”. As we claimed to extend the TU prenucleolus to ΓNTU ,

we have to examine the behavior of PNβ on ΓTU .

As we pointed out in section 3 the coincidence of KN l with the nucleolus on

TU games is not independent of the choice of a K-excess function. For the

β-prenucleolus this coincidence is valid for every β-excess function, for which

the axiomatization (Theorem 4.4) is valid, i.e. for β ∈ B.

Lemma 4.20

Let (N, v) ∈ ΓTU be a TU game and let (N, V v) ∈ ΓH be its associated NTU

(simplex) game. Then PN (N, v) = PNβ (N, V v) holds true for every β ∈ B̄.

Proof:

Remember that β ∈ B̄ means
∑
i∈S

β
(N,V v)
i (S) = v(S) for every coalition S ∈

2N . Thus the β-excess of a coalition S ∈ 2N w.r.t. an imputation x ∈ V (N)
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computes as

e(N,V v)(S, x) =
〈
β(S)− xS, pNV v |S

〉
=

∑
i∈S

βi(S)−
∑
i∈S

xi

= v(S)− x(S)

and thus coincides with the TU excess function. From this the statement

follows immediately. �

4.3 A useful expression of PNβ via the TU prenucleo-

lus

The proof of Lemma 4.20 motivates the following considerations. Let (N, V ) ∈

ΓqH be a simplex game and let β ∈ B be a reference function. The excess of

a coalition S ∈ 2N at x ∈ RN computes as

e(N,V ) (S, x, β) =
〈
β(S)− xS, pNV |S

〉
=
∑
i∈S

β
(N,V )
i (S)− x(S).

Note the resemblance to the TU excess function. Thus the reference function

β induces a TU game
(
N, vβV

)
∈ ΓTU via

vβV (S) :=
∑
i∈S

β
(N,V )
i (S) ∀S ∈ 2N (5)

with the property that for every coalition S ∈ 2N and every imputation

x ∈ RN the (TU) and (NTU) excesses are equal:

e(N,V ) (S, x, β) = e
(
S, x, vβV

)
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and thus the β-prenucleolus and the (TU) prenucleolus coincide:

PNβ (N, V ) = PN
(
N, vβV

)
.

This fact will not only help in computing PNβ (see section 5.3 for an elabo-

ration on this) but also yields conclusions about PNβ.

Definition 4.21

Let (N, V ) ∈ ΓqH be a simplex game and let β ∈ B be a reference function.

The TU game
(
N, vβV

)
as defined by (5) is called the (TU) βββ-game of the

NTU game (N, V ).

Note that from this definition and from the definition of the reference function

vβV (N) = cNV follows.

Lemma 4.22

Let (N, V ) ∈ ΓqH be a game and let β ∈ Bc be a reference function. Let

(N,W ) ∈ ΓqH be a simplex game which is derived from (N, V ) by a linear

transformation of utility16. If vβW is individual superadditive, i.e. vβW (S) +

vβW ({i}) ≤ vβW (S ∪ {i}) ∀S ∈ 2N\{i}, i ∈ N , then PNβ (N, V ) is individual

rational.

Proof:

In view of the comments about the (TU) β-game of an NTU game above, we

show that PN
(
vβW

)
is individual rational. To this end, let x := PN

(
vβW

)
16I.e., (N,W ) =

(
N, pNV V

)
.
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and suppose there exists a player i ∈ N such that xi < vβW ({i}). For every

coalition S ∈ 2N\{i} that does not contain i the following is true:

e
(
S, x, vβW

)
= vβW (S)− x(S)

< vβW (S) + vβW ({i})− x(S)− xi

≤ vβW (S ∪ {i})− x (S ∪ {i})

= e
(
S ∪ {i} , x, vβW

)
.

Thus coalitions that attain maximal excess under the imputation x must all

contain player i. Since e
(
N, x, vβW

)
= 0 and e

(
{i} , x, vβW

)
> 0, N is not

a coalition with maximal excess. It follows that the collection of coalitions

with maximal excess is not balanced, contrary to our assumption that x is the

prenucleolus of vβW . �

This proof is normally given within the TU context to show the following

corollary.

Corollary 4.23

If a TU game (N, v) is individual superadditive, then PN (N, v) is individual

rational.

If (N, V ) ∈ ΓqH is not a simplex game but β ∈ Bc is covariant, then we can

also describe the (NTU) β-prenucleolus of (N, V ) by the (TU) prenucleolus

of a suitably chosen TU game. Since the game
(
N, pNV V

)
is a simplex game,

we have

PNβ
(
N, pNV V

)
= PN

(
N, vβ

pNV V

)
.
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Now the covariance of β and of PNβ (Lemma 4.14) yield

PNβ (N, V ) =
1

pNV
PN

(
N, vβ

pNV V

)
.

4.4 PNβ and the core

The core is a very well established solution concept both for TU and for NTU

games. Therefore it is considered a major advantage of the (TU) prenucleolus

that it is always a member of the core whenever the latter is non-empty. This

is important in situations where there is demand for (in the core-sense) stable

but single-valued solutions for TU games. Sometimes the (TU) prenucleolus

is therefore said to be a core-selector.

As noticed in section 3, the Kalai prenucleoli for NTU games are also con-

tained in the NTU core, when it exists. We will now investigate this property

in connection with the class of β-prenucleoli.

The simplicity of the proofs that both the (TU) prenucleolus and the Kalai

(NTU) prenucleoli are core-selectors is due to the fact that the respective

cores can be defined as those imputations yielding non-positive excesses.

This is not true for the β-prenucleoli and, moreover, core-inclusion will turn

out to be a property of some reference functions on some subclass of games.

We begin with a counterexample.

Example 4.24

Let N = {1, 2, 3} and consider the hyperplane game as given by Table 6.
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S pSV cSV

{1} (1,0,0) 0

{2} (0,1,0) 0

{3} (0,0,1) 0

{1,2} (5,10,0) 7

{1,3} (8,0,10) 17

{2,3} (0,3,7) 11

{1,2,3} (9,1,9) 16

Table 6: The game of example 4.24

The core of this game is a singleton:

Core (N, V ) =

{(
0,

7

10
,
17

10

)}
.

Take, for example, the reference functions β1 and β2 as defined in example

4.11, then

PNβ1 (N, V ) =

(
48221

60480
,− 97

160
,
63373

60480

)
≈ (0.7973;−0.60625; 1.0478) ,

and

PNβ2 (N, V ) =

(
23609

22680
,−9131

1260
,
34973

22680

)
≈ (1.0410;−7.2478; 1.5420) ,
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thus PNβi (N, V ) /∈ Core (N, V ) for i = 1, 2. Furthermore, with Lemma 4.22

in mind we can imply that each respective β-game of (N, V ) is not individual

superadditive.

Example 4.24 also serves to prove the next lemma, which states an impossi-

bility.

Lemma 4.25

There exists a game (N, V ) ∈ ΓH with |N | = 3, such that Core (N, V ) 6= ∅

and PNβ (N, V ) /∈ Core (N, V ) for every β ∈ B̄ with β(N,V )(S) ∈ ∂V (S) ∩

R
S
++ ∀S ∈ 2N .

Proof:

Consider the game of example 4.24 and denote by x :=
(
0, 7

10
, 17

10

)
its unique

core-element. Let β ∈ B̄ be a reference function, such that β(N,V )(S) ∈

∂V (S) ∩ RS++. Then eβ ({1, 2} , x) > 0 and eβ ({1, 3} , x) > 0. Since the

β-excess for the coalitions {1} and N are zero and the β-excesses for the

coalitions {2} and {3} are negative, the β-excess for the coalition {2, 3} must

be positive - and furthermore equal to eβ ({12} , x) and eβ ({13} , x) - for the

collection of coalitions with highest excesses to be balanced.

For 0 < λ < 1 let βλ := λ
(
0, 0, 11

7

)
+ (1− λ)

(
0, 11

3
, 0
)

be any choice of
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β ({2, 3}) on the open line segment ∂V ({2, 3}) ∩ R{2,3}++ . Then

eβ
λ

({2, 3} , x) =

(
(1− λ)

11

3
− 7

10

)
+

(
λ

11

7
− 17

10

)
· 9

=λ
220

21
− 37

3

Thus eβ
λ

({2, 3} , x) > 0 if and only if λ > 259
220

> 1, a contradiction. �

4.5 The β-core

The fact that the core of TU games consists of those imputations that yields

non-positive (TU) excesses for all coalitions motivates the definition of the so-

called (NTU) β-core which are those points that yield non-positive β-excesses

for all coalitions. A brief discussion of this solution concept follows.

Definition 4.26

Let (N, V ) ∈ ΓqH be a game and let β ∈ B be a reference function. The set

Coreβ :=
{
x ∈ V (N)

∣∣eβ (S, x) ≤ 0 ∀S ∈ 2N
}

is called the βββ-core of the game (N, V ).

We will not undertake a detailed analysis of the β-core for all possible choices

of a reference function β ∈ B. We rather make the following more or less

obvious remarks about this solution concept.

The β-core is efficient. As well as the (NTU) core of hyperplane games, the

(NTU) β-core is always a convex compact polyhedron that might be empty.
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Whenever it is not empty, it contains the β-prenucleolus, which is therefore

a β-core-selector. Non-emptiness of the core does not imply non-emptiness

of the β-core, as the game and the reference function used in example 4.24

show. For this game the β-core is empty while the core is not. For those

reference functions that give rise to the definition of the NTU prenucleolus in

chapter 5 we will provide a sufficient and necessary condition for the β-core

to be non-empty (see section 5.7).

4.6 Continuity

A desirable property of solution concepts for coalitional games with or with-

out transferable utility is robustness against small pertubations of the game.

This property is best described by the concept of continuity, i.e. when there

is a converging sequence of games, then the solutions of these games should

converge to the solution of the limit game.

In order to speak of converging sequences of games we first have to specify

a metric on the space of all games. For TU games this can be done quite

canonically. Considering the set of players N as fixed, a TU game (N, v) is

given by the values v(S) for all coalitions S ∈ 2N . Since v (∅) = 0 is fixed,

the class of all TU games with player set N can be identified with R2|N|−1

and thus we can define metrics on games and indeed talk about convergence

of games.

It is well known ([Sch69]) that the (pre-)nucleolus is continuous on ΓTU for

fixed player set N . We formulate this fact as a theorem because it will prove
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useful in the analysis of the continuity of the (NTU) β-prenucleoli.

For a fixed player set N let therefore ΓTUN :=
{

(N, v)
∣∣(N, v) ∈ ΓTU

}
be the

set of all TU games with N as the grand coalition.

Theorem 4.27 ([Sch69])

The (TU) prenucleolus PN : ΓTUN → R
N is continuous.

Turning to the analysis of the continuity of the β-prenucleoli we need to

define a metric on NTU games, resp. on the subclass of quasi hyperplane

games which is the domain of the β-prenucleoli. Let therefore the player set

N be fixed and let ‖ ‖ : RN → R be any norm on RN .

Definition 4.28

Let x ∈ RN and A,B ⊂ RN . Define

d0 (x,A) := inf
a∈A
‖x− a‖

and

d (A,B) := max

{
sup
b∈B

d0 (b, A) , sup
a∈A

d0 (a,B)

}
. (6)

Remark 4.29

If for a set A ⊂ RN and for r ∈ R, r > 0, we define the open r-neighbourhood

of A via

Nr(A) :=
{
y ∈ RN |‖x− y‖ < r for some x ∈ A

}
,
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then an equivalent definition of (6) is

d (A,B) = inf {r ∈ R++ |A ⊆ Nr(B) and B ⊆ Nr(A)} .

The function d : 2R
N × 2R

N → R ∪ {∞} is the Hausdorff distance of subsets

of RN . See, for example, [Hau44] or [Edg90]. If it is defined only on the

non-empty and compact subsets it is even a metric. We cannot use the

Hausdorff distance like that because we want to find a metric on sets that

are comprehensive and thus not compact. In this case the Hausdorff distance

might be infinite.

We show that we can nevertheless use the distance d of Definition 4.28 to

define a metric on those subsets of RN that we are interested in.

For any a ∈ RN define therefore G(a) :=
{
x ∈ RN |x ≤ a

}
and let

K :=
{
X ⊆ RN

∣∣∃a ∈ RN : X ⊆ G(a), X is comprehensive and closed
}

be the set of all comprehensive closed subsets of RN that are contained in

G(a) for some a ∈ RN . Within this setup already Kalai used the Hausdorff

distance to define a metric on the game space, apparently the details are to

be found in his Ph.D. Thesis ([Kal72]). However, we will perform a proof of

this fact that is an almost verbatim copy of the proof of the metric property

of d on compact sets, see for example [Edg90].

Lemma 4.30

The Hausdorff distance (Definition 4.28) is a metric on K.
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Proof:

Symmetry and positiveness are clear. Let A,B,C ∈ K. If A = B then

A ⊆ Nr(B) and B ⊆ Nr(A) for every r > 0. Thus d(A,B) = 0. If, con-

versely, A and B satisfy d(A,B) = 0, then for each a ∈ A we have a ∈ Nr(B)

for every r > 0 thus d0(a,B) = 0. Since B is closed it follows that x ∈ B

holds and hence A ⊆ B. The converse B ⊆ A is clearly true by the same

argument. Hence A = B.

For the finiteness part notice that there exists ā ∈ RN such that A ⊆ G (ā) and

B ⊆ G (ā). Notice further that the comprehensiveness of A and B guarantee

d (A,G (ā)) < ∞ and d (B,G (ā)) < ∞. Then if G (ā) ⊆ Nr(A) for some

0 ≤ r < ∞ then B ⊆ Nr(A) because of B ⊆ G (ā) and vice versa. Hence

d(A,B) <∞.

Finally, to show the triangle inequality, let ε > 0 and a ∈ A. Then there ex-

ists b ∈ B such that ‖a− b‖ < d(A,B)+ε. Then there is also c ∈ C such that

‖b− c‖ < d(B,C)+ε. This means that A is within the (d(A,B) + d(B,C) + 2ε)-

neighbourhood of C and vice versa. Therefore d(A,C) ≤ d(A,B)+d(B,C)+

2ε holds. Since this is true for every ε > 0 the proof is complete. �

Now we are able to define a metric on the following subclass of all quasi

hyperplane games. Let ΓK ⊂ ΓqH be the subclass of the class of all quasi

hyperplane games whose members additionally satisfy

for every S ∈ 2N \ {N} there exists aS ∈ RSsuch that V (S) ⊆ G
(
aS
)
.

By our basic assumptions on quasi hyperplane games each V (S) is also closed

and comprehensive, i.e. V (S) ∈ K for every S ∈ 2N \ {N}.
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Then by

d ((N, V ) , (N,W )) := max

{
(d (V (S),W (S)))S∈2N\{N} ,

∥∥∥∥pVcV − pW
cW

∥∥∥∥}

for all games (N, V ) , (N,W ) ∈ ΓK, a metric on ΓK is defined. Thus we can

say that

lim
k→∞

(
N, V k

)
= (N, V )

for all (N, V ),
(
N, V k

)
∈ ΓK, k ∈ N, when

lim
k→∞

d
((
N, V k

)
, (N, V )

)
= 0

holds true.

After these technical preliminaries we can now analyse the continuity prop-

erty of the β-prenucleoli on ΓK. It seems obvious that continuity of PNβ can

at most be achieved for continuous reference functions β : ΓK → XN , i.e. β

must satisfy

lim
k→∞

β
(
N, V k

)
= β(N, V )

for every sequence
((
N, V k

))
k∈N of games17 with

lim
k→∞

(
N, V k

)
= (N, V ),

where (N, V ) ∈ ΓK and
(
N, V k

)
∈ ΓK ∀k ∈ N. Let Bcc be the set of all

continuous and covariant reference functions on ΓK. We discuss a possible

weakening of this continuity assumption in section 5.6.

The next theorem states that this requirement is indeed sufficient to prove

the continuity of PNβ.

17With a standard metric on XN which can be seen as
∏
S∈2N R

S .
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Theorem 4.31

Let β ∈ Bcc be a covariant and continuous reference function. Then the

β-prenucleolus PNβ is continuous on ΓK.

Proof:

Let
(
N, V k

)
∈ ΓK ∀k ∈ N and (N, V ) ∈ ΓK be given such that limk→∞

(
N, V k

)
=

(N, V ) in the metric as defined above. Let β ∈ Bcc be a covariant and con-

tinuous reference function.

Let νk := PNβ
(
N, V k

)
∀k ∈ N be the β-prenucleoli of the games

(
N, V k

)
, k ∈

N, and let ν := PNβ(N, V ). We have to show that

lim
k→∞

νk = ν

holds.

From the definition of the (TU) β-games we can easily imply

lim
k→∞

(
N, vβ

V k

)
=
(
N, vβV

)

and thus also

lim
k→∞

(
N, vβ

pN
V k
V k

)
=
(
N, vβ

pNV V

)

holds true. From the continuity of the TU prenucleolus we can imply

lim
k→∞
PN

(
N, vβ

pN
V k
V k

)
= PN

(
N, vβ

pNV V

)

and thus we have

lim
k→∞

1

pN
V k

PNβ

(
N, vβ

pN
V k
V k

)
=

1

pNV
PNβ

(
N, vβ

pNV V

)
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which means nothing else than18

lim
k→∞

νk = ν. �

4.7 Extension to general NTU games

Now that we have established a prenucleolus on a subclass of all NTU games,

namely the class of all quasi hyperplane games ΓqH , we now propose an

extension of this solution concept to a more general class of NTU games.

The way this extension will be carried out is motivated by a Theorem of

Aumann ([Aum85]), as we shall mention at the end of this section.

Suppose now that we consider an NTU game for which the set V (N) is no

longer a halfspace but an arbitrary closed, convex and comprehensive set with

a smooth boundary. Smoothness means that the function p : ∂V (N) → R
N

that maps each point of the boundary of V (N) to a normal vector of the

hyperplane that weakly separates this point from V (N) is continuous. We

shall assume that
∑
i∈N

pi(x) = 1 for every x ∈ ∂V (N).

If a point x ∈ ∂V (N) on the boundary of V (N) is given we could replace

V (N) by the halfspace the boundary of which is the hyperplane that weakly

separates x from V (N) (a normal of this hyperplane is thus given by p(x))

then the game so constructed is a quasi hyperplane game. It is therefore a

member of the domain of the β-prenucleolus which can thus be calculated

for this game. If it so happens that this β-prenucleolus coincides with x then

18Remember the representation of the β-prenucleoli by TU prenucleoli of suitably chosen

TU games, section 4.3.
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x is a canonical candidate for being a β-prenucleolus point of the original

game. Of course the question of existence and uniqueness of such a point lies

at hand.

Let us start with describing that class of NTU games for which we can

hope to answer these questions. The informal description we gave above

how we wish to find a β-prenucleolus of general NTU games suggests that

we need some fixed point argumentation. For this the continuity of the

function p : ∂V (N) → R
N is of course essential. Further we must exclude

games for which parts of the boundary of V (N) admit of normal vectors with

components equal to zero. At those points we can not define quasi hyperplane

games in the way described above. By the same argument we can neither

allow points on ∂V (N) to have normal vectors with negative components.

This we can easily achieve by requiring comprehensiveness of V (N) which is

indeed a standard assumption.

To summarize and to formalize this let Γl ⊂ ΓNTU be the class of NTU games

whose members satisfy the following assumptions:

1. For every proper subcoalition S ∈ 2N , S 6= N , V (S) meets the assump-

tions of Definition 2.3.

2. V (N) is a closed, convex and comprehensive subset of RN such that

V (N) ∩ RN+ is non-empty and compact and the function p : ∂V (N)→

R
N that maps each x ∈ ∂V (N) to a normal vector of the hyperplane

that weakly separates x from V (N) satisfies

(a) p is continuous,
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(b)
∑
i∈N

pi(x) = 1 ∀x ∈ ∂V (N), and

(c) there exists ε > 0 such that pi(x) ≥ ε for all x ∈ ∂V (N) and for

all i ∈ N .

Condition 2c can be seen as a form of a non-levelness condition which is

frequently used for the analysis of NTU games. It is though a stronger

assumption for it additionally prevents the normal vectors at the boundary

of V (N) to have components which are arbitrarily closed to zero.

Next we formalize the replacement of the set V (N) by a halfspace. See also

Figure 5.

Definition 4.32

Let (N, V ) ∈ Γl be a game. For every x ∈ ∂V (N) define the quasi hyperplane

game (N, V x) ∈ ΓqH by

V x(S) := V (S) ∀S ∈ 2N , S 6= N, and

V x(N) :=
{
y ∈ RN |〈y, p(x)〉 ≤ 〈x, p(x)〉

}
.

For every x ∈ ∂V (N) the game (N, V x) coincides with (N, V ) on all proper

subsets of N , while V (N) is replaced by the halfspace that is given by x and

p(x), as described in the introduction of this section.

The definition of β-prenucleoli for games in Γl can now be formalized as

follows.
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p(x)

V (N)

V x(N)

x

Figure 5: Construction of the game V x

Definition 4.33

Let (N, V ) ∈ Γl be a game. Let β ∈ Bcc be a reference function. A point

x ∈ ∂V (N) is called β-prenucleolus of (N, V ) if x = PNβ (N, V x). Denote

by PNβ (N, V ) the set of all β-prenucleoli of (N, V ).

The question of non-emptiness of PNβ can be answered affirmatively as

follows.
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Theorem 4.34

Let (N, V ) ∈ Γl be a game and let β ∈ Bcc be a reference function. Then

PNβ (N, V ) 6= ∅ holds true.

Proof:

Let C :=

{
λ ∈ RN

∣∣∣∣∣λ(N) = 1, sup
x∈V (N)

〈x, λ〉 <∞

}
be the set of all (normal-

ized) vectors that give rise to hyperplanes that are tangent to V (N)19. By

our assumption on games in Γl, C is a compact and convex set of strictly

positive vectors of RN .

Let f 0 : C → ∂V (N) be the function that maps each c ∈ C to the point

x ∈ ∂V (N) such that c = p(x). f 0 is a continuous function because of the

continuity of p.

Let f 1 : ∂V (N)→ ΓqH be defined by f 1(x) := (N, V x) (see Definition 4.32).

Again f 1 and hence f 1 ◦ f 0 are continuous. The β-prenucleolus function

PNβ : ΓqH → R
N is continuous due to Theorem 4.31, so up to now we have

constructed a continuous function from C to RN by PNβ ◦ f 1 ◦ f 0.

Further let f 2 : RN → ∂V (N) map each point x ∈ RN to the point in ∂V (N)

that is nearest to x in some metric on RN . Since f 2 is continuous and also p

is a continuous function from ∂V (N) to C we can finally define the following

function. Let f : C → C be defined by f ≡ p ◦ f 2 ◦PNβ ◦ f 1 ◦ f 0, then f is a

continuous function from C into C itself. Therefore there exists c̄ ∈ C such

that f (c̄) = c̄ by Brouwer’s fixed point theorem.

19C can also be seen as the closure of p (∂V (N)).
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It is now easily verified that x := f 0 (c̄) satisfies x = PNβ (N, V x) and

therefore the proof is complete. �

This proof has been very much inspired by Robert J. Aumann’s proof of the

existence of the NTU Shapley value in [Aum85].

The question of uniqueness of the β-prenucleolus on Γl must at present be

left as open.

Remark 4.35

The continuity property of the β-prenucleolus on ΓqH (Theorem 4.31) was

used in the proof of Theorem 4.34 but in fact a weaker form of continuity

would have been sufficient for this proof. What was actually used is ”conti-

nuity in pN”, with fixed sets V (S), S ∈ 2N and S 6= N . It is a straightforward

corollary of Theorem 4.31 that the β-prenucleolus is also continuous in this

sense.
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5 The NTU prenucleolus

In chapter 4 we have introduced the new class of β-excess functions for NTU

games and the according class of NTU β-prenucleoli. Of course among the

members of this class there exist prenucleoli which fail to satisfy some es-

sential conditions such as covariance, coincidence with the TU prenucleolus

on the class of all TU games and the like. Thus not much more than the

definition of these solution concepts seem to justify the name prenucleolus,

although we have already identified subsets of the set of all reference func-

tions B which give rise to covariant β-prenucleoli and to β-prenucleoli that

coincide with the TU prenucleolus.

In this chapter we will examine more detailed a subclass of some NTU β-

excess functions which all yield the same NTU β-prenucleolus. This NTU

β-prenucleolus (denoted by PN) is covariant, symmetric, single-valued, con-

tinuous, efficient, monotonic20 and satisfies the Kohlberg criterion. Moreover

it also satisfies RGP with respect to a new reduced game and is contained in

the core for a subclass of games. It should be noticed at this point that for

the TU prenucleolus the properties single-valuedness, covariance, RGP and

anonimity are enough requirements to characterize it uniquely. This axiom-

atization is due to Sobolev ([Sob75]). It is one of the most interesting open

questions about PN whether or not some of its properties also constitute an

axiomatization in the NTU case. In any case, we feel that they are certainly

enough reason to justify the name ’NTU prenucleolus’.

20in a special sense, see section 5.2
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5.1 Maximal feasible reference functions and the NTU

prenucleolus

In the sequel we will have to deal with some form of monotonicity for hy-

perplane games, but we encounter a problem with the known concepts as

described in section 2.

Lemma 5.1

1. Hyperplane games are always monotonic (Definition 2.6).

2. If a hyperplane game (N, V ) ∈ ΓH is individual superadditive (Defini-

tion 2.7), then (N, V ) is strategically equivalent (under a linear trans-

formation of utility) to a simplex game (N, V v) belonging to some TU

game (N, v).

Proof:

1. Since pSV > 0 ∀S ∈ 2N , it is immediately clear that the projection of

any V (T ) on RS, S ⊂ T , is always RS itself, thus it contains V (S).

2. If (N, V ) is individually superadditive, then pS = pT |S must hold for all

S ⊂ T, S, T ∈ 2N . Thus pS = pN |S ∀S ∈ 2N . �

We will use yet another concept of monotonicity, which we call weak individ-

ual superadditivity.
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Definition 5.2

Let (N, V ) ∈ ΓNTU be a game. (N, V ) is called weak individual superad-

ditive, if for every player i ∈ N , every coalition ∅ 6= S ∈ 2N\{i} and every

x ∈ V (S)+ there exists y ∈ V (S ∪ {i}) with yS ≥ x and yi ≥ 0.

Definition 5.2 requires that at least the individual rational outcomes in

V (S), S ∈ 2N \ {∅, N}, are also obtainable in S ∪ {i} by assigning zero

payoff to player i.

We now design a special reference function that will yield the NTU prenucle-

olus. In example 4.11 we defined two reference functions β1 and β2 that were

motivated as follows. In the case of the reference function β1 the coalition was

supposed to be indifferent between satisfaction and dissatisfaction when each

player received
cS

|S|pSi
, that means a fraction of his or her maximal outcome

under an individual rational imputation for which coalition S is effective. For

β2 each player had to receive exactly this maximal outcome. Of course, by

the way we constructed the β-excess functions, every redistribution of these

outcomes according to pNV |S also yields points of indifference.

We now propose a slightly different story. We could allow the coalitions to

maximize this outcome that can then be redistributed without changing its

excess. Since players would not accept points that are not individual rational

we restrict this maximization to the individual rational part of V (S), that is

to V (S)+. For technical reasons we assume that the maximization is further-

more done on pNV |SV (S)+ thus the players at first consider a transformation

into a simplex game.
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Definition 5.3

Let (N, V ) ∈ ΓqH be a quasi hyperplane game. For every coalition S ∈

2N , S 6= N , define

mS
V := max

x∈pNV |SV (S)+

〈
x, pNV |S

〉
and denote the maximizers by MS

V , i.e.

MS
V := arg max

x∈pNV |SV (S)+

〈
x, pNV |S

〉
.

Remark 5.4

1. If (N, V ) ∈ ΓH , i.e. (N, V ) is a hyperplane game, then an alternative

formulation of Definition 5.3 is

mS
V :=

cSV

min
i∈S

pSV,i
pNV,i

(
S ∈ 2N , S 6= N

)
.

If (N, V ) is even simplex, then this reduces further to

mS
V :=

cSV
min
i∈S

pSV,i

(
S ∈ 2N , S 6= N

)
.

Thus for a TU game (N, v) ∈ ΓTU we have mS
V v = cSV v = v(S) for

every S ∈ 2N , S 6= N .

2. The value mS
V is invariant under positive linear transformations of util-

ity, i.e. for every λ ∈ RN++:

mS
λV = mS

V ∀ (N, V ) ∈ ΓqH ∀S ∈ 2N , S 6= N.
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According to the motivation we gave for this definition, we now define special

reference functions that declare those imputations to be points of indifference

that are redistributions of mS
V according to pNV |S for every coalition S 6= N .

Definition 5.5

Let β ∈ B be a reference function. β is called maximal feasible, if

〈
β(N,V )(S), pNV |S

〉
= mS

V

holds true for every quasi hyperplane game (N, V ) ∈ ΓqH and every coalition

S ∈ 2N , S 6= N .

The next lemma shows that maximal feasible reference functions belong to

B, thus to a class of reference functions that we already analyzed is chapter

4. Every result we have proved for this class therefore still hold within this

special setup.

Lemma 5.6

If β ∈ B is maximal feasible, then β ∈ B.

Proof:

Let β ∈ B be a maximal feasible reference function. Let (N, v) ∈ ΓTU be a
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TU game and let (N, V v) ∈ ΓH be its according NTU (simplex) game. Then∑
i∈S

β
(N,V v)
i (S) = mS

V v

= cSV v

= v(S)

holds true, hence β ∈ B. �

Lemma 5.6 tells us that if we consider maximal feasible reference functions,

we are within the framework of the axiomatization of β-excess functions

(Theorem 4.4). Figure 6 illustrates definitions 5.3 and 5.5. The dotted line

denotes the set of all possible choices for a reference point that is given by a

maximal feasible reference function.

Hence it is clear that maximal feasibility does not determine a reference

function uniquely. But for every two maximal feasible reference functions β

and β′ the excess functions eβ and eβ
′

coincide for every game (N, V ) ∈ ΓqH ,

every coalition S ∈ 2N , S 6= N ,21 and every x ∈ RN :

eβ (S, x) =
∑
i∈S

(
β

(N,V )
i (S)− xi

)
pNV,i

= mS
V −

∑
i∈S

xip
N
V,i

=
∑
i∈S

(
β
′(N,V )
i (S)− xi

)
pNV,i

= eβ
′
(S, x) ,

and hence also PNβ and PNβ′ coincide. We will therefore shorten the nota-

tion by defining PN (N, V ) := PNβ (N, V ) whenever β is maximal feasible
21The coincidence for N follows from the definition of the reference function.
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β(N,V )(S)

MS
V

pNV |S

Figure 6: A maximal feasible reference function

and call PN the (NTU) prenucleolus of quasi hyperplane games.

Lemma 5.7

Let β ∈ B be maximal feasible. Then for every game (N, V ) ∈ ΓqH and every

λ ∈ RN++ we have β(N,λV )(S) = λβ(N,V )(S) for every coalition S ∈ 2N .

Proof:

Only the case S 6= N has to be considered. From 2. in Remark 5.4 we can
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imply

〈
β(N,λV )(S), pNλV |S

〉
= mS

λV

= mS
V

=
〈
β(N,V )(S), pNV |S

〉
=

〈
λβ(N,V )(S), pNλV |S

〉
.

The desired equation follows immediately. �

In other words if β is maximal feasible then β is covariant, hence β ∈ Bc.

Lemma 5.7 therefore directly yields the covariance of the (NTU) prenucleolus.

Lemma 5.8

The NTU prenucleolus PN satisfies covariance.

The proof is an easy concequence of Theorem 4.14.

As the next result concerning the NTU prenucleolus we will present a The-

orem similar to Lemma 4.22, which states that for weak individual superad-

ditive quasi hyperplane games the NTU prenucleolus is individual rational.

Theorem 5.9

If (N, V ) ∈ ΓqH is weak individual superadditive (see Definition 5.2), then

the NTU prenucleolus PN (N, V ) is individual rational.
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Proof:

Let β ∈ Bc be a maximal feasible reference function. Let (N, V ) ∈ Γqh be weak

individual superadditive and w.l.o.g. simplex. We know that PN (N, V ) =

PN
(
N, vβV

)
, thus all we have to show is that vβV is individual superadditive,

i.e. vβV satisfies

vβV (S) + vβV ({i}) ≤ vβV (S ∪ {i}) ∀S ∈ 2N\{i}, i ∈ N,

since for individual superadditive TU games the TU prenucleolus is individual

rational (Corollary 4.23).

Now suppose that vβV is not individual superadditive, thus there is a player

i ∈ N and a coalition S ∈ 2N\{i} such that

vβV (S) + vβV ({i}) > vβV (S ∪ {i}) .

Since vβV ({i}) = 0 and vβV (S) = mS
V this means

mS
V > m

S∪{i}
V .

Let x̄ be ”a maximizer for mS”, i.e.

x̄ ∈MS
V = arg max

x∈V (S)+

〈
x, pNV |S

〉
.

Since x̄ ∈ V (S)+ and the game is weak individual superadditive, x̄ ∈ V (S ∪ {i})

must hold. But

〈
x̄, pNV |S∪{i}

〉
=

〈
x̄, pNV |S

〉
= mS

V

> m
S∪{i}
V
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holds, thus x̄ /∈ V (S ∪ {i})+. By x̄ ∈ RS∪{i}+ also x̄ /∈ V (S ∪ {i}) holds, a

contradiction to the assumption of weak individual superadditivity of (N, V ).�

5.2 Monotonicity

For the NTU prenucleolus we have a form of ”independence of irrelevant

alternatives” in the sense that if for two games (N, V ) and (N,W ) in ΓqH

such that for some S ∈ 2N , S 6= N , the inclusion V (S) ⊂ W (S) holds but

still mV
S = mW

S is true (and V (T ) = W (T ) for all S 6= T ), then PN (N, V ) =

PN (N,W ). We will show that a more general form of monotonicity holds

for the NTU prenucleolus that is similar to a monotonicity result for the TU

prenucleolus.

Young proved in [You85] that a solution concept φ for TU games that is a

core-selector (like the TU prenucleolus) is in general not monotonic, i.e. from

v(S) < w(S) for some S ∈ 2N it does in general not follow that φi (N, v) <

φi (N,w) ∀i ∈ S. Zhou showed in [Zho91] that the TU prenucleolus is

weakly coalitional monotonic in the following sense.

Definition 5.10

A solution concept φ for TU games is weakly coalitional monotonic on a class

Γ ⊆ ΓTU if for all games (N, v) ∈ Γ and (N,w) ∈ Γ such that v(S) ≤ w(S)

for some S ∈ 2N and v(T ) = w(T ) for all T ∈ 2N , T 6= S, it follows that∑
i∈S

φi (N, v) ≤
∑
i∈S

φi (N,w).
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Theorem 5.11 ([Zho91])

The TU prenucleolus is weakly coalitional monotonic on ΓTU .

So the (TU) prenucleolus ensures that at least the sum of the payoffs to a

coalition S increases when its worth v(S) increases. Now of course the ques-

tion arises if we can show some monotonicity property for the NTU prenu-

cleolus. We therefore extend the concept of weak coalitional monotonicity to

the class of quasi hyperplane games as follows.

Definition 5.12

A solution concept φ for quasi hyperplane games is weakly coalitional mono-

tonic on a class Γ ⊆ ΓqH if for all games (N, V ) ∈ Γ and (N,W ) ∈ Γ

such that V (S) ⊆ W (S) for some S ∈ 2N and V (T ) = W (T ) for all

T ∈ 2N , T 6= S, it follows that
〈
φ (N, V ) |S, pNV |S

〉
≤
〈
φ (N,W ) |S, pNW |S

〉
.

This definition coincides with Zhou’s definition on the class of all TU games.

We are now able to state and to prove the following result.

Theorem 5.13

The NTU prenucleolus is weakly coalitional monotonic on ΓqH .

Proof:

Let (N, V ) , (N,W ) ∈ ΓqH be two quasi hyperplane games such that V (S) ⊆

W (S) for some S ∈ 2N , S 6= N and V (T ) = W (T ) for every T ∈ 2N , T 6= S.
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Two cases can occur:

1. case: mS
V = mS

W .

Then we have PN (N, V ) = PN (N,W ) and nothing more has to be

shown.

2. case: mS
V < mS

W .

Since we have V (N) = W (N), we can define p := pNV = pNW for ab-

breviation. Now mS
V < mS

W implies vβpV (S) < vβpW (S) which yields∑
i∈S
PN

(
N, vβpV

)
i
≤
∑
i∈S
PN

(
N, vβpW

)
i

by Zhou’s result.

Now the proof of the Theorem is completed by

〈PN (N, V ) |S, p|S〉 =
∑
i∈S

PN (N, V )i · pi

=
∑
i∈S

1

pi
PN

(
N, vβpV

)
i
· pi

=
∑
i∈S

PN
(
N, vβpV

)
i

≤
∑
i∈S

PN
(
N, vβpW

)
i

= 〈PN (N,W ) |S, p|S〉 . �

5.3 Computation

In chapter 4 we showed how general β-prenucleoli can be expressed via (TU)

prenucleoli of suitably chosen TU games. In the case of maximal feasible

reference functions, i.e. for the NTU prenucleolus, things are even simpler

because of the invariance of the values mS
V , S ∈ 2N .
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To be more precise, let (N, V ) ∈ ΓqH be a quasi hyperplane game, not

necessarily simplex. The game
(
N, pNV V

)
is simplex and, because of the

maximal feasibility of β and with p := pNV for abbreviation

vβpV (S) =
∑
i∈S

βpVi (S)

=
∑
i∈S

βpVi (S) · pNpV,i

= mS
pV

= mS
V ∀S ∈ 2N , S 6= N,

holds true.

Again by the covariance of the NTU prenucleolus we have

PN (N, V ) =
1

p
PN

(
N, vβpV

)
.

It follows that the computation of the NTU prenucleolus for a given quasi

hyperplane game (N, V ) consists of determining the values mS
V , S ∈ 2N , and

computing the (TU) prenucleolus of the TU game
(
N, vβpV

)
.

Having this in mind, we are now able to apply the results of [Kla97] which will

yield a set-valued dynamical system that converges to the (NTU) prenucle-

olus22. Hence the question to find a dynamical system approach concerning

the NTU prenucleolus, which was declared an open question both in [Kal75]

and in [CC02], can be answered affirmatively. As it was shown in [Kla97]

these results can also be used to develop a computer program to approximate

22See also Justman ([Jus77]) for a different set-valued dynamical system and [MP76] for

a general theory of set-valued dynamical systems.
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the (NTU) prenucleolus. And of course all other algorithms that can compute

the TU prenucleolus can be used to compute also the NTU prenucleolus.

5.4 Inclusion in the core

As mentioned earlier, the core of a cooperative game with transferable utility

(TU game) can as well be defined to be those imputations yielding non-

positive (TU) excesses for all coalitions. Therefore it is easily seen that the

(TU) prenucleolus is a member of the (TU) core whenever the (TU) core is

not empty. For the same reason this is also true for Kalai’s nucleoli.

We have seen in example 4.24 that β-prenucleoli need not be members of the

(NTU) core even when the latter is not empty.

We are about to show in this subsection that the NTU prenucleolus is a core-

member for a certain subclass of quasi hyperplane games. As a corollary of

this result it is shown that all games in this subclass, called ”m-balanced

games”, posses a non-empty core. This corollary leads to interesting ques-

tions: Of what type is the relation between the class of all ”m-balanced”

games and the class of all ”balanced” games — for which non-emptiness of

the core of its members was proved by Scarf in [Sca67]. The same question

applies to π-balanced games which also have a non-empty core due to a The-

orem by Billera ([Bil70b],[Bil71]). We discuss this concepts and show some

connections at the end of this section.

Let us now begin with the central definition of this section.
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Definition 5.14

Let (N, V ) ∈ ΓqH be a quasi hyperplane game. If for all balanced collections

S ⊆ 2N with balancing coefficients (δS)S∈S we have

cN ≥
∑
S∈S

δSm
S
V , (7)

then (N, V ) is called m-balanced.

The resemblance of this definition to the balancedness condition for TU

games is obvious. In fact, both definitions share the same intuition. For

the core of a game to be non-empty the game must not allocate too much

utility to subcoalitions relative to what the grand coalition gets. If sub-

coalitions receive too much they are more likely to be able to improve upon

proposed imputations and the set of pssible candidates for the core might

shrink to the empty set. Both balancedness conditions specify upper bounds

for the worth of subcoalitions or lower bounds for the worth of the grand

coalition, depending on how these inequalities are interpreted. We will see

that the definition of m-balancedness is a sufficient condition for

• the NTU prenucleolus to be contained in the core (Theorem 5.16),

• the core to be non-empty (Corollary 5.17), and

• the β-core to be non-empty (Theorem 5.36).

For the latter m-balancedness is also necessary.
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Let us continue with a remark concerning the TU β-game of a quasi hyper-

plane game with maximal feasible β ∈ B. In Chapter 4 we have defined

and frequently used the TU β-game of a simplex quasi hyperplane game

(Definition 4.21). At this point it is useful to define a generalized version.

For a reference function β ∈ B and a quasi hyperplane game (N, V ) ∈ ΓqH

(not necessarily simplex) let the generalized β-game
(
N, vβV

)
be defined by

vβV (S) :=
〈
β(N,V )(S), pNV |S

〉
for every S ∈ 2N . Hence the generalized ver-

sion coincides with the original β-game if (N, V ) happens to be simplex. Of

course the generalized β-game of (N, V ) does not help in determining the

β-prenucleolus of (N, V ) because in general the respective excess functions

differ.23 Nevertheless we can use the generalized β-game to characterize the

m-balanced quasi hyperplane games by referring to the balancedness condi-

tion for TU games as follows.

Lemma 5.15

Let β ∈ B be a maximal feasible reference function. A game (N, V ) ∈ ΓqH is

m-balanced if and only if its generalized TU β-game
(
N, vβV

)
is balanced.

Proof:

Since β is maximal feasible we have vβV (S) =
〈
β(N,V )(S), pNV |S

〉
= mS

V for

all S ∈ 2N , S 6= N , and vβV (N) = cNV . Inserting this into the definition of

m-balancedness (Definition 5.14) completes the proof at once. �

23The TU excess function for
(
N, vβV

)
is given by e

(
S, x, vβV

)
= vβV (S) −

x(S) =
〈
β(N,V )(S), pNV |S

〉
− x(S), which is in general different from eβ(S, x) =〈

β(N,V )(S)− xS , pNV |S
〉

=
〈
β(N,V )(S), pNV |S

〉
−
〈
xS , p

N
V |S

〉 (
S ∈ 2N

)
.
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Since we about to analyze the connection between the NTU prenucleolus

and the core which both are covariant solution concepts we need not use

the generalized β-game any more because assuming all occuring games to be

simplex is no loss of generality.

The main result of this section is that PN is an NTU core-selector for m-

balanced games.

Theorem 5.16

Let (N, V ) ∈ ΓqH be a quasi hyperplane game. If (N, V ) is m-balanced, then

PN (N, V ) ∈ Core (N, V ).

Proof:

Without loss of generality, assume that (N, V ) is a simplex game. Let β be

a maximal feasible reference function. Let
(
N, vβV

)
be the TU β-game of

(N, V ), i.e.

vβV (S) = mS
V ∀S ∈ 2N .

Since the m-balancedness of (N, V ) is equivalent to the balancedness of
(
N, vβV

)
we have Core

(
N, vβV

)
6= ∅ by the result of Bondareva and Shapley.

Let ν := PN
(
N, vβV

)
be the (TU) prenucleolus of

(
N, vβV

)
, then ν ∈ Core

(
N, vβV

)
,

in other words: ∑
i∈S

νi ≥ vβV (S) ∀S ∈ 2N .
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Thus ν satisfies ∑
i∈S

νi ≥ mS
V ∀S ∈ 2N (8)

and, since ν ∈ Core
(
N, vβV

)
, ν is individual rational:

νi ≥ 0 ∀i ∈ N.

Thus we can imply from (8)

@yS ∈ V (S) such that yS > νS ∀S ∈ 2N . (9)

This is true because mS
V is the maximum of

〈
•, pNV |S

〉
over V (S)+ and the

game is simplex. Finally (9) implies ν ∈ Core (N, V ). The observation

ν = PN (N, V ) (see the considerations on page 58) now completes the proof.�

We immediately see that m-balancedness of a quasi hyperplane game is a

sufficient condition for the core of this game to be non-empty, since it contains

the NTU prenucleolus.

Corollary 5.17

If (N, V ) ∈ ΓqH is m-balanced, then Core (N, V ) 6= ∅.

In order to discuss this new condition of m-balancedness we recall the ban-

lancedness concepts of Scarf ([Sca67]) and Billera ([Bil71]).
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Definition 5.18 ([Sca67])

An NTU game (N, V ) ∈ ΓNTU is balanced if for every balanced collection

S ⊆ 2N it follows that x ∈ V (N) is true whenever xS ∈ V (S) ∀S ∈ S

holds.

Theorem 5.19 ([Sca67])

If an NTU game (N, V ) ∈ ΓNTU is balanced, then Core (N, V ) 6= ∅.

It can easily be shown by examples that this condition is not necessary.

Another sufficient condition for the non-emptiness of the core of NTU games

was given by Billera ([Bil71]). Let therefore π be a (2n − 1)× n-matrix and

consider its rows as indexed by the non-empty elements of 2N (the coalitions).

Let πS be the row that corresponds to S ∈ 2N . Assume that πN > 0, πS ≥ 0

and πSi = 0 for all S ∈ 2N \ {N} and all i /∈ S.

Definition 5.20 ([Bil71])

Let (N, V ) ∈ ΓNTU be an NTU game and let π be a (2n − 1) × n-matrix as

described above. Let S ⊆ 2N be a collection of coalitions. S is π-balanced, if

there exist real numbers (δS)S∈S such that
∑
S∈S

δSπ
S = πN .

Definition 5.21 ([Bil71])

An NTU game (N, V ) ∈ ΓNTU is π-balanced if there exists a matrix π such

that for every π-balanced collection S ⊆ 2N it is true that x ∈ V (N) whenever

xS ∈ V (S) ∀S ∈ S holds.
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Theorem 5.22 ([Bil71])

If an NTU game (N, V ) ∈ ΓNTU is π-balanced for some π, then Core (N, V ) 6=

∅.

A similar result to the theorem of Bondareva and Shapley is the next theorem

which states that π-balancedness is also a necessary condition for the core of

hyperplane games to be non-empty.

Theorem 5.23 ([Bil71])

Let (N, V ) ∈ ΓH be a hyperplane game and let p be the matrix of all normal

vectors pSV
(
S ∈ 2N

)
24. Then Core (N, V ) 6= ∅ if and only if (N, V ) is

p-balanced.

Another interesting result of Billera states that for quasi hyperplane games

π-balancedness is also necessary and sufficient when all sets V (S), S ∈ 2N ,

are convex.

Theorem 5.24 ([Bil71])

Let (N, V ) ∈ ΓqH be a quasi hyperplane game such that V (S) is convex for

every S ∈ 2N . Then Core (N, V ) 6= ∅ if and only if there exists a matrix π

such that (N, V ) is π-balanced.

Corollary 5.17 now adds a third condition for the existence of the core of

24Thus p is of the form π.
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quasi hyperplane games. There arise several questions about the relationship

of m-balancedness to balancedness and π-balancedness.

Of course no two of those concepts are equivalent. Billera ([Bil70b]) provided

an example of a game that is π-balanced but not balanced. See example 5.26

for a hyperplane game that is notm-balanced but has a non-empty core and is

therefore π-balanced according to Theorem 5.23. The question which condi-

tion is sharper, if any, is open. Concering the connection between m-balanced

and π-balanced games we can, however, make the following observation. For

the class of convex valued quasi hyperplane games Theorem 5.23 together

with Corollary 5.17 show that the class of all m-balanced games is a subclass

of all π-balanced games.

Lemma 5.25

Let (N, V ) ∈ ΓqH be a game such that V (S) is convex for every S ∈ 2N . If

(N, V ) is m-balanced then (N, V ) is also π-balanced for some π.

Proof:

The core of (N, V ) is non-empty due to Corollary 5.17. Therefore there exists

π such that (N, V ) is π-balanced due to Theorem 5.24. �

Example 5.26 shows that this inclusion is strict by providing a hyperplane

game that is not m-balanced but has a non-empty core and is therefore

π-balanced. So the characterization of games with a non-empty core by m-

balancedness only yields a smaller class of games. On the other hand, from a
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computational point of view, checking a given game for m-balancedness is a

much easier task than to check for π-balancedness. Peleg ([Pel65]) provided a

procedure to construct successively minimal balanced collections. It remains

the computation of the values mS, S ∈ 2N , which is a simple maximization

problem25. Finally it is to check whether or not the various inequalities (7)

in Defintion 5.14 hold. Apparently there are no known methods to construct

all π-balanced collections over a player set. Neither are the balancedness

inclusions easy to verify. The concept of m-balancedness is a contribution

to the problem of actually checking a game for non-emptiness of its core. In

Section 5.7 m-balancedness is also used as a sufficient and necessary condition

for the β-core, which was introduced in the present thesis (Definition 4.26),

to be non-empty.

Example 5.26

Let n = 4 and let (N, V ) be the hyperplane game as given by Table 7. The

values mS
V of this game are given in the same table in the right column. This

game is not m-balanced. Take S = {{1, 2, 3} , {1, 2, 4} , {1, 3, 4} , {2, 3, 4}}.

This collection is balanced with all balancing coefficients equal to 1
3
. But∑

S∈S

δSm
S
V =

1

3
(6 + 10 + 3 + 5)

= 8

> 7

= cNV .

25In the case of a hyperplane game these values are even given by equations, see Remark

5.4.
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Nevertheless, the game has a non-empty core which is the convex hull of the

following points:
(
0, 4

3
, 5

3
, 4
)
, (2, 0, 2, 3),

(
2, 7

5
, 3

5
, 3
)
,
(
2, 97

25
, 3

5
, 13

25

)
,
(

95
54
, 37

9
, 35

54
, 13

27

)
,

(0, 2, 1, 4) ,
(
2, 15

4
, 5

4
, 0
)
, (2, 0, 3, 2),

(
5
4
, 1

2
, 15

4
, 3

2

)
, (2, 2, 3, 0).

The NTU prenucleolus of this game is PN (N, V ) =
(
4, 19

8
,−1, 13

8

)
.

5.5 Reduced game property

For the class ΓTU of TU games two different versions of reduced games are

used in axiomatizations of solution concepts. The reduced game defined in

Chapter 2 is due to Davis and Maschler ([DM65]) and is used to axiomatize

the (TU) prenucleolus and the (TU) prekernel. Another reduced game, due

to Hart and Mas-Colell ([HMC89]), yields an axiomatization of the Shapley

value via the same axioms used in the axiomatization of the prenucleolus just

by exchanging the two reduced games in the definition of RGP.

These two (TU) reduced games can easily be generalized to the class of NTU

games and the question arises wether or not the (NTU) prenucleolus satisfies

RGP with respect to one of these (NTU) reduced games. But, as Maschler

and Owen ([MO89]) have shown, there does not exist a solution concept for

hyperplane games that is

• efficient,

• symmetric,
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• covariant and

• that satisfies RGP with respect to the reduced games of Davis and

Maschler or of Hart and Mas-Colell.

Since PN satisfies the first three properties, we can imply that PN does not

satisfy RGP, although one should be aware that the covariance that [MO89]

used contains also additive transformations of utility and they did not provide

a definition of their notion of symmetry. But usually symmetry follows from

anonimity. Also examples that show the non-validness of the reduced game

property of PN with respect to either of the two reduced games are easily

constructed. In their analysis of a possible extension of the prekernel to NTU

games, also Orshan and Zarzuelo ([OZ00]) noticed that RGP might be a too

strong requirement because it often causes the solution to be empty.

To overcome this problem, two different ways are possible. The first way,

as undertaken in [MO89], is to keep the definition of the reduced game and

to modify the definition of RGP. By this means they axiomatized their new

solution concept, called the consistent NTU Shapley value, by efficiency, sym-

metry, covariance and the so-called bilateral consistency.

However, we will take the other possible way and keep the definition of RGP

but use a new reduced game in order to show that the NTU prenucleolus

PN satisfies a form of the reduced game property. This new reduced game

coincides with that of Definition 2.15 on the class of all TU games. As yet

we do not know if the properties of PN together with RGP constitute an

axiomatization.
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Definition 5.27

Let (N, V ) ∈ ΓqH be a quasi hyperplane game and let S ∈ 2N be a coalition.

Let M̄S
V ∈ pSV |SV (S)+ be any maximizer in the definition of mS

V .

Let CS :=
{
i ∈ S

∣∣M̄S
V,i > 0

}
be the set of those players of S whose outcome

under M̄S
V is strictly positive.

We now deviate from the standard definitions. We consider games (S, V )

for a subcoalition S ( N still as correspondences to RN and not to an |S|-

dimensional space as it would be required by our definition of an NTU game.

Since R|S| is isomorphic to RS ⊆ RN this inconsistency should be tolerated.

Definition 5.28

Let (N, V ) ∈ ΓqH be a quasi hyperplane game, let x ∈ RN be an imputation

and let S ∈ 2N \{∅, N} be a coalition. The (NTU) reduced game
(
S, V S

x

)
of S w.r.t. x is defined by

V S
x (T ) := V (T ) + sT (T ⊂ S)

V S
x (S) :=

{
xS ∈ RS

∣∣〈xS, pNV |S〉 ≤ cN −
〈
xN\S, p

N
V |N\S

〉}
.

Here sT ∈ RT is defined by

si :=


max

Q⊆N\S
{mT∪QV −x(Q)}−mTV
|CT |pNV,i

: i ∈ CT

0 : i /∈ CT

(i ∈ N)
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Remark 5.29

In the case where (N, V ) is a hyperplane game, then the definition of V S
x (T )

can as well be formulated as

V S
x (T ) =

{
xT ∈ RT

∣∣∣〈xT , pTV 〉 ≤ cTV Sx

}
(T ⊂ S)

with

cTV Sx := max
Q⊆N\S

{
mT∪Q
V − x(Q)

}
min
i∈T

pTV,i
pNV,i

.

Remark 5.30

1. The (NTU) reduced game of a quasi hyperplane game is itself a quasi

hyperplane game. If the original game was simplex then so is the re-

duced game.

2. Remark 5.29 shows that the (NTU) reduced game coincides with the

(TU) reduced game of Davis and Maschler when the original game is

a TU game. For this we only need to notice that in this case pSV = 1S

and mS
V = v(S) holds true for all S ∈ 2N .

3. The motivation for this reduced game is also quite similar. Every coali-

tion T ⊂ S considers an enlargement of their outcome set V (T ) by

cooperating with players outside of S. If Q ⊆ N \ S is such a group of

players then T ∪Q could ”command” mT∪Q
V reduced by what Q receives

from x, that is x(Q). The coalition T determines the – in this sense –

most profitable coalition in N \ S. As in the TU case this maximaza-

tion is only virtual. Different subcoalitions of S might be dependend on

intersecting coalitions to reach this maximum.
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Definition 5.31

Let Φ be a solution concept on ΓqH . Φ satisfies the reduced game property

(RGP), if the following is true for every game (N, V ) ∈ ΓqH :

x ∈ Φ (N, V )⇒ xS ∈ Φ
(
S, V S

x

)
∀S ∈ 2N .

We do not need to require
(
S, V S

x

)
∈ ΓqH in the definition of the reduced

game property because due to Remark 5.30 the property of being a quasi

hyperplane game is preserved by reducing.

Theorem 5.32

The NTU prenucleolus PN satisfies RGP.

Proof:

Essential for this proof is the fact that the (TU) prenucleolus satisfies RGP

(Lemma 2.17).

Let β ∈ Bc be a maximal feasible reference function and let (N, V ) ∈ ΓqH be

a quasi hyperplane game. Assume w.l.o.g. that (N, V ) is a simplex game.

Denote by ν := PN (N, V ) the (NTU) prenucleolus of (N, V ) and by
(
N, vβV

)
the (TU) β-game of V , i.e. vβV (S) =

∑
i∈S β

(N,V )
i (S) = mS

V , since β is

maximal feasible.

Let S ∈ 2N , S 6= N , be a coalition. We have to show that

νS = PN
(
S, V S

ν

)
,



5 THE NTU PRENUCLEOLUS 104

where
(
S, V S

ν

)
is the reduced game of S w.r.t. ν, or equivalently

νS = PN
(
S, vβ

V Sν

)
. (10)

Since ν = PN
(
N, vβV

)
and the (TU) prenucleolus satisfies RGP, it follows

that

νS = PN
(
S,
(
vβV

)S
ν

)
. (11)

Thus in view of (10) and (11) all we have to show is(
vβV

)S
ν

= vβ
V Sν
,

i.e., that the (TU) reduced game of vβV w.r.t. S and ν is equal to the (TU)

β-game of the (NTU) reduced game of V w.r.t. S and ν.

Note that the definition of sT implies that if MT
V is a maximizer for mT

V , then

MT
V + sT is a maximizer for mT

V Sx
. Thus we have for all T ( S:

mT
V Sx

=
〈
MT

V + sT , p
N
V |T
〉

= mT
V +

〈
sT , p

N
V |T
〉

= mT
V + max

Q⊆N\S

{
mT∪Q − x(Q)

}
−mT

V

= max
Q⊆N\S

{
mT∪Q − x(Q)

}
.



5 THE NTU PRENUCLEOLUS 105

Thus

vβ
V Sν

(T ) =
∑
i∈T

β
(S,V Sν )
i (T )

= mT
V Sν

= max
Q⊆N\S

{
mT∪Q − ν(Q)

}
= max

Q⊆N\S

{
vβV (T ∪Q)− ν(Q)

}
=

(
vβV

)S
ν

(T ).

It remains the case T = S. We have(
vβV

)S
ν

(S) = vβV (N)− ν (N \ S)

= cNV − ν (N \ S)

= ν(S)

and

vβ
V Sν

(S) =
∑
i∈S

β
(S,V Sν )
i (S)

= mS
V Sν

= cNV − ν (N \ S)

= ν(S) �

5.6 Continuity and extension to general NTU games

In section 4.6 we have shown the continuity of PNβ for continuous reference

functions β which was an essential ingredience for the proposed extension

to general NTU games in section 4.7. To see if these results are still valid
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for the NTU prenucleolus only some thoughts about continuity of maximal

feasible reference functions are to be made.

If we have a convergent sequence of games
((
N, V k

))
k∈N, limk→∞

(
N, V k

)
=

(N, V ), and a reference function that is maximal feasible then the payoff

configurations
(
β(N,V k)

)
k∈N

need not necessatily converge because we only

required for maximal feasibility that each β(N,V k)(S) is any member of that

hyperplane represented by mS
V and pNV . But for the same reason it is therefore

possible without any loss of generality to define each β(N,V k), k ∈ N, in a way

that indeed limk→∞ β
(N,V k) = β(N,V ) holds.

As a matter of fact we could have weakened the requirement of continuity

of the reference function in Theorem 4.31 in precisely this sense. But this

would not have enlarged the class of continuous β-prenucleoli because all

those reference functions that we could additionally consider would yield the

same β-prenucleolus as we already explained in connection with maximal

feasible reference functions in section 5.1.

Hence we can conclude for the purpose of this section that the following

remarks hold true.

Remark 5.33

1. The NTU prenucleolus PN is continuous.

2. PN can be extended to the class Γl as suggested by Definition 4.33 and

then Theorem 4.34 ensures the existence of PN on Γl.
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5.7 The β-core for maximal feasible β

So far this chapter has been devoted to the analysis of the (NTU) β-pre-

nucleolus for maximal feasible β which we called the (NTU) prenucleolus.

We have, however, defined another new solution concept for quasi hyperplane

games that uses β-excess functions: the (NTU) β-core (Definition 4.26). We

now analyze the β-core for maximal feasible reference functions β. For this

specific reference functions we can state some more propositions beside the

remarks made in chapter 4. Note that analog to the reasoning about the

NTU prenucleolus, every maximal feasible β yields the same β-core.

We show that the β-core for maximal feasible β is always a subset of the core,

provided both are non-empty, and that the β-core of a game is non-empty if

and only if the game is m-balanced (Definition 5.14). These results do not

yield a new proof of Corollary 5.17 about non-emptiness of the (NTU) core

for m-balanced games. In fact, they are themselves corollaries of the proof

of Theorem 5.16.

Theorem 5.34

Let (N, V ) ∈ ΓqH be a game and let β ∈ Bc be maximal feasible. Then

Coreβ (N, V ) ⊆ Core (N, V ). Especially, this means Core (N, V ) = ∅ ⇒

Coreβ (N, V ) = ∅.

Proof:

Suppose w.l.o.g. that (N, V ) is simplex. We have used in the proof of Theo-
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rem 5.16 the fact that for every S ∈ 2N and every x ∈ V (N) the implication

〈
xS, p

N
V |S
〉
≥ mS

V ⇒ @yS ∈ V (S) such that yS > xS

is true. Since
〈
xS, p

N
V |S
〉
≥ mS

V implies eβ(S, x) =
〈
β(S), pNV |S

〉
−
〈
xS, p

N
V |S
〉

=

mS
V−
〈
xS, p

N
V |S
〉
≤ 0, it follows that x ∈ Coreβ (N, V ) implies x ∈ Core (N, V ).�

For every reference function β ∈ Bc the (NTU) β-excess function on a simplex

quasi hyperplane game (N, V ) coincides with the (TU) excess function on its

(TU) β-game
(
N, vβV

)
. Thus also the respective cores coincide. We state this

simple observation as a Lemma and omit the proof. Note that both solution

concepts are covariant hence the simplex assumption can be dropped.

Lemma 5.35

Let (N, V ) ∈ ΓqH be a game and let β ∈ B be maximal feasible. Then

Coreβ (N, V ) = Core
(
N, vβV

)
,

i.e., the β-core of (N, V ) coincides with the (TU) core of its β-game.

We are now able to give a necessary and sufficient condition for the β-core

of a game to be non-empty.

Theorem 5.36

Let (N, V ) ∈ ΓqH be a game and let β ∈ B be maximal feasible. Then

Coreβ (N, V ) 6= ∅ if and only if (N, V ) is m-balanced.
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Proof:

Coreβ (N, V ) coincides with Core
(
N, vβV

)
(Lemma 5.35). Thus it is non-

empty if and only if
(
N, vβV

)
is balanced. But

(
N, vβV

)
is balanced if and

only if (N, V ) is m-balanced (Lemma 5.15). �

These results reveal an interesting connection between the core and the β-

core of m-balanced quasi hyperplane games. Both solution concepts are not

empty and they have a non-empty intersection since the (NTU) prenucleolus

is a member of both of them.
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S pSV1
cSV1

mS
V

{1} (1, 0, 0, 0) 0 0

{2} (0, 1, 0, 0) 0 0

{3} (0, 0, 1, 0) 0 0

{4} (0, 0, 0, 1) 0 0

{1, 2} (2, 3, 0, 0) 4 2

{1, 3} (1, 0, 5, 0) 5 5

{1, 4} (2, 0, 0, 1) 4 4

{2, 3} (0, 3, 4, 0) 4 4
3

{2, 4} (0, 1, 0, 1) 2 2

{3, 4} (0, 0, 4, 5) 5 5
4

{1, 2, 3} (1, 2, 2, 0) 6 6

{1, 2, 4}
(
2, 1

2
, 0, 7

)
5 10

{1, 3, 4} (3, 0, 2, 2) 6 3

{2, 3, 4} (0, 1, 1, 1) 5 5

N (1, 1, 1, 1) 7

Table 7: The game of example 5.26
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