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Abstract 
 
If stock markets are complex, monetary policy and even financial regulation may be 
useless to prevent bubbles and crashes. Here, we suggest the use of robot traders as an 
anti-bubble decoy. To make our case, we put forward a new stochastic cellular automata 
model that generates an emergent stock price dynamics as a result of the interaction 
between traders. After introducing socially integrated robot traders, the stock price 
dynamics can be controlled, so as to make the market more Gaussian. 
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1. Introduction 

 

The recent crisis caught the economists in a misplaced consensus of “one instrument 

one target.” The instrument was the nominal interest rate, and the monetary policy 

focused only on an implicit inflation target. Stock market bubbles were dismissed as 

unimportant. After the bursting of the subprime housing bubble, the collapse of the 

theory prompted a rebirth of old-style Keynesianism, along with talks of an elusive 

“macroprudential” regulation. However, such approaches fail to recognize the basic fact 

that stock markets are complex systems. 

 Prior to the financial crisis, on one side of the controversy on whether central 

banks should respond to stock price movements, Bernanke and Gertler [1] argued that 

as a central bank was committed to inflation targeting, it was not generally desirable 
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that monetary policy should react to stock price movements (refer [2] and references 

therein for an overview of the debate). This point of view coincided with that of the US 

Federal Reserve. The Fed thus believed that monetary policy should not preemptively 

react to an asset bubble that was uncertain and thus difficult to track and “prick,” but it 

should strongly react after the bubble had burst. After the deep recession in the 

aftermath of the crash, the Fed seems to have abandoned this perspective. However, 

there is still a vacuum in theory about the modus operandi of financial regulation. 

 The main problem here is that the regulation of a complex system such as the 

stock market cannot be achieved using conventional policy tools. Although economists 

are hardly prepared to recognize this fact [3], here one has to resort to the control theory 

of self-organized systems [4]. Collective behavior based on self-organization has been 

shown in animals living in groups as well as in humans. This prompted engineers to 

devise autonomous robots that relied on self-organization as a main coordination 

mechanism. The controller of individual robots is designed using reactive, behavior-

based techniques. Socially integrated autonomous robots, perceived as congeners by the 

group, and acting as interactive decoys will be able to control self-organized choices 

[5]. 

 Self-organization is a feature of complex stock markets [6, 7], and robot trading 

is ubiquitous. We take these facts into account to make a case for the robots to 

counteract the imitative behavior of human traders, which occasionally leads to bubbles. 

If correctly engineered, this offers an alternative to monetary policy and conventional 

regulation, to stabilize stock markets. 

 Simple software-based traders have been around for many years (some even 

blamed the first generation of robots for the crash of 1987 [8]), but they are now 

becoming far more sophisticated, and make trades worth tens of billions of dollars every 

day. They already appear to be outperforming their human counterparts in the equity 

markets, where they are buying and selling shares. It is almost impossible for an 

exchange to tell whether a person or an algorithm is issuing trades. Under such 

circumstances, why not use the robot traders as an anti-bubble decoy? 

 To show how this can be accomplished, we put forward a new stochastic cellular 

automata model that generates an emergent stock price dynamics as a result of the 

interaction between traders. After introducing socially integrated robot traders, the stock 

price dynamics can be controlled, so as to make the market more Gaussian. 



 The rest of this article is organized as follows. Section 2 sets up our cellular 

automata model of the stock market where imitation plays a key role. Section 3 

describes the market price dynamics of the model. Through parameter calibration, the 

model is made empirically relevant by matching its properties with those of the real 

world stock market, the Sao Paulo Stock Exchange (Bovespa, for short). Section 4 

introduces the robot traders into the model, and Section 5 assesses their impact on the 

stock price dynamics. Section 6 concludes the study. 

 

2. The model 
 

We set the new stochastic cellular automata model to study the stock price dynamics 

where the interactions between the market participants play a key role (see also 

reference [9]). Initially, there are only human traders, and subsequently, robot traders 

enter the market. The traders are represented by cells on a two-dimensional L L×  grid. 

There are N  traders who can either buy or sell only one share, and these are two 

mutually exclusive states. At any given time step t , the population of traders N  is 

divided into two distinct groups of buyers ( )BN t  and sellers )(tNS . 

 The stock market dynamics emerges as a result of the synchronous update of 

cells, according to a local probabilistic rule. Here, traders consider the information 

related to the behavior of their neighbors and also that related to the “fundamentals.” 

Imitative behavior can be motivated by the fact that a trader can attempt to extrapolate 

from their neighbors’ views the information they are lacking [10]. The same trader can 

either imitate or behave consistently with the fundamentals. This is now discussed in 

greater detail. 

 The probability of a trader to choose to buy at time t , ( )B tπ , is 

 

 ( ) 1 ( )( ) ( ) ( )B B t B t
I Ft S t S tω ωπ −= ⋅ ,                                                                               (1) 

 

where ( ) [0,1]B
IS t ∈  and ( ) [0,1]B

FS t ∈ , respectively, are the probabilities of buying, 

based on imitation and on the fundamentals; and ( ) [0,1]tω ∈  is the weight ascribed to 

imitation. When 0)( =tω  the choice is based only on the fundamentals; when 1)( =tω  

the choice is based only on imitation; and when ( ) (0,1)tω ∈  the choice mixes both 



strategies. The probability of a trader choosing to sell, ( )S tπ , is the probability of the 

complement of (1). 

 Some recent literature on the understanding of collective decision making has 

emphasized the importance of quorum responses, where the probability of exhibiting a 

particular behavior is an increasing function of the number of actors already performing 

the behavior [11]. Here, we consider this insight and assume that the willingness to buy 

(sell) at t  increases as a function of the number of neighbors who have already bought 

(sold) at the previous step 1t − . Thus, the probability of imitation at time t , ( )B
IS t , is 

given by 
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where ( 1)H
BN t −  and )1( −tN H

S , respectively, are the number of buying neighbors and 

selling neighbors at 1−t ; and [1, )κ ∈ ∞  is a parameter controlling the intensity of the 

response. When 1=κ , the probability of buying is proportional to the number of 

neighbors who have previously bought; this characterizes a weak linear response. When 

1>κ  there is a quorum response, because the probability of buying increases once the 

quorum is met. Here, the quorum size is determined by the number of selling neighbors 

at the previous time step. 

 When choosing is based on the fundamentals, we assume that the traders will 

consider the difference between the fair value of the stock in terms of the situation of 

the company selling it (the fundamental value), and the stock market price at the 

previous time step. Without loss of generality, we assume that the fundamental value F  

is a positive constant. We also assume that all the traders perceive such a fundamental 

value identically, at each time step. The probability of buying based on the 

fundamentals is then given by, 
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where )1( −tP  is the stock price at 1t − ; and λ  is a positive parameter modulating a 

trader’s response, based on the price difference. Parameter λ  can also be thought of as 

the degree of uncertainty facing the traders [12]; for a higher degree of uncertainty, λ  is 

shorter, and vice versa. If a trader perceives the stock price as being lower than the 

fundamental value ( 1) 0F P t− − > , he tends to buy; and vice versa. When 

( 1) 0F P t− − = , the decisions of buying and selling are equally probable. 

 The weight ascribed to either strategy, ( )tω  (that is, imitating or following the 

fundamentals), is endogenous, and depends on the size of the deviation of the current 

stock price from its fundamental value [13]: 
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,                                                                                 (4) 

 

where µ  is a positive parameter, tracking the speed at which the strategy switches from 

imitation to fundamental. As 2( ( 1) )P t F− − →∞ , 0)( →tω , and the fundamental 

strategy grows in importance; as 2( ( 1) ) 0P t F− − → , 1)( →tω , and imitation is 

preferred. 

 Equations (1) to (4) describe the individual behavior that leads to the emergent 

stock price as a result of the interactions between traders. As choices are also 

constrained by what the group collectively does, we use an excess demand function 

( )D t  to model such a constraint: 

 

( ) ( )( ) B SN t N tD t
N
−

= .                                                                                         (5) 

 

This constraint is equivalent to assuming that the price adjustment process is explained 

by the action of a market maker balancing demand and supply [14]. A hyperbolic 

tangent functional form has been shown to work well here [15], that is, 

 

 ( )( 1) ( ) 1 tanh ( )P t P t D t+ = + ,                                                                             (6) 

 



where tanh( ) ( 1,  1)⋅ ∈ − . This closes the model. The next section describes the stock 

price dynamics that this model generates. Thereafter, we introduce robot traders into the 

model, to evaluate their effects on the dynamics. 

 

3. Market price dynamics 

 

As usual, we have considered log returns rather than the prices, that is, 

 

 ( ) ln ( 1) ln ( )R t P t P t= + − ,                                                                                  (7) 

 

which are standardized, so that they have a zero mean and unit standard deviation. To 

make our model empirically relevant we have calibrated its three parametersλ , κ , and 

µ , to match the statistical properties of the log returns of the Bovespa index. For all the 

experiments below we have set 1=F . We have considered the daily data of the index 

from the period July 5, 1994 to June 30, 2009, which comprises 3,710 data points. The 

data have also been standardized to present the zero mean and unit standard deviation. 

 The random seed was kept the same for all the experiments. The initial 

distribution and the density of buyers (or sellers) in the two-dimensional lattice was kept 

the same across the experiments, that is, 50 percent randomly distributed buyers and 

sellers. The neighbors of influence were defined by a “nine-neighbor square,” known as 

the Moore neighborhood (Figure 1). The lattice size was defined to have 100 × 100 

cells, totaling 10,000 traders, each simulation was run for 3,800 periods, and the first 90 

observations were discarded. 

The adjustment of the model to the empirical data can be quantified by a two-

sample Kolmogorov-Smirnov goodness-of-fit measure: 

 

 ( ) ( )xFxFD BM
x

M −= sup ,                                                                               (8) 

 

where ( )xFB  is the observed cumulative probability distribution of the Bovespa log 

returns, and ( )MF x  is the cdf of the log returns generated by the numerical simulations 

of the model. We found 0256.0=MD  (p-value = 0.1755) for the parameter values 

1λ = , 9κ = , and 102 10µ = × . Thus, the null hypothesis that both samples were 



generated by the same distribution cannot be rejected at the 10 percent significance 

level. 

 

 

 
Figure 1. Moore neighborhood 

 

 After running the model several times, we found the best fit for the data using 

equation (8) for the parameter values 1λ = , 9κ = , and 102 10µ = × . The top of Figure 

2 shows the time evolution of the Bovespa index log returns, and the bottom shows the 

log returns generated by the model. Figure 2 shows that the positive and negative 

returns that exceed by about five times the sample standard deviation occur quite 

regularly in both the empirical data and the data generated by the model. In the model, 

no external noise is needed to make this happen. Such behavior is unlikely to be 

Gaussian. Figure 3 shows the corresponding volatilities. 

 Figure 4 shows the probability density functions of both the empirical data and 

the data generated by the numerical simulations of the model. A good quality non-

Gaussian fit can be seen, in particular its leptokurtic nature. The Gaussian pdf of zero 

mean and unit standard deviation is also plotted for comparison. 
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Figure 2. Top: time evolution of the standardized Bovespa log returns. Bottom: 
standardized log returns generated by the model using 1λ = , 9κ = , and 102 10µ = ×  
 



 

 
Figure 3. Top: Bovespa annualized volatility for the time window of 20 days and time 
horizon of one day. Bottom: same for model using 1λ = , 9κ = , and 102 10µ = ×  
 



 
 

 
Figure 4. Top: pdfs of the standardized Bovespa log returns (solid line) and of the 
standardized log returns generated by the model (open circles) using 1λ = , 9κ = , and 

102 10µ = × . The leptokurtic nature of the empirical data is replicated by the model. A 
standardized Gaussian pdf (dotted line) is also plotted for comparison. Bottom: semi-log 
plot 
 
 Table 1 shows the results of three tests for normality. The results do confirm that 

the Gaussian pdf poorly describes both types of data. All the p-values are found so close 

to zero that the Gaussian pdf can be rejected for any reasonable significance level. 

Excess kurtosis (above 3) is also present. Thus, the model fairly replicates the dynamic 

behavior of the Bovespa log returns, mainly its leptokurtic pdf. 



 

Table 1. Normality tests 

Standardized log returns Lilliefors Cramer-von Mises  Anderson-Darling  Kurtosis 

Bovespa index 0.06530 (0.0000) 6.15621 (0.0000) 38.8904 (0.0000) 13.87 

Model  0.05656 (0.0000) 5.12857 (0.0000) 38.6997 (0.0000) 29.98 

Note: p-values shown in brackets. All the p-values are close to zero so that the null of Gaussianity is rejected for any standard (0.01, 
0.05, 0.10) significance level 
 

 One reasonably established result of the econophysics literature is the existence 

of an inverse cubic power law for extreme events [16]. Thus, we studied the decay of 

our pdfs’ fat tails, that is, the occurrences of large positive or negative log returns. One 

simple (although robust) technique of estimating tail exponents [17] is to run an 

ordinary least squares regression for the sizes of the extreme returns ranked from top to 

bottom ( )()1( ... tRR ≥≥ ), that is, 

 

 ( ) ( )
1
2log logR tt a ζ R− = − .                                                                                  (9) 

 

The Rζ  is an estimate of the Pareto exponent, and the asymptotical standard-error of the 

exponent is given by 2
Rtζ . 

 Table 2 presents the results for Rζ  using regression (9) and tail size defined by 

the top 10 percent ranked returns, that is, 1, ,371t = … . The estimate of the upper tail 

index of the model using 1λ = , 9κ = , and 102 10µ = ×  is not statistically different 

from 3 at the one percent significance level. Thus, the results are in good agreement 

with the inverse cubic law (Figure 5). 

 

Table 2. Estimates of the tail index 

Standardized log returns 
Rζ  Rζ (lower tail)  Rζ  (upper tail) 

Bovespa index 2.9659 (0.2177) 2.8190 (0.2069) 2.5899 (0.1901) 

Model  2.4686 (0.1812) 2.5094 (0.1842) 2.9369 (0.2156) 

Note: standard-error in brackets 
 

 



 
Figure 5. Log of absolute returns versus log(rank 1

2− ) (that is, locally weighted scatter 
plot smoothing) of the Bovespa index (solid line), and of the model using 1λ = , 9κ = , 
and 102 10µ = × (open circles). The slope corresponds to the estimate of the coefficient 

Rζ  in regression (9) 
 
 Figure 6 shows three snapshots of the grid configuration of the simulations. 

During the normal session (left) the traders are distributed uniformly between buyers 

and sellers, that is, half the agents are buyers (black cells) and the other half are sellers 

(white cells). There is no sharp difference between demand and supply. The situation is 

different during a bull market (center), where most traders are buying (predominance of 

black cells). During a crash (right), most traders are selling, and the white cells are in 

the majority. 

 

                             
Figure 6. Left: snapshot of the grid during a normal trading period. The black cells are 
the buyers, while the white ones are the sellers. The parameters used in this simulation 
are 1λ = , 9κ = , and 102 10µ = × . Center: bull market, where buyers predominate. 
Right: the same simulation during a crash  
 
 
 



4. The model with robot traders 

 

We now introduce robot traders into the model. The robots are socially integrated into 

the group of human traders to control self-organized market returns. We assume that 

humans and robots are perceived as congeners and influence one another in the same 

way. Robot behavior is intentionally set to an anti-imitation rule to counteract the 

imitative human trader behavior as described by equation (2). The robots adopt such a 

contrarian behavior using the majority principle after considering the neighboring cells 

at the previous time step. Thus, the probability, B
Rπ , of a robot trader to choose to buy at 

time t  is 
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where ( 1)H
BN t −  and )1( −tN H

S , respectively, are the number of buying neighbors and 

selling neighbors at 1t − . According to (10), if 1
2

B
Rπ ≥  a robot trader will choose to buy 

at time t ; if 1
2

B
Rπ <  the robot trader will choose to sell. 

 

5. Market price dynamics after the introduction of robots 

 

To run the experiments with the robots, we adopted the same setup of the basic model: 

the structure of the cellular automata and the initial conditions were retained, that is, 

1λ = , 9κ = , and 102 10µ = × . However, we still needed to specify how the robot 

traders are inserted into the market. At the start of each simulation, we randomly 

distributed a fixed number of robots in the grid. In the initial state, half the robots were 

buyers and the other half were sellers. 

 Our findings show that even when in the minority (5 and 20 percent of the total 

traders), the robots could interfere in the self-organized choices and thus in the emergent 

properties of the market price. Comparing Figure 7 and Figure 8 with Figures 3 and 4, 

one can see that the volatility abates and the series becomes Gaussian. 
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Figure 7. Top: time evolution of the standardized log returns generated by the model 
with five percent robot traders, using 1λ = , 9κ = , and 102 10µ = × . Center: time 
evolution of the standardized log returns generated by the model with 20 percent robot 
traders, and with the same parameters. Bottom: time evolution of a Gaussian series 
using the same parameters from the model with robot traders 
 

 
Figure 8. Annualized volatility for the time window of 20 days and time horizon of one 
day for model with 20 percent robot traders using 1λ = , 9κ = , and 102 10µ = ×  
 
 Figure 8 shows the pdf of the series generated by the model with the robot 

traders. The Gaussian and empirical pdf of returns are also plotted for comparison. As 

can be seen, the presence of robots in the stochastic cellular automata model pushes the 

collective behavior away from the leptokurtic nature of the empirical data (Figure 4) 

and becomes Gaussian. 



 

 
Figure 8. Top: pdf of the Bovespa index returns (solid line), pdf of the series generated 
by the model with five percent robot traders (squares), pdf of the series generated by the 
model with 20 percent robot traders (triangles), and the Gaussian pdf (dotted line). The 
presence of robots changes the leptokurtic nature of the empirical data and makes the 
collective behavior Gaussian. (Compare it with Figure 5.). Bottom: semi-log plot 
 
 
 Table 3 shows the results of normality tests from the model with robots. The 

results from the model with five percent robot traders indicate that the normality can be 

rejected for any standard significance level. However, the Gaussianity of the series 

generated from the model with 20 percent robot traders cannot be rejected at the 10 

percent significance level. Clearly, our simulation results show that the stock returns 

become more Gaussian in the presence of a minority of robot traders adopting an anti-

imitation behavior. Even when in the minority, the robots can modulate the collective 

decision-making process and produce a market pattern not observed in their absence. 



This exemplifies how intelligent autonomous devices can be successfully used to 

control self-organized choices in the stock market. 

 

Table 3. Normality tests  

Standardized log returns Lilliefors  Cramer-von Mises Anderson-Darling  Kurtosis 

Model with 5% robot traders 0.03900 (0.0000) 2.47612 (0.0000) 19.3567 (0.0000) 25.96 

Model with 20% robot traders 0.01186 (> 0.15) 0.05325 (0.4644) 0.32302 (0.5266) 3.006 

Note: p-values shown in brackets. The p-values fall above the standard significance levels of 0.01, 0.05, and 0.10, and thus the null 
of Gaussianity cannot be rejected for the model with 20 percent robot traders. Also, the excess kurtosis abates toward the Gaussian 
value. 
 

 

 One key result of the econophysics literature is that real world stock returns 

cannot be described by a Gaussian. However, independence and finite variance are also 

properties of actual data. Thanks to the central limit theorem, this means an 

asymptotical convergence to the Gaussian, that is, leptokurtosis abatement [18]. From 

this perspective, our model suggests that robot trading can deliver rapid convergence. 

 Our simple model of only three parameters is elegant and rich, but the use of 

robots as a practical tool for financial regulation is not fully developed within this 

framework. For example, there is no role for who−regulatory bodies or central 

banks−should be responsible for the management of robots. There are no monetary 

transactions either, and thus the issue of the financial resources involved in stabilizing 

the stock market is not addressed. One straightforward implication of our analysis is 

that 20 percent of the total market turnover would give the necessary resources, because 

20 percent of robots are enough for stabilizing; but this is too expensive and thus 

unfeasible in practice. However, we believe the current model could still be slightly 

changed so as to remove this limitation by considering an extra constraint on robot 

trades, which will make them dynamically sustainable; but this should be clearly 

addressed by future research. Moreover, imitation in financial markets may arise not 

just by direct and local contact by traders (as modeled by our cellular automata model) 

but also by means of some central signal like the price. Future research may also wish to 

address the latter situation using a different framework. 

 

 

 

 



6. Conclusion 

 

We devised a new stochastic cellular automata model of the stock market and calibrated 

its key parameters to fit the empirical data properties of an actual stock market, the 

Bovespa. We showed that its non-Gaussian profile could be replicated by the model. 

 The imitation rule of the traders was then counteracted with an anti-imitation 

rule intentionally ascribed to robot traders. The model with robots was able to modulate 

the collective decision-making process and produce a market pattern not observed in 

their absence. In the emergent price behavior, a Gaussian profile emerged. 

 We then exemplified the use of an intelligent autonomous device to control a 

self-organized stock market. This alternative to monetary policy and conventional 

regulation, to prevent bubbles and crashes, can be justified, as the complex nature of the 

stock markets is recognized. 
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