WORKING PAPERS

# Macro Determinants of Individual Income Poverty in 93 Regions of Europe 

Anne REINSTADLER ${ }^{1}$
Jean-Claude RAY ${ }^{2}$

CEPS/INSTEAD, Luxembourg ${ }^{1}$

# Macro Determinants of Individual Income Poverty in 93 regions of Europe 

Anne REINSTADLER ${ }^{1}$<br>CEPS/INSTEAD, Luxembourg<br>Jean-Claude RAY ${ }^{2}$<br>Nancy University and CNRS UMR 7522, France


#### Abstract

The analysis of the at-risk-of-poverty determinants can be improved by taking into account factors at macro (regional) level. This hypothesis has already been made in previous research, at country-level, on cross-sectional data. We use longitudinal data in this analysis in order to get more precise estimated parameters, and we test if the regional unemployment rate and the regional GDP affect the individual at-risk-of-poverty status. The countries taken into account are those present in the Statistics on Income and Living Conditions (EU-SILC) dataset.


Key words: income poverty, EU-SILC, multilevel models, longitudinal data
JEL: I32

Avril 2010

[^0]
## 1. Introduction

Tackling poverty by 2010 was one of the European objectives defined by the Lisbon European Council in 2000. Ten years later, 2010 is the European year for combating poverty and social exclusion. Poverty continues therefore to be at the heart of social policy in most European Member States. Ideally, social policies aimed at reducing poverty need to be based on an in-depth understanding of the underlying processes at work. A first step towards such an understanding consists in shedding some light on the main determinants of poverty.

Early descriptive studies have checked for relationships between poverty status and different characteristics taken in turn (Bradshaw, 1999; Bradubury et al., 1999 ; UNICEF, 2000 ; Mejer et al., 2000). This has given some insight on the factors involved, but these studies have only partially allowed to understand how these factors work. Other researches (see for example Cappellari and Jenkins, 2002; Fertig and Tamm, 2007; Brady et al., 2009) have extended this initial approach by reasoning all other things being equal, checking the effect on poverty of factors such as educational attainment, age, employment status, family structure - all of these factors having been calculated at the individual ${ }^{3}$ level. Simultaneously another stream of studies (see Moller et al., 2003; Wiepking and Maas, 2005; Brady et al., 2009; Tai and Treas, 2008) has emphasized the analysis of the role of macro characteristics in a cross-national context. These analyses have shown that the macro factors could well have an effect on the poverty probability. Indeed, the generosity of social benefits (and especially of family benefits) proves to have a significant negative effect on the odds of poverty (see Brady et al. 2009, Moller et al. 2003).

For all of these three types of analyses, one major improvement has consisted in taking into account the longitudinal feature of poverty, using panel data ${ }^{4}$. The indicator of persistent poverty ${ }^{5}$, for example, allows to figure out whether poverty is a temporary or rather a long-term phenomenon. Furthermore, developments in the econometrics of panel data have allowed researchers to further investigate important topics such as poverty duration or unobserved heterogeneity.

However, to our knowledge, no study has yet dealt simultaneously with all EUcountries, longitudinal data and factors at both individual and macro levels using a relevant specification. Brady et al. (2009) study the effect of macro-determinants on the probability of being poor using a GEE model ${ }^{6}$ applied to 15 EU (plus some non-EU) countries but using cross-sectional data. In this paper we will extend this kind of analysis to 93 EU-regions (26 countries) and, contrary to previous work, we will use a longitudinal dataset (EU-SILC 2005 and 2006).

This paper has the following objective: it aims at disentangling the role of micro and macro factors in explaining the poverty status, by using detailed information about different

[^1]regions in Europe ${ }^{7}$. Indeed, we would like to test if there is a genuine effect of macro factors such as the unemployment rate on the poverty probability, and especially if these factors can affect the impact of individual characteristics such as the education level on this probability.

In Section 2 we present the definition of income poverty that we will apply. In Section 3 we then develop the different econometric methods available to deal with the question and data at hand. Section 4 gives a detailed description of our dataset. The results and comments of our own model are then presented in Section 5. Final conclusions are to be found in Section 6.

## 2. The definition of income poverty in Europe

In Europe, poverty is officially defined in relative terms, as the percentage of individuals living in a household whose equivalent income is below the poverty threshold. This threshold is defined in each country (equal to $60 \%$ of the national median equivalent income), aiming at taking into account the national income inequalities. As a consequence, two countries with very different standards of living (and thus very different median equivalent income and different poverty thresholds) can have the same poverty rate.

Seemingly contradictory results due to this definition do not matter as long as one is aware of the conventions they are based on, and when the at-risk-of-poverty rates are interpreted together with the threshold values. But, in our case, the main objective is to figure out to what extent the poverty status is explained by some macro factors such as the unemployment rate. It is thus necessary, in order to allow that kind of relationship to appear, that the poverty indicator ranks the countries as the macro variables do. As a consequence, we have chosen to keep defining poverty in a relative way ( $60 \%$ of a certain threshold) but to calculate a new threshold, allowing this kind of ranking. With this objective in mind, we calculate a unique European poverty threshold by considering all individuals to belong to a same big country, which is Europe ${ }^{8}$.

By doing this, we move away from the official EU-definition of the at-risk-of-poverty status (which is rather a measure of intra-country inequality), and we consider Europe as an integrated entity. In the same spirit, we exclude neither Iceland nor Norway: while not part of the EU-27 in 2009, they could be expected to join.

[^2]We then determine, for each country, the fraction of individuals ${ }^{9}$ situated below this new European threshold (see Appendix 1, where these figures can be compared with the official at-risk-of-poverty rates, based on the national thresholds).

## 3. Methodology

Two major approaches have been used to study the determinants of poverty. One consists in explaining the transitions into and out of poverty (probability of staying poor, and probability of entering poverty). The second approach focuses on the poverty status at a specific point in time.

The first approach takes into account the initial conditions problem ${ }^{10}$ by using longitudinal data. This problem refers to the fact that the poverty status during the first period may not be exogenous because of observed and unobserved characteristics, which would affect the probability of being poor afterwards. However, papers running that kind of analysis do not introduce macro factors in the analysis. This is either because they are interested in only one country (see Cappellari and Jenkins, 2002, 2004; Van Kerm, 2004; Buddelmeyer and Verick, 2007; Ayllon, $2008^{11}$ ), or because the different countries are treated separately, with as many models as there are countries (Andriopoulou et al., 2008).

On the other hand, some authors estimate the probability of being poor at a specific point in time (see Wiepking and Maas, 2005; Brady et al., 2009; Tai and Treas, 2008). All of these authors use cross-sectional data of 22 countries from the Luxembourg Income Study (LIS) and integrate macro variables in the analysis (such as the unemployment rate or the welfare generosity), stressing that the welfare system could play a role in allowing individuals to escape from poverty ${ }^{12}$.

As for our own work, it focuses on the poverty status and integrates macro factors as well. Our method is original in two ways: first, it uses longitudinal data and second, it takes into account the fact that some variability can be found at the regional level. In fact, two reasons have led us to do the analysis at the regional rather than at the country-level: first because the situation the individuals face (in terms of unemployment rate for example) could be very different from one region to another, within the same country, and second because there are more regions than countries ( 93 versus 26), which is better from a statistical point of view ${ }^{13}$.

[^3]In other words, we estimate a model of poverty probability, using two years of observations for each individual (in order to increase the estimation accuracy). Some of these individuals live in the same region ${ }^{14}$. From an econometric point of view, this data setup leads to a problem concerning the independence of observations: individuals being observed over two years and/or living in the same region share their own time-invariant characteristics and/or the characteristics of the area and can therefore no longer be considered to be independent. As a consequence, using traditional techniques would give consistent estimates but heavily ${ }^{15}$ under-estimated standard errors.

In order to cope with that statistical problem, we have chosen one of the many available techniques: we run a multilevel model, which treats the upper levels (the individuals and the regions here) not as unique entities but as units primarily characterised by factors calculated at their level (e.g. characteristics of the individual, or the unemployment rate of the region). These models explicitly take into account the hierarchical structure of the data, thereby allowing us to analyse - first to measure, then to explain - the fraction of the variability of the poverty rate which is attached to each (nested) level. Contrary to the fixed effects models ${ }^{16}$, multilevel models make use of the between variance, and are therefore especially useful when this variance is quite high. Some authors have already stressed that the use of this kind of models would be relevant in this framework (Cappellari and Jenkins 2004; Brady et al. 2009) but they have underlined the complexity of these models, whose convergence status is often out of reach.

The model we estimate is a binary logistic regression, where the probability of being at-risk-of-poverty is explained. This multilevel model takes into account three levels: time (measured in years), individuals and regions. It can be written as follows in its structural form ${ }^{17}$ :

$$
\begin{gathered}
\operatorname{logit}\left(P_{i j k}\right)=\beta_{0 k}+\beta_{1 k} x_{1 i j k}+\beta_{2} x_{2 i j k} \\
\beta_{0 k}=\gamma_{0}+\gamma_{1} z_{0 k}+U_{0 k} \\
\beta_{1 k}=\delta_{0}+\delta_{1} z_{1 k}+U_{1 k}
\end{gathered}
$$

hierarchy). But models with four levels and so many observations prove to have convergence problems and can thus not be estimated. We have therefore chosen to restrict our analysis to three levels, and to consider the third as being either the regions (in which case the country variable is introduced in the model as an explanatory variable) or the countries (the regional level being then put aside - see Appendix 2).
${ }^{14}$ Some of them also live in the same household. Ideally, this fact should be taken into account as well, but again it would increase the complexity of the analysis: we would have to deal with 3 sources of non independence of the observations (individuals observed several years, living in the same household, and in the same region). In this paper, we cope with two of them.
${ }^{15}$ According to what Angrist and Pischke (2009) name "the Moulton factor" (p. 310), we calculate to what extent the macro factors regression coefficients would be overestimated by ignoring intraregional correlation. We use the general formula 8.2 .5 (ibidem p. 311) which allows for various cluster sizes. With an intra-class correlation coefficient (given by the empty model - see Appendix 6) of 0.551 , a (non weighted) average regional sample size of 3206.20 individuals, a (non weighted) variance of regional sample size amounting to $15,550,017.33$ and an intra-class correlation of macro factors equal to 1 by definition, we get 66.63 . Note that this very large impact of clustering on standard errors is here due to the conjunction of big discrepancies between the size of regions (from 19 to 19941) and a high intra-class correlation coefficient ( 0.551 ). Even if the Moulton formula should be considered here only as a very rough approximation (because this formula ignores weighting and repeated observations), it clearly suggests that clustering effects must be taken into account.
${ }^{16}$ Yet these models have a strong advantage: they control for group-invariant factors, measured or unmeasured. But this advantage has a price: the inability to estimate regression coefficients for these group-invariant factors, and thus to allow the analyst to conclude in terms of the effect of these factors.
${ }^{17}$ The notation we use here is the same as Snijders and Bosker's (2004).
where:
i indexes time
j indexes the individuals
k indexes the regions
$P_{i j k}$ is the probability of being at-risk-of-poverty
$x_{1 i j k}$ is a vector of independent factors defined at the individual/household level whose effects are assumed to be random
$x_{2 i j k}$ is a vector of independent factors defined at the individual/household level whose effects are assumed to be fixed
$z_{0 k}$ is a vector of independent factors defined at the regional level, which are supposed to have an impact on the average $P_{i j k}$ in region k
$z_{1 k}$ is a vector of independent factors defined at the regional level, which are supposed to moderate the effect of the $x_{1 i j k}$ on $P_{i j k}$
$\beta_{0 k}$ is a random intercept
$\beta_{1 k}$ is a vector of random slopes
$\beta_{2}$ is a vector of fixed slopes
$\gamma_{0}$ measures the average value of $P_{i j k}$ across regions, when each independent variable is 0
$\gamma_{1}$ measures the impact of $z_{0 k}$ on $P_{i j k}$
$\delta_{0}$ measures the average impact, across regions, of $x_{1 i j k}$ on $P_{i j k}$, when each $z_{1 k}$ is 0
$\delta_{1}$ measures the impact of $z_{1 k}$ on the effect of the $x_{1 i j k}$ on $P_{i j k}$
$U_{0 k}$ and $U_{1 k}$ are error terms assumed to follow a multinormal distribution $\mathbb{N}(0,0 ; \Omega), \Omega$ being the variance-covariance matrix ${ }^{18}$.

The reduced form is thus:

$$
\operatorname{logit}\left(P_{i j k}\right)=\gamma_{0}+\gamma_{1} z_{0 k}+\delta_{0} x_{1 i j k}+\delta_{1} z_{1 k} x_{1 i j k}+\beta_{2} x_{2 i j k}+U_{0 k}+U_{1 k} x_{1 i j k}
$$

This formula refers to a random slope model, meaning that the intercept and at least one of the explanatory variables have a random coefficient.

## 4. Data

The EU-SILC longitudinal dataset provides information at both individual and household levels and covers at most 5 years (from 2003 to 2007) depending on the country: data are not available for some countries in 2003, 2004 and 2007. Had we used all five waves to calculate the poverty threshold as we define it (i.e. at the European level), it would have increased or decreased over time just because some countries (e.g. Germany) are absent for some years - it means, without any link with the economic situation. As a consequence, we work with data from two waves only, 2005 and 2006, where all 26 countries are present.

The unit of analysis is the individual: as stated by an OECD report (2001), this is the usual choice for poverty analysis with longitudinal data because individuals can be followed

[^4]over time whereas households cannot ${ }^{19}$. The sample contains 131891 working age adults (25-55) for the first wave, and 166379 for the second ${ }^{20}$, split between 26 countries (see Appendix 3). These countries ${ }^{21}$ are in turn divided into 93 regions (see Appendix 4).

The explanatory variables have been chosen in order to control for different determinants of the poverty status. Some are related to the demographic characteristics of the household ${ }^{22}$ (number of children and number of adults), others to the labour market (presence of at least one adult with an upper level of education, number of employed people), others still to the health status (presence ${ }^{23}$ of at least one adult with chronic disease, or hampered by illness in his/her daily activities). Two additional variables are measured at the regional level: the GDP and the unemployment rate ${ }^{24}$.

Some descriptive statistics, for both the whole sample and each country, can be found in Appendix 5 (but not for each region: as there are 93 regions ${ }^{25}$, it proves not to be sensible to show the descriptive statistics for each of them).

Beyond the usual hypotheses concerning all the control variables ${ }^{26}$, we make two further ones concerning our variables of interest: first we assume that the negative effect of the level of education on the probability of being at-risk-of-poverty could be weaker in richer areas (where the probability of being poor is quite low, whatever the level of education). Second we assume that the negative effect of the number of employed people in the

[^5]household on the probability of being at risk of poverty could be attenuated when the unemployment rate is high due to the downward pressure on wages.

## 5. Results and Comments

The results of the model are shown in Table 1. All our analyses (descriptive and econometric) use weighted data ${ }^{27}$.

[^6]Table 1. Probability of being at-risk-of-poverty in 93 European regions. Estimation with a multilevel model ${ }^{28}$


Source: EU-SILC data, longitudinal file ${ }^{30}$, 1.08.2009 UDB release, authors' computations.
Level of significance for independent variable coefficients: *: p-value < 0.05 ; **: p-value < 0.01 ; ***: p-value < 0.001
${ }^{28}$ We have used the SAS GLIMMIX command. Useful SAS code examples can be found in Allison (2008) and were kindly given by David Brady.
${ }^{29}$ See appendix 5 for a description of the variables.
${ }^{30} 22$ countries from this release plus 4 countries from the March release (see above).

Concerning the error terms, SAS/PROC GLIMMIX does not offer a statistical test indicating the level of significance of the variances and covariances of the error terms. But compared to their standard errors, the estimated variances are quite high, which suggests their high level of significance. This in turn justifies on the one hand the choice of the multilevel model, and on the other hand our choice of allowing these variables to have random rather than fixed coefficients. Looking at the empty model (see Appendix 6), we can see that the intra-class correlation (calculated according to the second formula given by Snijders and Bosker, 1999, page 224) is equal to 0.55 , meaning that the between-variance is substantial.

Let us examine now the effects of our variables of interest. Recall that our objective is to measure the specific effect of the regional GDP per inhabitant and the regional unemployment rate on the probability of being at-risk-of-poverty. This effect could be either direct or indirect since these macro factors can act through other individual variables on the probability of being poor (such as the education level and the number of employed people in the household).

As expected, the regional GDP per capita has a strong (and highly significant) direct negative effect on the risk of poverty: for individuals living in households where nobody has an upper education level, the odds of being poor (probability of being poor divided by probability of not being poor) decreases by $4.7 \%(1-0.953=0.047)$ for an increase of annual GDP per capita by a 1000 Euros. This direct effect is supplemented by an indirect effect: the regional GDP per capita moderates the negative impact of upper education on the poverty risk. In fact, in the average region in terms of GDP per capita (about 24260 Euros/year), the presence of an adult with upper education level decreases the poverty odds by $61 \%$ (odds ratio $=0.39^{31}$ ). In a rich region such as Luxembourg (GDP per capita $=60150$ Euros/year), it decreases the odds by only $6.2 \%$; in a quite disadvantaged region like Estonia (GDP per capita $=14547$ Euros/year) it decreases the odds by $69 \%$.

For individuals living in households without any employed people, an additional percentage point of the regional unemployment rate increases by $2.1 \%$ the poverty odds, but this effect is only slightly statistically significant ( $p$-value $=6 \%$ ) ceteris paribus (especially when GDP per capita is controlled for). But there is an indirect effect of the regional unemployment rate on the poverty risk, even if rather small: in the average region in terms of the unemployment rate (unemployment rate $=8.52 \%$ ), the presence of an additional employed individual decreases the poverty odds by $69 \%$, when controlling for the number of adults in the household (odds ratio $=0.31^{32}$ ). When the unemployment rate is much lower, such as in Ireland (unemployment rate $4.35 \%$ ), it decreases these odds by $71 \%$, and by $66 \%$ when the unemployment rate is quite high (for example in Slovenia - unemployment rate 14.85\%).

To summarize, the moderating effect of the regional unemployment rate on the impact on poverty risk of the number of employed people does exist but it is marginal. By contrast, the moderating effect of the regional GDP per capita on the impact on poverty risk of the presence of highly educated people is quite large.

[^7]Besides and not surprisingly (given the sample size), almost all control variables have an effect on the poverty probability, except for gender ${ }^{33}$ : women do not have a higher risk of being poor than men. This can easily be explained by the fact that the poverty status is a household characteristic, which can hardly be influenced by a strictly individual feature ${ }^{34}$. One interesting question is the extent to which these control variables have an impact on the poverty risk (even if our study focuses on the possible impact of macro determinants on the effect some factors of interest can have on the poverty risk):

- if the activity of at least one household member is hampered by disease, the odds of being poor increase by $18 \%$
- controlling for especially the fact that the activity of at least one household member is hampered (or not) by disease, the chronic character of this disease decreases by $11 \%$ the odds of being poor (this could be a consequence of the social benefits people with chronic diseases are entitled to)
- the number of children in the household has a slightly concave effect on the odds of being poor: as the number of children increases, the effect of an additional child decreases progressively up to a value ( 14 children) lying beyond the observed maximum in the sample ( 12 children). But the effect of each additional child remains substantial. As an example, while a first child increases by $41 \%$ the odds of being poor, a fourth child still increases them by $31 \%$
- the number of adults in the household also proves to have a clear non linear effect on the poverty risk: ceteris paribus (and especially when controlling for the number of employed people), the odds of being poor are virtually the same if there are one or two adults in the household, but they increase by $21 \%$ with the third adult and by $45 \%$ with the fourth one.


## 6. Conclusion

Analysing the determinants of the monetary poverty probability has already been attempted by many studies. But few of them have simultaneously used panel data, considered factors at the macro level, and used the right techniques to deal with all these elements.

As for our results, they show that both the regional GDP per capita and the regional unemployment rate do have an effect on poverty risk.

[^8]In terms of economic and social policy implications, it means that:

- policies oriented towards higher economic growth rates in disadvantaged European regions are able to alleviate the risk of poverty even if poverty is defined in relative terms
- this kind of economic policies, if successful in its effort to sustain the economic well-being of families in poor regions, will, as a side-effect, diminish the anti-poverty effect of the presence in the household of higher educated people. We suspect that this indirect effect is associated to the choice of defining poverty as a relative concept - a European view, which countries like the US do not share
- as for the regional unemployment rate, its direct positive impact on the poverty risk is essentially a confirmation of what could be expected and of what is already known, even if the weakness of this effect is quite surprising. Still more surprising is the fact that the regional unemployment rate does not moderate to a large extent the impact on the poverty risk of the number of employed people in the household. This implies that policies aimed at combating high regional unemployment rates will, as such, unfortunately not lower to a large extent the regional poverty rates.

However, our analysis faces two types of limitations. The first one results from methodological choices we have made, the second is due to the data.

First, because we needed an indicator differentiating and thus ranking the 93 regions in terms of poverty rates, we have made use of a European poverty threshold, which has proven quite relevant in terms of ability to estimate the econometric model. However, precisely because the European regions are quite dispersed around the average at-risk-ofpoverty rate, we were not able to check the consistency of the results in using alternative measures of the European threshold ${ }^{35}$ (such as $50 \%$ or $70 \%$ of the European median equivalent income).

Concerning then the data, and with the results at country-level in mind, we would have liked to test the effect of other macro characteristics at the regional level, such as the expenses in unemployment or social benefits (expressed in percentage of the GDP). But these were not available at the regional level. In future analyses, we would thus be interested in adding some variables of that kind, once they are available. And, as for the regions, the variable defined in the EU-SILC dataset is missing in some countries (even in quite big countries such as Germany and the United Kingdom). In order to keep these countries in the analysis, we have defined each of them as a unique - and quite large - region.

[^9]
## References

ALLISON Paul D. (2008), Longitudinal Data Analysis Using SAS, October, 100 pages.
ANDRIOPOULOU Eirini, TSAKLOGLOU Panos (2008), "Once poor, always poor? Do initial conditions matter? Evidence from the ECHP", IRISS Conference, Oct., 33 pages.

ANGRIST Joshua D., PISCHKE Jörn-Steffen (2009), "Mostly Harmless Econometrics. An Empiricist's Companion", Princeton University Press, 373 p.

AYLLON Sara (2008), "Modelling poverty transitions in Spain: Do attrition and initial conditions really matter?", IRISS Working Paper Series, 2008-08, Oct., 36 pages.

BRADBURY Bruce, JÄNTTI Markus (1999) "Child Poverty across Industrialised Nations", Innocenti Occasional Papers, Economic and Social Policy Series, UNICEF, n ${ }^{\circ} 71$.

BRADSHAW Jonathan (1999), "Child Poverty in Comparative Perspective", European Journal of Social Security, Vol.1, pp. 383-406.

BRADY David, FULLERTON Andrew S., MOREN-CROSS Jennifer (2009), "Putting Poverty in Political Context: A Multi-Level Analysis of Adult Poverty Across 18 Affluent Countries", Social Forces, Vol. 88(1), September, pp. 271-300.

BUDDELMEYER Hielke, VERICK Sher (2007), "Understanding the Drivers of Poverty Dynamics in Australian Households", IZA DP No. 2827, 29 pages.

CAPPELLARI Lorenzo (2004), "Earnings Mobility Among Italian Low Paid Workers", Journal of Population Economics, Vol. 20(3), pp. 465-482.

CAPPELLARI Lorenzo, JENKINS Stephen P. (2002a), "Who Stays Poor? Who Becomes Poor? Evidence from the British Household Panel Survey", The Economic Journal, Vol. 112, No. 478, Conference Papers (Mar., 2002), pp. C60-C67.

CAPPELLARI Lorenzo, JENKINS Stephen P. (2002b), "Modelling Low Income Transitions", ISER Working Papers Number 2002-8, 42 pages.

CAPPELLARI Lorenzo, JENKINS Stephen P. (2004), "Modelling Low Income Transitions", Journal of Applied Econometrics, Vol. 19, pp. 593-610.

FERTIG Michael, TAMM Marcus (2007), "Always Poor or Never Poor and Nothing in Between? Duration of Child Poverty in Germany", IZA Discussion Paper ${ }^{\circ}$ 2645, February, 29 pages.

MARLIER Eric, ATKINSON A.B., CANTILLON Bea, NOLAN Brian (2007), The EU and Social Inclusion - Facing the challenges, The Policy Press, The University of Bristol, 303 pages.

MEJER Lene, SIERMANN Clemens (2000), "La pauvreté monétaire dans l'Union européenne : la situation des enfants, les différences entre les sexes et l'écart de pauvreté", Eurostat, Statistiques en bref, Population et Conditions sociales, 12/2000, 7 pages.

MOLLER Stephanie, HUBER Evelyne, STEPHENS John D., BRADLEY David, NIELSEN François (2003), "Determinants of Relative Poverty in Advanced Capitalist Democracies", American Sociological Review, Vol. 68, No. 1, February, pp. 22-51.

MOON Choon-Geol, STOTSKY Janet G. (1993), "The Effect of Rent Control on Housing Quality Change: A Longitudinal Analysis", The Journal of Political Economy, Vol. 101, No. 6, December, pp. 1114-1148.

OECD (2001), "When Money is Tight: Poverty Dynamics in OECD Countries", in Employment Outlook, Chapter 2, pp. 37-87.

POGGI Ambra (2007), "Does persistence of social exclusion exist in Spain? ", Journal of Economic Inequality, Vol. 5, pp. 53-72.

RAY Jean-Claude, JEANDIDIER Bruno (2003), "Depuis une décennie, que nous ont appris les données longitudinales à propos de la pauvreté en France ? Une première synthèse", Communication aux $X^{\text {es }}$ Journées du Longitudinal, Caen, mai, 61 pages.

SNIJDERS Tom A.B., BOSKER Roel J. (2004), Multilevel Analysis. An introduction to basic and advanced multilevel modeling, Sage Publications, 266 pages.

STEWART Mark B., SWAFFIELD Joanna K. (1999), "Low Pay Dynamics and Transition Probabilities", Economica, Vol. 66, pp. 23-42.

TAI Tsui-o, TREAS Judith (2008), " Poverty, Household Composition, and Welfare States: A Multi-level Analysis of 22 Countries", Luxembourg Income Study Working Paper Series, Working Paper No. 492, September, 33 pages.

UNICEF (2000), "A League Table of Child Poverty in Rich Nations", Innocenti Report Card, Issue $\mathrm{n}^{\circ} 1$, June, 28 pages.

VAN KERM Philippe (2004), "Une évaluation économétrique des flux vers et hors de la pauvreté en Belgique", IRISS Working Paper Series, 2004-04, 17 pages.

WIEPKING Pamala, MAAS Ineke (2005), "Gender Differences in Poverty: A Cross-National Study", European Sociological Review, Vol. 21(3), July, pp. 187-200.

## Appendix 1. At-risk-of-poverty rates of working aged adults (25-55) in Europe

At-risk-of-poverty rates of working age adults (25-55) in Europe (European threshold $=60 \%$ of the European median equivalent income)

| Country | 2005 | 2006 |
| :---: | ---: | ---: |
| AT | 5 | 6 |
| BE | 6 | 8 |
| CY | 7 | 6 |
| CZ | 42 | 41 |
| DE | 7 | 6 |
| DK | 3 | 3 |
| EE | 70 | 64 |
| ES | 20 | 19 |
| FI | 5 | 6 |
| FR | 8 | 9 |
| EL | 73 | 26 |
| HU | 8 | 69 |
| IE | 3 | 8 |
| IS | 14 | 3 |
| IT | 79 | 17 |
| LT | 1 | 75 |
| LU | 61 | 2 |
| LV | 6 | 74 |
| NL | 74 | 3 |
| NO | 42 | 3 |
| PL | 5 | 73 |
| PT | 13 | 40 |
| SE | 77 | 5 |
| SI | 7 | 13 |
| SK | 72 |  |
| UK |  | 8 |

Source: EU-SILC data, longitudinal file, 1.08.2009 UDB release, authors' computations.
Reading note: with the European poverty threshold calculated for the whole population ${ }^{36}$, $5 \%$ of individuals aged 25-55 in Austria were at-risk-of-poverty in 2005.

We can notice that the countries face very different situations in terms of the at-risk-of-poverty rate, a conclusion that cannot be drawn from the figures shown in the table below (based on national poverty thresholds).

[^10]At-risk-of-poverty rates of working aged adults (25-55) in Europe (national thresholds)

| Country | 2005 | 2006 |
| :---: | :---: | :---: |
| AT | 11 | 11 |
| BE | 11 | 11 |
| CY | 10 | 10 |
| CZ | 10 | 9 |
| DE | 11 | 12 |
| DK | 9 | 9 |
| EE | 16 | 15 |
| ES | 16 | 15 |
| FI | 8 | 9 |
| FR | 10 | 11 |
| EL | 16 | 17 |
| HU | 14 | 15 |
| IE | 14 | 14 |
| IS | 9 | 8 |
| IT | 16 | 17 |
| LT | 19 | 18 |
| LU | 13 | 14 |
| LV | 18 | 19 |
| NL | 10 | 8 |
| NO | 8 | 8 |
| PL | 21 | 19 |
| PT | 15 | 15 |
| SE | 7 | 10 |
| SI | 10 | 9 |
| SK | 13 | 11 |
| UK | 14 | 14 |

Source: EU-SILC data, cross-sectional file, 1.08.2009 UDB release.
Reading note: with the poverty threshold calculated at national level, $11 \%$ of individuals aged $25-55$ in Austria were at-risk-of-poverty in 2005.

These official figures are based on the cross-sectional file, which means that all individuals are taken into account (whereas the longitudinal file concerns only those present at least two years).

# Appendix 2. Poverty probability determinants at country-level 



Appendix 3. Sample size, by country and year

Number of individuals aged 25-55, in each country, for each year (sample size, unweighted cases)

| Country | 2005 | 2006 |
| :---: | ---: | ---: |
| AT | 3882 | 5469 |
| BE | 2408 | 4002 |
| CY | 2357 | 3373 |
| CZ | 4391 | 7367 |
| DE | 10529 | 9285 |
| DK | 3549 | 3451 |
| EE | 2665 | 4269 |
| ES | 8472 | 11501 |
| FI | 4021 | 5528 |
| FR | 5876 | 7324 |
| EL | 4642 | 4211 |
| HU | 4353 | 6609 |
| IE | 2872 | 1992 |
| IS | 1584 | 2243 |
| IT | 12955 | 37048 |
| LT | 2533 | 4601 |
| LU | 4322 | 3438 |
| LV | 2704 | 9287 |
| NL | 8574 | 3926 |
| NO | 4088 | 14644 |
| PL | 10627 | 3662 |
| PT | 2671 | 4751 |
| SE | 3541 | 11271 |
| SI | 8671 | 4898 |
| SK | 3447 | 7594 |
| UK | 6224 |  |

[^11]
## Appendix 4. List of available regions ${ }^{37}$ in the dataset

| Austria |  | ES62 | Región de Murcia |
| :--- | :--- | :--- | :--- |
| AT1 | Ostösterreich | ES63 | Ciudad Autónoma de Ceuta |
| AT2 | Südösterreich | ES64 | Ciudad Autónoma de Melilla |
| AT3 | Westösterreich | ES70 | Canarias |
|  |  |  |  |
| Belgium |  | Finland |  |
| BE1 | Région de Bruxelles-Capitale / | FI13 | Itä-Suomi |
|  | Brussels Hoofdstedelijk Gewest | FI18 | Etelä-Suomi |
| BE2 | Vlaams Gewest | FI19 | Länsi-Suomi |
| BE3 | Région Wallonne | FI1A | Pohjois-Suomi |
|  |  |  |  |
| Republic of Cyprus | France |  |  |
| CY0 | Kypros / Kibris | FR10 | Ile de France |
|  |  | FR21 | Champagne-Ardenne |
| Czech Republic |  | FR22 | Picardie |
| CZ01 |  | Fraha | FR24 |


| Italy |  | Poland |  |
| :---: | :---: | :---: | :---: |
| ITC | Nord-Ovest | PL1 | Region Centralny |
| ITD | Nord-Est | PL2 | Region Poludniowy |
| ITE | Centro (I) | PL3 | Region Wschodni |
| ITF | Sud | PL4 | Region Polnocno-Zachodni |
| ITG | Isole | PL5 | Region Poludniowo-Zachodni |
|  |  | PL6 | Region Polnocny |
| Lithuania |  |  |  |
| LT0 | Lietuva | Portugal PT | Portugal |
| Luxembourg |  |  |  |
| LU0 | Luxembourg (Grand-Duché) | Sweden |  |
|  |  | SE | Sweden |
| Latvia |  |  |  |
| LV0 | Latvija | Slovenia |  |
|  |  | SI | Slovenia |
| The Netherland |  |  |  |
| The region variable is not available in the |  | Slovakia |  |
| longitudinal dataset for the Netherlands. |  | SK0 | Slovenska |
| NL | The Netherlands |  |  |
|  |  | The United Kingdom |  |
| NorwayNO0 | Norway | The region | ble is not available in the |
|  |  | longitudin | set for UK |
|  |  | UK | United-Kingdom |

## Appendix 5. Description of the explanatory variables and descriptive statistics

Description of the explanatory variables

| Name of the variable | Label of the variable | Description of the variable |
| :---: | :---: | :---: |
| woman | woman | EU-SILC variable RB090; woman=1 if RB090=2 |
| age_centered | age centered (around the average: 41.27) | EU-SILC variable RX020, centered (age in the year prior to the survey) |
| chronicdiseaseHH | chronic disease in the household household | Authors' calculations using the EU-SILC variable PH 020 : is there at least one household member who suffers from a chronic disease? |
| activityhamperedHH | activity hampered by disease in the household | Authors' calculations using the EU-SILC variable PH 030 : is there at least one household member whose activities are hampered because of health problems? |
| uppereducHH | upper education level in the household | Authors' calculations using the EU-SILC variable PE040: is there at least one household member whose upper level of education is tertiary education (PE040=5)? |
| nbchildren | number of children in the household | number of children (age 0-14) in the year prior to the survey |
| nbadultsHH | number of adults in the household | number of adults (age 18 or more) in the year prior to the survey |
| nbemployedHH | number of employed people in the household | number of employed household members (authors' calculations using the EU-SILC variable PL030 codes 1 or 2) |
| country | country | EU-SILC variable RB020 |
| wave | wave | EU-SILC variable RB010 |
| GDPhabnuts | regional annual GDP per capita (in $10^{3}$ Euros) | Information from Eurostat |
| unempratenuts | regional unemployment rate (expressed in \%) | Information from Eurostat |

Descriptive statistics for the whole sample

| Wave | N Obs | Variable | N | NMiss | Mean | Std Dev | Minimum | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | 131891 | pov_indicator | 131891 | 0 | 0.1965 | 0.4259 | 0 | 1.0000 |
|  |  | womān | 131887 | 4 | 0.5130 | 0.5357 | 0 | 1.0000 |
|  |  | age_centered | 131891 | 0 | -0.6425 | 9.1801 | -16.2665 | 14.7335 |
|  |  | age_centered2 | 131891 | 0 | 73.7935 | 76.2358 | 0.0710 | 264.6 |
|  |  | chrōicdiseaseHH | 131891 | 0 | 0.3885 | 0.5223 | 0 | 1.0000 |
|  |  | activityhamperedHH | 131891 | 0 | 0.2931 | 0.4878 | 0 | 1.0000 |
|  |  | uppereduchH | 126795 | 5096 | 0.3962 | 0.5182 | 0 | 1.0000 |
|  |  | nbchildren | 131891 | 0 | 0.9077 | 1.1426 | 0 | 11.0000 |
|  |  | nbadultsHH | 131891 | 0 | 2.3903 | 1.0792 | 1.0000 | 10.0000 |
|  |  | nbemployedHH | 129384 | 2507 | 1.5131 | 0.8971 | 0 | 8.0000 |
|  |  | GDPhabnuts | 131891 | 0 | 23.7538 | 7.1961 | 8.2000 | 57.1000 |
|  |  | unempratenuts | 131891 | 0 | 8.8728 | 4.4381 | 2.5000 | 21.4000 |
| 2006 | 166379 | pov_indicator | 166379 | 0 | 0.2000 | 0.3757 | 0 | 1.0000 |
|  |  | womān | 166371 | 8 | 0.5128 | 0.4695 | 0 | 1.0000 |
|  |  | age_centered | 166379 | 0 | -0.2041 | 7.9962 | -16.2665 | 14.7335 |
|  |  | age_centered2 | 166379 | 0 | 72.5178 | 66.5149 | 0.0710 | 264.6 |
|  |  | chronicdiseaseHH | 166379 | 0 | 0.3911 | 0.4584 | 0 | 1.0000 |
|  |  | activityhamperedHH | 166379 | 0 | 0.2926 | 0.4273 | 0 | 1.0000 |
|  |  | uppereducHH | 158892 | 7487 | 0.4059 | 0.4560 | 0 | 1.0000 |
|  |  | nbchildren | 166379 | 0 | 0.9288 | 0.9917 | 0 | 12.0000 |
|  |  | nbadultsHH | 166379 | 0 | 2.4239 | 0.9506 | 1.0000 | 11.0000 |
|  |  | nbemployedHH | 162220 | 4159 | 1.6016 | 0.7713 | 0 | 8.0000 |
|  |  | GDPhabnuts | 166379 | 0 | 24.7924 | 6.6164 | 8.7000 | 63.1000 |
|  |  | unempratenuts | 166379 | 0 | 8.1568 | 3.0558 | 2.8000 | 21.0000 |

Descriptive statistics for at country level

| wave | country | N Obs | Variable |  | N Miss | Mean | Std Dev | v Minimum | Maximum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | BE | 2408 | pov_indicator | 2408 | 0 | 0.0609 | 0.2696 | 0 | 1.0000 |
|  |  |  | womān | 2408 | 0 | 0.4920 | 0.5635 | 0 | 1.0000 |
|  |  |  | age_centered | 2408 | 0 | 0.2142 | 9.5775 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 2408 | 0 | 72.2531 | 78.0715 | 0.0710 | 264.6 |
|  |  |  | chronicdiseaseHH | 2408 | 0 | 0.3267 | 0.5286 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 2408 | 0 | 0.3100 | 0.5213 | 0 | 1.0000 |
|  |  |  | uppereduchH | 2089 | 319 | 0.5108 | 0.5609 | 0 | 1.0000 |
|  |  |  | nbchildren | 2408 | 0 | 0.9201 | 1.3651 | 0 | 7.0000 |
|  |  |  | nbadultsHH | 2408 | 0 | 2.3255 | 1.1521 | 1.0000 | 7.0000 |
|  |  |  | nbemployedHH | 2408 | 0 | 1.4716 | 0.9269 | 0 | 5.0000 |
|  |  |  | GDPhabnuts | 2408 | 0 | 26.6319 | 10.0738 | 19.4000 | 53.3000 |
|  |  |  | unempratenuts | 2408 | 0 | 8.4371 | 4.3000 | 5.4000 | 16.3000 |
| 2006 | BE | 4002 | pov_indicator | 4002 | 0 | 0.0789 | 0.2398 | 0 | 1.0000 |
|  |  |  | womān | 4002 | 0 | 0.4979 | 0.4447 | 0 | 1.0000 |
|  |  |  | age_centered | 4002 | 0 | 0.0482 | 7.6695 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 4002 | 0 | 74.3560 | 62.3554 | 0.0710 | 264.6 |
|  |  |  | chronicdiseaseHH | 4002 | 0 | 0.3407 | 0.4215 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 4002 | 0 | 0.3010 | 0.4080 | 0 | 1.0000 |
|  |  |  | uppereduchH | 3634 | 368 | 0.5390 | 0.4439 | 0 | 1.0000 |
|  |  |  | nbchildren | 4002 | 0 | 0.8937 | 1.0366 | 0 | 7.0000 |
|  |  |  | nbadultsHH | 4002 | 0 | 2.2926 | 0.8868 | 1.0000 | 7.0000 |
|  |  |  | nbemployedHH | 3969 | 33 | 1.5155 | 0.7240 | 0 | 4.0000 |
|  |  |  | GDPhabnuts | 4002 | 0 | 28.0513 | 8.4301 | 20.1000 | 55.1000 |
|  |  |  | unempratenuts |  | 0 | $8.3091$ | $3.8080$ | $5.0000$ | $17.6000$ |
| 2005 | CZ | 4391 | pov_indicator | 4391 | 0 | 0.4156 | 0.4304 | 0 | 1.0000 |
|  |  |  | womān | 4391 | 0 | 0.4986 | 0.4366 | 0 | 1.0000 |
|  |  |  | age_centered | 4391 | 0 | -1.3598 | 8.1510 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 4391 | 0 | 88.9707 | 65.7152 | $0.0710$ | $264.6$ |
|  |  |  | chronicdiseaseHH | 4391 | 0 | 0.3762 | 0.4230 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 4391 | 0 | 0.3349 | 0.4121 | 0 | 1.0000 |
|  |  |  | uppereduchH | 4391 | 0 | 0.2071 | 0.3539 | 0 | 1.0000 |
|  |  |  | nbchildren | 4391 | 0 | 0.7598 | 0.8045 | 0 | 5.0000 |
|  |  |  | nbadultsHH | 4391 | 0 | 2.5584 | 0.8599 | 1.0000 | 7.0000 |
|  |  |  | nbemployedHH | 4391 | 0 | 1.7005 | 0.7878 | 0 | 4.0000 |
|  |  |  | GDPhabnuts | 4391 | 0 | 17.0978 | 5.9279 | 13.3000 | 35.6000 |
|  |  |  | unempratenuts | 4391 | 0 | 7.9891 | 3.1642 | 3.5000 | 13.9000 |
| 2006 | CZ | 7367 | pov_indicator | 7367 | 0 | 0.4136 | 0.3314 | 0 | 1.0000 |
|  |  |  | womān | 7367 | 0 | 0.5002 | 0.3364 | 0 | 1.0000 |
|  |  |  | age_centered | 7367 | 0 | -1.2929 | 6.2442 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 7367 | 0 | 87.7967 | 49.6113 | 0.0710 | 264.6 |
|  |  |  | chronicdiseaseHH | 7367 | 0 | 0.3807 | 0.3267 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 7367 | 0 | 0.3379 | 0.3183 | 0 | 1.0000 |
|  |  |  | uppereducht | 7323 | 44 | 0.2118 | 0.2749 | 0 | 1.0000 |
|  |  |  | nbchildren | 7367 | 0 | 0.7563 | 0.6111 | 0 | 7.0000 |
|  |  |  | nbadultsHH | 7367 | 0 | 2.5852 | 0.6729 | 1.0000 | 8.0000 |
|  |  |  | nbemployedHH | 7367 | 0 | 1.7118 | 0.6076 | 0 | 5.0000 |
|  |  |  | GDPhabnuts | 7367 | 0 | 18.2129 | 4.8756 | 14.2000 | 38.4000 |
|  |  |  | unempratenuts | 7367 | 0 | 7.2759 | 2.1418 | 2.8000 | 12.8000 |
| 2005 | DK | 3549 | pov_indicator | 3549 | 0 | 0.0331 | 0.1237 | 0 | 1.0000 |
|  |  |  | womān | 3549 | 0 | 0.4989 | 0.3458 | 0 | 1.0000 |
|  |  |  | age_centered | 3549 | 0 | -0.1867 | 5.9554 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 3549 | 0 | 74.1813 | 48.3555 | 0.0710 | 264.6 |
|  |  |  | chrōnicdiseaseHH | 3549 | 0 | 0.2248 | 0.2887 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 3549 | 0 | 0.1249 | 0.2287 | 0 | 1.0000 |
|  |  |  | uppereduch | 3488 | 61 | 0.4311 | 0.3413 | 0 | 1.0000 |
|  |  |  | nbchildren | 3549 | 0 | 0.9719 | 0.7503 | 0 | 7.0000 |
|  |  |  | nbadultsHH | 3549 | 0 | 1.9228 | 0.4682 | 1.0000 | 7.0000 |
|  |  |  | nbemployedHH | 3491 | 58 | 1.5338 | 0.4816 | 0 | 4.0000 |
|  |  |  | GDPhabnuts | $3549$ | 0 | 27.8000 | 0 | 27.8000 | 27.8000 |
|  |  |  | unempratenuts | 3549 | 0 | 4.8000 | 0 | 4.8000 | 4.8000 |
| 2006 | DK | 3451 | pov_indicator | 3451 | 0 | 0.0320 | 0.1208 | 0 | 1.0000 |
|  |  |  | womān | 3451 | 0 | 0.4933 | 0.3430 | 0 | 1.0000 |
|  |  |  | age_centered | 3451 | 0 | -0.0156 | 5.7369 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 3451 | 0 | 69.9331 | 46.3429 | 0.0710 | 264.6 |
|  |  |  | chrōicdiseaseht | 3451 | 0 | 0.2375 | 0.2919 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 3451 | 0 | 0.1280 | 0.2292 | 0 | 1.0000 |
|  |  |  | uppereducht | 3391 | 60 | 0.4392 | 0.3390 | 0 | 1.0000 |
|  |  |  | nbchildren | 3451 | 0 | 0.9772 | 0.7343 | 0 | 5.0000 |
|  |  |  | nbadultsHH | 3451 | 0 | 1.9430 | 0.4724 | 1.0000 | 5.0000 |
|  |  |  | nbemployedHH | 3382 | 69 | 1.5658 | 0.4818 | 0 | 4.0000 |
|  |  |  | GDPhabnuts | 3451 | 0 | 29.1000 | 0 | 29.1000 | 29.1000 |
|  |  |  | unempratenuts | 3451 | 0 | 3.9000 | 0 | 3.9000 | 3.9000 |
| 2005 | DE | 10529 | pov_indicator | 10529 | 0 | 0.0748 | 0.4145 | 0 | 1.0000 |
|  |  |  | womān | 10529 | 0 | 0.5332 | 0.7863 | 0 | 1.0000 |
|  |  |  | age_centered | 10529 | 0 | -0.2368 | 13.1238 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 10529 | 0 | 69.3959 | 109.6 | 0.0710 | 264.6 |
|  |  |  | chrōicdiseaseht | 10529 | 0 | 0.4474 | 0.7836 | 0 | 1.0000 |


|  |  |  | activityhamperedHH | 10529 | 0 | 0.4231 | 0.7786 | 0 | 1.0000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | uppereducht | 10364 | 165 | 0.5070 | 0.7878 | 0 | 1.0000 |
|  |  |  | nbchildren | 10529 | 0 | 0.7408 | 1.5855 | 0 | 6.0000 |
|  |  |  | nbadultsHH | 10529 | 0 | 2.1375 | 1.3513 | 1.0000 | 7.0000 |
|  |  |  | nbemployedHH | 10529 | 0 | 1.3698 | 1.2661 | 0 | 5.0000 |
|  |  |  | GDPhabnuts | 10529 | 0 | 26.3000 | 0 | 26.3000 | 26.3000 |
|  |  |  | unempratenuts | 10529 | 0 | 11.1000 | 0 | 11.1000 | 11.1000 |
| 2006 | DE | 9285 | pov_indicator | 9285 | 0 | 0.0624 | 0.3895 | 0 | 1.0000 |
|  |  |  | womān | 9285 | 0 | 0.5655 | 0.7983 | 0 | 1.0000 |
|  |  |  | age_centered | 9285 | 0 | 1.8870 | 12.4357 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 9285 | 0 | 63.1927 | 108.7 | 0.0710 | 264.6 |
|  |  |  | chrōicdiseaseHH | 9285 | 0 | 0.4929 | 0.8051 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 9285 | 0 | 0.3678 | 0.7766 | 0 | 1.0000 |
|  |  |  | uppereduch | 9285 | 0 | 0.5429 | 0.8022 | 0 | 1.0000 |
|  |  |  | nbchildren | 9285 | 0 | 0.9117 | 1.6225 | 0 | 6.0000 |
|  |  |  | nbadultsHH | 9285 | 0 | 2.2395 | 1.4165 | 1.0000 | 6.0000 |
|  |  |  | nbemployedHH | 9285 | 0 | 1.6796 | 1.2261 | 0 | 5.0000 |
|  |  |  | GDPhabnuts | 9285 | 0 | 27.4000 | 0 | 27.4000 | 27.4000 |
|  |  |  | unempratenuts | 9285 | 0 | 10.2000 | 0 | 10.2000 | 10.2000 |
| 2005 | EE | 2648 | pov_indicator | 2648 | 0 | 0.6987 | 0.1792 | 0 | 1.0000 |
|  |  |  | womān | 2648 | 0 | 0.5190 | 0.1952 | 0 | 1.0000 |
|  |  |  | age_centered | 2648 | 0 | -0.8065 | 3.5205 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 2648 | 0 | 81.8660 | 28.6931 | 0.0710 | 264.6 |
|  |  |  | chronicdiseaseHH | 2648 | 0 | 0.4745 | 0.1951 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 2648 | 0 | 0.4575 | 0.1946 | 0 | 1.0000 |
|  |  |  | uppereducht | 2648 | 0 | 0.4219 | 0.1929 | 0 | 1.0000 |
|  |  |  | nbchildren | 2648 | 0 | 0.8302 | 0.3793 | 0 | 8.0000 |
|  |  |  | nbadultsHH | 2648 | 0 | 2.4462 | 0.4073 | 1.0000 | 8.0000 |
|  |  |  | nbemployedHH | 2648 | 0 | 1.6159 | 0.3584 | 0 | 6.0000 |
|  |  |  | GDPhabnuts | 2648 | 0 | 13.7000 | 0 | 13.7000 | 13.7000 |
|  |  |  | unempratenuts | 2648 | 0 | 7.9000 | 0 | 7.9000 | 7.9000 |
| 2006 | EE | 4257 | pov_indicator | 4257 | 0 | 0.6417 | 0.1471 | 0 | 1.0000 |
|  |  |  | woman | 4257 | 0 | 0.5192 | 0.1533 | 0 | 1.0000 |
|  |  |  | age_centered | 4257 | 0 | -0.8308 | 2.7528 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 4257 | 0 | 81.1909 | 22.5456 | 0.0710 | 264.6 |
|  |  |  | chronicdiseaseHH | 4257 | 0 | 0.4938 | 0.1534 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 4257 | 0 | 0.4280 | 0.1518 | 0 | 1.0000 |
|  |  |  | uppereduch | 4227 | 30 | 0.4447 | 0.1525 | 0 | 1.0000 |
|  |  |  | nbchildren | 4257 | 0 | 0.7761 | 0.2906 | 0 | 9.0000 |
|  |  |  | nbadultsHH | 4257 | 0 | 2.4614 | 0.3270 | 1.0000 | $8.0000$ |
|  |  |  | nbemployedHH | 4257 | 0 | 1.6337 | 0.2754 | 0 | 6.0000 |
|  |  |  | GDPhabnuts | 4257 | 0 | 15.4000 | 0 | 15.4000 | 15.4000 |
|  |  |  | unempratenuts | 4257 | 0 | 5.9000 | 0 | 5.9000 | 5.9000 |
| 2005 | IE | 2872 | pov_indicator |  | 0 |  |  | 0 |  |
|  |  |  | woman | 2872 | 0 | 0.5097 | 0.3183 | 0 | 1.0000 |
|  |  |  | age_centered | 2872 | 0 | -0.2720 | 5.5261 | -16.2665 | 13.7335 |
|  |  |  | age_centered2 | 2872 | 0 | 75.3925 | 44.0678 | 0.0710 | 264.6 |
|  |  |  | chrōnicdiseaseHH | 2872 | 0 | 0.3453 | 0.3027 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 2872 | 0 | 0.2946 | 0.2903 | 0 | 1.0000 |
|  |  |  | uppereducht | 2777 | 95 | 0.4414 | 0.3168 | 0 | 1.0000 |
|  |  |  | nbchildren | 2872 | 0 | 1.1631 | 0.7583 | 0 | 9.0000 |
|  |  |  | nbadultsHH | 2872 | 0 | 2.5971 | 0.7238 | 1.0000 | 9.0000 |
|  |  |  | nbemployedHH | 2872 | 0 | 1.6651 | 0.6233 | 0 | 6.0000 |
|  |  |  | GDPhabnuts | 2872 | 0 | 32.4000 | 0 | 32.4000 | 32.4000 |
|  |  |  | unempratenuts | 2872 | 0 | 4.3000 | 0 | 4.3000 | 4.3000 |
| 2006 | IE | 1992 | pov_indicator | 1992 | 0 | 0.0811 | 0.2023 | 0 | 1.0000 |
|  |  |  | womān | 1992 | 0 | 0.5266 | 0.3700 | 0 | 1.0000 |
|  |  |  | age_centered | 1992 | 0 | 0.5228 | 6.2803 | -16.2665 | 13.7335 |
|  |  |  | age_centered2 | 1992 | 0 | 72.0837 | 50.2126 | 0.0710 | 264.6 |
|  |  |  | chrōnicdiseaseHH | 1992 | 0 | 0.3667 | 0.3571 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 1992 | 0 | 0.2901 | 0.3363 | 0 | 1.0000 |
|  |  |  | uppereducht | 1929 | 63 | 0.4180 | 0.3660 | 0 | 1.0000 |
|  |  |  | nbchildren | 1992 | 0 | 1.2204 | 0.9358 | 0 | 9.0000 |
|  |  |  | nbadultsHH | 1992 | 0 | 2.5523 | 0.7821 | 1.0000 | 7.0000 |
|  |  |  | nbemployedHH | 1992 | 0 | 1.5983 | 0.6942 | 0 | 5.0000 |
|  |  |  | GDPhabnuts | 1992 | 0 | 34.8000 | 0 | 34.8000 | 34.8000 |
|  |  |  | unempratenuts | 1992 | 0 | 4.4000 | 0 | 4.4000 | 4.4000 |
| 2005 | EL | 4642 | pov_indicator | 4642 | 0 | 0.2368 | 0.3385 | 0 | 1.0000 |
|  |  |  | womān | 4642 | 0 | 0.5011 | 0.3981 | 0 | 1.0000 |
|  |  |  | age_centered | 4642 | 0 | -1.1845 | 6.9457 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 4642 | 0 | 77.5079 | 57.6718 | 0.0710 | 264.6 |
|  |  |  | chrōnicdiseaseHH | 4642 | 0 | 0.2578 | 0.3483 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 4642 | 0 | 0.2381 | 0.3391 | 0 | 1.0000 |
|  |  |  | uppereducht | 4446 | 196 | 0.3357 | 0.3777 | 0 | 1.0000 |
|  |  |  | nbchildren | 4642 | 0 | 0.7773 | 0.7372 | 0 | 8.0000 |
|  |  |  | nbadultsHH | 4642 | 0 | 2.6662 | 0.7512 | 1.0000 | 10.0000 |
|  |  |  | nbemployedHH | 4642 | 0 | 1.5917 | 0.6483 | 0 | 7.0000 |
|  |  |  | GDPhabnuts | 4642 | 0 | 20.8883 | 4.4502 | 16.2000 | 28.3000 |
|  |  |  | unempratenuts | 4642 | 0 | 9.9011 | 0.9685 | 8.2000 | 11.4000 |


| 2006 | EL | 4211 | pov_indicator | 4211 | 0 | 0.2574 | 0.3462 | 0 | 1.0000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | womān | 4211 | 0 | 0.5024 | 0.3960 | 0 | 1.0000 |
|  |  |  | age_centered | 4211 | 0 | -0.8390 | 6.8965 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 4211 | 0 | 76.5434 | 57.1113 | 0.0710 | 264.6 |
|  |  |  | chronicdiseaseHH | 4211 | 0 | 0.2626 | 0.3485 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 4211 | 0 | 0.2301 | 0.3333 | 0 | 1.0000 |
|  |  |  | uppereducht | 4027 | 184 | 0.3405 | 0.3772 | 0 | 1.0000 |
|  |  |  | nbchildren | 4211 | 0 | 0.7931 | 0.7434 | 0 | 8.0000 |
|  |  |  | nbadultsHH | 4211 | 0 | 2.6953 | 0.7519 | 1.0000 | 10.0000 |
|  |  |  | nbemployedHH | 4211 | 0 | 1.6258 | 0.6779 | 0 | 7.0000 |
|  |  |  | GDPhabnuts | 4211 | 0 | 21.8582 | 4.8696 | 16.9000 | 30.5000 |
|  |  |  | unempratenuts | 4211 | 0 | 8.9479 | 0.5389 | 7.9000 | 9.7000 |
| 2005 | ES | 8429 | pov_indicator | 8429 | 0 | 0.2004 | 0.5233 | 0 | 1.0000 |
|  |  |  | womān | 8429 | 0 | 0.4927 | 0.6537 | 0 | 1.0000 |
|  |  |  | age_centered | 8429 | 0 | -1.7718 | 11.3422 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 8429 | 0 | 78.3910 | 95.7980 | 0.0710 | 264.6 |
|  |  |  | chrōnicdiseaseHH | 8429 | 0 | 0.3623 | 0.6285 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 8429 | 0 | 0.3263 | 0.6131 | 0 | 1.0000 |
|  |  |  | uppereducht | 7794 | 635 | 0.4688 | 0.6525 | 0 | 1.0000 |
|  |  |  | nbchildren | 8429 | 0 | 0.7216 | 1.2211 | 0 | 7.0000 |
|  |  |  | nbadultsHH | 8429 | 0 | 2.6879 | 1.4681 | 1.0000 | 8.0000 |
|  |  |  | nbemployedHH | 8429 | 0 | 1.6190 | 1.1830 | 0 | 6.0000 |
|  |  |  | GDPhabnuts | 8429 | 0 | 23.1034 | 6.0902 | 15.6000 | 29.9000 |
|  |  |  | unempratenuts | 8429 | 0 | 9.2296 | 3.6424 | 5.6000 | 19.7000 |
| 2006 | ES | 11438 | pov_indicator | 11438 | 0 | 0.1913 | 0.4309 | 0 | 1.0000 |
|  |  |  | womān | 11438 | 0 | 0.4098 | 0.5387 | 0 | 1.0000 |
|  |  |  | age_centered | 11438 | 0 | -1.8626 | 9.4802 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 11438 | 0 | 78.3685 | 80.1413 | 0.0710 | 264.6 |
|  |  |  | chrōnicdiseaseHH | 11438 | 0 | 0.3500 | 0.5225 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 11438 | 0 | 0.3440 | 0.5204 | 0 | 1.0000 |
|  |  |  | uppereduch | 10605 | 833 | 0.4680 | 0.5469 | 0 | 1.0000 |
|  |  |  | nbchildren | 11438 | 0 | 0.7259 | 0.9986 | 0 | 7.0000 |
|  |  |  | nbadultsHH | 11438 | 0 | 2.6490 | 1.1568 | 1.0000 | 11.0000 |
|  |  |  | nbemployedhH | 11438 | 0 | 1.6282 | 0.9546 | 0 | 7.0000 |
|  |  |  | GDPhabnuts | $11438$ | 0 | 24.6383 | 5.4181 | 16.7000 | 32.1000 |
|  |  |  | unempratenuts |  | 0 | $8.6267$ | 2.7513 | $5.3000$ | $21.0000$ |
| 2005 | FR | 5876 | pov_indicator | 5876 | 0 | 0.0798 | 0.4672 | 0 | $1.0000$ |
|  |  |  | woman | 5876 | 0 | 0.5252 | 0.8610 | 0 | 1.0000 |
|  |  |  | age_centered | 5876 | 0 | 1.3631 | 14.0051 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 5876 | 0 | 67.8346 | 116.5 | 0.0710 | 264.6 |
|  |  |  | chrōnicdiseaseHH | 5876 | 0 | 0.4439 | 0.8567 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 5876 | 0 | 0.2686 | 0.7642 | 0 | 1.0000 |
|  |  |  | uppereduch | 5699 | 177 | 0.3917 | 0.8420 | 0 | 1.0000 |
|  |  |  | nbchildren | 5876 | 0 | 1.0526 | 1.9390 | 0 | 7.0000 |
|  |  |  | nbadultsHH | 5876 | 0 | 2.2903 | 1.5338 | 1.0000 | 7.0000 |
|  |  |  | nbemployedHH | 5874 | 2 | 1.5306 | 1.2917 | 0 | 4.0000 |
|  |  |  | GDPhabnuts | 5876 | 0 | 25.2810 | 11.6435 | 19.6000 | 38.7000 |
|  |  |  | unempratenuts | 5876 | 0 | 8.8630 | 3.0632 | 6.4000 | 13.2000 |
| 2006 | FR | 7324 | pov_indicator | 7324 | 0 | 0.0917 | 0.4396 | 0 | 1.0000 |
|  |  |  | womān | 7324 | 0 | 0.5262 | 0.7608 | 0 | 1.0000 |
|  |  |  | age_centered | 7324 | 0 | 1.2819 | 12.4687 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 7324 | 0 | 68.6154 | 104.2 | 0.0710 | 264.6 |
|  |  |  | chrōnicdiseaseHH | 7324 | 0 | 0.4242 | 0.7530 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 7324 | 0 | 0.2657 | 0.6730 | 0 | 1.0000 |
|  |  |  | uppereduch | 7119 | 205 | 0.3899 | 0.7433 | 0 | 1.0000 |
|  |  |  | nbchildren | 7324 | 0 | 1.0192 | 1.6985 | 0 | 7.0000 |
|  |  |  | nbadultsHH | 7324 | 0 | 2.2675 | 1.3719 | 1.0000 | 7.0000 |
|  |  |  | nbemployedHH | 7324 | 0 | 1.5391 | 1.1152 | 0 | 4.0000 |
|  |  |  |  | 7324 | 0 | 26.1066 | 10.5634 |  | $40.1000$ |
|  |  |  | unempratenuts | 7324 | 0 | 8.8601 | 2.5799 | $6.1000$ | 12.4000 |
| 2005 | IT | 12955 | pov_indicator | 12955 | 0 | 0.1430 | 0.4209 | 0 | 1.0000 |
|  |  |  | womān | 12955 | 0 | 0.4996 | 0.6012 | 0 | 1.0000 |
|  |  |  | age_centered | 12955 | 0 | -0.6673 | 10.2847 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 12955 | 0 | 73.6183 | 83.8161 | 0.0710 | 264.6 |
|  |  |  | chrōnicdiseaseHH | 12955 | 0 | 0.2886 | 0.5448 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 12955 | 0 | 0.2261 | 0.5030 | 0 | 1.0000 |
|  |  |  | uppereduch | 12797 | 158 | 0.2134 | 0.4925 | 0 | 1.0000 |
|  |  |  | nbchildren | 12955 | 0 | 0.7360 | 1.0747 | 0 | 5.0000 |
|  |  |  | nbadultsHH | 12955 | 0 | 2.5511 | 1.2129 | 1.0000 | 7.0000 |
|  |  |  | nbemployedHH | 12955 | 0 | 1.4667 | 0.9832 | 1.00000 | 5.0000 |
|  |  |  | GDPhabnuts | 12955 | 0 | 23.6233 | 7.0590 | 15.6000 | 28.8000 |
|  |  |  | unempratenuts | 12955 | 0 | 8.1620 | 5.5057 | 4.0000 | 15.3000 |
| 2006 | IT | 18048 | pov_indicator | 18048 | 0 | 0.1718 | 0.3850 | 0 | 1.0000 |
|  |  |  | womān | 18048 | 0 | 0.4995 | 0.5103 | 0 | 1.0000 |
|  |  |  | age_centered | 18048 | 0 | -0.4297 | 8.6658 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 18048 | 0 | 72.2801 | 70.6271 | 0.0710 | 264.6 |
|  |  |  | chrōnicdiseaseht | 18048 | 0 | 0.2796 | 0.4581 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 18048 | 0 | 0.2694 | 0.4528 | 0 | 1.0000 |
|  |  |  | uppereducht | 17906 | 142 | 0.2191 | 0.4222 | 0 | 1.0000 |
|  |  |  | nbchildren | 18048 | 0 | 0.7350 | 0.9174 | 0 | 6.0000 |
|  |  |  | nbadultsHH | 18048 | 0 | 2.5369 | 1.0417 | 1.0000 | 7.0000 |
|  |  |  | nbemployedHH | 18048 | 0 | 1.4865 | 0.8410 | 0 | 6.0000 |


|  |  |  | GDPhabnuts unempratenuts | $\begin{aligned} & 18048 \\ & 18048 \end{aligned}$ | 0 | $\begin{array}{r} 24.5302 \\ 7.1662 \end{array}$ | $\begin{aligned} & 6.1430 \\ & 3.8868 \end{aligned}$ | 16.3000 3.6000 | 29.8000 12.7000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2005 | CY | 2357 | pov indicator | 2357 | 0 | 0.0719 | 0.0821 | 0 | 1.0000 |
|  |  |  | womān | 2357 | 0 | 0.5104 | 0.1588 | 0 | 1.0000 |
|  |  |  | age centered | 2357 | 0 | -1.1817 | 2.8284 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 2357 | 0 | 80.6322 | 23.5761 | 0.0710 | 264.6 |
|  |  |  | chronicdiseaseHH | 2357 | 0 | 0.3778 | 0.1541 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 2357 | 0 | 0.3540 | 0.1520 | 0 | 1.0000 |
|  |  |  | uppereducht | 2315 | 42 | 0.4840 | 0.1589 | 0 | 1.0000 |
|  |  |  | nbchildren | 2357 | 0 | 0.9912 | 0.3387 | 0 | 8.0000 |
|  |  |  | nbadultsHH | 2357 | 0 | 2.7608 | 0.3348 | 1.0000 | 7.0000 |
|  |  |  | nbemployedHH | 2357 | 0 | 1.8203 | 0.2727 | 0 | 6.0000 |
|  |  |  | GDPhabnuts | 2357 | 0 | 20.4000 | 0 | 20.4000 | 20.4000 |
|  |  |  | unempratenuts | 2357 | 0 | 5.3000 | 0 | 5.3000 | 5.3000 |
| 2006 | CY | 3373 | pov_indicator | 3373 | 0 | 0.0552 | 0.0601 | 0 | 1.0000 |
|  |  |  | woman | 3373 | 0 | 0.5142 | 0.1316 | 0 | 1.0000 |
|  |  |  | age_centered | 3373 | 0 | -1.0617 | 2.3468 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 3373 | 0 | 80.5458 | 19.5748 | 0.0710 | 264.6 |
|  |  |  | chronicdiseaseHH | 3373 | 0 | 0.4170 | 0.1298 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 3373 | 0 | 0.2706 | 0.1170 | 0 | 1.0000 |
|  |  |  | uppereduch | 3319 | 54 | 0.4900 | 0.1317 | 0 | 1.0000 |
|  |  |  | nbchildren | 3373 | 0 | 1.0275 | 0.2843 | 0 | 8.0000 |
|  |  |  | nbadultsHH | 3373 | 0 | 2.8076 | 0.2898 | 1.0000 | 7.0000 |
|  |  |  | nbemployedHH | 3373 | 0 | 1.8817 | 0.2335 | 0 | 6.0000 |
|  |  |  | GDPhabnuts | 3373 | 0 | 21.3000 | 0 | 21.3000 | 21.3000 |
|  |  |  | unempratenuts | 3373 | 0 | 4.5000 | 0 | 4.5000 | 4.5000 |
| 2005 | LV | 2704 | pov_indicator | 2704 | 0 | 0.8089 | 0.2019 | 0 | 1.0000 |
|  |  |  | womān | 2704 | 0 | 0.5195 | 0.2566 | 0 | 1.0000 |
|  |  |  | age_centered | 2704 | 0 | -0.6736 | 4.5409 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 2704 | 0 | 78.6490 | 37.5947 | 0.0710 | 264.6 |
|  |  |  | chronicdiseaseHH | 2704 | 0 | 0.5020 | 0.2568 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 2704 | 0 | 0.4826 | 0.2566 | 0 | 1.0000 |
|  |  |  | uppereducht | 2686 | 18 | 0.3015 | 0.2357 | 0 | 1.0000 |
|  |  |  | nbchildren | 2704 | 0 | 0.7461 | 0.4546 | 0 | 7.0000 |
|  |  |  | nbadultsHH | 2704 | 0 | 2.5481 | 0.5490 | 1.0000 | 6.0000 |
|  |  |  | nbemployedHH | 2704 | 0 | 1.6262 | 0.4794 | 0 | 5.0000 |
|  |  |  | GDPhabnuts | 2704 | 0 | 10.9000 | 0 | 10.9000 | 10.9000 |
|  |  |  | unempratenuts | 2704 | 0 | 8.9000 | 0 | 8.9000 | 8.9000 |
| 2006 | LV | 3438 | pov_indicator | 3438 | 0 | 0.7396 | 0.1993 | 0 | 1.0000 |
|  |  |  | woman | 3438 | 0 | 0.5180 | 0.2270 | 0 | 1.0000 |
|  |  |  | age_centered | 3438 | 0 | -0.7024 | 4.0261 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 3438 | 0 | 79.0465 | 32.8692 | 0.0710 | 264.6 |
|  |  |  | chrōnicdiseaseht | 3438 | 0 | 0.5185 | 0.2270 | - | 1.0000 |
|  |  |  | activityhamperedHH | 3438 | 0 | 0.4850 | 0.2270 | 0 | 1.0000 |
|  |  |  | uppereducht | 3417 | 21 | 0.3494 | 0.2165 | 0 | 1.0000 |
|  |  |  | nbchildren | 3438 | 0 | 0.7660 | 0.4175 | 0 | 11.0000 |
|  |  |  | nbadultsHH | 3438 | 0 | 2.6926 | 0.4952 | 1.0000 | 6.0000 |
|  |  |  | nbemployedHH | 3438 | 0 | 1.7491 | 0.4339 | 0 | 5.0000 |
|  |  |  | GDPhabnuts | 3438 | 0 | 12.4000 | 0 | 12.4000 | 12.4000 |
|  |  |  | unempratenuts | 3438 | 0 | 6.8000 | 0 | 6.8000 | 6.8000 |
| 2005 | LT | 2527 | pov_indicator | 2527 | 0 | 0.7906 | 0.2636 | 0 | 1.0000 |
|  |  |  | woman | 2527 | 0 | 0.5165 | 0.3237 | 0 | 1.0000 |
|  |  |  | age_centered | 2527 | 0 | -0.8742 | 5.5828 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 2527 | 0 | 75.0490 | 46.8519 | 0.0710 | 264.6 |
|  |  |  | chrōnicdiseaseht | 2527 | 0 | 0.3968 | 0.3169 | , | 1.0000 |
|  |  |  | activityhamperedHH | 2527 | 0 | 0.3962 | 0.3168 | 0 | 1.0000 |
|  |  |  | uppereducht | 2455 | 72 | 0.3853 | 0.3162 | 0 | 1.0000 |
|  |  |  | nbchildren | 2527 | 0 | 0.9105 | 0.6330 | 0 | 6.0000 |
|  |  |  | nbadultsHH | 2527 | 0 | 2.5087 | 0.6445 | 1.0000 | 9.0000 |
|  |  |  | nbemployedHH | 2527 | 0 | 1.6172 | 0.5482 | 0 | 5.0000 |
|  |  |  | GDPhabnuts | 2527 | 0 | 11.9000 | 0 | 11.9000 | 11.9000 |
|  |  |  | unempratenuts | 2527 | 0 | 8.3000 | 0 | 8.3000 | 8.3000 |
| 2006 | LT | 3713 | pov_indicator | 3713 | 0 | 0.7549 | 0.2280 | 0 | 1.0000 |
|  |  |  | womān | 3713 | 0 | 0.5173 | 0.2649 | 0 | 1.0000 |
|  |  |  | age_centered | 3713 | 0 | -0.6671 | 4.5500 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 3713 | 0 | 74.1260 | 37.1506 | 0.0710 | 264.6 |
|  |  |  | chrōnicdiseaseHH | 3713 | 0 | 0.4288 | 0.2623 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 3713 | 0 | 0.3475 | 0.2524 | 0 | 1.0000 |
|  |  |  | uppereducht | 3613 | 100 | 0.4118 | 0.2618 | 0 | 1.0000 |
|  |  |  | nbchildren | 3713 | 0 | 0.9010 | 0.5201 | 0 | 7.0000 |
|  |  |  | nbadultsHH | 3713 | 0 | 2.5249 | 0.5195 | 1.0000 | 9.0000 |
|  |  |  | nbemployedHH | 3713 | 0 | 1.6651 | 0.4300 | 0 | 5.0000 |
|  |  |  | GDPhabnuts | 3713 | 0 | 13.1000 | 0 | 13.1000 | 13.1000 |
|  |  |  | unempratenuts | 3713 | 0 | 5.6000 | 0 | 5.6000 | 5.6000 |
| 2005 | LU | 4322 | pov_indicator | 4322 | 0 | 0.0106 | 0.0191 | 0 | 1.0000 |
|  |  |  | woman | 4322 | 0 | 0.4941 | 0.0930 | 0 | 1.0000 |
|  |  |  | age_centered | 4322 | 0 | -0.5958 | 1.5620 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 4322 | 0 | 70.9201 | 12.6713 | 0.0710 | 264.6 |
|  |  |  | chrōnicdiseaseHH | 4322 | 0 | 0.3231 | 0.0870 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 4322 | 0 | 0.3213 | 0.0868 | 0 | 1.0000 |
|  |  |  | uppereducht | 4210 | 112 | 0.3544 | 0.0895 | 0 | 1.0000 |


|  |  |  | nbchildren | 4322 | 0 | 0.9074 | 0.2003 | 0 | 7.0000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | nbadultsHH | 4322 | 0 | 2.3891 | 0.1848 | 1.0000 | 7.0000 |
|  |  |  | nbemployedHH | 4322 | 0 | 1.5991 | 0.1397 | 0 | 5.0000 |
|  |  |  | GDPhabnuts | 4322 | 0 | 57.1000 | 0 | 57.1000 | 57.1000 |
|  |  |  | unempratenuts | 4322 | 0 | 4.5000 | 0 | 4.5000 | 4.5000 |
| 2006 | LU | 4601 | pov_indicator | 4601 | 0 | 0.0192 | 0.0251 | 0 | 1.0000 |
|  |  |  | woman | 4601 | 0 | 0.4979 | 0.0917 | 0 | 1.0000 |
|  |  |  | age_centered | 4601 | 0 | -0.8068 | 1.5614 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 4601 | 0 | 73.1864 | 12.9800 | 0.0710 | 264.6 |
|  |  |  | chrōnicdiseaseHH | 4601 | 0 | 0.3346 | 0.0865 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 4601 | 0 | 0.3191 | 0.0855 | 0 | 1.0000 |
|  |  |  | uppereduchH | 4494 | 107 | 0.3524 | 0.0882 | 0 | 1.0000 |
|  |  |  | nbchildren | 4601 | 0 | 0.9019 | 0.1980 | 0 | 6.0000 |
|  |  |  | nbadultsHH | 4601 | 0 | 2.3624 | 0.1804 | 1.0000 | 6.0000 |
|  |  |  | nbemployedHH | 4601 | 0 | 1.5974 | 0.1353 | 0 | 5.0000 |
|  |  |  | GDPhabnuts | 4601 | 0 | 63.1000 | , | 63.1000 | 63.1000 |
|  |  |  | unempratenuts | 4601 | 0 | 4.7000 | 0 | 4.7000 | 4.7000 |
| 2005 | HU | 4353 | pov_indicator | 4353 | 0 | 0.7286 | 0.3793 | 0 | 1.0000 |
|  |  |  | womān | 4353 | 0 | 0.5111 | 0.4264 | 0 | 1.0000 |
|  |  |  | age_centered | 4353 | 0 | -0.7273 | 7.8870 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 4353 | 0 | 86.0190 | 62.2732 | 0.0710 | 264.6 |
|  |  |  | chrōicdiseaseht | 4353 | 0 | 0.5287 | 0.4258 | 0 | 1.0000 |
|  |  |  | activityhamperedhH | 4353 | 0 | 0.4448 | 0.4239 | 0 | 1.0000 |
|  |  |  | uppereduch | 4350 | 3 | 0.2556 | 0.3721 | 0 | 1.0000 |
|  |  |  | nbchildren | 4353 | 0 | 0.8801 | 0.9083 | 0 | 7.0000 |
|  |  |  | nbadultsHH | 4353 | 0 | 2.6492 | 0.8968 | 1.0000 | 9.0000 |
|  |  |  | nbemployedHH | 4353 | 0 | 1.5751 | 0.7810 | 0 | 5.0000 |
|  |  |  | GDPhabnuts | 4353 | 0 | 14.2595 | 4.9600 | 9.3000 | 23.2000 |
|  |  |  | unempratenuts | 4353 | 0 | 7.3201 | 1.4527 | 5.1000 | 9.2000 |
| 2006 | HU | 6609 | pov_indicator | 6609 | 0 | 0.6904 | 0.3197 | 0 | 1.0000 |
|  |  |  | womān | 6609 | 0 | 0.5155 | 0.3456 | 0 | 1.0000 |
|  |  |  | age_centered | 6609 | 0 | -0.7190 | 6.3795 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 6609 | 0 | 85.6337 | 50.2613 | 0.0710 | 264.6 |
|  |  |  | chrōicdiseaseHh | 6609 | 0 | 0.4654 | 0.3449 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 6609 | 0 | 0.3874 | 0.3369 | 0 | 1.0000 |
|  |  |  | uppereduchH | 6609 | 0 | 0.2955 | 0.3155 | 0 | 1.0000 |
|  |  |  | nbchildren | 6609 | 0 | 0.8703 | 0.7353 | 0 | 8.0000 |
|  |  |  | nbadultsHH | 6609 | 0 | 2.6738 | 0.7254 | 1.0000 | 7.0000 |
|  |  |  | nbemployedHH | 6609 | 0 | 1.5826 | 0.6395 | 0 | 5.0000 |
|  |  |  | GDPhabnuts | 6609 | 0 | 15.0909 | 4.4141 | 9.7000 | 24.9000 |
|  |  |  | unempratenuts | 6609 | 0 | 7.5619 | 1.4049 | 5.1000 | 9.9000 |
| 2005 | NL | 8574 | pov_indicator | 8574 | 0 | 0.0581 | 0.1868 | 0 | 1.0000 |
|  |  |  | womān | 8574 | 0 | 0.4921 | 0.3992 | 0 | 1.0000 |
|  |  |  | age_centered | 8574 | 0 | -0.4148 | 6.8706 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 8574 | 0 | 74.2244 | 56.6392 | 0.0710 | 264.6 |
|  |  |  | chrōnicdiseaseht | 8574 | 0 | 0.2497 | 0.3456 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 8574 | 0 | 0.1563 | 0.2899 | 0 | 1.0000 |
|  |  |  | uppereduch | 8206 | 368 | 0.4600 | 0.3967 | 0 | 1.0000 |
|  |  |  | nbchildren | 8574 | 0 | 0.9032 | 0.8799 | 0 | 6.0000 |
|  |  |  | nbadultsHH | 8574 | 0 | 2.1546 | 0.6870 | 1.0000 | 7.0000 |
|  |  |  | nbemployedHH | 8407 | 167 | 1.4760 | 0.6251 | 0 | 5.0000 |
|  |  |  |  |  | 0 | $29.4000$ | 0 |  | 29.4000 |
|  |  |  | unempratenuts | $8574$ | 0 | 4.7000 | 0 | 4.7000 | 4.7000 |
| 2006 | NL | 9287 | pov_indicator | 9287 | 0 | 0.0318 | 0.1310 | 0 | 1.0000 |
|  |  |  | woman | 9287 | 0 | 0.4975 | 0.3732 | 0 | 1.0000 |
|  |  |  | age_centered | 9287 | 0 | -0.2668 | 6.3946 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 9287 | 0 | 73.4840 | 53.0152 | 0.0710 | 264.6 |
|  |  |  | chrōnicdiseaseHH | 9287 | 0 | 0.2542 | 0.3249 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 9287 | 0 | 0.1644 | 0.2766 | 0 | 1.0000 |
|  |  |  | uppereducht | 8949 | 338 | 0.4702 | 0.3716 | 0 | 1.0000 |
|  |  |  | nbchildren | 9287 | 0 | 0.9265 | 0.8325 | 0 | 6.0000 |
|  |  |  | nbadultshH | 9287 | 0 | 2.1678 | 0.6369 | 1.0000 | 7.0000 |
|  |  |  | nbemployedHH | 9279 | 8 | 1.6542 | 0.5648 | 0 | 5.0000 |
|  |  |  | GDPhabnuts | 9287 | 0 | 30.9000 | 0 | 30.9000 | 30.9000 |
|  |  |  | unempratenuts | 9287 | 0 | 3.9000 | 0 | 3.9000 | 3.9000 |
| 2005 | AT | 3882 | pov_indicator | 3882 | 0 | 0.0522 |  | 0 | 1.0000 |
|  |  |  | woman | 3882 | 0 | 0.5056 | $0.4107$ | 0 | 1.0000 |
|  |  |  | age_centered | 3882 | 0 | -0.1534 | 6.9123 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 3882 | 0 | 70.8171 | 57.3363 | 0.0710 | 264.6 |
|  |  |  | chrōnicdiseaseht | 3882 | 0 | 0.2931 | 0.3739 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 3882 | 0 | 0.3432 | 0.3900 | 0 | 1.0000 |
|  |  |  | uppereducht | 3882 | 0 | 0.3181 | 0.3826 | 0 | 1.0000 |
|  |  |  | nbchildren | 3882 | 0 | 0.8440 | 0.8552 | 0 | 6.0000 |
|  |  |  | nbadultsHH | 3882 | 0 | 2.3847 | 0.8766 | 1.0000 | 8.0000 |
|  |  |  | nbemployedHH | 3882 | 0 | 1.6527 | 0.7373 | 0 | 7.0000 |
|  |  |  | GDPhabnuts | 3882 | 0 | 28.0319 | 1.8223 | 23.9000 | 29.6000 |
|  |  |  | unempratenuts | 3882 | 0 | 5.1660 | 1.0814 | 3.9000 | 6.7000 |
| 2006 | AT | 5469 | pov_indicator | 5469 | 0 | 0.0555 | 0.1577 | 0 | 1.0000 |
|  |  |  | woman | 5469 | 0 | 0.5080 | 0.3443 | 0 | 1.0000 |
|  |  |  | age_centered | 5469 | 0 | -0.3177 | 5.7667 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 |  | 0 | 70.2327 | 48.1919 | 0.0710 | 264.6 |



| 2005 | SK | 3447 | pov_indicator | 3447 | 0 | 0.7661 | 0.3005 | 0 | 1.0000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | woman | 3447 | 0 | 0.5198 | 0.3547 | 0 | 1.0000 |
|  |  |  | age_centered | 3447 | 0 | 0.1174 | 6.4023 | -16.2665 | 14.7335 |
|  |  |  | age-centered2 | 3447 | 0 | 81.3319 | 53.0850 | 0.0710 | 264.6 |
|  |  |  | chronicdiseaseHH | 3447 | 0 | 0.4441 | 0.3528 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 3447 | 0 | 0.3993 | 0.3477 | 0 | 1.0000 |
|  |  |  | uppereducht | 3432 | 15 | 0.3085 | 0.3279 | 0 | 1.0000 |
|  |  |  | nbchildren | 3447 | 0 | 0.8904 | 0.7283 | 0 | 6.0000 |
|  |  |  | nbadultsHH | 3447 | 0 | 3.0942 | 0.8632 | 1.0000 | 8.0000 |
|  |  |  | nbemployedHH | 3447 | 0 | 1.9700 | 0.7508 | 0 | 8.0000 |
|  |  |  | GDPhabnuts | 3447 | 0 | 13.5000 | 0 | 13.5000 | 13.5000 |
|  |  |  | unempratenuts | 3447 | 0 | 16.3000 | 0 | 16.3000 | 16.3000 |
| 2006 | SK | 4898 | pov_indicator | 4898 | 0 | 0.7157 | 0.2680 | 0 | 1.0000 |
|  |  |  | woman | 4898 | 0 | 0.5217 | 0.2968 | 0 | 1.0000 |
|  |  |  | age_centered | 4898 | 0 | 0.0502 | 5.3919 | -16.2665 | 14.7335 |
|  |  |  | age centered2 | 4898 | 0 | 82.3628 | 44.6004 | 0.0710 | 264.6 |
|  |  |  | chrōnicdiseaseHH | 4898 | 0 | 0.4327 | 0.2944 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 4898 | 0 | 0.4442 | 0.2952 | 0 | 1.0000 |
|  |  |  | uppereducht | 4870 | 28 | 0.3248 | 0.2783 | 0 | 1.0000 |
|  |  |  | nbchildren | 4898 | 0 | 0.8442 | 0.5925 | 0 | 8.0000 |
|  |  |  | nbadultsHH | 4898 | 0 | 3.1409 | 0.7288 | 1.0000 | 8.0000 |
|  |  |  | nbemployedHH | 4898 | 0 | 2.0315 | 0.6170 | 0 | 8.0000 |
|  |  |  | GDPhabnuts | 4898 | 0 | 15.0000 | 0 | 15.0000 | 15.0000 |
|  |  |  | unempratenuts | 4898 | 0 | 13.4000 | 0 | 13.4000 | 13.4000 |
| 2005 | FI | 4021 | pov_indicator | 4021 | 0 | 0.0529 | 0.1404 | 0 | 1.0000 |
|  |  |  | woman | 4021 | 0 | 0.4953 | 0.3137 | 0 | 1.0000 |
|  |  |  | age_centered | 4021 | 0 | -0.3310 | 5.6323 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 4021 | 0 | 80.6732 | 46.9628 | 0.0710 | 264.6 |
|  |  |  | chronicdiseaseHH | 4021 | 0 | 0.3076 | 0.2896 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 4021 | 0 | 0.2930 | 0.2856 | 0 | 1.0000 |
|  |  |  | uppereducht | 3927 | 94 | 0.5226 | 0.3133 | 0 | 1.0000 |
|  |  |  | nbchildren | 4021 | 0 | 0.8869 | 0.7442 | 0 | 10.0000 |
|  |  |  | nbadultsHH | 4021 | 0 | 2.1009 | 0.5226 | 1.0000 | 7.0000 |
|  |  |  | nbemployedHH | 4018 | 3 | 1.4707 | 0.4894 | 0 | 5.0000 |
|  |  |  | GDPhabnuts | 4021 | 0 | 25.6182 | 2.5938 | 19.1000 | 29.6000 |
|  |  |  | unempratenuts | 4021 | 0 | 8.5095 | 1.1694 | 6.9000 | 11.7000 |
| 2006 | FI | 5528 | pov_indicator | 5528 | 0 | 0.0622 | 0.1290 | 0 | 1.0000 |
|  |  |  | woman | 5528 | 0 | 0.4953 | 0.2669 | 0 | 1.0000 |
|  |  |  | age_centered | 5528 | 0 | -0.3237 | 4.7976 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 5528 | 0 | 80.8606 | 39.6984 | 0.0710 | 264.6 |
|  |  |  | chrōnicdiseaseHH | 5528 | 0 | 0.2901 | 0.2423 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 5528 | 0 | 0.2894 | 0.2421 | 0 | 1.0000 |
|  |  |  | uppereducht | 5404 | 124 | 0.5179 | 0.2668 | 0 | 1.0000 |
|  |  |  | nbchildren | 5528 | 0 | 0.8898 | 0.6325 | 0 | 12.0000 |
|  |  |  | nbadultsHH | 5528 | 0 | 2.0887 | 0.4440 | 1.0000 | 8.0000 |
|  |  |  | nbemployedHH | 5528 | 0 | 1.4683 | 0.3940 | 0 | 4.0000 |
|  |  |  | GDPhabnuts | 5528 | 0 | 27.1434 | 2.3172 | 20.2000 | 31.3000 |
|  |  |  | unempratenuts | 5528 | 0 | 7.7955 | 0.9975 | 6.3000 | 11.3000 |
| 2005 | SE | 3541 | pov_indicator | 3541 | 0 | 0.0452 | 0.1750 | 0 | 1.0000 |
|  |  |  | woman | 3541 | 0 | 0.5016 | 0.4211 | 0 | 1.0000 |
|  |  |  | age_centered | 3541 | 0 | -0.3763 | 7.4383 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 3541 | 0 | 78.1345 | 60.4577 | 0.0710 | 264.6 |
|  |  |  | chrōicdiseaseHH | 3541 | 0 | 0.2827 | 0.3793 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 3541 | 0 | 0.1482 | 0.2992 | 0 | 1.0000 |
|  |  |  | uppereducht | 3414 | 127 | 0.4394 | 0.4189 | 0 | 1.0000 |
|  |  |  | nbchildren | 3541 | 0 | 0.9789 | 0.9351 | 0 | 8.0000 |
|  |  |  | nbadultsHH | 3541 | 0 | 2.1022 | 0.6935 | 1.0000 | 7.0000 |
|  |  |  | nbemployedHH | 3155 | 386 | 1.5457 | 0.5973 | 0 | 5.0000 |
|  |  |  | GDPhabnuts | 3541 | 0 | 27.1000 | 0 | 27.1000 | 27.1000 |
|  |  |  | unempratenuts | 3541 | 0 | 7.5000 | 0 | 7.5000 | 7.5000 |
| 2006 | SE | 4751 | pov_indicator | 4751 | 0 | 0.0527 | 0.1577 | 0 | 1.0000 |
|  |  |  | womān | 4751 | 0 | 0.5011 | 0.3531 | 0 | 1.0000 |
|  |  |  | age_centered | 4751 | 0 | -0.4989 | 6.1470 | -16.2665 | 14.7335 |
|  |  |  | age_centered2 | 4751 | 0 | 76.0001 | 49.7601 | 0.0710 | 264.6 |
|  |  |  | chronicdiseaseHH | 4751 | 0 | 0.2920 | 0.3211 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 4751 | 0 | 0.1593 | 0.2585 | 0 | 1.0000 |
|  |  |  | uppereducht | 4534 | 217 | 0.4728 | 0.3530 | 0 | 1.0000 |
|  |  |  | nbchildren | 4751 | 0 | 1.0203 | 0.7818 | 0 | 6.0000 |
|  |  |  | nbadultsHH | 4751 | 0 | 2.0672 | 0.5636 | 1.0000 | 7.0000 |
|  |  |  | nbemployedHH | 4210 | 541 | 1.5782 | 0.4843 | 0 | 5.0000 |
|  |  |  | GDPhabnuts | 4751 | 0 | 28.7000 | 0 | 28.7000 | 28.7000 |
|  |  |  | unempratenuts | 4751 | 0 | 7.1000 | 0 | 7.1000 | 7.1000 |
| 2005 | UK | 6224 | pov_indicator | 6224 | 0 | 0.0739 | 0.5272 | 0 | 1.0000 |
|  |  |  | womān | 6224 | 0 | 0.5260 | 1.0064 | 0 | 1.0000 |
|  |  |  | age_centered | 6224 | 0 | -1.9273 | 16.1286 | -16.2665 | 13.7335 |
|  |  |  | age_centered2 | 6224 | 0 | 67.7453 | 142.1 | 0.0710 | 264.6 |
|  |  |  | chronicdiseaseHH | 6224 | 0 | 0.4031 | 0.9887 | 0 | 1.0000 |
|  |  |  | activityhamperedHH | 6224 | 0 | 0.2293 | 0.8473 | 0 | 1.0000 |
|  |  |  | uppereducht | 4949 | 1275 | 0.5177 | 1.0064 | 0 | 1.0000 |
|  |  |  | nbchildren | 6224 | 0 | 1.2542 | 2.3990 | 0 | 6.0000 |
|  |  |  | nbadultsHH | 6224 | 0 | 2.1928 | 1.7624 | 1.0000 | 7.0000 |
|  |  |  | n.bemployedHH | 4766 | 1458 | 1.5478 | 1.7058 | 0 | 6.0000 |



## Appendix 6. Empty model (weighted)



The empty model contains only a random intercept. The dependent variable is thus explained by the overall mean, a random term at group level and a random term at individual level. The empty model allows to find out the relative parts of the variance between groups (regions here) and the variance within groups. It is thus possible to calculate the intraclass correlation coefficient (ICC) (here: 55.1\% $=1.772 / 3.2169$, i.e. the intercept variance divided by the total variance).

## 

B.P. 48

L-4501 Differdange
Tél.: +352 58.58.55-801
www.ceps.lu


[^0]:    ${ }^{1}$ Corresponding author: anne.reinstadler@ceps.lu
    ${ }^{2}$ jean-claude.ray@univ-nancy2.fr
    We would like to thank David Brady, Jacques Brosius, Alessio Fusco, Tony Atkinson, Eric Marlier and Philippe Van Kerm for useful discussions led during this project. This paper has been presented at the Net-Silc International Conference, 25-26 March 2010, Warsaw. Of course, remaining errors are ours.

[^1]:    ${ }^{3}$ As the same poverty status is, by the European definition, affected to all individuals belonging to the same household, some authors have defined the factors exclusively at that level (see for example Andriopoulou et al., 2008).
    ${ }^{4}$ See Ray and Jeandidier (2003) for a comprehensive review of the French literature on this subject.
    ${ }^{5}$ This indicator belongs to the set of common indicators for the social protection and social inclusion process adopted by the Social Protection Committee in 2006.
    ${ }^{6}$ A Generalized Estimated Equations model can be used to estimate marginal or population-averaged effects taking into account the dependence among units nested in clusters (Rabe-Hesketh and Skrondal, 2008).

[^2]:    ${ }^{7}$ Indeed it is between regions, and not between individuals, that some variance of macro factors can be found. This is probably also true between countries but because our data is limited with respect to the number of available countries, we prefer the analysis at the regional level.
    ${ }^{8}$ Using the usual at-risk-of-poverty threshold (which gives similar at-risk-of-poverty rates for countries with very different economic situations) could lead to this kind of situation: the characteristics of the countries would not be relevant to explain their own at-risk-of-poverty rate because the latter is more a measure of income inequalities than a measure of economic performance. In other words, macro economic factors, which can be considered from a theoretical point of view to be associated with poverty, can not be linked with the individual poverty status such as defined when using the official definition. Note that this definition of a European at-risk-of-poverty threshold is supported by Marlier et al. (2007).

[^3]:    ${ }^{9}$ These figures concern working age individuals (aged 25-55) because the behaviours and thus the factors at work can be very different for both other groups (children and retired people).
    ${ }^{10}$ Some authors also control for the retention probability (see for example Cappellari, 2002; Cappellari and Jenkins, 2002, 2004; Ayllon, 2008). The idea is that the probability of being observed during two consecutive years could depend on unobserved characteristics of the individuals that should thus be controlled for.
    ${ }^{11}$ Other authors have used the same kind of models, on related subjects but not poverty: Stewart and Swaffield (1999) and Cappellari (2004) on earning, Poggi (2007) on social exclusion persistence.
    ${ }^{12}$ Moller et al. (2003) work on these data as well, but at the macro level. Indeed, they link the national at-risk-of-poverty rate to macro variables such as GDP or the employment rate in the agricultural sector. Their sample is quite small ( 61 observations, nested in 14 countries).
    ${ }^{13}$ While having 93 higher-level groups is technically much better than using only 26 higher-level groups, especially as far as variances/covariances estimation is concerned, a problem remains here: regions are nested within countries. This suggests to move from a three-level analysis (observations over time nested within individuals, themselves nested within regions) to a four-level analysis (adding the country-level at the top of the

[^4]:    ${ }^{18}$ In our main model, we specify an unstructured form of the variance-covariance matrix (allowing covariances between random effects to be non zero) because the covariance between the error terms of the intercept and the number of employed people in the household appears to be highly significant.

[^5]:    ${ }^{19}$ As usual, the poverty threshold is calculated at the individual level but the poverty status is defined at the household level.
    ${ }^{20}$ Note that the sample is not balanced: $41 \%$ of the individuals have only one observation (only $5 \%$ in Denmark, up to $59 \%$ in Czech Republic).
    ${ }^{21}$ The latest release of SILC longitudinal data (August 2009) contains only 22 countries, Germany, Ireland, Greece and Denmark being absent. But we wanted both to work on this release, the data of which have been cleared of previous problems, and to keep these four countries in the analysis. We have therefore added to these 22 countries the other 4 from the previous release (March 2009).
    ${ }^{22}$ All of the explanatory variables, apart from gender and age, are calculated at the household level, because the poverty status is defined at that level.
    ${ }^{23}$ Several variables have originally been defined at the individual level (e.g. having a chronic disease). In order to have all variables defined at the same (household) level, we have tried to build aggregated variables such as the number of adults in the household suffering from a chronic disease. Unfortunately, this information was available only for one individual per household in the register countries (which use information from administrative datasets when available and interview only one individual per household for the remaining questions to be asked). Keeping this kind of definition would thus have led to a big loss of information. As a consequence, we have defined a much less precise indicator, such as "presence in the household of at least one adult suffering from a chronic disease". Note that even this imprecise indicator could be ill measured in those register countries, as only one household member is interviewed (and the construction of the variable would then only rest on that member). The level of education is defined for all household members aged 16 or more, but the variable contains a lot of missing values in some countries ( $13 \%$ in Portugal, $14 \%$ in Spain and up to $16 \%$ in the UK in 2005). We have thus adopted the same definition in order to construct a variable at household level.
    ${ }^{24}$ Unfortunately, we were not able to integrate in our main model potential important macro factors such as the social expenditures (expressed as percentages of the GDP): unemployment compensation, public health expenditures, expenditures with respect to inclusion. Indeed, they are not yet known at regional level.
    ${ }^{25}$ In fact, 16 countries out of the 26 countries at hand only have one region, either because they are quite small ( 12 of them), or because the region code is not available in the dataset ( 4 of them).
    ${ }^{26}$ Note that income (and thus the poverty status) and individual/household demographic characteristics have not been measured at the same time: income refers to the year prior to the survey, whereas demographic characteristics to the time of the survey. We could have dealt with this by lagging all non-income variables (e.g. demographic characteristics given for year 2006 should be linked to the income declared in 2007), yet at the price of losing some countries since not all of them have available data for 2007.

[^6]:    ${ }^{27}$ Moon and Stotsky (1993) state that, if the data come from a stratified and clustered random sampling, it is reasonable to treat the sample as a simple random sample, thus ignoring weights. And Poggi (2007) states that it is more efficient, from an econometrical point of view, not to weigh the data. That way of doing has been adopted by studies on panel data (as stated by Ayllon, 2008, or Andriopoulou et al., 2008). But the question of weighting the data is still open). We have chosen to weigh them, as the SILC dataset is known not to be representative of the population.

[^7]:    ${ }^{31}$ Odds ratio $=0.39=\exp (-1.5241+0.02427 * 24.260)$
    ${ }^{32}$ Odds ratio $=0.31=\exp (-1.2964+0.01392 * 8.52)$

[^8]:    ${ }^{33}$ Since the poverty status is defined at the household level, it could be considered as irrelevant to introduce variables measured at individual level such as age and gender. We have added these two variables to our model for comparison's sake, as almost all studies do this as well. As far as age is concerned, it could be argued that, even though age is, like gender, a factor measured at the individual level, it might have some signification as an household characteristic: due to frequent endogamy, the age of one adult belonging to the household offers some clue about the age of other adults in the household, at least for non single adult households. With these limitations in mind, we can interpret the (highly significant) quadratic effect of age: ceteris paribus, the poverty risk is first decreasing more than linearly with age, reaching a minimum at age 44, and then increasing more than linearly. For example, at age 25, an additional year results in a decrease of the poverty risk by $1.2 \%$; and at age 50 , an additional year of age results in an increase of $1.1 \%$.
    ${ }^{34}$ This is the very reason why the different common indicators agreed upon in the context of the OMC on Social Protection and Social Inclusion which focus on gender differences are calculated on single person households.

[^9]:    ${ }^{35}$ In fact, with a poverty threshold equal to $60 \%$ of the European median equivalent income, the at-risk-ofpovery rates of the different countries range between $1 \%$ and $82 \%$ in 2005 , and between $2 \%$ and $75 \%$ in 2006. Changing this threshold for a lower (higher) one would lead to even lower (higher) rates in the richest (poorest) countries, making the analysis impossible to run.

[^10]:    ${ }^{36}$ The European poverty threshold is calculated by taking into account all individuals living in the 26 countries under study. In other words, children and elderly people are not excluded from this calculation, even if they are not kept in the analyses afterwards.

[^11]:    Source: EU-SILC data, longitudinal file, 1.08.2009 UDB release, authors' computations.

