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ABSTRACT

We consider using out-of-sample mean squared prediction errors (MSPEs) to evaluate the null that a given series

follows a zero mean martingale difference against the alternative that it is linearly predictable. Under the null of

no predictability, the population MSPE of the null “no change” model equals that of the linear alternative. We

show analytically and via simulations that despite this equality, the alternative model’s sample MSPE is expected

to be greater than the null’s. For rolling regression estimators of the alternative model’s parameters, we propose

and evaluate an asymptotically normal test that properly accounts for the upward shift of the sample MSPE of the

alternative model. Our simulations indicate that our proposed procedure works well.
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1. INTRODUCTION

This paper considers the use of mean squared prediction errors (MSPEs) to evaluate the null that

a given series follows a martingale difference against the alternative that the series is linearly predictable. 

A prominent application is to forecasts of changes in floating exchange rates.  A long literature has used

MSPEs to consider exchange rate prediction, generally finding that one cannot reject the null that

exchange rate changes are unpredictable.  Meese and Rogoff (1983) is the seminal reference on tests of

what has come to be called the random walk model of the exchange rate; Cheung et al. (2003) is a recent

update.  

Our paper is applicable more generally to financial or other series whose changes are presumed to

be unpredictable.   For differences of such series, the null prediction at any horizon is a value of zero (that

is, one predicts “no change” for the series whose difference is being predicted).  Under the alternative,

one uses a linear model to predict the differenced series.  Under the null, the population regression

coefficients in the alternative model are zero.  This implies that under the null the population MSPEs of

the two models are equal and the difference in MSPEs is zero.

Clive Granger’s pioneering work on forecast evaluation proposed methods to formally evaluate

the null that the difference in MSPEs from two such competing models is zero (Granger and Newbold

(1977), Ashley et al. (1980)).  A recent literature has suggested methods that extend Granger’s work by

applying results from generalized method of moments (Hansen (1982)).  It appears that the first papers to

do so were Meese and Rogoff (1988), Christiano (1989) and West et al. (1993), with Diebold and

Mariano (1995) and West (1996) offering general procedures for forecast evaluation.  Among other

advantages, the generalized method of moments approach allows for conditional heteroskedasticity in

forecast errors.

Results in these papers are not, however, adequate for the applications that we consider.  For in

tests of the martingale difference hypothesis, as in many other applications, the  models being compared

are nested.  West (1996,p1073) notes specifically that his procedures maintain a rank condition that is not
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satisfied when models are nested.  It is our reading that a similar rank condition is implicit in Diebold and

Mariano (1995).  Simulations in McCracken (2004) and Clark and McCracken (2001, 2003) demonstrate

that when comparing nested models, mechanical application of the procedures in West (1996) or Diebold

and Mariano (1995) leads to very poorly sized tests; McCracken (2004) develops an asymptotic

approximation that rationalizes the non-normal distribution of test statistics revealed by those simulations,

while Chao, Corradi and Swanson (2001) propose an alternative test that is asymptotically chi-squared

under general conditions.

Our contribution is twofold.  The first is to make a general observation about the center of the

distribution of the difference in MSPEs when models are nested.  For the most part, the previous literature

has implicitly or explicitly assumed that since the difference in population MSPEs is zero, the difference

in sample MSPEs should be approximately zero.  We show that under the null, the sample MSPE from

the alternative model is expected to be greater than that of the null.  Intuitively, this is because the

alternative model introduces noise into its forecasts by estimating a parameter vector that in fact is not

helpful in prediction.1   The implication is that a finding that the null model has a smaller MSPE should

not be taken as prima facie evidence against the alternative that the series in question is linearly

predictable.

Our second contribution is to propose and evaluate a testing procedure that properly adjusts for

the upward shift in the alternative model’s MSPE.  This procedure, which is applicable when forecasts are

obtained from rolling regressions, is called “MSPE-adjusted.”  In our simple setup, the expected value of

the upward shift is estimable in an obvious fashion.  One therefore adjusts the MSPE from the alternative

model downwards by a suitable estimate.  One then compares MSPEs from the null and (adjusted)

alternative.  In this final comparison, inference may proceed in straightforward fashion using

conventional asymptotically normal procedures familiar from Diebold and Mariano (1995) or West

(1996) .  Alternatively, one may use bootstrapped critical values in the final comparison.
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We evaluate our procedure, and compare it to some others, with simulations, focusing on

conventional asymptotic inference.  We find that our procedure is reasonably well-sized in samples of

size typically available.  Nominal .10 tests have actual size of around .07 to .09.  This applies even for

data that are plausibly calibrated and therefore messy: we allow the predictor in the alternative model to

have a near unit root, as seems to be the case for an interest rate differential in our exchange rate

application; we allow the martingale difference series to display conditional heteroskedasticity, as seems

to be the case for high frequency exchange rate data. 

Such simulation results distinguish our procedure from one we call “MSPE-normal.” 

MSPE-normal looks at differences in MSPEs that are constructed without adjusting for the expected

upward shift in the alternative model’s MSPE, and are sometimes called Diebold and Mariano (1995) or

DM statistics.  MSPE-normal behaves as documented in McCracken (2004) and Clark and McCracken

(2001, 2003): use of standard normal critical values generally results in very poorly sized tests, with

nominal .10 tests generally having actual size less than .02.  By contrast, and consistent with the results in

Clark and McCracken (2001), use of the asymptotic values of the non-standard distribution tabulated in

McCracken (2004) results in nicely sized tests.   (At least with our data and sample sizes, then, the

non-normality emphasized by McCracken (2004) and Clark and McCracken (2001, 2003) is substantially

attributable to the noise in the alternative MSPE.)  All tests seem to display size adjusted power that is

roughly equivalent.

Some recent applied literature, which has absorbed the findings in McCracken (2004), has noted

the inadvisability of using standard critical values when comparing nested models.  One part of this

literature then proceeds to use those critical values, albeit sometimes apologetically (e.g., Clarida et al.

(2003), Cheung et al. (2003)).  Another part of this literature builds on Mark (1995) and Kilian (1999) to

construct critical values with simulation or bootstrap techniques (e.g., Kilian and Taylor (2003),

McCracken and Sapp (2003)).   In our simulations, bootstrap procedures display size that is slightly better
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and power that is similar to our test with conventional asymptotic inference.  Since the conventional

asymptotic version is markedly more simple computationally, it is our belief that many will find it

preferable to apology or bootstrapping. 

We illustrate our methodology using monthly changes in four bilateral exchange rate series, the

U.S. dollar against the Canadian dollar, Japanese yen, British pound and Swiss franc.  In accordance with

interest parity, the alternative model uses an interest rate differential to predict exchange rate changes. 

The point estimate of the MSPE is smaller for the martingale difference model than for the interest parity

model for three of the four series, the exception being the Canadian dollar.  But upon adjusting for the

upward shift in the alternative MSPE, we find that we can reject the null of the martingale difference

model at the 5 percent level for not only the Canadian dollar but also for the Swiss franc.  These

rejections contrast with a long literature that finds little or no fault with the “random walk” model of the

exchange rate.

To prevent confusion, we note that our results apply specifically to nested models.  The analytical

and simulation results in West (1996) suggest that when comparing MSPEs from non-nested models, one

need not adjust as proposed here.  One can instead construct a test statistic in familiar fashion.  We also

advise the reader that we have aimed for clarity at the expense of generality.  For example, we assume

stationarity and a linear alternative, even though generalizations are straightforward.  As well, we caution

the reader that we do not attempt to rationalize or motivate use of out-of-sample tests, nor to make

recommendations for optimal choice of horizon, rolling regression sample size and so on.  Our aim is to

supply useful tools to the many researchers who find such tests of interest.  On the tradeoff between in-

and out-of-sample tests, see Inoue and Kilian (2004); on selection of rolling regression sample size, see

Clark and McCracken (2004).  Finally, we suggest our procedure for an investigator testing the

martingale difference against one or a handful of alternative models.  For testing of all aspects of a

martingale difference or general unpredictability hypothesis, see de Jong (1996) and Corradi and
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Swanson (2002).

Section 2 of the paper motivates our test.  Section 3 details construction of our test statistic. 

Section 4 presents simulation results.  Section 5 presents our empirical example.  Section 6 concludes. An

appendix available on the authors’s websites presents detailed simulation results.

2. MEAN SQUARED PREDICTION ERRORS IN NESTED MODELS

We wish to evaluate the parsimonious possibility that a scalar variable yt is a zero mean

martingale difference.  For such a model, one simply forecasts the future value of yt to be zero.  That

forecast is optimal for any horizon and for any past data on yt and related variables.  An alternative model

posits that yt is linearly related to a vector of variables Xt.  Thus the null model (model 1) and the

alternative model (model 2) are: 

(2.1) yt = et (model 1: null model),

(2.2) yt = XtN$+et (model 2: alternative model).

Under the null, $=0; under the alternative, $…0.  Let Et-1 denote expectations conditional on current and

past X’s and past e’s: Et-1et / E(et | Xt, et-1, Xt-1, et-2, ...).  We assume that under both the null and the

alternative, et is a zero mean martingale difference:

(2.3) Et-1et / E(et | Xt, et-1, Xt-1, et-2, ...) = 0.

Since et has conditional mean zero, it is serially uncorrelated.  It may, however, be conditionally

heteroskedastic, with Et-1e2
t … Ee2

t.  Our dating allows (indeed, presumes) that Xt is observed prior to yt. 

For example, the alternative model may be an AR(1) for yt , in which case Xt is 2×1 with XtN=(1,yt-1). 

We assume that one evaluates the null via comparison of out-of-sample mean squared prediction

errors (MSPEs).  (For the remainder of the paper, “MSPE” without qualification refers to an
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out-of-sample statistic.)  For simplicity, we focus on one step ahead predictions, briefly discussing

multistep predictions when we turn to inference.  One has a sample of size T+1.  The last P observations

are used for predictions.  The first prediction is for observation R+1, the next for R+2, ..., the final for

T+1.  We have T+1=R+P.  We take P and R as given.  For t=R, R+1, ... , T, one uses data prior to t to

predict yt+1.  Let ^
$t denote a regression estimate of $ that relies on data prior to t, putting aside the details

of the sample used to construct ^
$t (rolling vs. recursive).

The one step ahead prediction for model 1 is a constant value of 0, for model 2 is Xt+1N
^
$t, The

corresponding prediction errors are yt+1 and yt+1-Xt+1N
^
$t, with MSPEs

(2.4) ^
F2

1 / P-1GT
t=T-P+1y2

t+1 = MSPE from model 1,

(2.5) ^
F2

2 / P-1GT
t=T-P+1(yt+1-Xt+1N

^
$t)

2  = MSPE from model 2.

Under the null, $=0 and population MSPEs for the two models are equal: Ey2
t+1 - E(yt+1-Xt+1N$)2 = 0.  We

wish to use ^
F2

1 and ^
F2

2 to test the null.  We turn to asymptotic theory to understand the large sample (T64)

behavior of ^
F2

1-^
F2

2,  the difference in MSPEs.

One possibility is to apply the procedures proposed by Ashley et al. (1980), Diebold and Mariano

(1995) or West (1996).  Observe that under the null, $=0, implying that in population the MSPEs from the

two models are equal.  Observe as well that ^
F2

1-^
F2

2 is constructed by averaging P observations on

prediction errors.  One might interpret these papers as suggesting that one treat qP(^
F2

1-^
F2

2) as

asymptotically normal with a variance-covariance matrix that can be estimated in familiar fashion.2  

Some simple algebra suggests that such an interpretation is questionable.  With straightforward

algebra, the difference in MSPEs is

(2.6) ^
F2

1 - ^
F2

2 = 2(P-1GT
t=T-P+1yt+1Xt+1N

^
$t) - [P

-1GT
t=T-P+1(Xt+1N

^
$t)

2].

Under the null, yt+1=et+1 and Eet+1Xt+1N
^
$t = 0.  So under the null we expect 2(P-1GT

t=T-P+1yt+1Xt+1N
^
$t) . 0. 
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Since -P-1GT
t=T-P+1(Xt+1N

^
$t)

2<0 by construction, we expect to find ^
F2

1<^
F2

2–that is, under the null we expect

the MSPE of the null model to be smaller than that of the alternative model.  This follows because in

finite samples, the alternative model’s MSPE is expected to be pushed upwards by the noise term

P-1GT
t=T-P+1(Xt+1N

^
$t)

2.  We emphasize that this result applies regardless of whether rolling, recursive or

fixed schemes are used to obtain ^
$t.

Extensive simulations in McCracken (2004) indicate that for nested models such as ours the

distribution suggested by Diebold and Mariano (1995) provides a poor approximation to the actual finite

sample distribution of ^
F2

1-^
F2

2.  In particular, the mean and median of ^
F2

1-^
F2

2 are not zero, as suggested by

that asymptotic approximation, but instead are negative, as suggested by the simple algebra above. That

is, on  average, across simulations, model 1's MSPE is less than model 2's MSPE.  In McCracken’s

simulations, the downward shift in the distribution of ^
F2

1-^
F2

2 is more pronounced the larger is the number

of regressors in model 2 (the larger is the dimension of Xt).  

McCracken (2004) rationalizes these features with an asymptotic theory that assumes that the

number of predictions is large (P64) and that the size of the samples used to estimate the sequence of ^
$t’s

is large (R64), with P/R approaching a finite nonzero constant.  (Note that under this approximation, ^
$t 6p

0 so ^
F2

1-^
F2

2 6p 0.)  Unlike West (1996), McCracken (2004) assumes nested rather than non-nested models. 

He writes the limiting distribution as functionals of Brownian motion.  Several papers have used similar

approximations.  The most relevant for our topic are the papers by Clark and McCracken (2001, 2003). 

Clark and McCracken verify via simulation that in comparison of nested models, application of the

procedures of Diebold and Mariano (1995) or West (1996) leads to distinct departures from the

asymptotic approximations those papers suggest.

We, too, will use asymptotic theory to capture such simulation results.  To do so, we now restrict 

the investigator to have obtained the sequence of ^
$t’s with rolling regression.  (See points 4 and 5 below

on implications of use of other schemes to obtain the ^
$t’s.)  Our asymptotic approximation follows
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Giacomini and White (2003) in holding R, the size of the regression sample, fixed, while letting the

number of predictions P go to infinity.   Thus, R/P 6 0, R/T 6 0.  We propose an asymptotic thought

experiment with R fixed because, as we shall see when we discuss simulation results, the implied

asymptotic distribution well-approximates finite sample results for our test.

The alternative model’s parameter vector ^
$t is estimated from rolling regressions that rely on data

from periods t-R+1 to t,

^
$t = (3t

s=t-R+1XsXsN)
-1 3t

s=t-R+1Xsys.

(Note that, following conventions in the literature, R does double duty: observations 1 to R constitute the

first regression sample, and R is the size of subsequent regression samples as well.)  When R is fixed, ^
$t

and Xt+1N
^
$t are well-behaved random variables under mild conditions.  For expositional ease, we make the

strong assumption that yt+1 and Xt+1N
^
$t are covariance stationary.  Such an assumption perhaps is

unappealing, since heterogeneity over time is a possible motivation for use of rolling samples.  But while

we have not checked all the details, it appears that we could accommodate heterogeneity such as that in

Giacomini and White (2003).   (Giacomini and White (2003) analyze what they call “conditional” tests, a

class of tests that excludes the one we study.)   Such heterogeneity involves controlled variation in

moments.  The work of Inoue and Kilian (2004) indicates that sudden one-time jumps are not easily

accommodated.  Under stationarity, we will  have

(2.7) P-1GT
t=T-P+1(Xt+1N

^
$t)

2 6p E(Xt+1N
^
$t)

2,

 P-1GT
t=T-P+1et+1Xt+1N

^
$t 6p 0,

 ^
F2

1 6p F2
1 /Ey2

t, 

 ^
F2

2 6p E(yt+1-Xt+1N
^
$t)

2 / F2
2(R).

In (2.7), the “R” in F2
2(R) emphasizes that the large sample limit of ^

F2
2 depends on the regression sample
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size.  For very large R, the sequence of ^
$t’s will generally be very small, and F2

2(R) will be close to F2
1. 

But for small as well as large values of R, it follows from (2.6) and (2.7) that

(2.8) ^
F2

1 - ^
F2

2 6p -E(Xt+1N
^
$t)

2 < 0.

It follows that we will tend to see ^
F2

1 < ^
F2

2, at least when the number of predictions P is large.  Thus our

approximation, which reflects the familiar dictum that a correctly parameterized model tends to outpredict

an over-parameterized model, is capable of rationalizing the simulation evidence in McCracken (2004)

and Clark and McCracken (2001, 2003) that, on average, ^
F2

1 < ^
F2

2.  

Equivalently, let us rewrite (2.8) as

F2
1 = F2

2(R) - E(Xt+1N
^
$t)

2, or plim ^
F2

1 - plim [^
F2

2 - E(Xt+1N
^
$t)

2] = 0.

We can then state: asymptotically, the MSPE of model 2 (the over-parameterized model) exceeds the

MSPE of the correctly parameterized model by a quantity that reflects spurious small-sample fit. 

To illustrate these points graphically, let us present smoothed density plots of some simulation

results.  Details on the data generating process (labeled “DGP 1” in the header to the figures) are given in

our discussion of Monte Carlo results below. Briefly, yt ~ i.i.d N(0,1), Xt is 2×1 with Xt = (1,xt-1)N, xt ~

AR(1) with parameter 0.95, x and y independent.  The persistence in xt roughly matches our empirical

application.  In this application, yt is the monthly change in a dollar exchange rate, xt is monthly interest

differentials.   Our simulations vary the regression sample size R and the number of predictions P.  It may

help to note that in our empirical application, which involves four exchange rate series, the number of

monthly observation is R=120, while P=168 for two exchange rates and P=228 for the other two

exchange rates.

Figure 1 presents plots for R=120, various values of P.  Panel A presents plots of ^
F2

1-^
F2

2.  

There is substantial probability that ^
F2

1-^
F2

2 <0.   For P=144, for example, ^
F2

1-^
F2

2 <0 in 89.8% of the

simulations.  As P gets bigger, the density of ^
F2

1-^
F2

2 begins to narrow, with an increasing probability of
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^
F2

1-^
F2

2 <0.  Figure 1B plots the density of the average value of (Xt+1N
^
$t)

2, i.e., of P-1GT
t=T-P+1(Xt+1N

^
$t)

2, again

for R=120 and various values of P.  (To make Figure 1B readable, the scale is different from that of

Figure 1A.)  In Figure 1B, the distribution is skewed to the right, especially for small values of P.  Figure

1C subtracts Figure 1B from Figure 1A and plots the result on the same scale as Figure 1A.  That is,

Figure 1C plots ^
F2

1-[^
F2

2-P-1GT
t=T-P+1(Xt+1N

^
$t)

2], which is the difference in MSPEs, adjusted for the estimate

of E(Xt+1N
^
$t)

2.  In a table below, we write this more concisely as

(2.9) ^
F2

1-(^
F2

2-adj.), 

^
F2

2-adj. / ^
F2

2-P-1GT
t=T-P+1(Xt+1N

^
$t)

2.

In (2.9), “-adj.” stands for the adjustment made to the MSPE for model 2 and ^
F2

1-(^
F2

2-adj.) is the adjusted

difference in MSPEs.

The adjusted difference plotted in Figure 1C inherits a bit of the skewness of the estimate of

E(Xt+1N
^
$t)

2.  But the median is closer to zero in panel C than in panel A.  As well, Figure 1C may be a bit

misleading, since it may wrongly suggest a nonzero mean.  In fact, the mean value of the simulation data

matches our asymptotic theory virtually spot on.  For all values of P, the mean value of

^
F2

1-[^
F2

2-P-1GT
t=T-P+1(Xt+1N

^
$t)

2] is less than 0.001 in absolute value.  Thus the fact that the median is less than

zero is balanced by the skew in the right tail. 

Figure 2 present similar results when P=144 and R varies.  Consistent with comments above,

panel A indicates that as R increases, the difference in MSPEs shifts towards zero; panel B that the mean

of (Xt+1N
^
$t)

2 falls.  The difference in MSPEs adjusted for the estimate of E(Xt+1N
^
$t)

2 again has a median

less than zero, and is skewed right.  But once again the mean is essentially zero, as predicted by our

asymptotic approximation.

A central argument of this paper is that in testing the martingale difference hypothesis, one should

not just compare MSPEs but instead adjust the comparison using an estimate of E(Xt+1N
^
$t)

2.  The practical
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importance of this proposal turns in part on the magnitude of E(Xt+1N
^
$t)

2 relative to F2
1.  In light of our

limited knowledge of the exact small sample behavior of least squares estimate ^
$t with time series data, it

is hard to make analytical statements about the magnitude of E(Xt+1N
^
$t)

2 (equivalently, about F2
2(R)), and

more generally the small sample behavior of ^
F2

1-^
F2

2.  But the following points may be helpful, and are

consistent with the simulation evidence depicted in Figures 1 and 2.

1. Consider first the uninteresting but tractable case in which Xt+1 is univariate and consists solely of a

constant.  It is straightforward to show that in this case -E(Xt+1N
^
$t)

2 = -Ey2
t/R.  Recall that ^

F2
16p Ey2

t. So with

R=10, we expect ^
F2

1, the null model’s MSPE, to be about 10% smaller than ^
F2

2, the MSPE of a model that

uses the sample mean (i.e., regresses on Xt+1/1) as the forecast.  With R=100 we expect ^
F2

1 to be about 1%

smaller than ^
F2

2.

2. Consider now a case in which Xt+1 includes a constant and k-1 stochastic regressors.  Let yt and Xt+1 be

jointly normal, with yt independent of Xt+1 (in accordance with the null).   To get a feel for the magnitude

of E(Xt+1N
^
$t)

2 relative to F2
1 let us rewrite (2.8) as 1-(^

F2
2/ ^
F2

1)  6p -[E(Xt+1N
^
$t)

2/F2
1.  Manipulation of textbook

formulas for the normal regression model indicates that E(Xt+1N
^
$t)

2/F2
1 increases with the number of

regressors k, and falls with the regression sample size R.3   Our approximation thus accounts for

McCracken’s (2004) simulation evidence that ^
F2

1-^
F2

2 lies farther below zero when Xt includes more

regressors, a result that we have verified with our own set of simulations (details omitted).   That

E(Xt+1N
^
$t)

2/Ey2
t falls as R increases can be seen in Figure 1C. 

3. Some applied papers (see the introduction) have conducted hypothesis tests assuming qP(^
F2

1-^
F2

2) is

asymptotically N(0,W) with a covariance matrix W that can be estimated in standard fashion.  Evidently,

under our approximation, in which the asymptotic mean of ^
F2

1-^
F2

2 is negative rather than zero (see (2.8)),

qP(^
F2

1-^
F2

2) shifts increasingly below zero as P increases.  When P is large, then, such tests will likely be

especially poorly sized, a result confirmed by our simulations.

4. We have assumed that the sequence of ^
$t’s is obtained with rolling regressions, partly to maintain
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contact with the relevant class of applications, partly for technical reasons.  Some relevant applications 

obtain the sequence of ^
$t’s not from rolling but recursive regressions.  In such regressions, the sample size

used to estimate the sequence of $’s grows.  The first sample uses data from 1 to R, the next from 1 to

R+1, ..., the final from 1 to T.  The key expression (2.6) still holds when the ^
$t’s are obtained in this

fashion.  And we will still have Eet+1Xt+1N
^
$t=0, -[P-1GT

t=T-P+1(Xt+1N
^
$t)

2]<0.  Thus we have shown that with

recursive estimation of $, we expect ^
F2

1<^
F2

2.   But as a formal matter, we have not established the limiting

distribution of suitably normalized P-1GT
t=T-P+1yt+1Xt+1N

^
$t; even in very simple cases, this distribution

seems to be non-normal.   See Clark and McCracken (2001, 2003).

5. As well, some relevant applications predict with a single estimate, call it ^
$R, rather than with a

sequence of ^
$t’s (e.g., Ashley et al. (1980)).  Forecast errors from the alternative model are then

constructed as yt+1-Xt+1N
^
$R, t=R, ... , R+P; note that ^

$R maintains a fixed “R” subscript as t varies.  Our

results extend directly to such environments.

6. Using a high order approximation, and maintaining (in our notation) R64 and P=1, Kunitomo and

Yamamoto (1985) and Ing (2003) establish that when comparing a correctly specified with an

overparameterized autoregressive model, the expected difference in MSPEs is negative.  These papers do

not discuss inference.  On the other hand, these papers do allow the null model to make predictions with

an estimated parameter vector, while we focus on a simple martingale difference as the null.  We note that

the simulations in McCracken (2004), which allow the null model to make predictions with an estimated

parameter vector, find that the MSPE of the null model tends to be less than that of the alternative.  Thus

both analytical and simulation results suggest to us that our basic result generalizes to environments in

which the null model relies on an estimated parameter vector.

7. Nonlinear models with additive errors are easily accommodated.  Write the alternative model as

yt=gt($)+et, where the t subscript on gt indicates dependence on data from period t-1 and earlier. 

Possibilities for gt include ARMA or Markov-switching models, and possible estimators include
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nonlinear least squares, maximum likelihood and nonparametric estimators.  In such cases, one simply

replaces XtN
^
$t-1 in the formulas above with the period t fitted value of gt($).  

8. Let us summarize some central characteristics of our approach compared to that of McCracken (2004)

and Giacomini and White (2003).  We are unique in proposing that the investigator adjust the point

estimate of the MSPE difference prior to performing inference.  Like McCracken (2004), we examine the

standard version of MSPE; Giacomini and White (2003) examine a class of tests that includes what

Giacomini and White (2003) call a “conditional” MSPE but excludes the standard version of MSPE. 

Otherwise, we share central characteristics of Giacomini and White (2003) but not McCracken: like

Giacomini and White (2003), we restrict ourselves to rolling schemes to obtain ^
$t, but permit multiple as

well as single period predictions, allow conditional heteroskedasticity, and accommodate a variety of

estimators of ^
$t; McCracken (2004) allows rolling and recursive schemes to obtain ^

$t but rules out

multiperiod prediction horizons, conditional heteroskedasticity and any estimator but one with quadratic

loss.4   And at a technical level, we, like Giacomini and White (2003), use an asymptotic approximation

that holds the regression sample size R fixed as T64, while McCracken assumes R64.

3. THE TEST STATISTIC

We propose adjusting the difference in MSPEs by a consistent estimate of the asymptotic

difference between the two.  Hence we call our statistic “MSPE-adjusted.”  Thus we look at

(3.1) ^
F2

1 - {^
F2

2-[P-1GT
t=T-P+1(Xt+1N

^
$t)

2]} / ^
F2

1 - ( ^
F2

2-adj.) = (say) 'f  (MSPE-adjusted).

Then it follows from (2.6) that under mild conditions,

(3.2) qP'f -A N(0,V), V=4E(yt+1Xt+1N
^
$t)

2.

(As noted above, we assume stationarity for presentational ease.)  One can use the obvious estimator of V,
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namely, 4P-1GT
t=T-P+1(yt+1Xt+1N

^
$t)

2.  One convenient way to construct both the point estimate and the test

statistic is to define

(3.3) ^ft+1 / y2
t+1 - [(yt+1-Xt+1N

^
$t)

2 - (Xt+1N
^
$t)

2].

Then one can compute

(3.4)  'f = P-1GT
t=T-P+1 

^ft, 
^V = P-1GT

t=T-P+1 (
^ft-

'f)2.

We note that since 'f = 2(P-1GT
t=T-P+1yt+1Xt+1N

^
$t), our adjustment to the MSPE shows that a question

about MSPEs is isomorphic to one about encompassing.  Studies that have evaluated a statistic like 'f

include Harvey et al. (1998), West and McCracken (1998), West (2001) and Clark and McCracken (2001,

2003).   As well, our test is similar to that of Chao et al. (2001).  When applied to our setting, Chao et al.

(2001) propose examining the vector P-1GT
t=T-P+1yt+1Xt+1.  So the Chao et al. (2001) statistic, like 'f, looks

to correlations between y and X as a measure of the null.  We examine a particular linear combination of

the elements of X, because this linear combination lets us quantify the expected discrepancy between

MSPEs.  (Chao et al.’s (2001) technical conditions include R64 as P64 so under their conditions the

asymptotic discrepancy between MSPEs is zero.)

For longer horizon forecasts, one can proceed as follows.  The relevant class of applications

typically uses overlapping data to make a J-step ahead forecast of yt+J+yt+J-1+...yt+1 = (say) yt+J,J.  (In this

notation,  yt+1,1 / yt+1, and for J=1 the formulas about to be presented reduce to those given above.)   The

MSPE from the null model is (P-J+1)-13T
t

-
=
J
T

+
-

1
P+1y2

t+J,J.  The alternative model regresses  yt+J,J on a vector

of regressors Xt+1.  (Of course in some applications the vector of predictors in the alternative model will

vary with the forecast horizon J, and might properly be denoted Xt+1,J.  We use the notation Xt+1 to limit

notational clutter.)  The MSPE from the alternative is (P-J+1)-13T
t

-
=
J
T

+
-

1
P+1(yt+J,J-Xt+1N

^
$t)

2.  One adjusts the

difference in MSPEs exactly as in (3.1) above.  With overlapping data, however, the resulting time series
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(2yt+J,JXt+1N
^
$t) / [2( yt+J+yt+J-1+...yt+1)Xt+1N

^
$t], t=T-P+1,...,T-J+1, follows a MA(J-1) process under the

null.  For J>1, one needs to account for this serial correlation when performing inference.  One can use

any one of a variety of popular estimators.  We suggest a mean-adjusted version of the estimator

developed in West (1997), which in this case reduces to a mean adjusted version of Hodrick (1992): Let

^gt = 2yt(XtN
^
$t-1+...+Xt-J+1N

^
$t-J), with sample mean 'g.   Let

(3.5) ^V =(P-2J+2)-13T
t

-
=
J
T

+
-

1
P+J(

^gt-
'g)2.

Then ^V is a consistent estimator of the asymptotic variance of the adjusted difference in MSPEs.

4. SIMULATION RESULTS

We use Monte Carlo simulations of simple bivariate data-generating processes to evaluate the

finite-sample size and power of our approach and compare it to some existing tests.  The experiments

incorporate features common in applications for which our suggested approach to inference may be most

useful–exchange rate and other asset price applications in which the null hypothesis is that the predictand

is a martingale difference.  In such applications, the variance of the predictand yt is very high relative to

the variance of the predictors in Xt, and those predictors are highly persistent.  We use DGPs with these

features to evaluate several tests: our MSPE-adjusted test, an unadjusted MSPE test with standard normal

critical values (called “MSPE- normal” in the tables, but commonly referred to as a Diebold-Mariano

test), an unadjusted MSPE test with McCracken’s (2004) non standard critical values (MSPE-McCracken

in the tables), and the Chao, Corradi and Swanson (2001) test (CCS, in the tables). 

4.1  Experimental design

The baseline DGPs share the same basic form, widely used in studies of the properties of

predictive regressions (see, for example, Mankiw and Shapiro (1986), Nelson and Kim (1993),

Stambaugh (1999), Campbell (2001), and Tauchen (2001)): 
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(4.1) yt = bxt-1+et, Xt = (1, xt-1)N, xt = 0.95xt-1 + vt, 

Et -1et=0, Et-1vt=0, var(et)=1, var(vt)=F
2
v, corr(et,vt)=D;

b=0 in experiments evaluating size, b…0 in experiments evaluating power.

The null forecast (model 1) is simply the martingale difference or “no change” forecast of 0 for all t.  The

alternative forecast (model 2) is obtained from a regression of yt on Xt, using a rolling window of R

observations. (Because the alternative regression includes a constant, adding a constant to the xt equation

would have no effect on the results.)

In analyzing both size and power, we report results for two general parameterizations of the

above DGP. The first parameterization, labeled DGP 1, is based roughly on estimates from the exchange

rate application considered in the empirical work reported in the next section: Fv=0.025 and D=0.5  The

second parameterization, DGP 2, is calibrated to monthly excess returns in the S&P500 and the

dividend-price ratio: Fv=0.036 and D = -0.9.  For both DGPs, the coefficient b is set to 0 in the size

experiments.  In evaluating power, we consider values of b based roughly on estimates from the

associated exchange rate and stock market data.  Specifically, we simulate DGP 1 with b=-2 and DGP 2

with b=0.365. 

While we focus on results for data generated from homoskedastic draws from the normal

distribution, we extend DGP 2 to consider data with conditional heteroskedasticity and fat tails–features

that are often thought to characterize financial data.   Select results are reported for experiments in which

et (=yt) follows a GARCH(1,1) process, parameterized according to estimates for excess returns in the

S&P500:  

(4.2) yt = et = qht,t, ,t~i.i.d. N(0,1), ht=0.05+0.85ht-1+0.10e2
t-1, D=-0.9.

With this parameterization, the unconditional variance of y is the same as in the homoskedastic case
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(equal to 1).  Select results are also reported for experiments in which there is conditional

heteroskedasticity in y, of a simple multiplicative form, scaled to keep the unconditional variance at unity:

(4.3) yt = et = qht,t, ,t~i.i.d. N(0,1), ht=x2
t-1/var(xt), D=-0.9,

where var(xt)=F
2
v /(1-0.952).  Finally, in results not reported in the interest of brevity, we also consider data

generated from a fat tailed i.i.d. distribution similar to one used in simulations in Diebold and Mariano

(1995), in which the forecast error et follows a t(6) distribution and the error vt is a linear combination of

underlying innovations drawn from the t(6) distribution.  The results for fat-tailed data prove to be very

similar to those for normally distributed data.

To match the variety of settings that appear in empirical research, we consider a range of R and P

values, with emphasis on P large relative to R.  With monthly data in mind, R is set to 60, 120, or 240,

and P is set to 48, 96, 144, 250, 480, and 1200.6   For the given setting of R, a total of R+1200

observations are generated.  The initial observation on x is generated from its unconditional normal

distribution.   Rolling one step ahead predictions are formed for observations R+1 through R+1200, using

a window of R observations.  For each value of P, one step ahead predictions are evaluated from R+1

through R+P.  For multistep predictions of horizon J, predictions are evaluated from  R+J through R+P,

with the total number of predictions being P-J+1.  The number of simulations is 10,000.  

4.2 Procedures for Inference

The MSPE-adjusted statistic is computed as

(4.4)  qP[^
F2

1-(^
F2

2-adj.)]/q ^V,

(see (3.1) and (3.4)), and is compared to a standard normal distribution.  A second MSPE statistic is

computed as

(4.5)  qP(^
F2

1-^
F2

2)/q ^W, 
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^W/P-1GT
t=T-P+1(dt-

'd)2, dt / y2
t+1-(yt+1-Xt+1N

^
$t)

2, 'd / P-1GT
t=T-P+1dt.

and is compared to both standard normal critical values (MSPE- normal) and to McCracken’s (2004)

asymptotic critical values (MSPE-McCracken).   (In our simulations and empirical application, ^V and ^W

are virtually identical.  Since ^V = ^W + 2cov[^ft+1,(Xt+1N
^
$t)

2] - var[(Xt+1N
^
$t)

2], this indicates that the variance

of ^
F2

1-^
F2

2 dominates that of (Xt+1N
^
$t)

2.)   The Chao, Corradi, and Swanson statistic is computed as described

in their paper, with a heteroskedasticity consistent covariance matrix; it is compared to P2(2) critical

values.  In all cases, we report results based on a nominal size of 10 percent.  Unreported results based on

the 5 percent significance level are qualitatively similar.

Following the logic of Ashley et al. (1980) and Clark and McCracken (2001, 2003) among others,

we treat all three MSPE tests as one-sided.   Clark and McCracken note that because the models are

nested, the alternative is that in large samples model 2 predicts better than model 1.  That is, the

alternative is one-sided because, if the restrictions imposed on model 1 are not true, we expect forecasts

from model 2 to be superior to those from model 1.7

In presentation of simulation results, we will have occasion to refer to these procedures as

“conventional asymptotic” ones, because they rely on asymptotic normality of the test statistic.  This is in

contrast to bootstrap versions of the tests.  Bootstrap critical values are computing using a model-based,

wild bootstrap procedure, imposing the null of no predictability of yt.  The approach is essentially that of

Mark (1995) and Kilian (1999), although modified as recommended by Gonçalves and Kilian (2004) to

ensure accuracy in the presence of certain forms of conditional heteroskedasticity.  The procedure is

exactly the same for calculating bootstrap size and power.

Specifically, for each Monte Carlo data set on yt and xt (R+P observations), we first estimate an

AR(1) model for xt, obtaining residuals ^vt.  We then take the following steps in each of 999 bootstrap

draws.  (1)We generate a series of R+P i.i.d standard normal innovations 0t.  (2)Imposing the null of no

predictability, a bootstrap series y*
t is formed as 0tyt.  (3)A bootstrap series x*

t is constructed using the
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estimated AR(1) model for xt and innovation 0t
^vt , taking an “historical” observation on x drawn at

random from the sample as the initial observation on x*
0.  (4)Using rolling forecasts of y*

t from the null and

alternative models (the latter estimated with the bootstrap data), artificial MSPE and CCS test statistics

are formed.  (5)Finally, using the bootstrap samples of MSPE and CCS test statistics generated by these

steps, we perform our one-sided tests using as a critical value the 90th percentile of the bootstrap

distribution–the 900th largest test statistic.  

4.3  Simulation Results: Size

Size results for DGP 1 (calibrated roughly to exchange rate data) are in Table 1, for DGP 2

(calibrated roughly to stock price data) are in Table 2, while extensions to DGP 2 that allow conditional

heteroskedasticity are in Table 3.  

We begin with Table 1.  The “MSPE-adjusted” lines in the table give the performance of our

proposed statistic.  Since the nominal size of the test is 10%, the ideal value is 0.100.  We see in Table 1

that our statistic is slightly undersized, with actual sizes ranging from 6.3% (panel B, P=96) to 8.5%

(panel A, P=1200).  The actual size does not seem to vary systematically with R. The undersizing does

seem to be reduced for larger values of P, though the pattern is mixed.  Improvement with P but not with

R is consistent with our asymptotic theory, which holds R fixed but assumes P64.

These features are illustrated in Figure 3, which presents smoothed density plots of distribution of

MSPE-adjusted statistics.  The ideal figure is a N(0,1) distribution.  The top panel presents results for all

three values of R, with P held at 144.  We see that the undersizing documented in Table 1 results because

the distributions are shifted slightly to the left.  (Recall that we are examining one-sided tests in which

one rejects only when the statistic is above +1.65.)  The leftward shift is a small sample phenomenon not

captured by our asymptotic theory.  There is no apparent pattern for empirical sizes to either improve or

degrade with R.  The bottom panel holds R fixed at 120 and lets P vary over the values 48, 144, 240 and

1200.  Again the figures are shifted slightly to the left.  But there is a tendency for the downward shift to
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lessen as P increases: the distribution for P=1200 is distinctly better centered than are those for smaller

values of P.

The performance of the MSPE statistic that uses standard normal values (“MSPE-normal” in the

tables) is not as good.  This statistic results in far too few rejections.  Indeed, the empirical size of the test

is essentially 0 in most instances, especially for larger values of P.  For example, we see in panel B of

Table 1 that when R = 120, comparing the MSPE statistic against the standard normal distribution

produces a nominal size of 2.0 percent for P = 48 and .8 percent or less for all values of P greater than 48. 

For given P, the performance of the test improves monotonically as R gets larger, for example increasing

for P=144 from 0.000 (R=60) to 0.004 (R=120) to 0.014 (R=240).  As well, performance degrades as P

gets bigger, for example falling for R=120 from 0.008 (P=96) to 0.001 (P=240) to 0.000 (P=1200).   

To help interpret the results for MSPE-normal, Figure 4 presents smoothed density plots of

MSPE-normal corresponding to some of the simulations in Table 1.  Variation with R for fixed P=144 is

depicted in the panel A, while variation with P for fixed R=120 is depicted in the panel B.  We see that

for all values of P and R, the test is undersized because the distribution is markedly shifted leftwards. The

leftward shift reflects the parameter noise in the alternative model forecast, and is predicted by our

asymptotic theory.  See equation (2.8) and panel A in  Figures 1 and 2.  Improvement in size as R

increases is clear in panel A.   As noted in section 2, this follows because parameter noise shrinks as the

number of regression observations R rises.  The degradation in performance as P increases is equally clear

in panel B.  This, too, follows from our asymptotic approximation.  The leftward shifts as P increases

occur because the scaling of the difference in MSPEs by qP–scaling associated with making the

asymptotic distribution non-degenerate–results in the qP-scaled parameter noise component of the

difference in MSPEs rising with P.  The parameter noise term P-1GT
t=T-P+1(Xt+1N

^
$t)

2 converges to a

constant, but qP times the same term grows with P.

Now turn to a third statistic, “MSPE–McCracken”.  Since this statistic is identical to
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MSPE-normal, its density is also represented by Figure 4.  But this statistic uses McCracken’s (2004)

critical values, which asymptotically (P64 and R64) account for the leftward shifts depicted in Figure 4.

We see in Table 1 that comparing the unadjusted t-statistic for equal MSPE against those critical values

can also yield a well-sized test in many, although not all, circumstances.  For smaller values of P, using

McCracken’s critical values yields a test that is usually but not always slightly undersized.  With R = 120

and P = 96, for example, the empirical size is 8.7 percent; for R=120 and P=1200, the size is 5.2 percent. 

Some unreported simulations show these size distortions are ameliorated when R and P are both bigger. 

Apparently, in our rolling forecast approach, for large values of P and P/R, both P and R may need to be

large for the finite sample distribution to closely match McCracken’s asymptotic approximation.  

The final statistic tabulated in Table 1 is that for Chao et al. (2001)  (“CCS” in the tables).  This

statistic is well-sized in larger forecast samples (larger P), but tends to be oversized in smaller samples. 

For example, for R=120, the sizes are 10.0% for P=1200 but 14.4% for P=48.  

Simulation results for DGP 2 are presented in Tables 2 (homoskedastic data) and 3 (conditionally

heteroskedastic data).   These tell a broadly similar story.  Briefly, performance of MSPE-adjusted

continues to be good; performance of MSPE-normal continues to be poor but not perceptibly poorer than

in Table 1; performance of both McCracken-MSPE and CCS declines.  The oversizing of CCS is

congruent with the finding in a number of in-sample studies that regression tests of return predictability

tend to be oversized for data similar to ours (e.g., Nelson and Kim (1993)).

To take the statistics in reverse order of the rows of the panels of Table 2 and 3: The tendency of

CCS to overreject for smaller P is now quite marked, with sizes over 20% found for P=48 for all panels in

Tables 2 and 3, though good performance for P=1200 continues to be displayed.   The size distortions for

smaller P appear to be due to finite-sample imprecision in the (heteroskedasticity-robust) variance

estimate that enters the CCS statistic.  In results not reported in the tables, we found that  imposing the

null hypothesis or imposing homoskedasticity in simulated data that are homoskedastic improves the
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variance estimate and greatly reduces the size problems; in all cases, adding more regressors to the

forecasting model exacerbates the size problems.  Ultimately, in small samples, there appears to be some

(size) advantage to our approach of projecting the null forecast error onto the scalar Xt+1N
^
$t rather than the

CCS approach of projecting the null error onto the vector Xt+1.  That advantage appears to be due to the

greater precision of estimates of the variance of the scalar compared to estimates of the variance of the

vector.

“MSPE-McCracken” is more variable in Tables 2 and 3 than in Table 1.  It shows a tendency to

be modestly oversized for small P and modestly undersized for large P.  Performance is weaker for

conditionally heteroskedastic data (Table 3), no doubt because McCracken’s critical values assume

conditional homoskedasticity.8 

“MSPE-normal” continues to be egregiously undersized, particularly for large P (size of 0.0% for

P=1200 in every single panel of Tables 1 through 3) and small R (all sizes at or below 2.3% for R=60).

Finally, performance of MSPE-adjusted in Tables 2 and 3 is similar to that in Table 1.  The test

generally is modestly undersized.  The undersizing does, however, tend to be less modest in Tables 2 and

3, with sizes ranging from around 7% to around 10% (as opposed to Table 1's 6% to 8%).   Once again,

performance does not vary systematically with R.  The figures for DGP 2 do not display a clear tendency

for performance to improve with larger P, especially for data with multiplicative conditional

heteroskedasticity.  In results not reported in the table, we experimented with larger sample sizes for such

data.  Specifically, for R=120, we found a size of 7.3% for P=12,000 and 8.2% for  P=24,000.  This is an

improvement over the size of 4.9% for P=1200 reported in panel B of Table 3, but also indicates that for

such heteroskedasticity very large sample sizes are required for the asymptotic approximation to work

well.

Our basic one step ahead results carry over to long horizon forecasts.  Here are some

representative results for DGP 1, for R=120, P=144:
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horizon J
(4.6)    1    6   12   24   36
MSPE-adjusted    .065 .065  .071  .076  .078
MSPE-normal .004  .004  .006  .010  .015
CCS .119  .098  .096  .098  .107

(We do not report results for MSPE-McCracken because McCracken has supplied critical values only for

one step ahead forecasts.  See Clark and McCracken (2003) for a bootstrap approach to critical values for

long horizon forecasts.)

Our basic results roughly continue to hold in the presence of modest misspecification.  By

“modest” we mean that departures from a martingale difference are sufficiently small that even a careful

investigator might wrongly assume a martingale difference.  We investigate this possibility by positing

that yt follows an MA(1) process with a small first order autocorrelation:

(4.7) yt = et + ut + 0.5ut-1.

In (4.7), et and ut are i.i.d. normal variables, with F2
e=0.8 and F2

u chosen so that F2
y=1.  The implied first

order autocorrelation of yt is 0.08 (and of course all other autocorrelations are zero).  We consider this a

modest departure from the random walk model.  Other parameters are as in DGP 1.  We repeat the

analysis above for R=120.  In particular, we assume that the investigator uses a sample variance (e.g., the

formula for ^V in (3.4)) when one should account for serial correlation in yt by using an estimate of the

long run variance instead.  Results are as follows:

(4.8) P=48   P=96   P=144  P=240 P=480 P=1200
MSPE-adjusted      0.095   0.087   0.089   0.100   0.120   0.161
MSPE-normal        0.027   0.011   0.005   0.001   0.000   0.000
MSPE-McCracken     0.108   0.107   0.100   0.098   0.094   0.091
CCS       0.181   0.154   0.151   0.142   0.146   0.144

Rejection rates increase for all tests, essentially because with the DGP (4.7), the relevant variance is

smaller than the long run variance.  The increase is modest, because the divergence between variance and
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long run variance is small.

Naturally, one may wish to guard against such possibilities by using an estimator of the long run

variance.  We have not investigated in detail the effect of using such an estimator.  We did, however,

investigate alternative estimators of the long run variance in connection with the long horizon results

reported in (4.6).  We found that inference is extraordinarily sensitive to the estimator used to account for

the serial correlation in the forecast.  As noted above, we used the estimator of West (1997) and Hodrick

(1992).  Use of Newey and West (1994) or Andrews (1991) resulted in substantially poorer performance. 

For example, for CCS, use of a quadratic spectral kernel with bandwidth chosen as recommended in

Andrews (1991) resulted in the following sizes for horizons of 6, 12, 24 and 36 periods: .324, .427, .579,

and .679.

Overall, the results discussed in this section show that in applications in which the null model is a

martingale difference, it is possible, with a simple adjustment, to use a standard distribution in conducting

a reliable test of equal MSPE. 

4.4  Simulation Results: Bootstrapping

Table 4 present results bootstrap size. For concision, we report results only for R=120, DGPs 1

and 2.  Full results are available in the not for publication appendix.  Since MSPE-normal and

MSPE-McCracken use the same test statistic (4.5), bootstrap results are identical for the two and the

tables report a single value in lines labeled “MSPE, bootstrap”. 

The first row of panels A and B of Table 4 (“MSPE-adjusted, normal”) repeats the corresponding

entries from Tables 1 and 2, for convenience.  The next three lines present sizes when hypothesis tests are

conducted by the bootstrap described above.   These three lines indicate that the bootstrap generally does

a good job.  It lessens the mild size distortions of our procedure and the very marked size distortions of

MSPE-normal.  And the last lines in these panels (“CCS, bootstrap”) indicate that apart from when P is

very small (e.g., P=48, panel B), bootstrapping of CCS also eliminates size distortions.  
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Thus, bootstrapping produces modest improvements in size relative to conventional asymptotics.

(Indeed, our bootstrap results might be better than can be expected in practice, since for simplicity our

bootstrap procedure generously but unrealistically allowed the investigator to know that xt was generated

by an AR(1) [though of course with unknown parameter].)  We defer summary and further discussion of

bootstrap results to first present results on power.

4.5  Simulation Results: Power

Table 5 presents results on power.  We studied the finite-sample power of the MSPE-adjusted

test, the simple (unadjusted) MSPE test, and the CCS test, using both empirical critical values from our

initial size experiments and bootstrap critical values, and for a range of values of R.  For conciseness, we

report only the results for R=120 and homoskedastic data.  We calculate size-adjusted power in

experiments involving DGP 1 using critical values taken from the corresponding size experiment for DGP

1.  The DGP is as given in (4.1) with b=-2, a value consistent with the exchange rate data considered in

the next section.  Similarly, we calculate size-adjusted power for DGP 2 experiments using critical values

from the size experiments with DGP 2.  Here, the DGP is as given in (4.1) with b=0.365.  For these size

adjusted tests, the actual size is 10 percent.  For each DGP, we calculate bootstrap power using 10 percent

critical values with the procedure described in section 4.2.

Overall, the powers of the tests are similar.  The most notable exception is that in DGP 2, CCS

has distinctly more power than MSPE or MSPE-adjusted when P=1200.  As well, in DGP 1, CCS perhaps

has slightly less power than MSPE-adjusted for small P, slightly more power for large P.  In results not

reported in Table 5, we found that given large P, the power difference between the CCS and

MSPE-adjusted tests falls as R rises.  This pattern (which is mirrored in the absence of a relationship

between the power of the CCS test and R (given P)), reflects the fact that the MSPE-adjusted test is

affected by parameter estimation noise while the CCS test is not.  The CCS test is not affected because the

test is based on simply projecting the martingale difference yt+1 on Xt+1 (while, as noted above,
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MSPE-adjusted projects yt+1 onto Xt+1N
^
$t).

9

In results reported in the appendix, we find, as did Clark and McCracken (2001, 2003),  that

size-adjusted power of both the adjusted and unadjusted MSPE tests tends to rise with R (given P) and

with P (given R).  The latter is to be expected; the positive relationship between power and R reflects the

increased precision of the forecasting model parameter estimates.

Results presented so far relate to size-adjusted power.  But to interpret empirical results presented

in the next section, it may be useful to explicitly present some numbers on power that are not size

adjusted.  In particular, let us consider the probability of rejecting the null under DGP 1 with b=-2, a

configuration chosen because of its relevance for our empirical work.  Here are raw (as opposed to

size-adjusted) probabilities of rejecting at the 10 percent level in simulations with sample sizes most

relevant to our empirical example:

(4.9)     R=120, P=144       R=120, P=240
MPSE-adjusted    0.480 0.614
MSPE- normal 0.086 0.086
MSPE-McCracken 0.457 0.588
CCS 0.518 0.694

The values in (4.9) illustrate two points.  The first is that the downward shift in MSPE- normal makes this

statistic ill-suited to detect departures from the null.  The second is that in our simulated data, which we

believe to be plausibly calibrated, the probability of detecting the failure of the null is substantial (around

0.5 or 0.6) but by no means overwhelming–a sobering, but important, reminder that asset price data may

be sufficiently noisy that it will be difficult to detect departures from martingale difference behavior with

sample sizes currently available.

The results on unadjusted power also are helpful in interpreting the empirical results presented in

the next section.  In these results, we sometime find that the martingale difference model has a smaller

MSPE than the alternative, but our adjusted MSPE statistic nonetheless rejects the null at conventional
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significance levels.  In our simulations under the alternative, we do indeed find substantial positive

probability of this occurring.  For example, in the R=120, P=240 simulation reported in (4.9), ^
F2

1<^
F2

2 in

about 47% of the simulations, but as indicated in (4.9) we reject at the 10 percent level in about 61% of

the simulations.  We examined this seemingly peculiar finding (martingale difference has lower MSPE,

but still can be rejected at conventional significance levels) over a range of values of R and P.  

Unsurprisingly, we found that increases in either R or P led to decreases in the fraction of the time in

which the martingale difference model had a smaller MSPE and to increases in power.  For example, with

R=120, P=1200 the martingale difference model had a smaller MSPE in about 33% of the simulations and

the power of our test was about 98%.  Thus one can interpret the finding as indicating that there is indeed

a correlation between yt and the predictors used by the alternative model, but sample sizes are too small

for the alternative model to reliably outpredict the martingale difference model.10

Let us close with a comparison of the conventional asymptotic and bootstrap implementations of

our proposed statistic.  Overall, the bootstrap implementation shows modestly better size.  Table 5

indicates that bootstrap power is a slightly worse than size-adjusted power; a comparison of Table 5 and

equation (4.9) indicates that bootstrap power is slightly better than unadjusted power.  Bootstrapping

involves a trivial cost in terms of computation (at least when the alternative model is linear) and what we

view as a more substantial cost in terms of programming time.  (No, we don’t agree with what we sense is

the view of many economists that as long as computation time is cheap there is no reason to be hesitant to

use simulation based procedures.  It has been our experience that producing carefully debugged code is

time consuming.)  We invite readers to trade off these additional costs of bootstrapping against the

modest improvement in size and modest, mixed effects on power.  Our own utility functions are such that

the conventional asymptotic version of our statistic will often be preferred.

5. EMPIRICAL EXAMPLE
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To illustrate our approach, we apply the MSPE-adjusted, MSPE-normal, MSPE-McCracken and

CCS tests to monthly forecasts of four U.S. dollar bilateral exchange rates, for Canada, Japan,

Switzerland, and the U.K.. Under the null, the exchange rate follows a random walk.  Our alternative

model, based on interest parity, relates the change in the spot exchange rate from the end of month t to the

end of month t+1 to a constant and the one-month interest rate differential at the end of month t.  (The

end-of-month values are defined as those on the last business day of the month.)  The exchange rate data

were obtained from the Board of Governor’s FAME database; the one-month interest rates, which are

averages of bid and ask rates on Eurocurrency deposits (London close), were obtained from Global

Insight’s FACS database.  We use a rolling window of 120 observations to estimate the alternative

forecast model.  Reflecting data availability, for Canada and Japan, we examine forecasts from January

1990 through October 2003 (P=166, with the first regression sample running from January 1980 to

December 1989); for Switzerland and the U.K., the forecast sample is January 1985 through October

2003 (P=226, with the first regression sample running from January 1975 through December 1984).

While unreported in the interest of brevity, estimates of our interest parity regressions share the

basic features highlighted in the long literature on uncovered interest parity (see, for example, the surveys

of Taylor (1995) and Engel (1996) and studies such as Hai et al. (1997) and Backus et al. (2001)): 

significantly negative slope coefficients that wander substantially over the sequence of rolling samples

(from -3.9 to -0.2, with a median of about -1.8, taking the yen as representative) and low regression R2s

(from essentially zero to 5.2%, with a median of about 2%, again for the yen).  Simple uncovered parity

of course implies the coefficient should be 1.  But even if the data violate uncovered parity, interest rate

differentials could have predictive content for exchange rates.  Accordingly, we follow a number of

studies (see Clarida and Taylor (1997) for a recent example) in evaluating forecasts based on interest

differentials.

Table 6 contains our results.  The table reflects the widely-known difficulty of beating, in MSPE,
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a random walk model of exchange rates:  for only one of the four countries, Canada, does the interest

parity model yield a forecast with MSPE lower than that of the random walk forecast.  Even for Canada,

the advantage of the parity model over the random walk is slight.  Accordingly, without any adjustment,

comparing the simple MSPE test against standard normal critical values systematically–that is, for all

countries–fails to reject the null random walk.  For Canada, though, comparing the simple MSPE test

against McCracken’s (2004) critical values does lead to a rejection of the null random walk.

The results of our adjustment procedure highlight the potential for noise associated with

estimation of the alternative model’s parameters to create an upward shift in the model’s MSPE large

enough that the random walk has a lower MSPE even when the alternative model is true.  The estimated

adjustments in column (5) in Table 6 correspond to the term P-1GT
t=T-P+1(Xt+1N

^
$t)

2.  These range from .09

for Canada to  .96 for Switzerland, corresponding to about 4 percent of the alternative model’s MSPE for

Canada and 7.8 percent for Switzerland.  For Canada, the adjustment makes the advantage of the interest

parity model over the random walk look more substantial than it does on the basis of the unadjusted

difference in MSPEs.  For the other three countries, the adjustment is large enough to make the adjusted

difference in MSPEs positive even though the unadjusted difference is negative.  And for Switzerland as

well as Canada, the MSPE-adjusted test rejects the null random walk; for Japan, the CCS test also rejects

the null.   The MSPE-normal test does not reject for Canada, nor, of course, for the three countries for

which the MSPE of the random walk model was less than the unadjusted MSPE of the interest differential

model.

Thus, while the unadjusted MSPE test would seem to provide uniform support for the random

walk null, our MSPE- adjusted test, which adjusts for the parameter noise in the alternative model,

provides some evidence in favor of an alternative model that includes the interest rate differential.  That

is, even though parameter estimation noise may cause a random walk forecast to have a lower MSPE,

there is some evidence that exchange rate changes are correlated with lagged interest differentials.  
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Such results highlight both the practical importance of taking parameter noise into account in conducting

tests of equal MSPE in nested models and the potential value of our simple procedure for doing so.

6. CONCLUSION

If the martingale difference hypothesis holds, out-of-sample mean squared prediction errors

should be smaller for a “no change” model than for an alternative model that forecasts with an estimated

regression vector.  This is because the forecasts of the alternative model are expected to be shifted upward

by noisy estimates of a regression vector whose population value is zero.  We show how to adjust for the

upward shift.   Simulations indicate that adjustment for the shift results in hypothesis tests that are well

sized.  Failure to adjust results in hypothesis tests that are very poorly sized.  

We have studied a problem that is relatively simple but quite important in practice.  For

expositional convenience, we have assumed stationarity and a parametric linear alternative.  Both

restrictions are easily relaxed.  Substantive priorities for future work include extensions to nested model

comparisons in which forecasts for the null model rely on an estimated regression vector and sampling

schemes in which forecasts are generated recursively rather than with rolling regressions.  
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1. This result is related to but not identical with asymptotic results on MSPEs from overparameterized
autoregressive models (Kunitomo and Yamamoto (1985), Ing (2003)).  See section 2.

2. Some applied papers such as Goyal and Welch (2003) have interpreted Diebold and Mariano in just
this way.  West (1996, p1073) explicitly states that his asymptotic results presume the two models are
non-nested. So the technical conditions in West (1996) exclude applications such as ours, because our
models are nested. 

3. This statement relies on an approximation to the expectation of the multiple correlation coefficient in a
least squares regression in which y and X are jointly normal, and y is independent of X (Theil, 1971,
p191).

4. Actually, McCracken (2004) allows non-quadratic loss in estimation of $ as long as the loss function
used in estimation is also used to evaluate forecasts.  In our view, the practical implication is as stated in
the text.  Also, Clark and McCracken (2003) extend McCracken (2004) to allow multiperiod horizons.

5. In the data, the correlation in the residuals tends to be small, although it varies in sign across countries. 
Simulations of a DGP with the same form but a small, non-zero D yielded very similar results.

6. The values of P are chosen judiciously to facilitate the use of McCracken’s (2004) critical values in
evaluating the MSPE test.  McCracken reports critical values for select values of B /lim P,R64 (P/R).

7. As noted above, our MSPE-adjusted test is akin to the t-statistic for forecast encompassing considered
by Harvey et al. (1998), West (2001) and Clark and McCracken (2001,2003).  Even in the non-nested
environment considered by Harvey et al. (1998) and West (2001), under the null that the model 1 forecast
encompasses model 2, the numerator of the test statistic will be less than or equal to 0.  Under the
alternative that model 2 contains added information, the numerator should be positive.

8. Clark and McCracken (2003) develop an asymptotic approximation in which heteroskedasticity makes
the limiting null distribution of the (unadjusted) test for equal MSPE dependent on the parameters of the
data generating process.  The results in Clark and McCracken (2003) indicate that, with
heteroskedasticity, a simple bootstrap approach to inference will yield accurately sized tests.

9.  In unreported results, we also examined the performance of the F-type test of equal MSPE developed
by McCracken (2004) and the F-type test of encompassing proposed by Clark and McCracken (2001).  In
general, with homoskedastic data, these additional tests have good size properties.  The behavior of the
F-test for equal MSPE is comparable to the reported behavior of the t-test for equal MSPE compared to
McCracken's (2004) critical values.  The encompassing test is very close to correctly sized in DGP 1
experiments and somewhere between correctly sized (larger P) and slightly oversized (smaller P) in DGP
2 experiments.  In general, the size-adjusted powers of these additional tests are broadly comparable to
that of the MSPE-adjusted test.  For larger values of R, though, there tend to be more noticeable
differences among the powers of the tests, in line with Clark and McCracken (2001, 2003).

10. Or more precisely, sample sizes are too small for the alternative to reliably outpredict using a least
squares estimator.  We have not experimented with predictions that rely on other schemes for exploiting
the correlation between yt and Xt.

FOOTNOTES
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Table 1
Empirical Size:  DGP 1

Nominal Size = 10%

A. R=60
P=48 P=96 P=144 P=240 P=480 P=1200

MSPE-adjusted 0.073 0.072 0.072 0.074 0.079 0.085
MSPE-normal 0.007 0.002 0.000 0.000 0.000 0.000
MSPE-McCracken 0.083 0.074 0.048 0.050 0.036 0.025
CCS 0.144 0.125 0.119 0.115 0.108 0.107

B. R=120
P=48 P=96 P=144 P=240 P=480 P=1200

MSPE-adjusted 0.070 0.063 0.065 0.067 0.074 0.081
MSPE-normal 0.020 0.008 0.004 0.001 0.000 0.000
MSPE-McCracken 0.089 0.087 0.079 0.073 0.063 0.052
CCS 0.144 0.121 0.119 0.114 0.108 0.100

C. R=240
P=48 P=96 P=144 P=240 P=480 P=1200

MSPE-adjusted 0.079 0.072 0.070 0.067 0.066 0.072
MSPE-normal 0.034 0.020 0.014 0.004 0.001 0.000
MSPE-McCracken 0.103 0.097 0.093 0.097 0.085 0.072
CCS 0.135 0.121 0.116 0.113 0.103 0.099

Notes:

1.  The predictand yt+1 is i.i.d. N(0,1); the alternative model’s predictor xt follows an AR(1) with
parameter 0.95; data are conditionally homoskedastic.  In each simulation, one step ahead forecasts of yt+1
are formed from the martingale difference null and from rolling estimates of a regression of yt on Xt  =
(1,xt-1)N.

2.  R is the size of the rolling regression sample.  P is the number of out-of-sample predictions.

3.  Our MSPE–adjusted statistic, defined in (3.1) and (4.4), uses standard normal critical values. 
MSPE–normal, defined in (4.5), refers to the usual (unadjusted) t-test for equal MSPE, and also uses
standard normal critical values.   MSPE-McCracken relies on the MSPE-normal statistic but uses the
asymptotic critical values of McCracken (2004).

4. The number of simulations is 10,000.  The table reports the fraction of simulations in which each test 
rejected the null using a one-sided test at the 10% level.  For example, the figure of .078 in panel A,
P=48, MSPE-adjusted, indicates that in 780 of the 10,000 simulations the MSPE-adjusted statistic was
greater than 1.65.



Table 2
Empirical Size:  DGP 2

Nominal Size = 10%

A. R=60
P=48 P=96 P=144 P=240 P=480 P=1200

MSPE-adjusted 0.101 0.085 0.081 0.083 0.082 0.089
MSPE-normal 0.023 0.003 0.001 0.000 0.000 0.000
MSPE-McCracken 0.136 0.098 0.062 0.057 0.036 0.019
CCS 0.244 0.188 0.159 0.132 0.118 0.102

B. R=120
P=48 P=96 P=144 P=240 P=480 P=1200

MSPE-adjusted 0.101 0.090 0.077 0.074 0.075 0.083
MSPE-normal 0.041 0.017 0.006 0.002 0.000 0.000
MSPE-McCracken 0.138 0.128 0.101 0.082 0.062 0.042
CCS 0.251 0.186 0.160 0.134 0.113 0.108

C.  R=240
P=48 P=96 P=144 P=240 P=480 P=1200

MSPE-adjusted 0.101 0.090 0.085 0.070 0.073 0.079
MSPE-normal 0.059 0.036 0.023 0.009 0.002 0.000
MSPE-McCracken 0.137 0.126 0.119 0.105 0.092 0.073
CCS 0.239 0.176 0.160 0.129 0.115 0.109

Notes:

1.  See the notes to Table 1.  

2. DGP 2 differs from DGP 1 in the variance-covariance matrix of (y,x)N.



Table 3
Empirical Size:  DGP 2 with Conditional Heteroskedasticity

Nominal Size = 10%

A.  GARCH
P=48 P=96 P=144 P=240 P=480 P=1200

MSPE-adjusted 0.101 0.089 0.076 0.074 0.078 0.085
MSPE-normal 0.039 0.018 0.007 0.001 0.000 0.000
MSPE-McCracken 0.137 0.127 0.099 0.081 0.067 0.055
CCS 0.255 0.191 0.158 0.132 0.118 0.109

B. Multiplicative conditional heteroskedasticity
P=48 P=96 P=144 P=240 P=480 P=1200

MSPE-adjusted 0.107 0.087 0.076 0.067 0.052 0.048
MSPE-normal 0.033 0.015 0.005 0.002 0.000 0.000
MSPE-McCracken 0.131 0.121 0.103 0.099 0.110 0.199
CCS 0.246 0.200 0.177 0.152 0.129 0.116

Notes:

1.  See the notes to Table 1.  The regression sample size R is 120.

2.  In the upper panel of results, the predictand yt+1 is a GARCH process, with the parameterization given
in equation (4.4).  In the lower panel, the predictand yt+1 has conditional heteroskedasticity of the form
given in equation (4.5), in which the conditional variance at t is a function of x2

t-1.



Table 4
Bootstrap Size

R=120, Nominal Size = 10%

A. Size, DGP 1
P=48 P=96 P=144 P=240 P=480 P=1200

MSPE-adjusted, std. normal 0.070 0.063 0.065 0.067 0.074 0.081
MSPE-adjusted, bootstrap 0.085 0.088 0.095 0.094 0.093 0.096
MSPE, bootstrap 0.090 0.094 0.101 0.101 0.099 0.100
CCS, bootstrap 0.111 0.105 0.107 0.106 0.105 0.099

B. Size, DGP 2
P=48 P=96 P=144 P=240 P=480 P=1200

MSPE-adjusted, std. normal 0.101 0.090 0.077 0.074 0.075 0.083
MSPE-adjusted, bootstrap 0.104 0.103 0.096 0.096 0.094 0.097
MSPE, bootstrap 0.106 0.107 0.100 0.098 0.097 0.099
CCS, bootstrap 0.153 0.128 0.120 0.109 0.098 0.099

Notes:

1. The entries for “MSPE-adjusted, std. normal” repeat the “MSPE-adjusted” results reported in Table 1
(panel A) and Table 2 (panel B).

2. The “bootstrap” entries rely on the percentile-t method, using the wild bootstrap of Gonçalves and
Kilian (2004).  The number of simulations is 10,000.  The number of bootstrap replications per simulation
is 999.  See text for additional details.

3.  See the notes to Table 1.



Table 5
Size Adjusted and Bootstrap Power 

R=120, Size = 10%

A. Size Adjusted, DGP 1
P=48 P=96 P=144 P=240 P=480 P=1200

MSPE-adjusted 0.345 0.464 0.554 0.677 0.854 0.984
MSPE 0.283 0.408 0.503 0.643 0.842 0.982
CCS 0.232 0.374 0.483 0.672 0.913 0.999

B. Bootstrap, DGP 1
P=48 P=96 P=144 P=240 P=480 P=1200

MSPE-adjusted 0.315 0.445 0.545 0.666 0.846 0.984
MSPE 0.268 0.394 0.500 0.645 0.842 0.981
CCS 0.249 0.381 0.495 0.679 0.917 0.999

C. Size Adjusted, DGP 2
P=48 P=96 P=144 P=240 P=480 P=1200

MSPE-adjusted 0.114 0.120 0.127 0.138 0.147 0.171
MSPE 0.119 0.122 0.131 0.142 0.158 0.184
CCS 0.104 0.114 0.125 0.142 0.203 0.351

D.  Bootstrap, DGP 2
MSPE-adjusted 0.118 0.123 0.122 0.133 0.141 0.165
MSPE 0.127 0.133 0.132 0.139 0.152 0.176
CCS 0.163 0.148 0.146 0.156 0.199 0.350

Notes:

1. The DGP is defined in equation 4.1, with: b=-2 (panels A and B) or b=0.365 (panels C and D); et+1 ~
i.i.d. N(0,1); xt ~ AR(1) with parameter 0.95; data are conditionally homoskedastic.  In each simulation,
one step ahead forecasts of yt+1 are formed from the martingale difference null and from rolling estimates
of a regression of yt on Xt  = (1,xt-1)N. 

2. In panels A and C, power is calculated by comparing the test statistics against simulation critical
values, calculated as the 90th percentile of the distributions of the statistics in the corresponding size
experiment reported in Table 1 (panel A) or Table 2 (panel C).

3. For description of the bootstrap procedure used in panels B and D, see the text and notes to Table 4.



Table 6
Forecasts of Monthly Changes in U.S. Dollar Exchange Rates

(1) (2) (3) (4) (5) (6)        (7) (8) (9)

  MSPE- MSPE-
country prediction   adjusted normal

sample ^
F2

1
^
F2

2 adj. ^
F2

2-adj ^
F2

1 -(^
F2

2-adj.) ^
F2

1 -^
F2

2 CCS

Canada 1990:1- 2.36 2.32 0.09 2.22  0.13  0.04
   2003:10 (0.08)

 1.78** 0.54†† 3.67

Japan 1990:1- 11.32 11.55 0.75 10.80  0.53 -0.23
   2003:10 (0.43)

 1.24 -0.52 5.23*

Switzerland 1985:1- 12.27 12.33 0.96 11.37  0.90 -0.06
   2003:10 (0.48)

 1.88** -0.13 2.43

U.K. 1985:1-   9.73 10.16 0.44 9.72  0.01 -0.43
   2003:10 (0.33)

 0.03 -1.27 0.78

Notes:

1. In column (3), ^
F2

1 is the out of sample MSPE of the “no change” or random walk model, which
forecasts a value of zero for the one month ahead change in the exchange rate.

2. In column (4), ^
F2

2 is the out of sample MSPE of a model that regresses the exchange rate on a constant
and the previous month’s cross-country interest differentials.  The estimated regression vector and the
current month’s interest differential are then used to predict next month’s exchange rate. Rolling
regressions are used, with a sample size R of 120 months.

3. In column (5), “adj.” is the adjustment term P-1GT
t=T-P+1(Xt+1N

^
$t)

2, where: P is the number of predictions,
P = 166 for Canada and Japan, P=226 for Switzerland and the U.K.; T=2003:10;  Xt+1=(constant, interest
differential at end of month t)N;  ^

$t is the estimated regression vector.

4. In columns (7)-(9), standard errors are in parentheses and t-statistics (columns (7) and (8)) or a P2(2)
statistic (column (9)) are in italics. Standard errors are computed as described in the text.  * and ** denote
test statistics significant at the 10 and 5 percent level, respectively, based on one sided tests using critical
values from a standard normal (columns (7) and (8)) or chi-squared (CCS) distribution.   In columns
(7)and (8), † and †† denote statistics significant at the 10 and 5 percent level based on McCracken’s
(2004) asymptotic critical values.

5. Data are described in the text.  See notes to earlier tables for additional definitions.



Figure 1
Density of Simulation MSPEs Under the Null, R=120, P Varying, DGP 1

A.  MSPE(1) - MSPE(2)
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B.  Average of (X*betahat)^2
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C.  MSPE(1) - [MSPE(2) - average of (X*betahat)^2]
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Figure 2
Density of Simulation MSPEs Under the Null, R Varying, P=144, DGP 1

A.  MSPE(1) - MSPE(2)
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0.00 0.02 0.04 0.06 0.08 0.10 0.12

0

20

40

60

80

100
R = 60

R = 120

R = 240

C.  MSPE(1) - [MSPE(2) - average of (X*betahat)^2]
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Figure 3
Density of Simulation MSPE-Adjusted Test Statistic Under the Null, DGP 1
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A.  R Varying, P=144
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B.  R=120, P Varying
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Figure 4
Density of Simulation MSPE Test Statistic (Unadjusted) Under the Null, DGP 1
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