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Abstract

In this paper, we examine the role played by heterogeneity in the connection model. In

sharp contrast to the homogeneous cases we show that under heterogeneity involving only two

degrees of freedom, all networks can be supported as Nash or efficient. Moreover, we show that

there does not always exist Nash networks. However, we show that on reducing heterogeneity,

both the earlier “anything goes” result and the non existence problem disappear.

JEL Classification: C72, D85.

Key Words: Strategic reliability, decay, two-way flow models

1 Introduction

Galeotti, Goyal and Kamphorst (2006, [3]) consider the case of small levels of decay with

heterogeneous players. Their insider-outsider model only has two groups of players, and thus

two possible values of c. The notion of Nash networks was introduced by Bala and Goyal
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(2000, [1]).1 In their paper (2000, [1]), they study two frameworks. In the first one, links in

the network never fail, and always transmit all information reliably. Given that link formation

is costly, the authors find that Nash networks are always minimally connected. In the second

one, Bala and Goyal introduce link imperfections in the form of information decay whereby

direct links convey more information than indirect links.

In a recent paper in Games and Economic Behavior, Galeotti, Goyal and Kamphorst

(2006, [3]) examine heterogeneity in Nash networks without taking any link imperfections into

account. Their results are similar in spirit to those of Bala and Goyal (2000, [1]) in the sense

that equilibrium networks now have components that are minimally connected. Heterogeneity

in the presence of link imperfections has been analyzed by Haller and Sarangi (2005, [4]) who

find that the homogeneity of the parameters plays a significant role in the two widely divergent

results of Bala and Goyal (2000, [1], [2]). Haller and Sarangi (2005, [4]) allow different links

to have different success probabilities and find that for any network g, there exists a set of

parameter values under which g is Nash – the model with heterogeneity can encompass the

results of both Bala and Goyal papers.

In this paper we examine different possible heterogeneous Nash network formulations using

the popular “connections model” introduced by Jackson and Wolinsky (1996, [5]) and studied

extensively by Bala and Goyal (2000, [1], [2]). In the typical model players are endowed

with some information which can be accessed by other players forming links with them. Link

formation is costly and the cost of establishing a link is incurred by the initiating player.

In these models heterogeneity manifests itself in the payoff function and can occur through

three different variables: (i) the value of information held by players, (ii) the rate at which

information decays or loses value as it traverses the network, and (iii) the cost of forming a

link. Thus by introducing heterogeneity and decay we are able to generalize the results of Bala

and Goyal (2000, [1]) where heterogeneity is not taken into consideration.

We focus on the two-way flow models introduced by Bala and Goyal (2000, [1]). The

two-way flow model allows bi-directional flow of information through a link regardless of who

1In the following, we use Nash networks to refer to networks that satisfy Nash equilibrium as stability concept

instead of Jackson and Wolinsky’s (1996, [5]) notion of pairwise stability.
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establishes it. Here we examine Nash networks, efficient networks and the existence of strict

Nash networks under different possible heterogeneous frameworks arising from combinations

of the above variables. Our main results can be summarized as follows: in models with decay

and heterogeneity it is possible to support any network as a strict Nash or efficient network.

Moreover, the existence of Nash networks can fail in situations where we have decay and

heterogeneity together.

The paper is organized as follows. In Section 2, we present the model setup. Section 3 contains

results about models that incorporate heterogeneity and decay. In Section 4 we discuss the

relationship between the probabilistic models and the decay models.

2 Model Setup

In this section we define the formal elements of the strategic form network formation game.

Let N = {1, . . . , n}, n ≥ 3, denote the set of with generic elements i, j, k. For ordered pairs

(i, j) ∈ N × N , the shorthand notation i j is used and for non-ordered pairs {i, j} ⊂ N the

shorthand [i j] is used.

Strategies. For player i a pure strategy is a vector gi = (gi,1, . . . , gi,i−1, gi,i+1, . . . , gi,n)

∈ {0, 1}n−1. Since our aim is to model network formation, gi,j = 1 implies that there exists

a direct link between i and j initiated by player i, whereas gi,j = 0 means that i does not

initiate this link. Regardless of what player i does, player j can always choose to initiate

a link with i or set gj,i = 0. Here we focus only on pure strategies. The set of all pure

strategies of player i is denoted by Gi and consists of 2n−1 elements. The joint strategy space

is given by G = G1 × · · · × Gn. Note that there is a one-to-one correspondence between G

and the set of all directed graphs or networks with vertex set N . Namely, to a strategy

profile g = (g1, . . . ,gn) ∈ G corresponds the graph (N,E(g)) with edge set E(g) = {(i, j) ∈

N ×N | i 6= j, gi,j = 1 and gi,i = 0}. To simplify the notation, we denote by i j the link formed

by player i with j. In the sequel, we identify a joint strategy g by its corresponding graph and

use the terminology directed graph or directed network g for it.

Payoffs. Payoffs of player i are given by the difference between benefits Bi(g) and costs ci(g).
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Hence the payoff of player i in network g is given by

ui(g) = Bi(g) − ci(g). (1)

Next we define various types of heterogeneity in networks by introducing different cost and

benefit formulations.

(i) Link Costs. Players incur costs only for the direct links they establish. The cost of each

link is assumed to be the same and the cost of forming links for player i is given by:

ci(g) =
∑

j 6=i

gi,jc (2)

In this paper we focus only on homogeneous costs. Note that in our context heterogeneous

costs would only increase the set of potential strict Nash networks and would weaken the

possibility of existence of Nash networks.

(ii) Link Benefits. Decay models were introduced by Jackson and Wolinsky (1996, [5]) under

the name of the “connections model”. In such models links always transmit the information,

but information acquired through indirect links is less valuable. Since information loses value

as it travels along a sequence of links it captures the idea that “it is better to have the facts

straight from the horse’s mouth”. In the Nash networks setting decay models were analyzed

by Bala and Goyal (2000, [1]) who assumed that the value of information, the costs of link

formation, and the decay parameter were identical across all players and links. In other words,

they analyzed the case of homogeneous decay. We propose two different frameworks to study

the interaction between heterogeneity and decay.

A link between players i and j allows for two-way flow of information. So the benefits

from network g are derived from its closure g ∈ G, defined by gi,j = max {gi,j , gj,i} for i 6= j.

Moreover, since information is acquired through direct and indirect links we say information

flows from player j to player i, when i and j are linked by means of a path in g. A path of

length m in g ∈ G from player i to player j 6= i, is a finite sequence i0, i1, . . . , im of pairwise

distinct players such that i0 = i, im = j, and gik ,ik+1
= 1 for k = 0, . . . ,m − 1. Let Ci,j(g) be

the set of paths from j to i in the network g, and let Ci,j(g) be a typical element of Ci,j(g). We

denote by Ni(g) = {j ∈ N | j 6= i, there exists a path in g between i and j}, the set of other
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players whom i can access or “observe” in network g. Information received from j is worth

Vi,j to player i. Therefore, player i’s benefits from a network g is given by:

Note that g belongs to the set H = {h ∈ G|hi,j = hj,i for i 6= j}. There is a one-to-one

correspondence between the elements of H and the non-directed networks with node set N .

Namely, for h ∈ H and i 6= j, [i j] is an edge of the corresponding non-directed network if

and only if hi,j = hj,i = 1. In what follows, we identify h with the corresponding non-directed

network. Hence, the notation [i j] ∈ h stands for “[i j] is an edge of h”. Also, for k ∈ H,

k ⊂ h means that k is a subnetwork of h.

Decay with Heterogeneous Players. Here we use the homogeneous decay assumption

in conjunction with the heterogeneous players framework of Galeotti, Goyal and Kamphorst

(2006, [3]), i.e., we assume that there exists (i, j) 6= (k, ℓ) such that Vi,j 6= Vk,ℓ. Then the

benefits function can be written as:

Bi(g) =
∑

j∈Ni(g)

δdi,j(g)Vi,j (3)

where δ is the decay parameter and di,j(g) is the distance in the shortest path between i and

j in g.2 Let V m = max(i,j)∈N×N{Vi,j} and V m = min(i,j)∈N×N{Vi,j}.

Decay with Heterogeneous Links. Here we assume that decay associated with the link

[i j] is not identical to decay associated with the link [ℓ k] for [ℓ k] 6= [i j]. This assumption

captures the fact that the quantity of information a link can convey is not the same across all

links under decay. In other words, some channels of information or paths are “better” than

others.

We measure decay associated with a link [i j] by the parameter δi,j ∈ (0, 1). Given a

network g, it is assumed that if player i has a link with player j, then she receives information

of value δi,j from j. For this model we retain the symmetry assumption, that is δi,j = δj,i.

Without loss of generality we assume that the value of a link is V = 1. The benefits of player

i in the network g is then given by:

Bi(g) =
∑

j∈Ni(g)




∏

[ℓ k]∈C∗

i,j(g)

δℓ,k



 , (4)

2In Bala and Goyal (2000, [1]), it is assumed that players can always access their own information.
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where C∗
i,j(g) = arg maxCi,j(g)∈Ci,j(g)

{
∏

[ℓ k]∈Ci,j(g) δℓ,k

}

.

Note that this expression fundamentally differs from the previous one because it does not

use the geodesic distance between players to determine the value of information obtained. Let

δM = max(i,j)∈N×N{δi,j} and δm = min(i,j)∈N×N{δi,j}.

Network Definitions. Given a network g ∈ G, let g−i denote the network that remains

when all of player i’s links have been removed. Clearly, g = gi ⊕ g−i, where the symbol ⊕

indicates that g is composed of the union of links in gi and g−i (similarly the symbol ⊖ is

used to indicate removal of links). A strategy gi is a best response of player i to g−i if

ui(gi ⊕ g−i) ≥ ui(g
′
i ⊕ g−i), for all g′

i ∈ Gi.

Let BRi(g−i) denote the set of player i’s best responses to g−i. A network g = (g1, . . . ,gn)

is said to be a Nash network if gi ∈ BRi(g−i) for each i ∈ N . A strict Nash network is a

network where all players are playing a strict best response.

A network g is efficient if the total utility of players is maximum, that is W (g) =
∑n

i=1 ui(g) ≥
∑n

i=1 ui(g
′), for all g′ ∈ G.

Graph-theoretic Concepts. A network g is called a star if there is a vertex is, such that

for all j 6= is, max{gis,j, gj,is} = 1 and for all k 6∈ {is, j}, max{gk,j , gj,k} = 0. Moreover a

star, where gis,j = 1 for all j 6= is is a center-sponsored star, and a star, where gis,j = 0 for

all j 6= is, is a periphery-sponsored star. A network g is connected if there is a path in g

between all players i, j ∈ N . A network g is minimally connected if it is connected and for all

i j ∈ E(g), g ⊖ i j is not connected. Finally, a network g ∈ G is essential if gi,j = 1 implies

gj,i = 0. Note that if g ∈ G is a Nash network, then it must be essential. This follows from

the fact that each link is costly, but allows for two-way flow of information regardless of who

initiates (and pays) for the link.

3 Models with Decay

In this section we investigate Nash networks and examine efficient networks in models with

decay. To begin with, we illustrate that parameter through which heterogeneity is introduced
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in the model of decay can have different implications. The next example shows that there are

subtle differences between the model of heterogeneous players and heterogeneous links.

Example here

3.1 Decay with Heterogeneous Players

In this section we obtain two main results. First, we demonstrate that all networks can be

supported as strict Nash and efficient. Next, we show that there exist parameter values for

which there is no Nash network in pure strategies.

Theorem 1 Let g be an essential network. If the benefits function satisfies equation (3), then

there exist a link cost c > 0 and an array V = [Vi,j] of values such that:

1. g is a strict Nash network in the corresponding network formation game;

2. g is an efficient network in the corresponding network formation game. Moreover this

network is also strict Nash.

Proof. We prove successively the two parts of the proposition.

1. Suppose g is an essential network. Let V 1 = 1, c = (n− 3/2)/n2, δ = 1/n, V 0 = 1/(3n).

We construct a symmetric n × n-matrix [Vi,j] of value as follows. If i 6= j and i and

j are linked, i.e. gi,j = 1 or gj,i = 1 set Vi,j = V 1. Otherwise set Vi,j = V 0. Now

consider i 6= j. Let gi,j = 0. Then, either gj,i = 1 or gj,i = 0. In the first case, agent

i receives zero marginal benefits but incurs an additional positive cost when forming

the link i j. It follows that gi,j = 0 is the unique optimal choice for i given g−i. For

gj,i = 0, Vi,j = V 0 = 1/(3n). If player i forms a link with j, then she obtains at most

marginal benefits equal to δV 0 +(n−2)δ2V 1, that is 1/(3n2)+(n−2)/n2. We show that

δV 0 < c− (n−2)δ2V 1. We have δV 0 = 1/(3n2) < 1/(2n2) = (n−3/2)/n2− (n−2)/n2 =

c− (n− 2)δ2V 1. Therefore regardless of other links, not initiating the link i j is optimal

for agent i. Now let gi,j = 1. Then by essentiality of g, gj,i = 0. Further, Vi,j = V 1.

If player i removes the link i j, then she obtains at most a payoff equal to δ2Vi,j from

player j. It follows that due to the link i j player i obtains marginal benefits equal to at
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least V 1(δ − δ2) = 1/n − 1/n2 = (n − 1)/n2 > (n − (3/2))/n2 = c. Therefore regardless

of other links, player i has no incentive to remove the link i j.

2. Suppose g is an essential network. Let V 1 = 1, c = (n4 + n2 + 1)/(2n8), δ = 1/n4,

V 0 = 1/n4. We construct a symmetric n×n-matrix [Vi,j] of value as follows. If i 6= j and

i and j are linked, i.e. gi,j = 1 or gj,i = 1 set Vi,j = V 1. Otherwise set Vi,j = V 0. Now

consider i 6= j. Suppose gi,j = 0 and gj,i = 0 (if gj,i = 1, then the proof is straightforward).

If player i forms a link with j, then the players obtain total marginal benefits bounded

by 2δ(V 0) + δ2n2V 1 = 2/(n8) + 1/n6 = (2 + n2)/n8 < (n4 + n2 + 1)/(2n8) = c, for all

n ≥ 3. Therefore regardless of other links, not initiating the link i j is optimal. Further,

Vi,j = V 1. If player i removes the link i j, then she obtains at most a payoff equal to

δ2Vi,j from player j. Due to the link i j, player i obtains marginal benefits equal to at

least V 1(δ − δ2) = 1/n4 − 1/n8 = (n4 − 1)/n8 > (n4 + n2 + 1)/(2n8) = c, for all n ≥ 3.

Since all values are positive, other players obtain a non negative payoff from this link.

Therefore regardless of other links, maintaining the link i j is optimal for agents.

�

With homogenous players, Nash networks are either empty or connected (see Bala and

Goyal, 2000, [1]). With heterogenous values of players it is possible to obtain this result when

the values of players are sufficiently close.

Proposition 1 Suppose benefits function satisfies equation (3) and that V M−V m < δV m/(1+

(n − 3)δ). Then a strict Nash network is either empty or connected.

Proof. Let D∗(g, i j) be the set of players ℓ ∈ N \{i, j} such that the shortest chain between

i and ℓ goes through the link i j in g. Consider a strict Nash network g. Suppose g is neither

empty nor connected. Then there exists three agents i, j and k such that i and j belong to

one connected component C1 and k belongs to a different component C2 in g. Moreover, wlog
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let gi,j = 1. Then the incremental benefits to player i of having the direct link to j is given by:

A = δVi,j +
∑

ℓ∈D∗(g,i j)

(
δdi,ℓ(g) − δdi,ℓ(g⊖i j)

)
Vi,ℓ

≤ δVi,j +
∑

ℓ∈D∗(g,i j) δdi,ℓ(g)Vi,ℓ

≤ δV M +
∑

ℓ∈D∗(g,i j) δdi,ℓ(g)V M

with the convention δdi,ℓ(g⊖i j) = 0, if ℓ 6∈ Ni(g ⊖ i j). Clearly, we have A ≥ c.

If player k forms a link with player j, then the incremental benefits to player i of having

the direct link to j is:

B = δVk,j + δ2Vk,i +
∑

ℓ∈D∗(g,i j) δdi,ℓ(g)Vk,ℓ

≥ δV m + δ2V m +
∑

ℓ∈D∗(g,i j) δdi,ℓ(g)V m.

It is worth noting that:

∑

ℓ∈D∗(g,i j)

δdi,ℓ(g)V M −
∑

ℓ∈D∗(g,i j)

δdi,ℓ(g)V m ≤ (n − 3)δ2(V M − V m).

Since V M − V m < δV m/(1 + (n − 3)δ), we have B > A ≥ c. It follows that player k has a

incentive to form a link with j and g is not strict Nash. �

From the above proposition it follows that in the homogeneous parameter model with decay

not every network can be supported as a strict Nash network.

Polar cases. We now deal with some familiar architectures cases. More precisely, we

give conditions which allow to obtain the complete network the empty network and the star

networks as strict Nash networks.

Proposition 2 Suppose benefits function satisfies equation (3).

1. If δV M < c, then the empty network is strict Nash

2. If (δ − δ2)V m > c, then the complete network is strict Nash.

3. If δV m > c and (δ− δ2)V M < c, then any center-sponsored star is a strict Nash network.

Moreover, if (n − 1)δV m > c and (δ − δ2)V M < c, then any periphery-sponsored star is

a strict Nash network.
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Proof. We prove successively the three parts of the proposition.

1. If δV M < c, then it will not be worthwhile for any agent i to form a link. Hence the

empty network is Nash.

2. If (δ − δ2)V m > c, then each player i has an incentive to form a link with player j if she

does not obtain the resources of j thanks to a direct link. Hence the complete network

is Nash.

3. If δV m > c and (δ − δ2)V M < c, then player i has no incentive to delete any link in the

center sponsored star where she is the center. Moreover, no player j 6= i has an incentive

to form a link in the center sponsored star where i is the center since (δ − δ2)V M < c.

the result follows. Finally, if (n − 1)δV m > c and (δ − δ2)V M < c, then no player j 6= i

has an incentive to delete any link in the periphery sponsored star where player i ∈ N is

the center. Moreover, no player j 6= i has an incentive to form a link with j′ ∈ N \ {i, j}

in the periphery sponsored star where i is the center since (δ − δ2)V M < c. the result

follows.

�

Existence of Nash networks. In this context we begin by showing that if heterogeneity is

not “too high”, more precisely if Vi,j = Vi for all i ∈ N , then a Nash network always exists. It

follows that there always exist a Nash network in the model of Bala and Goyal (2000, [1]).

Proposition 3 If the benefits function satisfies equation (3) and, for all i ∈ N , Vi,j = Vi, for

all j ∈ N \ {i}, then a Nash network always exists.

Proof. Let Z0 = {j ∈ N | δVj ≥ c} be the set of players who has an incentive to form a

link with any player j with whom they are not (indirectely) linked; and let z be the maximal

value player, that is the player such that Vz ≥ Vi for all i ∈ N . Moreover, let Z1 = {j ∈ N |

(δ − δ2)Vj ≥ c} be the set of players who has an incentive to form a link with any player j

with whom they are not directely linked. Clearly if Z1 6= ∅, then z ∈ Z1. Further if Z1 = ∅,

then no player i will form a link with a player j in g whenever di,j(g) ≤ 2. If Z0 = ∅, then the

empty network is a Nash network. If Z0 6= ∅ and Z1 = ∅, then we let player z form links with
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all other players. We obtain a center-sponsored star which is a Nash network. Indeed, the

distance between all players i and j is bounded by 2 and Z1 = ∅, no player has an incentive to

form a link. If Z0 6= ∅ and Z1 6= ∅, then we create network g where player z forms links with all

other players and where gj,i = 0 implies gi,j = 1 for all i ∈ Z1 and for all j ∈ N \ {z}. Clearly,

g is Nash since player z ∈ Z1 has no incentive to delete one of her links, each player i ∈ Z1

has no incentive to delete any link by construction and no player i′ 6∈ Z1 has any incentive to

form an additional link (otherwise she would belong to Z1). �

Corollary 1 If the benefits function satisfies equation (3) and, for all i ∈ N , Vi,j = V , for all

j ∈ N \ {i}, then a Nash network always exists.

The following example shows that non-existence can occur when we introduce higher player

heterogeneity.

Example 1 (Non-existence of Nash networks.) Let N = {1, . . . , 5} be the set of players, and

assume that:

1. V1,2

(
δ − δ4

)
+V1,3(δ

2−δ3) > c, δV1,3 < δV1,2 < c, and for all j 6= 2, δV1,j +δ2
∑

k 6=j V1,k <

c.

2. V2,3

(
δ − δ4

)
+ V2,4(δ

2 − δ3) < c, δV2,3 + δ2V2,4 + δ3V2,5 + δ4V2,1 > c, and for all j 6= 3,

δV2,j + δ2
∑

k 6=j V2,k < c.

3. δV3,4 > c and δ
∑

k 6=4 V3,k + δ2V3,4 < c.

4. δV4,5 > c and δ
∑

k 6=5 V4,k + δ2V4,5 < c.

5. δV5,1 > c and δ
∑

k 6=1 V5,k + δ2V5,1 < c.

These five points provide a list of the players with whom the others have no incentives to form

links, as well as those with whom they would like to form links. For example, item 1 implies

that player 1 will never form a link with players 3, 4 and 5. Moreover, a Nash network must

contain the links 3 4, 4 5, 5 1. From all of this, it follows that there is four possible Nash

networks: E(g1) = (3 4, 4 5, 5 1, 1 2, 2 3), E(g2) = (3 4, 4 5, 5 1, 1 2), E(g3) = (3 4, 4 5, 5 1),

E(g4) = (3 4, 4 5, 5 1, 2 3). We know from item 2 that player 2 prefers the network g2 to the

network g1, so g1 is not Nash. Likewise, player 1 prefers the network g3 to the network g2 by
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point 1, so g2 is not Nash. Player 2 prefers the network g4 to the network g3 by point 2, so

g3 is not Nash. Finally, by point 1, player 1 prefers the network g1 to the network g4. Hence

g4 is not Nash.

3.2 Decay with Heterogeneous Links

In this section we consider situations where players have homogeneous values while the decay

through each link is different. We obtain the following result.

Proposition 4 Let g be an essential network. If the benefits function satisfies equation (4)

and costs of forming links are homogeneous, then there exist c > 0 and an array δ = [δi,j ] of

decay such that:

1. g is a strict Nash network in the corresponding network formation game;

2. g is an efficient network in the corresponding network formation game. Moreover this

network is also strict Nash.

Proof. We prove succesively the two parts of the proof.

1. The proof of the first part of this proposition is an adaptation of the proof given by Haller

and Sarangi (pg.186, 2005, [4]). Suppose g is an essential network. Let δ1 = 1/(4n),

c = δ1/3, δ0 = c/n. We construct a symmetric n × n-matrix [δi,j] of decay as follows. If

i 6= j and i and j are linked, i.e. gi,j = 1 or gj,i = 1 set δi,j = δ1. Otherwise set δi,j = δ0.

Now consider i 6= j. If gi,j = 0, then either gj,i = 1 or gj,i = 0. In the first case, agent i

would receive zero benefits but incurs a positive cost when forming the link i j. It follows

that gi,j = 0 is the unique optimal choice for i given g−i. In case gj,i = 0, δi,j = δ0 = c/n.

It follows that c > nδ0 > (n− 1)δ0, where (n − 1)δ0 is the maximal i’s benefits from the

direct link i j that player i can obtain. Therefore regardless of other links, not iniating

the link i j is optimal for agent i. If gi,j = 1, then by essentiality of g, gi,j = 0. Further,

δi,j = δ1. Without the link i j, the information flows between i and j via other links is

at most
(
δ1

)2
= δ1/(4n) < δ1/2. Hence regardless of other links in g, the benefits of

player i from initiating the link with player j is at least δ1 − δ1/2 = δ1/2 which exceeds

c = δ1/3. Therefore regardless of other links, iniating the link i j is optimal for agent i.
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2. Suppose g is an essential network. Let δ1 = 1/(4n), c = δ1/3, δ0 = c/(n + 1)2. We

construct a symmetric n × n-matrix [δi,j ] of decay as follows. If i 6= j and i and j are

linked, i.e. gi,j = 1 or gj,i = 1 set δi,j = δ1. Otherwise set δi,j = δ0. Now consider

i 6= j. If gi,j = 0, then either gj,i = 1 or gj,i = 0. In the first case, agents would receive

zero benefits but agent i incurs a positive cost when forming the link i j. It follows that

gi,j = 0 is the unique optimal choice for i given g−i. In case gj,i = 0, δi,j = δ0 = c/(n+1)2.

It follows that c > n2δ0 > n(n−1)δ0, where n(n−1)δ0 is an upper bound for the benefits

from the direct link i j that players can obtain. Therefore regardless of other links, not

iniating the link i j is optimal. If gi,j = 1, then we know that agent i has no incentive

to delete this link. Since the decay factor is positive, players j ∈ N \ {i} obtain a non

negative benefits from this link. It follows that this link must be preserved in an efficient

network. The result follows.

�

Next, if we assume that decay begins only with indirect neighbors (instead of direct neighbors),

then we can show that regardless of the value of the parameters, some essential networks are

neither Nash nor efficient.

Example 2 Let N = {1, 2, 3} be the set of players, let g be a network such that E(g) = {1 2}.

Then, g is not a Nash network. Indeed, if player 1 has an incentive to form a link with player

2, then V < c. In that case, player 3 has an incentive to form a link with player 1. Likewise g

is not an efficient network.

We are now interested in situations which allow to obtain the same kind of results than those

established in the homogeneous decay framework. Hence, we give a threshold concerning

the heterogeneity of decays which allows to obtain that Nash networks are either empty or

connected.

Proposition 5 Suppose the benefits function satisfies equation (4) and (δM − δm) < δm/(1 +

(n − 3)δM ). Then a Nash network is either empty or connected.

Proof. Let D∗∗(g, i j) be the set of players ℓ ∈ N \ {i, j} such that
∏

[ℓ′ ℓ′′]∈C∗

i,ℓ
(g) δℓ′,ℓ′′ >

∏

[ℓ′ ℓ′′]∈C∗

i,ℓ
(g⊖i j) δℓ′,ℓ′′ . Consider a Nash network g. Suppose g is neither empty nor connected.

13



Then there exist three agents i, j and k such that i and j belong to one connected component

C1 and k belongs to a different component C2 in g. Moreover, we suppose wlog that gi,j = 1.

Then the incremental benefits to player i of having the direct link to j is given by:

A′ = δi,j+
∑

ℓ∈D∗∗(g,i j)

(

δi,j

∏

[ℓ′ ℓ′′]∈C∗

j,ℓ
(g) δℓ′ ℓ′′ −

∏

[ℓ′ ℓ′′]∈C∗

i,ℓ
(g⊖i j) δℓ′ ℓ′′

)

≤ δM+
∑

ℓ∈D∗∗(g,i j)

δM
∏

[ℓ′ ℓ′′]∈C∗

j,ℓ
(g

δℓ′,ℓ′′

︸ ︷︷ ︸

,

= A
′

with the convention
∏

[ℓ′ ℓ′′]∈C∗

i,ℓ
(g⊖i j) δℓ′ ℓ′′ = 0, if ℓ 6∈ Ni(g ⊖ i j). Clearly, we have A′ ≥ c.

If player k forms a link with player j, then the incremental benefits to player i of having

the direct link to j is such that:

B′ ≥
∑

ℓ∈D∗∗(g,i j) δk,j

∏

[ℓ′ ℓ′′]∈C∗

j,ℓ
(g) δℓ′ ℓ′′ +δk,j + δk,jδi,j

≥
∑

ℓ∈D∗∗(g,i j)

δm
∏

[ℓ′ ℓ′′]∈C∗

j,ℓ
(g)

δℓ′ ℓ′′

︸ ︷︷ ︸

+δm + (δm)2

= B
′

Clearly, we have:

A
′ − B

′ ≤ (n − 3)δM (δM − δm).

Since (δM − δm) < δm/(1 + (n − 3)δM ), we have B′ > A′ ≥ c. It follows that player k has a

incentive to form a link with j and g is not strict Nash. �

Polar cases. We now deal with some familiar architectures cases. More precisely, we give con-

ditions which allow to obtain the complete network the empty network and the star networks

as strict Nash networks.

Proposition 6 Suppose benefits function satisfies equation (3).

1. If δM < c, then the empty network is strict Nash

2. If (δm − (δm)2) > c, then the complete network is strict Nash.
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3. If δm < c and (δM − (δM )2) < c, then any center sponsored star is a strict Nash network.

Moreover, if (n − 1)δm < c and (δM − (δM )2) < c, then any periphery sponsored star is

a strict Nash network.

Proof. The two first parts of the proposition are straightforward. We now deal with the

third part. Suppose δm < c for all j ∈ N and (δM − (δM )2) < c. Since δm < c, then player i

has an incentive to maintain all her links in the center sponsored star where she is the center,

and since (δM − (δM )2) < c, no player j 6= i0 has an incentive to add a link in this network.

Suppose δm < c and (δM − (δM )2) < c. Since δm < c, no player j 6= i has an incentive to

remove her link in a periphery sponsored star where i is the center and since (δM − (δM )2) < c

no player has an incentive to add a link in such a network. �

Existence of Nash networks. As in the model with heterogeneous players, we begin by

showing that if heterogeneity is not “too high”, more precisely if δi,j = δi for all i ∈ N , then

a Nash network always exists.

Proposition 7 Suppose the benefits function satisfies equation (4) and, for all i ∈ N , δi,j = δi,

for all j ∈ N \ {i}, then a Nash network always exists.

Proof. The proof is very similar as the proof of Proposition 3, hence we only give the sets

which allow to construct the proof. Let Z ′
0 = {j ∈ N | δj ≥ c} be the set of players who has an

incentive to form a link with any player j with whom they are not (indirectely) linked; and let

z′ be the “minimal decay player”, that is the player such that δz′ ≥ δi for all i ∈ N . Moreover,

let Z ′
1 = {j ∈ N | (δj − δ2

j ) ≥ c} be the set of players who has an incentive to form a link with

any player j with whom they are not directely linked. �

The following example shows that non-existence can occur when we introduce decay het-

erogeneity.

Example 3 Let N = 1, 2, 21, 3, 31, .., 36, 4, 41 be the set of players. We assume that c = 1.95,

δ1,2 = δ2,1 = 0.6, δ1,4 = δ4,1 = 0.5, δ4,3 = δ3,4 = 0.28, δ2,3 = δ3,2 = 0.256, δ2,21 = δ21,2 = 1,

δ4,41 = δ41,4 = 1, δ3,k = δk,3 = 1, for all k ∈ {31, . . . , 36}, and δi,j = 0 for all remaining

i j. Obviously, none of the links with δi,j = 0 will be established. Clearly player 3 does not
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form the link 3 2. Moreover player 4 will never establish the link 4 1, and player 2 will never

establish the link 2 1. Further, player 1 does not establish simultaneously the two links 1 4

and 1 4. It follows that the link [1 4] will always be formed. We obtain:

• if player 1 forms the link 1 4, then player 2 forms the link 2 3;

• if player 1 does not forms the link 1 4, then player 2 does not form the link 2 3;

• if player 2 forms the link 2 3, then player 1 forms the link 1 2 and does not form 1 4;

• if player 2 does not form the link 2 3, then player 1 forms the link 1 4 and does not form

1 2.

4 Discussion

It is noteworthy that we find in our paper some results which are qualitatively similar to the

results find in the probabilistic models with heterogeneity. In particular Haller and Sarangi

(2005, [4]) find that there exist parameters such that all networks are strict Nash and the

possibility of non existence of Nash networks. It follows that it is useful to compare the

probabilistic and the decay models. Specifically, we focus on two questions: Can strict Nash

networks in one class of models tell us anything about strict Nash networks in the other class

of models?

In the probabilistic model each link has a probability p to work. Hence, the probabilistic model

uses all the paths between two players for computing payoffs while the decay model only uses

the shortest path between two players to determine payoffs. At first glance this suggests that

decay models might be a subset of the probabilistic models. Hence we ask if information about

strict Nash networks in probabilistic models give some sense about strict Nash networks in

decay models. To address this question, we compare marginal payoffs of links in both types

of models.3 In order to make the models comparable we assume that starting from the empty

network, the marginal payoffs of a link is the same in both models, that is we set δ = p.

3Note that in the probabilistic model players’ marginal payoffs are expected marginal payoffs. However, for both

types of models, we use the term marginal payoffs to make reading easier. Moreover, we assume that players in the

probabilistic model are risk neutral.
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We first show that when the initial network is minimal, the marginal payoff of a link is always

at least as great in the probabilistic model as in the decay model.

Indeed, suppose that in a minimal network g1, one player, say player i, forms a link with say

player j. Let the resulting network be denoted by g2. Either j is not observed by player i in

g1 and it is obvious that the marginal payoff of the link i j is the same in both models, or j is

observed by i in g1. In the latter case, in the decay model, player i being at distance 1 from

player j in g2, she obtains an amount p of resources of player j. In the probabilistic model, i

accesses to the resources of j in g2 if the link i j works, that occurs with a probability p. She

also accesses the resources of j even when the link i j does not work. It is enough that all the

links which were contained in a path from j to i in g1 work. So, the amount of resources of

player j obtained by player i in g2 is greater than p. With the same type of reasoning, we can

show that the part of the resources of players k 6= j, obtained by i in g2, is at least as great

in the probabilistic model as in the decay model. The result follows. From this result, it is

straightforward that a minimally connected Nash network in the probabilistic model is also a

Nash network in the decay model.

Next what happens if the initial network is not minimal? The example which follows shows

that the above result does not hold anymore.

Example 4 Let N = {1, 2, 3, 4} be the set of players and let g1 be a network such that

E{g1} = (1 2, 2 3, 3 4, 4 1).

Suppose that in g1 player 1 forms a link with player 3. We can check that for some p, for

instance p = 0.8, the marginal payoff of this link is greater in the probabilistic model, whereas

the converse is true for some other p, for instance p = 0.9.

Recall that if the initial network is minimal, the marginal payoff of a link is always as great

in the probabilistic model as in the decay model. This difference in the result can be explained

as follows.

Suppose that the initial network, denoted by g1, is not minimal. Then, there exist at least

two players in g1, say i and j, such that there are at least two paths between these two players.

Let player i form a link with player j in g1 and denote by g2 the resulting network. Although
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the total payoff of player i in g2 is greater in the probabilistic model than in the decay model,

this does not imply that the marginal payoff of the link i j is greater in the probabilistic model

than in the decay model. Indeed, it is easy to check that, in g1, player i also gets a greater

payoff in the probabilistic model than in the decay model.

When the initial network is not minimal, the difference in the marginal payoff of a link i j

depends on the architecture of the initial network (in particular the number of paths that exist

between player i and the other players from whom i obtains resources) and on the probability

that a link works. This makes it difficult to find a general rule which orders the marginal

payoff of a link in both models. Thus, when the number of players is greater than 3 and the

initial network is not minimal, information about strict Nash networks in one type of models

does not provide any indication about strict Nash networks in the other type of models.
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