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Bayesian quantile regression:
An application to the wage distribution in 1990s Britain
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Summary. This paper illustrates application of Bayesian inference to quantile regres-
sion. Bayesian inference regards unknown parameters as random variables, and we
describe an MCMC algorithm to estimate the posterior densities of quantile regression
parameters. Parameter uncertainty is taken into account without relying on asymptotic
approximations. Bayesian inference revealed effective in our application to the wage
structure among working males in Britain between 1991 and 2001 using data from the
British Household Panel Survey. Looking at different points along the conditional wage
distribution uncovered important features of wage returns to education, experience and
public sector employment that would be concealed by mean regression.

AMS (2000) subject classification. Primary 62J02; secondary 62C10, 62P20, 62P25.
Keywords and phrases. Quantile regression, Bayesian inference, wage distribution,
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1 Introduction

It is now widely acknowledged that quantile regression can be a very useful item in an
econometrician’s toolbox when analysing income and wage distribution issues. These
models may reveal evidence otherwise concealed by standard mean regression. Stan-
dard regression methods provide a simple and informative way of exploring mean wage
returns to important variables such as education, tenure, etc. But the mean return may
not be our prime interest, or we may want to supplement information about the mean
with information about the whole (conditional) distribution when we have reasons to
expect substantial heterogeneity among agents sharing the same observed characteris-
tics. For example, one thing is to estimate the mean wage among, say, all “IT industry
male workers in the UK in 2000.” But, given that the distribution of wage is typi-
cally skewed to the right with few large wages, it is also informative to know the wage
level that splits this group of people in two equal-sized groups –the median may be
a better description of a ‘typical’ case. Or, if we expect substantial heterogeneity of
experiences, we may also be interested in the wage above which are 90 percent of such

∗Address for correspondence: Department of Mathematics and Statistics, University of Plymouth,
Drake Circus, Plymouth PL4 8AA, United Kingdom. E-mail: k.yu@plymouth.ac.uk.
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workers’ wages –an indication about how low wage may tend to be, or the wage above
which are 10 percent of such workers’ wages –an indication about how high wage can
be–, etc. This collapses to estimating various quantiles of the wage distribution condi-
tionally on being an “IT industry male worker in the UK in 2000.” Quantile regression
models have also been advocated on the ground that they are more robust to outliers
than mean regression. These methods have been recently used extensively in research
on wage distribution with applications, e.g. to the US by Buchinsky (1994), to the UK
by Disney and Gosling (1998) or to Portugal by Machado and Mata (2002).

Bayesian inference combined with Markov Chain Monte Carlo algorithms have be-
come increasingly popular and Bayesian approaches to quantile regression have been
developed by Yu and Moyeed (2001). The two major advantages of Bayesian inference
for quantile regression models, as compared to the classical methods, are that (i) it
does not rely on approximations to the asymptotic variances of the estimators, and
(ii) it provides estimation and forecasts which fully take into account parameter un-
certainty. However these methods have not yet been echoed in the empirical economic
literature: quantile regression methods that have been applied so far have been based
almost exclusively on classical frequentist approaches. The objective of this paper is to
encourage the use of Bayesian quantile regression methods by providing an illustration,
in the context of wage distribution analysis, which demonstrates their applicability.

Section 2 summarizes quantile regression models and Section 3 describes the imple-
mentation of the Bayesian approach to quantile regression developed by Yu and Moy-
eed (2001). Section 4 presents an application to the wage distribution among British
workers in the 1990s using data from the British Household Panel Survey. Section 5
concludes.

2 A brief summary of quantile regression

In the classical regression theory, we are concerned about how the mean of a response
variable y changes with the value of independent variables x. We usually assume that
the relationship between y and x can be written as

y = x′β + ε

where β are the regression model coefficients and ε is the model error whose density
fε(·) is supposed to exist but is unknown (normality is typically assumed).

Now, let qθ(x) be the θth (θ < 1) quantile of y conditional on x. In the linear
quantile regression models, we suppose that the relationship between qθ(x) and x can
be measured with a linear model

qθ(x) = x′βθ,

where, like in classical mean regression, βθ is the vector of parameters. In classical mean
regression, β is the solution of minimizing a sum of squared residuals,

∑
(y − x′β)2.

Similarly, in quantile regression estimation, βθ is the solution of minimizing a sum of
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ρθ(z) residuals, defined as
∑

ρθ(y − x′βθ), where

ρθ(z) =

{
θ z, if z > 0
−(1 − θ) z, otherwise.

A variety of more sophisticated quantile regression models exist. A review of
parametric, non-parametric and semi-parametric approaches can be found in Yu et
al. (2003). In all cases, given data on (y, x), one tries to get an estimate β̂θ of βθ, and
then obtains a prediction equation q̂θ(x) for the θth quantile of y. For ease of exposition,
we stick here to a parametric linear model.

To assess the sampling variability of the estimates, estimates of the (asymptotic)
variance of β̂θ and q̂θ(x) are also required. Under some regularity conditions (Koenker
and Bassett, 1982), √

n(β̂θ − βθ)
L→ N(0, ∆θ)

where
∆θ = θ(1 − θ)(E[fεθ

(0|x)xx′])−1E(xx′)E[fεθ
(0|x)xx′])−1.

If we assume that the density of εθ is independent of x, i.e. fεθ
(0|x) = fεθ

(0), then ∆θ

simplifies to
∆θ = σ2

θ(Exx′)−1

where σ2
θ = θ(1 − θ)/f2

εθ
(0). Unfortunately, the asymptotic variances depend on the

model error density which is difficult to estimate reliably.

A credible interval, or confidence interval, is a range of values that has a specified
probability of containing the parameter being estimated. The 95% and 99% confidence
intervals which have probabilities of 0.95 and 0.99 respectively of containing the pa-
rameter are most commonly used. Most approaches, including bootstrap methods, to
constructing a confidence interval for β̂θ and q̂θ(x) use the asymptotic normal distri-
bution above and involves estimation of asymptotic variances. However these methods
only give reasonable coverage probabilities of the true parameters for a given credible
level and may not be 100% reliable (see for example Bilias et al., 2000).

3 The Bayesian approach to quantile regression

3.1 From the classical approach to Bayesian inference

In a classical approach, the estimated parameter is deterministic, but unknown. Before
the data are collected, the (1−r)-level confidence set (which is random) will contain the
parameter with probability 1−r. After the data are collected, the computed confidence
set either contains the estimated parameter or does not, and we will usually never know
which is true. On the contrary, under Bayesian inference, the unknown parameter βθ

is treated as a random variable, and this random parameter falls in the computed,
deterministic confidence set with probability 1 − r.

Suppose that the conditional density of the data vector (X, y) given βθ is denoted
by π(x|βθ), and suppose that the parameter βθ is specified by a prior distribution
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with density π. (The prior distribution is chosen to reflect our knowledge, if any, of
the parameter.) The joint density of the data vector and the parameter is given by
π(data|βθ) π(βθ), and the posterior density of a given set of data is (by Bayes’ theorem)
π(βθ|data) ∝ π(data|βθ)π(βθ).

Now let A(X) be a credible set (that is, a subset of the parameter space that
depends on the data, but not on unknown parameters). One possible definition of a
(1 − r)-level Bayesian credible set requires that

P [βθ ∈ A(X)|X = x] = 1 − r.

In this definition, only βθ is random and thus the probability above can be computed
using the posterior density π(βθ|data).

3.2 Bayesian quantile regression

The use of Bayesian inference in generalized linear and additive models is quite standard
these days. The relative ease with which MCMC methods may be used for obtaining
the posterior distributions, even in complex situations, has made Bayesian inference
very useful and attractive.

The basic idea of Bayesian quantile regression has been explored by Yu and Moyeed
(2001). Bayesian inference in the context of quantile regression is achieved by adapting
the problem to the framework of the generalized linear model. The estimation of qθ of a
random variable Y is in fact equivalent to the estimation of the location parameter µ of
an asymmetric Laplace distribution (ALD) with density g(y) = θ(1−θ) exp(−ρθ(y−µ))
and ρθ(u) = u (θ − I(u < 0)). This ALD can be simulated from ξ

θ − η
1−θ , where ξ and

η are independent exponential distributions with unit mean.

Therefore, whatever the distribution of ε in the regression model y = x′β + ε,
the π(data|β), or the likelihood function in the Bayesian inference for θth quantile
regression parameter β = βθ can be written as

π(data|β) = θn (1 − θ)n exp

{
−

∑
i

ρθ(yi − x′
iβ)

}
.

3.3 A MCMC algorithm

The posterior distribution of the data is computed using MCMC methods. Basically,
a MCMC scheme constructs a Markov chain whose equilibrium distribution is just
the joint posterior, here the π(β|data). After running the Markov chain for a burn-in
period, one obtains samples from the limiting distribution, provided that the Markov
chain has reached convergence.

One popular method for constructing a Markov chain is via the Metropolis-Hastings
(MH) algorithm. The MH algorithm shares the concept of a generating distribution
with the well-known simulation technique of rejection sampling, where a candidate
is generated from an auxiliary distribution and then accepted or rejected with some
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probability. However, the candidate generating distribution, t(β, βc) can now depend
on the current state βc of the Markov chain. A new candidate β′ is accepted with a
certain acceptance probability α(β′, βc), also depending on the current state βc, given
by

α(β′, βc) = min
[

π(β′)π(data|β′)t(βc, β′)
π(βc)π(data|βc)t(β′, βc)

, 1
]
.

In particular, if a simple random walk is used to generate β′ from βc, then the ratio
t(βc, β′)/t(β′, βc) = 1, and

α(β′, βc) = min
[

π(β′)π(data|β′)
π(βc)π(data|βc)

, 1
]

where π(data|β′) is given in Section 3.2. The steps of the MH algorithm are therefore as
follows. As step 0, start with an arbitrary value β(0). Then for any step n+1, generate
β′ from t(β, βc) and u from U(0, 1). If u ≤ α(β′, βc), set β(n+1) = β′ (acceptance), and
if u > α(β′, βc), set β(n+1) = β(n) (rejection).

Note however that the MH algorithm does not say anything about the speed of
convergence, i.e. how long the burn-in period should be. Convergence rates of MCMC
algorithms are important topics of ongoing statistical research with little practical find-
ings so far. There is no formula for determining the minimum length of an MCMC run
beforehand, nor a method to confirm that a given chain has reached convergence. The
only tests available are based on an empirical time series analysis of the sampled values
and can only detect non-convergence. Interestingly, Markov chains converged within
the first few iterations in our application (see details supra). Figure 1 displays time
series plots that illustrate a typical convergence pattern of the chain.

3.4 Bayesian inference

After the burn-in period, the frequency of appearance of the parameters in the Markov
chain represents their posterior distribution. For example, Figure 2 displays the pos-
terior density of the median return to education in 1991 obtained from our model
(see supra). An informative full density distribution of the model parameters is read-
ily obtained rather than a single point estimate as in a classical approach. Confi-
dence/credible intervals are easily derived from the posterior distribution. Similarly,
summary statistics, such as the posterior mean and the posterior standard deviation of
the parameters, can also be computed in a straightforward manner from the distribu-
tion.

Once the MCMC is successful, and the posterior probability distribution is sim-
ulated, all summary statistics and confidence intervals for the conditional quantiles
are computed very easily. This is particularly useful when we want to derive sum-
mary statistics that are combinations of parameter estimates, such as a (marginal)
return when a variable enters in quadratic form (see our experience variable in the
application).1 Classical analysis would typically use a “plug-in” approach and combine

1If simultaneous quantile regression models were setup, Bayesian inference would provide (condi-
tional) percentile differences or percentile ratios easily; a feature that would be very appealing in income
or wage distribution analysis. However, Bayesian inference for simultaneous quantile regression is not
yet fully developed. This is a topic we are investigating elsewhere.
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parameter estimates, but without necessarily taking the correlation of the estimates
into consideration correctly. This poses no problem with Bayesian inference.

4 The wage return to education, experience and public
sector employment for British men

4.1 Data and empirical model

We illustrate application of Bayesian quantile regression with a classical Mincerian
human capital earnings function of the form (Mincer, 1974):

ln(Yi) = φ(Xi) + εi,

where ln(Yi) is the natural log of earnings or wages for individual i, Xi is a vector of
individual characteristics reflecting the worker’s human capital (that usually includes a
measure of educational attainment, a measure of the stock of accumulated experience,
and other factors such as race, gender, ability measures, etc.). Classical quantile re-
gression has been frequently applied to such models in recent years; see, among others,
Buchinsky (1994), Machado and Mata (2002), or Nielsen and Rosholm (2002).

Our illustration is based on data about male British workers extracted from the
British Household Panel Survey (BHPS). The BHPS is a longitudinal survey of private
households in Great Britain covering a wide range of topics: income, employment,
education, health, housing, etc. The initial survey was made in 1991 with interviews
repeated annually thereafter. We use the first eleven waves of data covering the period
1991-2001. We only retain in our sample at each wave full-time male workers (excluding
the self-employed). Sample sizes range from 1948 observations (wave 3, 1993) and 2275
observations (wave 1, 1991).

The response variable of interest, Yi, is the real gross hourly wage. For the sake
of brevity, we limit the set of individual characteristics to education, experience (and
experience squared), and a dummy variable indicating whether the person is working
in the private or public sector. We use a standard log-linear formulation (Willis, 1986,
Polachek and Siebert, 1993):

ln(Yi) = β0 + β1Si + β2Ei + β3E
2
i + β4Di + ui

where Si is the number of years of schooling, Ei is potential experience (approximated
by the age minus years of schooling minus 6), and Di is equal to 1 for public sector
workers and 0 otherwise. This model follows closely Buchinsky’s (1994).

We estimate the quantile regressions using Bayesian inference at five quantile
points, namely 0.10, 0.25, 0.50, 0.75 and 0.90, and for each of the eleven sample years
available between 1991 and 2001. Independent improper uniform priors are used for all
coefficients estimated. We simulated realizations from the posterior distribution of each
parameter by means of the single-component Metropolis-Hastings algorithm described
above. Each of the parameters was updated using a random-walk Metropolis algorithm
with a Gaussian proposal density centered at the current state of the chain.
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We discarded the first 1000 runs in every case and then collected a sample of 2000
values from the posterior of each of the coefficients. As an illustration, credible intervals
for the parameters of each of the 0.1, 0.5 and 0.9 quantile regression parameters in the
year 1991 are reported in Table 1. The table also shows the posterior mean and median.
The reported numbers are the coefficients times 100. The first two columns represent
95% confidence intervals of the coefficients.

Table 1: Mean and median estimates and 95% intervals for the 0.1, 0.5 and 0.9 quantile
regressions parameters for 1991

Parameters 2.5% Quantile 97.5% Quantile Mean Median
β0(0.1) 23.58 68.41 45.98 46.04
β1(0.1) 1.69 4.27 3.01 3.02
β2(0.1) 4.12 8.07 6.21 6.31
β3(0.1) -1.16 -0.06 -0.11 -0.11
β4(0.1) 0.93 20.90 6.05 6.10
β0(0.5) 84.27 110.62 97.49 97.26
β1(0.5) 3.01 4.47 3.74 3.74
β2(0.5) 4.79 7.33 6.13 6.19
β3(0.5) -0.14 -0.08 -0.11 -0.12
β4(0.5) 1.58 13.60 4.34 4.78
β0(0.9) 122.13 157.73 138.97 138.74
β1(0.9) 2.69 4.86 3.80 3.81
β2(0.9) 5.56 8.83 7.36 7.39
β3(0.9) -0.17 -0.09 -0.13 -0.14
β4(0.9) -17.66 12.58 -3.01 -3.27

4.2 Return to education

The estimated returns of an additional year of education at the five quantiles are
reported in Table 2. The reported numbers are the posterior means of the coefficients
on education (β1) in the different regressions times 100. In parentheses are the posterior
standard errors times 100. Table 2 also reports the mean return to education from a
least square regression estimation. The posterior means are plotted in Figure 4.

Return to education differs across quantiles of the conditional wage distribution.
Returns to education are higher at higher quantiles than at bottom quantiles. This
indicates that the difference in the conditional wage distribution across education levels
is not only characterized by a change in location, but also by an increase in spread.
There is greater dispersion in the wages of highly educated workers. This would be
completely missed by a mean regression. The best paid of highly educated workers do
indeed benefit largely from their high education level, but education does not necessary
‘pay’ as much for all workers since the gradient at the lowest quantile is smaller. This
is likely due to the heterogeneity of fields of specialization of educated workers, and
different market value of different disciplines.
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Table 2: Percentage return of an additional year of education, computed as the deriva-
tive of the quantile regression with respect to education (evaluated at the posterior
mean) times 100. The numbers in parentheses are standard errors.

Year mean 10%q 25%q 50%q 75%q 90%q
1991 3.69 3.01 3.56 3.74 3.93 3.80

(0.44) (0.26) (0.44) (0.36) (0.38) (0.24)
1992 3.97 2.81 3.65 4.10 4.12 4.37

(0.44) (0.27) (0.33) (0.43) (0.39) (0.33)
1993 4.09 3.47 4.01 4.30 4.25 4.14

(0.45) (0.32) (0.32) (0.44) (0.44) (0.30)
1994 4.27 2.94 4.02 4.37 4.60 4.92

(0.47) (0.26) (0.31) (0.28) (0.23) (0.35)
1995 4.03 2.92 3.61 3.96 4.26 4.67

(0.46) (0.37) (0.37) (0.25) (0.36) (0.45)
1996 3.76 3.23 3.72 3.92 4.32 4.59

(0.45) (0.22) (0.22) (0.22) (0.33) (0.33)
1997 4.08 2.98 3.73 4.33 4.34 4.46

(0.45) (0.35) (0.35) (0.47) (0.49) (0.34)
1998 4.01 3.15 3.67 3.94 4.09 4.40

(0.45) (0.46) (0.26) (0.49) (0.39) (0.48)
1999 4.06 2.86 3.44 4.16 4.33 4.60

(0.45) (0.47) (0.47) (0.26) (0.44) (0.48)
2000 4.31 3.29 3.47 4.18 4.67 4.86

(0.45) (0.37) (0.45) (0.26) (0.49) (0.36)
2001 4.26 3.20 3.77 4.28 4.60 4.81

(0.45) (0.43) (0.33) (0.36) (0.48) (0.36)
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In general, Table 2 suggests that there has been an increase in the gap between
high-pay and low-pay workers (conditionally on education) since return to education
at the 0.1 quantile did not change much in the 1991-2001 period whereas return to
education at the 0.9 quantile tended to increase (especially in the first half of the
1990s).

4.3 Return to experience

Experience enters in quadratic form in our model. The return to experience, i.e. the
derivative of the conditional quantile of log wage with respect to experience, is therefore
given by a combination of coefficients β2 + 2β3 ×Experience, where the coefficients β2

and β3 correspond to the coefficients on experience and experience squared respectively.
The derivative needs to be evaluated at some specified level of experience. Two points
were chosen: 5 years of experience, representing fairly new entrants, and 15 years of
experience, representing experienced workers. The results are reported in Table 3 for
the new entrants and in Table 4 for experienced workers. The reported number in the
tables are the estimated returns of an additional year of experience times 100.

Table 3: Percentage return to an additional year of experience (at 5 years of experience)

Year mean 10%q 25%q 50%q 75%q 90%q
1991 5.99 5.74 5.34 5.56 6.05 8.03

(0.44) (0.34) (0.43) (0.56) (0.45) (0.35)
1992 5.44 5.0 4.84 5.05 5.59 6.16

(0.43) (0.30) (0.48) (0.51) (0.45) (0.37)
1993 5.75 5.46 5.44 5.54 6.0 6.68

(0.35) (0.38) (0.35) (0.36) (0.39) (0.22)
1994 5.40 5.24 5.11 5.33 5.87 6.01

(0.47) (0.34) (0.43) (0.56) (0.45) (0.35)
1995 6.00 5.27 5.58 5.69 6.05 6.16

(0.46) (0.30) (0.48) (0.51) (0.45) (0.37)
1996 5.88 5.55 5.12 5.78 6.08 6.61

(0.45) (0.38) (0.35) (0.36) (0.39) (0.22)
1997 5.25 5.30 5.22 5.64 6.15 6.58

(0.44) (0.49) (0.49) (0.44) (0.47) (0.36)
1998 5.75 6.0 5.35 5.60 6.22 6.82

(0.45) (0.22) (0.24) (0.26) (0.25) (0.24)
1999 5.60 5.00 4.68 5.41 5.72 6.00

(0.45) (0.48) (0.44) (0.36) (0.31) (0.23)
2000 5.60 5.07 4.77 5.52 6.02 5.81

(0.45) (0.32) (0.43) (0.63) (0.27) (0.25)
2001 5.12 4.17 4.52 5.17 5.66 6.00

(0.45) (0.32) (0.43) (0.63) (0.27) (0.25)

The larger values of Table 3 compared to those of Table 4 indicate that the return
to experience tapers off with accumulated experience. For the younger workers, an
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Table 4: Percentage return to an additional year of experience (at 15 years of experi-
ence)

Year mean 10%q 25%q 50%q 75%q 90%q
1991 4.79 4.59 4.26 4.42 5.82 4.34

(0.44) (0.47) (0.25) (0.30) (0.27) (0.38)
1992 4.44 3.97 3.90 4.06 4.47 4.96

(0.43) (0.48) (0.29) (0.29) (0.32) (0.54)
1993 4.65 4.36 4.39 4.46 4.79 5.35

(0.45) (0.52) (0.35) (0.36) (0.39) (0.49)
1994 4.40 4.12 4.13 4.31 4.71 4.85

(0.47) (0.47) (0.25) (0.30) (0.27) (0.38)
1995 4.80 4.10 4.44 4.52 4.84 5.02

(0.46) (0.48) (0.29) (0.29) (0.32) (0.54)
1996 4.75 4.35 4.15 4.65 4.92 5.40

(0.46) (0.52) (0.35) (0.36) (0.39) (0.49)
1997 4.78 4.19 4.19 4.57 4.96 5.33

(0.45) (0.54) (0.38) (0.34) (0.33) (0.61)
1998 4.55 3.96 4.26 4.50 4.50 5.47

(0.45) (0.86) (0.37) (0.42) (0.42) (0.85)
1999 4.50 3.87 3.73 4.31 4.59 4.83

(0.45) (0.54) (0.41) (0.33) (0.41) (0.68)
2000 4.40 4.00 3.79 4.38 4.79 4.65

(0.45) (0.55) (0.35) (0.40) (0.34) (0.73)
2001 4.12 3.28 3.60 4.13 4.52 4.79

(0.45) (0.46) (0.36) (0.41) (0.24) (0.43)
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additional year of experience is associated with a higher return than an additional year
of education. For workers at 15 years of experience, an additional year of experience
has an effect of similar magnitude to the effect of education.

Interestingly, the impact of experience on the conditional wage distribution is very
different from the impact of education. Experience appears to contribute to a catch-up
of low pay workers since it is higher at the 0.1 quantile than at the 0.25 quantile or
at the median. Experience is more profitable to low-pay workers. However, there is
less heterogeneity in the return to experience at different quantiles than in the return
to education. This suggests that there is not as much heterogeneity in the gains from
experience in the conditional wage distribution. The change in location is important
with experience, but the change in spread is not as marked as with education.

4.4 Return to public sector employment

It is often reported among academics that, at identical skill levels, people, particularly
male workers, can earn more by working in the private sector rather than in the public
sector.2 However, Allington and Morgan (2003) pointed out that a recent Audit Com-
mission survey (2002) of public sector employees identified ‘better pay’ as the single
most significant factor that persuades them to remain in the public sector.

Our results shed light on this apparent paradox. Table 5 reports the percentage
return to working in the public sector compared to working in the private sector, that
is the estimates of model parameter β4 times 100.

Mean regression indicates that the mean return to working in the public sector is
positive: average wage rate is higher among public sector workers. But the striking
result is that the effect of public sector employment varies largely across quantiles.
It is large and positive at lower quantiles (above 10 percent for the 0.1 quantile). It
is still generally positive at the median. But it is negative at the 0.9 quantile. The
wage distribution is much more compressed among public sector workers: low wages
(i.e. at the lowest decile) are higher in the public sector, whereas high wages (i.e. at
the highest decile) are lower in the public sector compared to the private sector. So,
on average, public sector workers are better paid than private sector workers, but at
the same time, the chances of obtaining a high pay are higher in the private sector: a
high-wage employee in the public sector may be able to get a better pay in the private
sector (provided he remains at the upper decile of the conditional wage distribution in
the private sector).

Note that there is a marked decreasing trend in the return to public sector employ-
ment over the 1991-2001 period, except for the 0.1 quantile. The difference between
top wages in the private sector and top wages in the public sector has increased sub-
stantially. Return to public sector employment is turning negative at the 0.75 quantile
in the second half of the period.

This analysis of the effect of public sector employment clearly illustrates that look-
2See Allington and Morgan (2003) and the recent AUT (Association of University Teachers in UK)

2003 campaigning report at http://www.aut.org.uk/index.cfm?articleid=708.
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Table 5: Percentage return to public sector employment

Year mean 10%q 25%q 50%q 75%q 90%q
1991 3.46 6.05 7.85 4.34 2.36 -3.02

(0.44) (0.49) (0.38) (0.39) (0.44) (0.37)
1992 6.80 14.19 10.81 7.61 4.30 -4.22

(0.44) (0.38) (0.47) (0.36) (0.39) (0.23)
1993 4.89 11.40 10.09 7.71 1.43 -3.73

(0.45) (0.34) (0.47) (0.46) (0.52) (0.56)
1994 5.27 19.26 12.08 7.78 0.76 -2.59

(0.47) (0.49) (0.56) (0.65) (0.48) (0.78)
1995 5.70 13.19 13.50 10.74 0.24 -6.24

(0.46) (0.49) (0.67) (0.55) (0.65) (0.68)
1996 5.37 13.57 12.69 9.36 1.69 -4.38

(0.46) (0.29) (0.64) (0.41) (0.56) (0.49)
1997 4.26 12.17 9.71 7.70 -.20 -6.39

(0.45) (0.59) (0.36) (0.46) (0.36) (0.49)
1998 1.24 11.04 7.29 3.39 -4.2 -8.38

(0.45) (0.52) (0.38) (0.47) (0.47) (0.41)
1999 -0.89 7.07 4.80 2.49 -5.28 -10.68

(0.45) (0.31) (0.58) (0.36) (0.46) (0.50)
2000 0.25 12.99 10.03 1.77 -5.42 -11.83

(0.45) (0.41) (0.37) (0.36) (0.46) (0.40)
2001 0.25 13.18 7.83 -1.21 -6.00 -11.66

(0.45) (0.41) (0.47) (0.66) (0.56) (0.40)
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ing only at the mean regression would miss much of rich details of the private/public
sector differences in pay.

5 Conclusion

Quantile regression methods are valuable tools in many fields of economics. As our
application shows, they allow analysts to extract much richer information than with
standard mean regression. This is particularly useful in income and wage distribution
analysis.

We illustrate the applicability of Bayesian inference for quantile regression as an al-
ternative to the classical frequentist methods. Based on a simple MCMC algorithm, the
methods are relatively straightforward to implement and, unlike frequentist approaches
to quantile regression, do not rely on estimation or approximation of the asymptotic
variances of the estimated parameters. They may also provide estimation and fore-
casts for parameters, and combination thereof, which fully take into account parameter
uncertainty.

Our application to the wage distribution among male workers in the 1990s Britain
based on eleven years of data extracted from the British Household Panel Survey reveals
for example that education is associated with higher wages, but also with greater wage
dispersion. The opposite shows up for experience which benefits more to low pay
workers. But the most striking result is that the wage differential between private
and public sector employees is poorly characterized by a difference in average wage
only. The wage distribution among public sector employees is much more compressed.
Therefore, if wages are, on average, higher in the public sector, high-wage workers
receive a better pay in the private sector. This gap between high-pay public sector
employees and high-pay private sector employees has been increasing markedly during
the 1990s.
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Fig. 1. Time series plot of five model parameters based on 5000 iterations from
Metropolis algorithm.
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Fig. 2. Estimated density for the median return to education in 1991.
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