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Abstract

In a non-stationary world subject to structural breaks, where model and mechanism differ,
equilibrium-correction models are a risky device from which to forecast. Equilibrium shifts en-
tail systematic forecast failure, and indeed forecasts will tend to move in the opposite direction
to the data. A new explanation for the empirical success of second differencing is proposed. We
consider model transformations based on additional differencing to reduce forecast-error biases, as
usual at some cost in increased forecast-error variances. The analysis is illustrated by an empirical
application to narrow money holdings in the UK.
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1 Introduction

Developments in cointegration analysis from Granger (1981), through Granger and Weiss (1983) and
Engle and Granger (1987), to Johansen (1988) have led to equilibrium-correction econometric systems
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being ubiquitous for modelling, forecasting and economic policy analysis. In fact, most econometric
models are members of the equilibrium-correction class: this includes not only explicit equilibrium-
correction models (denoted EqCMs) based on cointegration,and almost all regression equations and si-
multaneous models, but also most other econometric systems, including vector autoregressions (VARs),
dynamic stochastic general-equilibrium models (DSGEs) and many variance models (such as GARCH).
The forecasting properties of this huge class are essentially generic, and are well represented by those
of standard vector EqCMs (VEqCMs: see e.g., Hendry, 2003).

Initially, theory and Monte Carlo simulations suggested VEqCMs should outperform when forecast-
ing, especially for cointegrated combinations of variables: see e.g., Engle and Yoo (1987), Lütkepohl
(1991) and Clements and Hendry (1995). However, the findingsof forecasting competitions (see e.g.,
Makridakis and Hibon, 2000, Clements and Hendry, 2001, and Fildes and Ord, 2002), extensive appli-
cations to forecasting macro time series as in Stock and Watson (1999), and empirical mis-forecasting
of events, such as money demand in the UK (see Hendry and Mizon, 1993) and UK consumers’ expen-
diture (see e.g., Clements and Hendry, 1998a) suggested that all was not well. The theory of forecasting
from mis-specified models of non-stationary processes subject to structural breaks in Clements and
Hendry (1998b, 1999) highlighted that VEqCMs were not robust to shifts in the underlying equilib-
rium. The results in Hendry and Doornik (1997) and Hendry (2000) showed that location shifts (such
as changes in equilibria) were the most pernicious problem for forecasting in this class. Indeed, follow-
ing an equilibrium shift, forecasts from VEqCMs tended to move in the opposite direction to the data,
thereby inducing forecast failure, defined as a significant deterioration in forecast performance relative
to in-sample behaviour. Finally, the prevalence of structural changes in macro time series confirmed
in Stock and Watson (1996) helped account for such outcomes,including those reported in Stock and
Watson (1999).

Moreover, Clements and Hendry (1998b, 1999) show that an economic theory causal basis for fore-
casting models is of no avail in a world of location shifts. Thus, while VEqCMs are excellent when the
process is stationary after differencing and cointegration reductions, they are unreliable if breaks occur.
Consequently, we consider model transformations which canreduce forecast-error biases from system-
atic mis-forecasting by VEqCMs, as usual at some cost in increased forecast-error variances (other
adaptive approaches, and the basis for these, are discussedin Hendry, 2003). We also thereby discover
a new explanation for why some so-called ‘naive’ forecasting devices may be hard to outperform even
when they are apparently poor approximations to the in-sample data generation process (DGP).

Section 2 specifies a cointegrated DGP and its properties as aforecasting device, then section 3
considers the effects thereon when breaks occur. Section 4 discusses why ‘second-differenced’ fore-
casting devices may perform well in processes subject to structural breaks; and section 5 examines a
transformation which might improve the robustness of VEqCMs when forecasting in such a context.
Section 6 illustrates the ideas for the much-used empiricalexample of the behaviour of UK M1. Section
7 concludes.

2 A cointegrated DGP

We consider a first-order VAR for simplicity, where the vector of n variables of interest is denoted by
xt (often taken to be the logs of the original variables), and its in-sample DGP is:

xt = τ + Γxt−1 + εt where εt ∼ INn [0,Ωε] . (1)

Γ is ann × n matrix of coefficients andτ is ann dimensional vector of intercepts. The specification in
(1) is assumed constant in-sample, and the system is taken tobeI (1), satisfying ther < n cointegration
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relations:
Γ = In + αβ′. (2)

In (2), α andβ aren × r full-rank matrices, no roots of|I − ΓL| = 0 lie inside unit circle (where
Lk

xt = xt−k), andα′
⊥Γβ⊥ is full rank (n − r), whereα⊥ andβ⊥ are full column rankn × (n − r)

matrices, withα′α⊥ = β′β⊥ = 0 (see e.g., Johansen, 1992). Additional lags do not materially affect
the analysis below. Then (1) is reparametrized as the vectorequilibrium-correction model (VEqCM):

∆xt = τ + αβ′
xt−1 + εt. (3)

Both∆xt andβ′
xt areI(0) but may have non-zero means. Let:

τ = γ − αµ (4)

then:
(∆xt − γ) = α

(
β′

xt−1 − µ
)

+ εt. (5)

Whenβ′α is non-singular, the variables grow at the unconditional rate:

E [∆xt] = γ =
(
In − α

(
β′α

)−1
β′

)
τ = Kτ ,

whereK is non-symmetric idempotent withβ′
K = 0

′ andKα = 0 soΓK = K which implies that
β′γ = 0 soΓγ = γ; and the long-run equilibrium mean is:

E
[
β′

xt

]
= µ. (6)

Thus, in (5), both∆xt andβ′
xt are expressed as deviations about their means. Note thatγ is n× 1, but

subject tor restrictions, andµ is r × 1, leavingn unrestricted intercepts in total in (5). Also,γ, α and
µ are assumed to be variation free, although in principle,µ could depend onγ: see Hendry and von
Ungern-Sternberg (1981). Then(τ ,Γ) are not variation free, as seems reasonable whenγ, α, β andµ

are the ‘deep’ parameters: for a more extensive analysis, see Clements and Hendry (1996).

2.1 Forecasting properties

When the parameters are constant in-sample, sampling variations in estimates thereof have only a small
effect on the analysis, so we consider the case of known parameters to focus on the issue of fore-
cast failure. In that case, 1-step ahead forecasts from (5) coincide with the conditional expectation
ET [∆xT+1|xT ], and are given by:

∆̂xT+1|T = γ + α
(
β′

xT − µ
)
. (7)

Theh-step forecast errors for the growth rate areε̂T+h = ∆xT+h − ∆x̂T+h|T whereε̂T+1 = εT+1.
It is easiest to first derive forecast errorsε̃T+h = xT+h − x̂T+h|T for the levels:

x̂T+1|T = xT + γ + α
(
β′

xT − µ
)

= τ + ΓxT , (8)

so ε̃T+1 = ε̂T+1. However, theh-step forecast errors from (8) are then generated recursively by:

x̂T+h|T = τ + Γx̂T+h−1|T =
h−1∑

i=0

Γ
iτ + Γ

h
xT . (9)



4

As:

xT+h = τ + ΓxT+h−1 + εT+h =

h−1∑

i=0

Γ
iτ + Γ

h
xT +

h−1∑

i=0

Γ
iεT+h−i,

for known parameters:

ε̃T+h =

h−1∑

i=0

Γ
iεT+h−i,

with:

E [ε̃T+h] = 0 and V [ε̃T+h] =

h−1∑

i=0

Γ
i
ΩεΓ

i′ (10)

whereV [·] denotes the variance, and isO(h) in (10) becauseΓi increases ini.
Returning to growth rates, since∆xT+h = xT+h − xT+h−1:

∆xT+h = Γ
h−1τ + Γ

h−1 (Γ − In)xT + εT+h + (Γ − In)

h−2∑

i=0

Γ
iεT+h−i−1

= γ + αΨ
h−1

(
β′

xT − µ
)

+ εT+h − α

h−2∑

i=0

Ψ
iβ′εT+h−1−i,

where we use the well-known results that (see e.g., Clementsand Hendry, 1995):

β′
Γ = β′

(
In + αβ′

)
=

(
In + β′α

)
β′

$ Ψβ′,

and:
Γα =

(
In + αβ′

)
α = αΨ.

Thus:

E [ε̂T+h] = 0 and V [ε̂T+h] = Ωε +

h−2∑

i=0

αΨ
iβ′

ΩεβΨ
i′α′, (11)

whereV [·] denotes the variance, and isO(1) in h in (11) becauseΨi → 0 asi increases. Parameter
estimation adds terms ofO(T−1) to V [·] for a sample of sizeT . Note that:

Γ
h = In + α

h−1∑

i=0

Ψ
iβ′ = In − α

(
β′α

)−1
(
In − Ψ

h
)

β′ = K + α
(
β′α

)−1
Ψ

hβ′,

and thereforeΓh → K with:

xT+h = xT + hγ − α
(
β′α

)−1
(
In − Ψ

h
) (

β′
xT − µ

)
+

h−1∑

i=0

Γ
iεT+h−i,

so any disequilibrium at the forecast origin has an increasing impact over time on the level of the series,
albeit possibly ‘hidden’ in practice by the increased noisefrom the cumulative error term. Given this
background, we now introduce location shifts into the DGP.
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3 Location shifts

The shift of interest here is∇µ∗ = µ∗ − µ, whereµ∗ denotes the post-break equilibrium mean.
Although γ, α andΩε could alter also, equivalent magnitude changes to these do not entail the same
degree of forecast failure—see Hendry (2000). Importantly, being the unconditional growth rate, the
sizes of changes toγ are generally limited for real variables (e.g., 2.5% pa growth yieldsγ ' 0.006 in
quarterly data, so even a change as large as0.006 would double real growth). However,µ need not have
any ‘natural units’ (e.g., as in money demand), and even in cases where it does (consumption-income
equations where 0.05–0.2 would be a feasible range), changes could be very large relative to the error
standard deviation. In any case, shifts inγ are easily incorporated in the following analysis if they are
of interest (e.g., as they would be for changes in China’s growth rate over the last half century).

Following a change toµ∗ at the forecast origin at timeT :

∆xT+1 = γ + α
(
β′

xT − µ∗
)

+ εT+1 (12)

so adding and subtractingαµ in (12):

∆xT+1 = γ + α
(
β′

xT − µ
)

+ εT+1 − α∇µ∗ (13)

or:
∆xT+1 = ∆̂xT+1|T − α∇µ∗. (14)

The first right-hand side term in (14) (namelŷ∆xT+1|T ) is the constant-parameter forecast of∆xT+1

given by (7); the second is the shift with:

E

[
∆xT+1 − ∆̂xT+1|T

]
= −α∇µ∗. (15)

Since E[β′
xT ] = µ, then−α∇µ∗ is indeed the unanticipated increase in∆xT+1 relative to the

constant-parameter setting.
Forh-steps ahead:

E

[
∆xT+h − ∆̂xT+h|T

]
= −αΨ

h−1∇µ∗ (16)

which tends to zero ash increases. Thus, following an equilibrium shift in anI(1) system, further ahead
growth rates are forecast more accurately then 1-step. Thisoccurs because adjustment following the
change in the level ofxt induced by the shift inµ acts like a change in growth which dies out as the
new equilibrium mean is attained. Of course, such an outcomeis very different from that obtaining in
a time-invariant process. As before, the increased variance of multi-period forecasts will entail reduced
precision.

Importantly, recommencing theh-steps ahead forecast sequence atT + j using an unchanged model
does not alter these results: (15) and (16) continue to hold with (e.g.)E[∆xT+h+j − ∆̂xT+h+j|T+j] =

−αΨ
h−1∇µ∗.

However, for levels forecasts after the break:

xT+h = hγ − α

h−1∑

i=0

Ψ
iµ∗ +

h−1∑

i=0

Γ
iεT+h−i + Γ

h
xT ,

yielding a forecast error of:

E
[
xT+h − x̂T+h|T

]
= −α

h−1∑

i=0

Ψ
i∇µ∗ = α

(
β′α

)−1
(
In − Ψ

h
)
∇µ∗ (17)
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which increases over the forecast horizon. As with (16), (17) persists for a forecast origin ofT + j. In
both cases, forecast error variance formulae are unchangedfrom the constant-parameter setting.

A scalar numerical illustration based on the empirical example of UK money demand in section 6
helps highlight some possible magnitudes. Using inverse velocity adjusted for the foregone interest cost
of holding money, we have approximately,α = −0.1, andβ = 1 with ∇µ∗ = 0.5 andσε = 0.015

(1.5%) so (15) is initially0.05 > 3σε and tends to zero, whereas (17) also starts at0.05 but increases to
0.5, which is interpretable as 50% of the money stock...

Section 4 now examines possible solutions which avoid such massive forecast failures. Two closely
related approaches are considered to improving forecasting robustness in the face of location shifts:

• forecasting from a double-differenced device (denoted DDV) which adjusts quickly to breaks;
• differencing the VEqCM term in (5) to eliminate the equilibrium mean.

We take these two transformations in turn. It should be notedthat VEqCMs and DDVs perform equally
badly in terms of forecast biases when a break occurs after forecasts are announced (see Clements and
Hendry, 1999), so they do not differ in that regard for such a setting, although the latter will have a
larger error variance, offset in part by smaller parameter estimation uncertainty. The key difference lies
in their performance when forecasting after a break, in which case the VEqCM continues to perform
just as badly, as seen above , but the DDV becomes relatively immune to the earlier break. As we
will show below, differencing the VEqCM achieves a similar objective for shifts inµ. Updating the
parameter estimates is considered in Hendry (2003) as an additional adaptation to change, but in the
present context would simply drive the estimatedα to zero, and hence end as a model in differences.

4 Forecasting by ∆xT

Most economic time series do not continuously accelerate, entailing a zero unconditional expectation of
the second difference:

E
[
∆2

xt

]
= 0, (18)

and suggesting the forecasting rule:
∆̃xT+1|T = ∆xT . (19)

This will deliver unconditionally unbiased, but noisy, forecasts when the DGP has the form (5), even if
that DGP is augmented by additional lagged differences. Onekey to the success of double differencing
is that no deterministic terms remain. Indeed, second differencing not only removes two unit roots, any
intercepts and linear trends, it also changes location shifts to ‘blips’, and converts breaks in trends to
impulses. Figure 1 illustrates. Thus, while (19) will suffer forecast failure for large changes inµ in the
period of change, it adjusts quickly to breaks, and need not fail even one period later.

For example, from (12) for̃∆xT+2|T+1 = ∆xT+1:

∆xT+2 − ∆̃xT+2|T+1 = γ + α
(
β′

xT+1 − µ∗
)

+ εT+2 − ∆xT+1 = αβ′∆xT+1 + ∆εT+2,

so for∆xT+2 − ∆̃xT+2|T+1 = ũT+2:

E [ũT+2] = E
[
αβ′∆xT+1 + ∆εT+2

]
= E

[
αβ′α

(
β′

xT − µ∗
)]

= −α
(
β′α

)
∇µ∗. (20)

Compared to (14), which will remain the 1-step error of the VEqCM from a forecast origin ofT + 1,
(20) must be smaller. This pattern persists for 1-step errors h-periods after the shift:

E

[
∆xT+h − ∆̃xT+h|T+h−1

]
= −α

(
β′α

)
Ψ

h−2∇µ∗,
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Figure 1 Location shifts and broken trends.

whereasE[∆xT+h−∆̂xT+h|T+h−1] = −α∇µ∗. For the numerical example above, (20) delivers a bias
of −0.005, so has already become negligible.

In addition to the properties just noted, there is a deeper reason why a forecast of the form (19) may
generally perform well. Consider an extended in-sample DGP:

∆xt = γ0 + α0

(
β′

0xt−1 − µ0

)
+ Υ0zt + εt, (21)

whereεt ∼ INn [0,Σε] independently of all the included variables and their history, with population
parameter values denoted by the subscript0. In (21), {zt} denotes potentially many omitted effects,
possibly all lagged, but which areI(0) for consistency withxt beingI(1), perhaps because of ‘internal’
cointegration, differencing, or intrinsic stationarity.We assumezt is the mean-zero VAR:

zt = Φzt−1 + ηt where ηt ∼ INk [0,Ωη ] (22)

and, although it is unrealistic, takezt to be orthogonal toβ′
0xt−1, so needβ′

0Υ0 = 0. Then the
parameter estimates in the original VEqCM are consistent: non-orthogonality would exacerbate the
mis-specification problem, so this is probably the most favourable case for the VEqCM, and allows us
to work with known parameters to focus on forecast failure comparisons close to those of the previous
section. Now the VEqCM (7) is mis-specified by omittingΥ0zt as well as confronting a location shift.
Both effects favour̃∆xT+h|T+h−1 as we now show.

4.1 Constant-parameter case

We first consider the constant-parameter DGP (21), where we contrast the forecasts from a VEqCM
with a DDV for xt, so both models are mis-specified, but in different ways. Then the 1-step forecast
error from the VEqCM isΥ0zT+1 + εT+1 where from (22):

E [Υ0zT+1 + εT+1] = 0 (23)
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and:
V [Υ0zT+1 + εT+1] = Υ0V [zt]Υ

′
0 + Ωε (24)

where
V [zt] = ΦVzΦ

′ + Ωη. (25)

The DDV 1-step forecast error is∆xT+1 −∆xT = uT+1 so is the difference of the right-hand side
of (21) atT + 1:

∆xT+1 − ∆xT = α0β
′
0∆xT + Υ0∆zT+1 + ∆εT+1, (26)

which has mean zero and variance:

V [uT+1] = α0β
′
0V [∆xT ] β0α

′
0 + Υ0V [∆zT+1]Υ

′
0 + 2Ωε (27)

as the covarianceC
[
∆xT ∆z

′
T+1

]
vanishes whenβ′

0Υ0 = 0, where:

V [∆zt] = (Φ− Ik) V [zt] (Φ − Ik)
′ + Ωη. (28)

Using (25) and (28), the difference between (24) and (27) is:

Υ0

(
ΦV [zt] + V [zt]Φ

′ − V [zt]
)
Υ

′
0 − α0β

′
0V [∆xT ]β0α

′
0 − Ωε. (29)

WhenΦ = 0 (or, of course,Υ0 = 0), then the VEqCM forecast-error variance dominates that ofthe
DDV, since (29) is negative semi-definite. However, ifΦ ' Ik, and the omitted variables are important
in explainingxt, then the difference is:

Υ0V [zt]Υ
′
0 − α0β

′
0V [∆xT ] β0α

′
0 − Ωε,

which could be positive semi-definite, albeit that serious mis-specification is required. Nevertheless, the
usual argument that differencing doubles the error variance applies only to the innovation component of
the error, and is attenuated by omitted variables.

4.1.1 Scalar illustration 1

Whenn = k = 1, explicitly comparable formulae are readily obtained for the scalar DGP:

∆xT+1 = γ0 + α0 (xT − µ) + ν0zT+1 + εT+1.

Then (24) becomes:

σ2
η

ν2
0

1 − φ2 + σ2
ε (30)

sinceσ2
z = σ2

η/
(
1 − φ2

)
; and (27) becomes:

2α2
0

(
σ2

ην
2
0 + σ2

ε

)

2 + α0
+ 2σ2

ην
2
0

1

1 + φ
+ 2σ2

ε (31)

so the difference between (24) and (27) is:

σ2
ην

2
0

(
2φ − 1

1 − φ2 −
2α2

0

2 + α0

)
− σ2

ε

(
1 +

2α2
0

2 + α0

)
,

which will be positive only ifφ > 0.5, but can certainly be positive (e.g.,α0 = −0.1, ν0 = 1, σ2
η = σ2

ε ,

φ > 0.75 would suffice). Thus, even in a constant parameter world, the‘naive’ predictor∆̃xT+1|T

could outperform a (mis-specified) VEqCM.
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4.2 Changed-parameter case

However, the more relevant case for our analysis is when the DGP changes over the forecast horizon,
and for generality we let all parameters shift to:

∆xT+i = γ∗
0 + α∗

0

(
(β∗

0)
′
xT+i−1 − µ∗

0

)
+ Υ

∗
0zT+i + εT+i. (32)

If ∆xT+i −∆x̂T+i|T+i−1 = wT+i when the postulated econometric model is the estimated VEqCM in
xt:

∆x̂T+i|T+i−1 = γ̂ + α̂
(
β̂
′
xT+i−1 − µ̂

)
(33)

then:

wT+i = γ∗
0 + α∗

0

(
(β∗

0)
′
xT+i−1 − µ∗

0

)
+ Υ

∗
0zT+i + εT+i − γ̂ − α̂

(
β̂
′
xT+i−1 − µ̂

)
. (34)

All the main sources of forecast error occur, given (32): stochastic and deterministic breaks, omitted
variables, inconsistent parameter estimates, estimationuncertainty, and innovation errors: data mea-
surement errors could be added. Replacing in-sample estimates by the corresponding in-sample popula-
tion parameter (pseudo-true) values will reduce the forecast-error variances but not otherwise affect the
analysis, so is again imposed, leading to (usingE [γ̂] = γp etc., for in-sample average values):

wT+i = γ∗
0 + α∗

0

(
(β∗

0)
′
xT+i−1 − µ∗

0

)
+ Υ

∗
0zT+i + εT+i − γp − αp

(
β′

pxT+i−1 − µp

)
. (35)

Notice that (35) constitutes a sequence of 1-step ahead forecast errors as the forecast origin increases
after the break. Even so, it is difficult to analyze (35) unconditionally as its terms are not necessarily
I(0). However, conditional on(xT+i−1, zT+i−1), wT+i has an approximate mean forecast error relative
to the relevant post-break distribution atT + i of:

ET+i [wT+i | xT+i−1, zT+i−1] =
(
γ∗

0 − γp

)
−

(
α∗

0µ
∗
0 − αpµp

)
+

[
α∗

0(β
∗
0)

′ − αpβ
′
p

]
xT+i−1

+Υ
∗
0ET+i [zT+i | xT+i−1, zT+i−1] . (36)

In general, ignoring chance cancellations, this will be considerably worse than either (15) or (23). Also,
neglecting parameter estimation variance uncertainty asOp(T−1), wT+i has an approximate conditional
forecast-error variance matrix:

VT+i [wT+i | xT+i−1, zT+i−1] = Υ
∗
0VT+i [zT+i | xT+i−1, zT+i−1]Υ

∗′
0 + Ωε, (37)

and its conditional mean-square forecast error (MSFE) matrix is the sum of (37) and the outer product
of (36).

Contrast using the sequence of∆xT+i−1 to forecast∆xT+i, as in an extension of (19):

∆̃xT+i|T+i−1 = ∆xT+i−1. (38)

Because of (32),∆xT+i−1 is in fact (fori > 1):

∆xT+i−1 = γ∗
0 + α∗

0

(
(β∗

0)
′
xT+i−2 − µ∗

0

)
+ Υ

∗
0zT+i−1 + εT+i−1. (39)

Thus, (39) shows that, without the economist needing to knowthe causal variables or the structure
of the economy,∆xT+i−1 actually reflects all the desired effects in the DGP, including all the un-
known influences and all their changes, with no omitted variables, and no estimation required at all.
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Let ∆xT+i − ∆̃xT+i|T+i−1 = uT+i, then commencing the analysis at least two periods after thebreak
occurred, so using (39) for∆xT+i−1:

uT+i = γ∗
0 + α∗

0

(
(β∗

0)
′
xT+i−1 − µ∗

0

)
+ Υ

∗
0zT+i−1 + εT+i

−
[
γ∗

0 + α∗
0

(
(β∗

0)
′
xT+i−2 − µ∗

0

)
+ Υ

∗
0zT+i−1 + εT+i−1

]

= α∗
0(β

∗
0)

′∆xT+i−1 + Υ
∗
0∆zT+i + ∆εT+i. (40)

Thus, the outcome is the same as (26), but for the post-break parameters. All terms in the last line must
be I(−1), so will be very ‘noisy’, but systematic failure should not result.

There are two drawbacks to using (38) which partially offsetits advantages: the unwanted presence
of εT+i−1 in (39), which doubles the innovation error variance; and all variables in the DGP enter lagged
one extra period, which adds the ‘noise’ of manyI(−1) effects. There is a clear trade-off between using
a carefully modelled VEqCM like (33) which might nevertheless be both mis-specified and subject to
breaks, and the ‘naive’ predictor (38). In forecasting competitions across many states of nature with
structural breaks and complicated DGPs, it is easy to see why∆xT+i−1 could win. Indeed, sufficiently
far after the break:

E [uT+i] = α∗
0E

[
(β∗

0)
′∆xT+i−1

]
+ Υ

∗
0E [∆zT+i] + E [∆εT+i] = α∗

0(β
∗
0)

′γ∗′
0 = 0.

Consequently, (38) will not suffer forecast failure well after breaks, and will fail to win all the time only
because of variance effects. Neglecting covariances, we have for variances:

V [uT+i] = V
[
α∗

0(β
∗
0)

′∆xT+i−1

]
+ V [Υ∗

0∆zT+i] + V [∆εT+i]

= α∗
0(β

∗
0)

′
V [∆xT+i−1] β

∗
0α

∗′
0 + Υ

∗
0V [∆zT+i]Υ

∗′
0 + 2Ωε (41)

which is theMSFE matrix whenE [uT+i] = 0. Conventional analysis argues for the doubling ofΩε in
(41) relative to (37). However, as before, only the innovation error variance component is doubled, so
the variance component could even be smaller as in section 4.1, clearly guaranteeing that the combined
MSFE would be smaller than from the VEqCM.

4.2.1 Scalar illustration 2

Reverting to a change inµ only for illustrative purposes, with all other parameters constant, and no
omitted variables,

wT+i = −α0 (µ∗
0 − µ0) + εT+i (42)

for which we can calculate the unconditional outcome, namely:

E [wT+i] = −α0 (µ∗
0 − µ0) and V [wT+i] = σ2

ε (43)

so the 1-step sequence ofMSFEs is approximately:

M [wT+i] = α2
0 (µ∗

0 − µ0)
2 + σ2

ε . (44)

In comparison (41) is:

M [uT+i] = 2σ2
ε

(
1 +

α2
0

2 + α0

)
. (45)

Using the same valuesα0 = −0.1 with ∇µ∗
0 = 0.5 andσε = 0.015 related to the empirical exam-

ple below, then (44) is approximately 6-fold larger than (45). Additional parameter shifts, estimation
uncertainty, or specification mistakes would compound thateffect.
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4.3 Longer-period differences

Instead of (38), one might consider the past annual change toforecast quarterly, say:

∆x̆T+i|T+i−1 =
1

4

4∑

j=1

∆xT+i−j =
1

4
∆4xT+i−1. (46)

While ad hoc, ∆4xT+i−1/4 is an adaptive estimator ofγ which is slower to reflect breaks than∆xT+i−1

but much smoother, so its empirical behaviour is noted below.

5 Forecasting from a transformed VEqCM

We first consider replacing only the equilibrium-correction term in the VEqCM by its first difference,
retaining all the other parameters unaltered, namely:

∆xt = γ + α∆
(
β′

xt−1 − µ
)

+ ξt = γ + αβ′∆xt−1 + ξt. (47)

In this simple setting, the effect in (47) is to produce an autoregression in∆xt, albeit not what would
be found on estimation: if there is already a lagged∆xt in the VEqCM, with coefficientΠ1 say, then
Π1 must be added toαβ′. Since shifts inµ are the most pernicious for forecasting, (47) might be
more robust to such breaks than the original VEqCM (5). On theother hand, there will be a loss of
information during periods where no breaks occur.

To examine the behaviour of (47) forecasting∆xT+2 from T + 1 after a break inµ at timeT , let:1

∆xT+2|T+1 = γ + αβ′∆xT+1 (48)

so the forecast error is:

∆xT+2 − ∆xT+2|T+1 = γ + α
(
β′

xT+1 − µ∗
)

+ εT+2 − γ − αβ′∆xT+1. (49)

Since:
E [∆xT+2] = γ − αΨ∇µ∗ and E

[
∆xT+2|T+1

]
= γ − α

(
β′α

)
∇µ∗,

then:
E

[
∆xT+2 − ∆xT+2|T+1

]
= −αΨ∇µ∗ + α

(
β′α

)
∇µ∗ = −α∇µ∗,

which is the same as the mean forecast error from the originalVEqCM, delivering no benefit. Intuitively,
the source of the forecast error can be seen in (49), which depends onµ∗ only through the EqCM term,
yetE

[
β′

xT+1

]
= µ∗ − Ψ∇µ∗ does not fully reflectµ∗.

However, later-period forecasts will benefit. For forecasting ∆xT+3 from an origin atT + 2, say:

E
[
∆xT+3 − ∆xT+3|T+2

]
= −αΨ∇µ∗,

so the mean forecast error will gradually decline. Although(48) will induce a smaller increase in the
error variance than (38), namelyΩε + αβ′

Ωεβα′ rather than2Ωε, merely eliminating the equilibrium
mean by differencing does not seem advantageous. Moreover,(48) remains vulnerable to shifts inγ.

1Forecasting one period after the break serves to confirm the absence of a gain from this approach.
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5.1 Differencing the VEqCM

Since shifts inγ are the next most pernicious for forecasting, we consider forecasting not from (5)
itself, but from a variant thereof which has been differenced after a congruent representation has been
estimated, namely:

∆xt = ∆xt−1 + αβ′∆xt−1 + ∆εt =
(
In + αβ′

)
∆xt−1 + ζt (50)

or:
∆2

xt = αβ′∆xt−1 + ζt. (51)

(50) is just the first difference of the original VAR, since
(
In + αβ′

)
= Γ, but with the rank restriction

from cointegration imposed. Alternatively,∆xt−1 could be interpreted as a highly adaptive estimator
of γ in (38). The second representation in (51) can be interpreted as augmenting the DDV forecast by
αβ′∆xt−1, ‘adding back’ to the DDV the main observable component omitted by using just the lagged
first difference as in (38). Thus, a DDV is not only the difference of a DVAR, but is also obtained by
dropping the mean-zero termαβ′∆xt−1 from the simplest differenced VEqCM.

To trace the behaviour of (50) after a break inµ, let:

∆̃xT+1|T =
(
In + αβ′

)
∆xT (52)

where from (13):
∆xT+1 = γ + α

(
β′

xT − µ
)

+ εT+1 − α∇µ∗.

At time T , ∆µ∗ = ∇µ∗, so:
E [∆xT+1] = γ − α∇µ∗,

and hence:
E

[
∆xT+1 − ∆̃xT+1|T

]
= γ − α∇µ∗ − γ = −α∇µ∗.

As before, there is no gain when the break is after forecasts are announced.
However,∆µ∗ = ∇µ∗ only at timeT , so one period later:

E [∆xT+2] = E
[
γ + α

(
β′

xT+1 − µ∗
)

+ εT+2

]
= γ − αΨ∇µ∗,

as:
E

[
β′

xT+1

]
= µ − β′α∇µ∗ = µ∗ −Ψ∇µ∗

so:
E

[
∆xT+2 − ∆̃xT+2|T+1

]
= γ − αΨ∇µ∗ − (γ − α∇µ∗) + αβ′α∇µ∗ = 0.

Thus, the differenced VEqCM ‘misses’ only for 1 period, thendoes not make systematic, and increasing,
errors. Notice that whileE

[
β′∆xt

]
= 0 when the process is in equilibrium, 1-step after a break,

E
[
β′∆xT+1

]
= −β′α∇µ∗ so contains important information about the recent forecast-error bias.

When breaks occur inµ, (51) should outperform, especially ifγ also alters.
If all parameters are constant, (52) remains unbiased but inefficient. The next sub-section consid-

ers the impact of unnecessary differencing on forecast-error variances, in the context of 1-step ahead
forecasts.
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5.1.1 Forecast-error variances

Let eT+h = ∆xT+h − ∆̃xT+h|T+h−1 be the sequence of 1-step forecast errors from updating (52),
then, ignoring parameter estimation uncertainty asOp

(
T−1/2

)
:

eT+1 = −α∇µ∗ + ∆εT+1,

whereas:
eT+2 = ∆εT+2.

Since the system error is{εt}, then in the absence of other mis-specifications, the additional differenc-
ing doubles the 1-step error variance. Relative to a DDV, however, there is a gain from the DVEqCM,
since the former has the component from the variance of the omitted variableαβ′∆xT+1 (namely
αβ′

V [∆xT+1]βα′ in (41)), as well as the same innovation errors. Thus, both central tendency and
variability should be better for the DVEqCM than a DDV in the absence of parameter estimation uncer-
tainty.

6 Empirical illustration: UK M1

The two ‘forecasting’ models of UK M1 in Hendry and Mizon (1993) and Hendry and Doornik
(1994) respectively illustrate several of the above phenomena (related studies include Hendry, 1979;
Hendry and Ericsson, 1991; Boswijk, 1992; Johansen, 1992; Paruolo, 1996; and Rahbek, Kongsted
and Jørgensen, 1999). The data are quarterly, seasonally-adjusted, time series over 1963(1)–1989(2),
defined as:

M nominal M1,
I real total final expenditure (TFE) at 1985 prices,
P theTFEdeflator,
Rla the three-month local authority interest rate,
Ro learning-adjusted own interest rate,
Rnet Rla − Ro.

The first model was based on using the competitive interest rate Rla, and the second on the
opportunity-cost measureRnet appropriate after the Banking Act of 1984 legalized interest payments
on chequing accounts. To simplify the results, we first consider only the money-demand equation, then
turn briefly to system behaviour. In both cases, ‘forecasts’are over the five years 1984(3)–1989(2), or
subsets thereof, from an origin shortly after the Act.2

Figure 2 (panel a) shows the time series forv = p + i − m (log velocity, using lower case for logs)
andRla, with a marked divergence apparent at the end of the sample. Panel b graphs the computed
EqCMs for ‘excess money’ from the two earlier studies, defined respectively by:

β̂
′
xt = m − p − i + 7.3Rla + 0Ro + 5.6∆p

β̃
′
xt = β̂

′
xt − 7.3Ro

These coincided till 1984(2), after which the former behaves as in earlier cycles, whereas the latter
appears to plumb new depths: by the end of the sample, they have diverged by more than 50% of the
money stock. That the correct EqCM is discrepant, may, at first sight, seem counter-intuitive, but it

2M1 data ceased to be collected after 1989 when Building Societies (in M4, but not M1) started converting to banks, which
led to large jumps in the value of M1 on conversion days.
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Figure 2 Effects of the 1984 Banking Act on UK M1 .

occurs precisely because the opportunity cost has shifted dramatically, yetβ̂
′
xt does not reflect that

shift: not doing so causes the forecast failure shown in figure 3 below. Figure 2c illustrates that the
Banking Act corresponded to an equilibrium-mean shift relative to the model based onRla.3 The own
rate,Ro has a mean of approximately 0.072 over the forecast horizon,and a shift indicator1{t>1985(2)}

times that mean closely approximates the actual time path ofRo, soRc
n = Rla − 0.072 × 1{t>1985(2)}

in figure 2d is close toRnet. Consequently:

β̃
′
xt ' β̂

′
xt − 0.525 × 1{t>1985(2)},

yielding∇µ∗ = 0.525 as noted above. On this basis, the legislative change acts like a massive step shift
in µ, so the earlier theory should be relevant to explaining thisepisode of forecast failure. Indeed, if real
money andRnet co-break, as illustrated in Clements and Hendry (1999, Ch. 9), thenβ̃

′
xt should also

be an appropriate EqCM post the legislative change.

6.1 Single-equation results

Figure 3a shows the dismal performance on 20 1-step ‘forecasts’ of the Hendry and Mizon (1993) model
for the growth rate of real money,∆ (m − p), based on̂β

′
xt: this model uses current-dated values of

Rnet and∆p, yet almost none of the±2σ̂f error bars includes the associated outcome. In fact, a large
fall in money demand is forecast during what was the largest sustained rise ever experienced historically.
The mean forecast error is 4.4% with a root mean squared forecast error (RMSFE) of 4.9%.

For comparison, the 20 1-step forecasts from the first differences of that original model are shown
in figure 3b: there is a very substantial improvement, with nosystematic under-forecasting, suggesting
that the adaptation proposed in section 5.1 can be effectivein the face of equilibrium-mean shifts. All

3The figure also shows why an intercept correction might perform well after 1985(4).
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the panels are on the same scale, so the increase in the conventionally-calculated interval forecasts due
to the differencing is also clear (although these error barsno longer correctly represent the uncertainty).
The corresponding mean forecast error is 0.4% with anRMSFE of 1.8%: these are clearly a dramatic
improvement, especially noting that the in-sampleσ̂ is 1.3%. Figure 5a below shows the two sets of
forecast errors (all panels on the same scale).
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∆(m−p) 
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Figure 3 1-step forecasts of UK M1 from conditional models.

Figure 3c shows the good performance on 20 1-step forecasts of the ‘correct’ model (i.e., that based
on Rnet), which is identical in-sample to the failed model. The meanforecast error is negligible at
0.06% with anRMSFE of 1.14%. Thus, these forecasts are better than the fit.

Since one cannot know in advance whether or not a given model is ‘correct’ and hence robust to an
apparent break, the effects of differencing applied to theRnet based-model are also worth investigating.
These produce similar forecasts to the EqCM, as shown in figure 3d, but again with larger (conventional)
error bars. Now the mean forecast error is 0.05% (the smallest of the four) with anRMSFE of 1.79%,
which is essentially the same as from differencing the incorrect model: in fact, their forecast errors are
correlated 0.94. Thus, the costs of the differencing strategy do not seem to be too high for the ‘correct
specification’, but the benefits are substantial when differencing is needed.

For comparison, forecasts based on the other adaptive device, the DDV from section 4, are shown
in figure 4 panel a. The DDV actually has a smaller mean error than the ‘correct’ model (less than
0.001%), but a much largerRMSFE of 2.25%, so there are definite benefits from correct causal in-
formation.4 Moreover, the benefits from using either differenced EqCM are marked, consistent with
the earlier theory that includingαβ′∆xt−1 would improve performance. Finally, that theRMSFE has
doubled relative to the EqCM based onRnet suggests that omitted effects, other parameter changes, and
estimation uncertainty must be minimal. Figure 5b shows thecomparative forecast errors, and reveals
how much smaller they are than those in panel a.

4Subject to thecaveatsthat the ‘correct’ model uses current-dated variables in its ‘forecasts’.
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Figure 4 DDV and ADV 1-step forecasts of UK M1.

The ADV forecasts shown in figure 4c are distinctly better than the DDV, having a mean forecast
error of -0.07% and anRMSFE of 1.8%. Hence some degree of smoothing seems to pay. This is
also true of the ADV and DDV forecasts forRnet shown in figure 4 panels b and d (ADVRMSFE
of 1.5% as against 1.9%). Thus, while double differencing ishighly adaptive when a break occurs,
the additional error variance at all points seems to more than offset its advantage in comparison to the
smoother adaptation used here. Figure 5c shows that the resulting forecast errors are more volatile than
those in panel b, but less biased than the EqCM(Rla)-based forecasts.

6.2 System behaviour

In a system context, there are three major changes to most of the methods, although the DDV and
ADV devices are unaltered. First, the contemporaneous variables in the money-demand model must be
forecast, even for 1-step ahead. There is a smaller loss fromdoing so here than might be anticipated, with
a mean forecast error of 0.7% and anRMSFE of 1.59%. Figure 5d records the VEqCM forecast errors
for ∆ (m − p) from theRnet system for comparison with the conditional single-equation forecast errors.
It also shows the DVEqCM forecast errors to highlight the small loss from the additional differencing of
the correct specification. The forecasts from the VEqCM based onRla are as poor as the single equation
ones for∆ (m − p), but differencing that VEqCM again corrects the main forecast error bias, delivering
errors similar to those of the DEqCM.

Secondly, multi-step forecasts can be calculated. These serve to confirm the above results, and while
more realistic of the operational setting confronting forecasters, add little to our understanding of the
properties of the alternative devices under considerationhere. Since the two VEqCMs are identical
in-sample, so are their multi-step forecasts for any horizon h. Conversely, the DDV class has a rapidly
increasing variance as the horizon grows due to its additional unit root.

Thirdly, the break which occurred in the money-demand equation in the VEqCM based onRla
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Figure 5 1-step forecast errors for different models of UK M1.

becomes a shift in theRnet equation in the second VEqCM—which in turn could not be forecast accu-
rately. The problem for forecasters is that the most difficult variable to predict can unduly worsen the
overall outcome. This is an aspect that multi-step forecasts of the levels highlight best, as can be seen
in figure 6, for(m − p) andRnet (the outcomes fori and∆p are omitted). Figure 6 is based onh = 4,
so the first four forecasts match for the corresponding variables, after which the correct VEqCM does
noticeably better for(m − p) but is unable to forecastRnet very well.

Other aspects of adaptive forecasting could be incorporated with any of the above devices, including
intercept corrections, recursive updating of parameter estimates, and reselecting the relevant variables
(see e.g., Phillips, 1994). The first of these would clearly be beneficial, given the systematic departures
visible in figure 6. When implemented following a large location shift, the second often leads to esti-
mates closer to a DDV than a VEqCM, as the additional differencing eliminates some of the adverse
effects of the shift. The third accelerates the tendency just noted.

7 Conclusions

Using a cointegrated linear dynamic system with breaks overthe forecast horizon as the illustrative
DGP, two adaptations were considered. The first was using second differences to forecast; the second
was forecasting from a differenced VEqCM. A new explanationfor the relative success of the former
was proposed, and the second related to that as also retaining one of the key observable components,
namely the change in the equilibrium correction.

The empirical example of the behaviour of M1 in the UK following the Banking Act of 1984 illus-
trated these two adaptations in action, for mis-specified and ‘correct’ variants, respectively dependent
on the pre and post Act opportunity-cost measures. All four approaches behaved as anticipated from
the theory, and demonstrated the difficulty of out-performing ‘naive extrapolative devices’ when these
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Figure 6 System4-step forecasts from two VEqCMs of UK M1.

are adaptive to precisely those location shifts which are inherently inimical to econometric systems.
Overall, the outcomes suggest that, to retain causal information when the forecast-horizon ‘goodness’
of the model in use is unknown, model transformations based on differencing may prove a worthwhile
route.
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