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For if anyone, no matter who, were given the opportunity of choosing amongst all the nations of 
the world the beliefs he thought best, he would inevitably, after careful consideration of their 
relative merits, choose those of his own country.  Everyone without exception believes his own 
native customs, and the religion he was brought up in, to be the best…There is abundant 
evidence that this is the universal feeling about the ancient customs of one’s country. One might 
recall…an account told of Darius.   When he was king of Persia, he summoned the Greeks who 
happened to be at this court and asked them what they would take to eat the dead bodies of their 
fathers. They replied that they would not do it for any money in the world.  Later, in the presence 
of the Greeks…he asked some Indians…who do in fact eat their parents’ dead bodies, what they 
would take to burn them. They uttered a cry of horror and forbade him to mention such a 
dreadful thing. One can see by this what custom can do and Pindar, in my opinion, was right 
when he called it ‘king of all.’ 

 
Herodotus, The Histories (3.38)1 

                                                 
*Department of Economics, University of Wisconsin, 1180 Observatory Drive, Madison, 

WI 53706-1393. We thank the John D. and Catherine T. MacArthur Foundation, National 
Science Foundation, University of Wisconsin Graduate School and Vilas Trust for financial 
support.  Artur Minkin, Eldar Nigmatullin and Chih Ming Tan have provided outstanding 
research assistance. This paper is written in honor of Kenneth Arrow. 

1Taken from Herodotus, The Histories, A. de Selincourt, trans., New York: Penguin, 

1996. 

 

This paper provides a model of individual decisionmaking in the presence of social 

interactions.  By social interactions, we refer to interdependencies between individual decisions 

and the decisions and characteristics of others within a common group. In virtually any economic 

model, the decisions of one agent will be influenced by the behaviors and characteristics of 

others; what distinguishes the perspective we adopt is that the interdependences we study 

directly link individuals.  By way of contrast, agents in a market are influenced by a common 
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price that reflects the participation of each individual in the market.  The sorts of phenomena we 

study are different as these describe ways to formalize ideas such as peer group influences, 

whereby behaviors of one agent alter the preferences of others and are not mediated by how 

individuals affect prices in a market equilibrium.   As such, social interactions constitute an 

example of the type of externalities described in Arrow and Hahn (1971, chapter 6, section 2).  

Within economics, there has developed an increasing recognition that social interactions 

may play a major role in explaining a range of individual behaviors.  In many respects, the new 

literature on social interactions addresses a famous criticism of economics made in Granovetter 

(1985), 

 

“Classical and neoclassical economics operates…with an atomized and undersocialized 
conception of human action…The theoretical arguments disallow by hypothesis any impact of 
social structure and social relations…” (pg. 55) 

 

In fact, one of the appealing aspects of the new literature on social interactions is that it has 

facilitated the introduction of sociological concepts and perspectives into economic modeling.  In 

turn, the economics literature on social interactions has shown how these ideas may be 

formalized and extended using the formal rigor of economic theory.   More important, the 

approach we take represents a first step in an integration of individual-based and social-based 

explanations, a perspective whose importance is well described in Arrow (1994) 

 
“It is clear that the individualist perspective does play an essential role in understanding social 
phenomena.  Particularly striking is the emergent nature of social phenomena, which may be 
very far from the motives of the individual interactions. ” (pg. 3) 
 
As such, we regard the social interactions literature as a successful example of how social 

science benefits from the breaking down of disciplinary barriers. 

There is now a large body of theoretical and empirical studies of social interactions.  In 

terms of theory, two main approaches have been taken. One strand of the social interactions 

literature has focused on the implications of social interactions in predetermined groups.   

Akerlof (1997) and Brock and Durlauf (1999,2001a,b), for example, consider the role of the 

interactions structure within a group on group-level outcomes. Models such as Loury (1977) and 

Lundberg and Startz (1998) focus on the effects of social interactions within ethnic groups with 

specific attention to how differences in initial conditions have long run effects. In contrast, work 
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by Bénabou (1993,1996), Durlauf (1996a,b) and Hoff and Sen (2000) has primarily focused on 

the implications of social interactions for group formation, specifically in the context of 

residential neighborhoods.  In these models, children are influenced by the neighborhoods in 

which they grow up through factors such as the local tax base, the types of role models that are 

present and via peer group influences. Models of this type can produce poverty traps as poverty 

among parents is transmitted to children when children are consigned to neighborhoods whose 

interactions adversely affect their subsequent economic status; poverty among parents, because 

of its affect on children’s neighborhoods, thus transmits economic status across generations.  

One limitation of the existing theoretical models of social interactions is the relatively weak 

connections between these two approaches.2 

The empirical literature on social interactions has been dominated by attention to the 

effects of residential neighborhoods.  A wide range of analyses have produced regression 

evidence that links individual outcomes with neighborhood (i.e. groups defined by geographic 

proximity) characteristics; examples include Aizer and Currie (2002), Brooks-Gunn et al (1993), 

Corcoran et al (1992), Brewster (1994), Datcher (1982), Ginther, Haveman and Wolfe (2000), 

Ioannides and Zabel, (2002a,b), Nigmatullin (2002), Plotnik and Hoffman (1999), Sirakaya 

(2002), South and Baumer (2000), and South and Crowder (1999). Alternative strategies for 

uncovering neighborhood effects using aggregated data have been developed by Glaeser, 

Sacerdote, and Scheinkman (1996) and Topa (2001).  In addition, there is now a literature that 

moves beyond the assumption that geographic proximity determines interactions and attempts to 

identify which sorts of groups in fact produce social interactions. Aizer and Currie (2002) and 

Conley and Topa (2002) are interesting empirical analyses that compare alternative groups (e.g. 

groups defined by geographic proximity versus common ethnicity) in terms of the social 

interactions with which they are associated. 

Empirical work on neighborhood effects has been buttressed by two recent developments.  

The first is the use of “quasi-experimental” data produced by government interventions that alter 

the neighborhood choices of certain families.  Examples of such programs include the Gautreaux 

                                                 
2 See Becker and Murphy (2000) for a synthesis of various theoretical strands of the 

social interactions literature as well as for a valuable analysis of links between the two strands 

we have described. 
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program (Rosenbaum (1995) and Rosenbaum and Popkin (1991)) and the Moving to 

Opportunity Demonstration (Katz, Kling, and Liebman (2001), Ludwig, Duncan and Hirshfeld 

(2001)).  Each of these programs is interesting because each constitutes a government 

intervention in which a set of poor families are given incentives to move to more affluent 

neighborhoods, thereby permitting comparison with similar families who did not receive such 

incentives.  These studies generally find improved outcomes, especially for children, among 

families that move.   

The second is the development of a detailed data set that measures attitudes and beliefs 

across neighborhoods, called the Project on Human Development in Chicago Neighborhoods.  

As illustrated in Sampson, Morenoff, and Earls (1999) and Sampson, Raudenbush and Earls 

(1997), this data can illuminate some of the structural relationships that underlie the correlations 

that are found in other studies between neighborhood attributes and individual outcomes.  For 

example, these studies find that “collective efficacy,” by which they mean the willingness of 

neighborhood members to provide public goods that contribute to social order (one example is 

monitoring the children of neighbors) appears strongly associated with lower crime rates. 

A major weakness of the social interactions literature as it is currently constituted is the 

absence of strong connections between theory and empirics.  By this, we mean that there has 

been little effort to employ theoretical models of social interactions in structural estimation. Our 

previous work on social interactions, Brock and Durlauf (2001a,b) has attempted to address this 

limitation by developing models of binary choice that are directly econometrically 

implementable.  This paper extends that work to account for multinomial choice. This 

generalization leads to a number of new methodological insights as well as allows for the 

application of theoretical models of social interactions to a broader range of phenomena than was 

previously possible. 

Section I outlines a basic choice model with social interactions.  Section II analyzes a 

version of this general framework in which individual choices follow a multinomial logit 

structure. Section III considers the econometric implementation of the multinomial logit model 

we have developed with specific attention to identification problems that may arise when social 

interactions are present. Section IV discusses how to extend our basic framework to account for 

alternative error specifications.  We show that the basic theoretical and econometric features of 

the multinomial logit model apply quite generally. Section V considers how to integrate 
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decisions on behaviors with decisions on group memberships.  Section VI contains summary and 

conclusions.   A Technical Appendix contains all proofs. 

 

I. Modeling social interactions 

 

We consider I  individuals who are members of a common group g .  Our objective is to 

probabilistically describe the individual choices of each i, iω  (a choice that is taken from the 

elements of some set of possible behaviors iΩ ) and thereby characterize the vector of choices of 

all members of the group, ω .   

From the perspective of theoretical modeling, it is useful to distinguish between three 

sorts of influences on individual choices.  These influences have different implications for how 

one models the choice problem. These components are  

 

ih , a vector of deterministic (to the modeler) individual-specific characteristics associated with 

individual i ,   

 

iε , a vector of random individual-specific characteristics associated with i , 

 

and  

 

( )e
iµ ω , the subjective beliefs individual i  possesses about behaviors in the group, expressed as 

a probability measure over those behaviors.  

 

Each of these components will be treated as a distinct argument in the payoff function that 

determines individual choices.  As we shall see, each plays a distinct role in the analysis. 

The deterministic and random individual-specific characteristics capture the “standard” 

determinants of individual choices that one finds in economic models.  Hence, if iω  represents 

whether one is deciding between college and employment, or military enlistment, ih  may include 

variables such as educational attainment of one’s parents, or the quality of one’s high school; the 
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iε  vector may include unobservable variables such as “true” intellectual ability or tastes.   The 

distinction between deterministic and random characteristics will prove to play an important role 

in both the theoretical and the econometric analysis of the model. 

From the perspective of individual decisionmaking, what distinguishes our framework 

from the standard discrete choice approach is the possibility that individual choices are affected 

by ( )e
iµ ω , the beliefs an individual has about others.  This interdependence in fact lies at the 

heart of the new literature on social interactions.  In modeling social interactions across 

individuals, we assume that these interactions are mediated by beliefs, i.e. individual i  is 

influenced by what he thinks others are doing, not by their actual behavior per se.  This 

assumption provides a great deal of analytical convenience.  Its appropriateness will depend on 

the context under study, and in particular the size of the group in which interactions occur.  So, 

while the assumption seems relatively natural when one is interested in social interactions at an 

ethnic group level, it is clearly problematic in describing interactions between a pair of best 

friends. 

Individual choices iω  are characterized as representing the maximization of some payoff 

function V , 

 

 ( )( )arg max , , ,
i

e
i i i iV hλω λ µ ω ε∈Ω=  (1) 

 

Thus, we treat the decision problem facing an individual as a function of preferences (embodied 

in the specification of V ), constraints (embodied in the specification of iΩ ) and beliefs 

(embodied in the specification of  ( )e
iµ ω ).  As such, our analysis is based on completely 

standard microeconomic reasoning to describe individual decisions. 

This basic choice model is closed by imposing self-consistency between subjective 

beliefs ( )e
iµ ω  and the objective conditional probabilities ( )| iFµ ω , where iF  denotes the 

information available to agent i .  We assume that agents know the deterministic characteristics 

of others as well as themselves and also understand the structure of the individual choice 

problems that are being solved.  This means that subjective beliefs must obey 
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 ( ) ( )( ),  e e
i j jh jµ ω µ ω µ ω= ∀  (2) 

 

where the right hand of this equation is the objective conditional probability measure generated 

by the model; self-consistency is equivalent to rational expectations in the usual sense.  From the 

perspective of modeling individual behaviors, it is typically assumed that agents do not account 

for the effect of their choices on the decisions of others via expectations formation. In this sense, 

this framework embodies an expectations-based version of a Nash equilibrium.  

This general structure illustrates how social interactions models preserve the individual 

choice-based logic of microeconomics.  Their novelty lies in the interdependences in choices that 

are induced by including ( )e
iµ ω  as an argument in individual payoffs and imposing self-

consistency.  From the perspective of economic theory, the interesting properties of these models 

emerge as a result of this interdependence. 

   

II. A multinomial logit approach to social interactions  

i. basic setup 

 

In order to understand the implications of social interactions for the equilibrium 

distribution of choices within a population, it is necessary to specialize this general behavioral 

description.  We do this in three steps.   

First, we assume that each agent faces a common choice set with L  discrete possibilities, 

i.e. { }0,1, , 1i LΩ = −K .  The common choice set assumption is without loss of generality, since 

if agents face different choice sets, one can always assume their union is the common set and 

then specify that certain choices have payoff of −∞  for certain agents. 

Second, we assume that each choice l  produces utility for i  according to: 

 

 , , , ,
e

i l i l i l i lV h Jp ε= + +  (3) 
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Following the notation of the previous section, ,i lh  denotes the deterministic private utility agent 

i  receives from the choice, ,
e
i lJp  denotes the social utility from the choice, and ,i lε  denotes 

random private utility from the choice.  The social utility term contains both a measure of the 

strength of social utility, J , and the agent’s subjective expectation of the percentage of agents in 

the neighborhood who make the same choice ,
e
i lp . This is the natural generalization of the 

conformity effect model developed in Brock and Durlauf (2001a,b) and is also employed in 

Bayer and Timmins (2001).   

Third, we assume that the errors ,i lε  are independent across i  and are doubly 

exponentially distributed with index parameter β , i.e. 

( ) ( )( ), exp expi lµ ε ς βς γ≤ = − + (4)

 

where γ  is Euler’s constant. This assumption is of course standard in the discrete choice 

literature and is the basis of multinomial logit specifications; see Anderson, de Palma and Thisse 

(1992) for discussion of the substantive behavioral restrictions that this specification imposes. 

The parameter β  measures the dispersion in the random utility terms; higher β  implies lower 

dispersion. 

 These assumptions may be combined to produce a full description of the choice 

probabilities for each individual, ( ), ,, e
i i j i jl h p jµ ω = ∀ .  The probability that agent i  chooses l  

equals the probability that the payoff associated with this choice is maximal among all payoffs 

available to the agent, i.e. 

( ) ( ), , {0... 1} , , , , ,, arg max ,e e e
i i j i j j L i j i j i j i j i jl h p j h Jp l h p jµ ω µ ε∈ −= ∀ = + + = ∀ (5)

  

This is a standard calculation under the double exponential assumption for the random payoff 

terms and leads to the canonical multinomial logit probability structure (cf. Anderson, dePalma 

and Thisse (1992, section 2.6)): 
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 ( ) ( )
( )

, ,
, , 1

, ,
0

exp
,

exp

e
i l i le

i i j i j L
e

i j i j
j

h Jp
l h p j

h Jp

β β
µ ω

β β
−

=

+
= ∀ =

+∑
 (6) 

 

When there are only two choices, this is the model studied in Brock and Durlauf (2001a,b).  

Since the random payoff terms are independent across agents, the joint choice probabilities may 

be written as 

 

( ) ( )
( )

, ,
1 1 , , 1

, ,
0

exp
,..., , ,

exp

i i

e
i l i le

I I i j i j L
ei

i j i j
j

h Jp
l l h p i j

h Jp

β β
µ ω ω

β β
−

=

+
= = ∀ =

+
∏
∑

(7)

   

Finally, we characterize self-consistency as defined by eq. (2).  We assume that the 

information set of each agent includes both the empirical distribution of deterministic payoff 

terms across choices and agents as well as the probability distribution from which random utility 

terms are drawn. We also assume that the number of agents is sufficiently large that each agent 

ignores the effect of his own choice on the average.3 As self-consistent beliefs imply that the 

subjective choice probabilities e
lp  equal the objective expected values of the percentage of 

agents in the group who choose l , lp , the structure of the model implies that 

 

 
( )
( )

,
, 1

,
0

exp

exp

i l le
i l l hL

i j j
j

h Jp
p p dF

h Jp

β β

β β
−

=

+
= =

+
∫
∑

 (8) 

 

                                                 
3 In cases where the number of agents is small, it is perhaps more natural to express an 

individual’s payoff as depending on the actual choices of others. There are subtle issues that need 

to be dealt with in the small numbers case as this essentially means that agents know the ,i lε ’s 

for others in the group; see Kooreman and Soetevent (2002). Nevertheless, a small group 

approach is closely related to our framework. 
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where hF  is the empirical probability distribution for the vector of deterministic terms ,i lh .  It is 

straightforward to verify that under the Brouwer fixed point theorem, at least one such fixed 

point exists, so this model always has at least one equilibrium set of self-consistent aggregate 

choice probabilities. 

 

ii. properties 

 

To understand the properties of this model, it is useful to focus on the special case where 

, 0 ,i lh i l= ∀ .  For this special case, the choice probabilities (and hence the expected distribution 

of choices within a neighborhood) are completely determined by the compound parameter Jβ .  

An important question is whether and how the presence of interdependencies produces multiple 

equilibria for the choice probabilities in a neighborhood. In order to develop some intuition as to 

why the number of equilibria is connected to the magnitude of Jβ , it is helpful to consider two 

extreme cases for the compound parameter, namely 0Jβ =  and Jβ = ∞ .  We consider each 

case in turn.  

For the case 0Jβ = , one can immediately verify that there exists a unique equilibrium for 

the aggregate choice probabilities such that 1
lp

L
=  l∀ . This follows from the fact that under the 

assumption that , 0 ,i lh i l= ∀ , all individual heterogeneity in choices come from the realizations 

of ,i lε , a process whose elements are independent and identically distributed across choices and 

individuals.  Since all agents are ex ante identical, the aggregate choice probabilities must be 

equal.   

The case Jβ = ∞  is more complicated.  The set of aggregate choice probabilities 1
lp

L
=  

is also an equilibrium if Jβ = ∞  since conditional on these probabilities, the symmetries in 

payoffs associated with each choice that led to this equilibrium when 0Jβ =  are preserved as 

there is no difference in social utility across choices.  However, this is not the only equilibrium. 

To see why this is so, observe that for any pair of choices l  and l′  for which the aggregate 

choice probabilities are nonzero, it must be the case that 
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 ( )
( )

exp
exp

ll

l l

Jpp
p Jp

β
β′ ′

=  (9) 

 

for any Jβ . This follows from the fact that each agent is ex ante identical.  Thus, it is immediate 

that any set of equilibrium probabilities that are bounded away from 0 will become equal as 

Jβ ⇒ ∞ .  This condition is necessary as well as sufficient, so any configuration such that 

1
lp

b
=  for some subset of b  choices and 0lp =  for the other L b−  choices is an equilibrium.  

Hence, for the case where J = ∞ , there exist 
1

2 1
L

L

b

L
b=

 
= − 

 
∑  different equilibrium probability 

configurations.   Recalling that β  indexes the density of random utility and J measures the 

strength of interdependence between decisions, this case, when contrasted with 0Jβ =  

illustrates why the strength of these interdependences and the degree of heterogeneity in random 

utility interact to determine the number of equilibria. 

These extreme cases may be refined to produce a more precise characterization of the 

relationship between the number of equilibria and the value of Jβ . In general, this relationship is 

highly complex as it is necessary to account for the distribution of ,i lh  across i and l  within a 

given group in order to develop precise statements as to how the model parameters determine the 

number of equilibria.   Theorem 1 characterizes how the magnitude of Jβ determines the number 

of equilibria in this case. 

  

Theorem 1.  Multiple equilibria in the multinomial logit model with social interactions 

 
Suppose that individual choices are characterized by eq. (6) with self-consistent beliefs, i.e., that 

beliefs are consistent with eq. (8).  Assume that ,  ,i lh k i l= ∀ . Then there will exist at least three 

self-consistent choice probabilities if 1J
L

β > . 
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When 2L = , this theorem reduces to the characterization of multiple equilibria with binary 

choices in Brock and Durlauf (2001a).4  

In general, it is difficult to extend Theorem 1 to account for cases where ,i lh  is 

nonconstant.  The reason for this is that the equilibrium aggregate choice probabilities induced 

by the interaction of private incentives and social incentives will in general depend on the 

complete distribution of ,i lh  across choices and individuals.  There are some special cases where 

one can establish precise results.  For example, suppose that 0il ih h g− = {1... 1}l L∀ ∈ − . In this 

case, the private deterministic utility of choice 0 differs from that of the other choices.  In this 

case, the proof of Proposition ii in Brock and Durlauf (2001b) implies that if 1J
L

β >  there exists 

a threshold T  for g such that if 0 g T< <  there are multiple equilibria whereas if g T>  the 

equilibrium is unique.   

There is a common basic intuition for Theorem 1 and similar results in Brock and 

Durlauf (2001a,b) that relate the number of choice equilibria to the interplay between the 

strength of social utility, J, the levels of deterministic private payoffs, ,i lh , and the parameter that 

indexes the degree of dispersion in random private utility, β .  Multiple equilibria arise when the 

social utility effects on individual behavior can induce self-consistent bunching on a subset of 

choices.  A positive J  induces a tendency towards self-consistent bunching.  Such a tendency is 

counteracted by the private utility components.  One way in which this tendency towards self-

consistent bunching may be countered is via the distribution of ,i lh ; these private deterministic 

payoff components can, if sufficiently skewed, render the aggregate choice probabilities unique.  

A similar effect can occur via the realizations of the random payoff terms ,i lε .  With respect to 

Theorem 1, if the random utility components are sufficiently dispersed (i.e. β  is small), then a 

                                                 
4 Brock and Durlauf (2001a,b) use slightly different normalizations for the analysis of 

binary choice.  Specifically, choices are indexed 1−  and 1 and the social utility component is 

written as Jm  where m  is the expected value of the choices in the group. For this reason, the 

threshold theorem in Brock and Durlauf (2001a,b) is stated in terms of whether or not 1Jβ >  

rather than 1
2
Jβ >  as is done here.  
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sufficient percentage of agents will have draws of random utility such that their choices are 

dominated by one of the ,i lε ’s regardless of the strength of social utility, leaving too small a 

percentage of agents to engage in self-consistent bunching, as the social utility associated with 

the bunching depends on the percentage of agents that make the choice.  Put differently, the 

presence of social utility effects, considered in isolation, do not identify what choices an 

individual makes, only that choices across individuals will be correlated.  This induces a degree 

of freedom in the determination of what choices are actually made. (This is the same intuition for 

the presence of multiple equilbria in various coordination failure models; see Cooper (1999) for a 

survey.)  The individual-specific deterministic and random terms, considered in isolation, do 

produce unique choices for the population.  The interplay between the strength of these 

influences determines the number of equilibrium choice configurations.  

An interesting feature of Theorem 1 is the fact that the condition for multiple equilibria 

depends on the number of choices.  As such, the theorem explains simulation evidence in Bayer 

and Timmins (2001) which indicated that multiple equilibria seem less likely in models when 

more choices are involved.  This theorem makes their findings precise and provides some insight 

as to why they occur.  Intuitively, the reason that the number of choices raises the threshold 

value of Jβ  necessary for multiple equilibria is the assumption that the random utility terms are 

independent.  This independence means that the percentage of individuals in a population whose 

behavior is determined by their random utility (because of an extremely large draw for one of the 

choices relative to the others) increases in the number of choices, leaving a smaller percentage of 

the population susceptible to self-consistent bunching due to the influence of lJp . Higher 

percentages of agents whose behavior is determined by the random utility draws will reduce the 

potential for social utility to produce multiple self-consistent equilibria. 

 

iii. cooperative equilibria 

 

In this section, we consider the formulation of a cooperative analog to the noncooperative 

model we have studied in Section II.ii. The welfare properties of the noncooperative equilibria 

are best understood when explicitly contrasted with the equilibria that would occur under some 

sort of cooperation. One way to do this is to develop an analogous social planner’s problem for 

the set of choices under consideration. Such an approach requires the use of relatively 
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sophisticated models and techniques from the statistical mechanics literature.  Following ideas 

originally developed in Brock (1993) and subsequently elaborated in the present context in 

Brock and Durlauf (2001a), Brock and Durlauf (2002) proposed a way of formulating the 

behavior of a particular benign social planner (i.e. one whose objective function includes the sum 

of the deterministic payoff components of the individual agents) in such a way that the social 

planner's choice of configuration ω  is given by a probability measure ( )µ ω  of the form 

  

 ( ) ( )( )
1 1

1 2
,

1 0 0

ˆexp 1
I L L

I i l i l
i l l

Z h l I J pµ ω β ω β
− −

−

= = =

 = = + 
 
∑∑ ∑  (10) 

 

In this expression, IZ  is a normalization and the ˆ lp ’s are the empirical percentages of choices in 

the group, i.e. 

 

( )1

1

ˆ 1
I

l i
i

p I lω−

=

= =∑ (11)

 

 where ( )1 i lω =  denotes the indicator function for the choice of  l  by agent i . 

In comparison with the probability measure that characterizes choices for noncooperative 

equilibrium (eq. (7)), the important difference is that the social planner's problem uses empirical 

probabilities in modeling the interdependence of individual choices whereas the noncooperative 

equilibrium is based on population probabilities (i.e. the agents’ rational expectations concerning 

the choices of others.)  This difference is to be expected since a planner will account for how the 

choices of one actor affect others in ways that are ruled out in the noncooperative case.  This 

feature makes the probability structure much more difficult to analyze.  For example, the joint 

probability measure for the planner does not factor into a product of marginal probabilities (each 

representing one individual’s choice) as it does in the noncooperative case.  This means that 

there is a direct channel by which each agent’s choice becomes correlated with the choices of 

others.  The nature of this direct dependence as I ⇒ ∞  plays a key role in determining the 

aggregate behavior of the population.  
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We conjecture that as *ˆ,   l w lI p p l⇒ ∞ ⇒ ∀ , ( w  denotes weak convergence), the vector 

*p with typical element *
lp  solves  

 

 * 1arg max lim lnp I Ip I Z−
⇒∞=  (12) 

 

The Brock and Durlauf (2002) assertion (their equation (12)) that (12) holds is incorrect 

as stated because the sufficient conditions for (12) to hold are left out.  For example, when 2L =  

and , 0i lh = , if 1
2
Jβ >  then there are two global maxima to (12) which means that the limit of 

the sample mean p̂ is a mixture with a two point support; Ellis (1986 p. 100) provides a 

complete analysis of the binary case when ,i lh h= . For the binary case with random ,i lh , results 

by Amaro de Matos and Perez (1991) may be adapted to locate sufficient conditions for a result 

such as (12) to hold.  In fact, for the binary choice case, these results suggest that the usual 

central limit theory for suitably normalized sums such as ( ( ))i i
i

Eω ω−∑  needs to be modified. 

Although the usual central limit theorem results hold as long as 1) the value of Jβ  does not 

equal the critical value around which multiple equilibria emerge and 2) ,i lh  is constant (Ellis 

(1985, Theorem V.9.4)), the situation changes when the variance of ,i lh  is positive even when 

the global maximum of (10) is unique and various regularity conditions are imposed (Amaro de 

Matos and Perez (1991, Theorem 2.8, (a))). More precisely, the appropriately normalized sum of 

deviations around the mean will converge to a mixture of normals, not a normal distribution as 

occurs in standard cases.  Further, small changes in the distribution of .i lh  can lead to large 

differences in the global maximum of (12).  

We do not know whether a result such as (12) holds for the multinomial case with general 

,i lh . For the case where the global maximum to (10) is unique, there are a number of existing 

results that suggest that our conjecture is true.  For example, Ellis and Wang (1990) analyze the 

model (10) where , 0i lh =  ,i l∀ and show there is a threshold TJ  such that if TJ J< , then 

ˆ lp converges weakly to 1
L

 .  We will pursue a full analysis of (12) in subsequent work. 
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III. Econometric implementation 

 

i. Basic framework  

 

An important feature of the theoretical framework is that it can also be used for 

econometric analysis.5  The multinomial logit property for the individual choices allows one to 

construct a likelihood function for data taken for I  individuals who are sampled across groups.  

Since a typical data set will contain observations on individuals in different groups, we 

generalize our notation so that ( )g i  denotes the group of agent i ; ω  is now the vector of 

choices in a given cross-group sample of individuals. Finally, each individual within a group is 

modeled as possessing identical beliefs about the percentage of choices within the group, so that 

for choice l within group ( )g i  each group member shares a common belief concerning the 

expected percentage of group members that are choosing l , ( ),
e
g i lp .  Following Manski (1993), 

the dependence of individual behavior on ( ),
e
g i lp  is known as an endogenous effect, in order to 

highlight the notion that the (expected) choices of one agent influence the choices of another. 

In empirical work on neighborhood effects the generic deterministic private incentive ,i lh  

is usually assumed to depend on two types of observables: an r-dimension vector of individual 

characteristics iX  and an s-dimension vector of neighborhood characteristics ( )g iY , also known 

as contextual effects. Manski (1993) provides the first formal discussion of this dichotomy, 

which is irrelevant to the development of the theory of social interactions but has important 

implications for econometric analysis. Operationally, it is standard to assume 

 

                                                 
5 A range of econometric issues that arise for models of social interactions have been 

studied in Brock and Durlauf (2001a,b), Manski (1993), and Moffitt (2001). Brock and Durlauf 

(2001b) is the study that most closely focuses on issues concerning discrete choice models, also 

extending the analysis of identification to duration data. 
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 ( ), .i l l l i l g ih k c X d Y′ ′= + +  (13) 

 

There is no necessary reason why the same elements of iX  and ( )g iY  should affect the payoff of 

each choice; one can allow for this by setting particular elements of lc  and ld  to zero.   

Under the assumption that ,i lε  is independent of iX  and ( )g iY  ,i l∀ , the likelihood 

function for a collection of choices ω  will equal 

 

 ( ) ( )( ) ( )1
,exp 1e

I l l i l l ig i g i l
li

Z k c X d Y J p lβ β β β ω−  ′ ′+ + + = 
 
∑∏  (14) 

 

where IZ  is the normalization 

 

( ) ( )( ),exp e
I l l i l lg i g i l

li

Z k c X d Y J pβ β β β ′ ′= + + + 
 
∑∏ (15)

 

and beliefs are subject to a set of constraints on the subjective beliefs for members of each group 

( )g i , 

 

 ( ) ( )( )( )( ), ( ),, E , ,
g i

e e
g i l X g i lg i l g ip p F Y p l= ∀  (16) 

 

where 
( )g iXF is the empirical distribution of iX  within group ( )g i  and expectations are formed on 

the basis of the probabilities defined by (15). This set of constraints imposes self-consistency in 

expected choice probabilities across groups and choices in the way that corresponds to the 

analysis in Section II.   

As is standard for multinomial logit models, the complete set of model parameters is not 

identified.  It is therefore necessary to impose some normalizations; we follow McFadden (1984, 

p. 1413) and impose the normalizations that 0 0 0 00,  0,   0 , 0k c d J= = = =  and =1β . 
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ii. identification 

 

As originally recognized and analyzed in Manski (1993) and further analyzed in Brock 

and Durlauf (2001b), Minkin (2002) and Moffitt (2001), there are possible identification 

problems in social interactions models due to the relationship between contextual effects ( )g iY  

and the equilibrium expected group choice probabilities ( ),g i lp . Specifically, Manski (1993) 

shows how for a class of linear models of group effects, collinearity between particular 

contextual effects and endogenous effects (in our context, the ( ),g i lp ’s) that represent self-

consistent beliefs about aspects of behaviors in the group can induce nonidentification.  

However, in contrast to the linear case, identification can hold for our model, as described in the 

following theorem. 

 

Theorem 2. Identification of the multinomial choice model with neighborhood effects 

 

Let the true data generating process be given by (14)-(16) with the normalization   

0 0 0 00,  0,   0 , 0k c d J= = = =  and =1β .  Assume  

 

i) the joint support of ( ),i g iX Y  is not contained in a proper linear subspace of r sR +  

ii) the support of ( )g iY  is not contained in a proper linear subspace of sR ,  

iii) no linear combination of elements of iX  and ( )g iY  is constant,  

iv) for each choice l , there exists at least one group lg  such that conditional on 
lgY , iX  is 

not contained in a proper linear subspace of  rR ,  

v) none of the elements of ( )g iY  possesses bounded support,  

vi) ( ),g i lp  is not constant across neighborhoods,  

vii) ,i lε , the random utility terms for each individual, are independent of his associated iX  

and ( )g iY  and independent and identically distributed across choices and individuals.  
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Then the true set of model parameters ( )1 1 1 1 1 1 1 1, , , , , , , ,L L L Lk c d J k c d J− − − −K  is identified relative to 

any distinct alternative. 

 

The proof of this theorem may be found in the appendix and is a generalization of a 

theorem on identification of neighborhood effects for binary choices found in Brock and Durlauf 

(2001a,b).  The key to identification in this model is that, because models of discrete choice are 

inherently nonlinear in the various control variables (since choice probabilities are bounded), 

contextual effects and endogenous effects (in this case, the choice probabilities) cannot be 

linearly dependent.  What the theorem in essence requires is three things. First, it is necessary 

that the data contain sufficient intraneighborhood variation within at least one neighborhood to 

ensure that lk  and lc  are identified l∀ .  Second, there must be enough interneighborhood 

variation in ( )g iY  to ensure that ld  and lJ  are identified l∀  because of the nonlinear relationship 

between contextual effects and endogenous effects.  Third, there cannot be collinearity between 

the regressors contained in iX  and ( )g iY , so that individual and contextual effects may be 

distinguished.   

The conditions of the Theorem are sufficient, and clearly one could find weaker ones 

than those we have employed. An advantage of the conditions we have used is that they make 

clear what underlying properties are needed for identification and so should provide a guide to 

developing weaker conditions if needed in a particular context.  

The identification theorem applies to more general models than that studied in Section 

III.ii. as the econometric model allows for a distinct lJ  for each choice.  This is appealing as one 

can easily imagine cases where the payoff from conforming to the behavior of others depends on 

the nature of the choice.  For example, if one is choosing between a solitary and a group activity, 

one would intuitively expect the value of lJ  to depend on the choice.   

 

iii. extensions 

 

Identification may also be established for the case where individual decisions depend on 

the expected percentages of individuals making each of the other choices as well as on the 
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expected percentage of individuals making that choice. Formally, this means replacing (14) and 

(15) with 

( ) ( )( ) ( )1 exp 1e
I l l i l l ig i g i

li

Z k c X d Y J p lβ β β β ω−  ′ ′ ′+ + + = 
 
∑∏ (17)

 

and 

( ) ( )( )exp e
I l l i l lg i g i

li

Z k c X d Y J pβ β β β ′ ′ ′= + + + 
 
∑∏ (18)

 

For (17) and (18), lJ  is a vector ( )1, 1,...l L lJ J −  and represents the weights, conditional on choice l  

that agent i  assigns to the percentage of the population making each of the choices; ( )
e
g ip  is the 

vector of expected choice percentages. Such a generalization is also appealing in various 

contexts.  Suppose one is making a choice of religious affiliation in a population. It might be the 

case that the adherence to one affiliation is affected by the percentages of the population that 

adhere to certain other denominations For example, adherence to a particular affiliation that 

believes in creationism may be affected by the percentage of adherents to other Christian 

denominations that possess similar beliefs.6  This generalization is also interesting because it 

allows for the possibility that there is negative social utility associated with particular cross-

choice effects.7  Hence, the expected percentage of the population making one choice can 

negatively affect the payoff for other choices.  To extend our earlier example, this would allow 

for the expected percentage of religious believers in a population to reduce the payoffs associated 

                                                 
6 The existence of self-consistent equilibria under these more general forms of 

endogenous social interactions is a consequence of Brouwer’s fixed theorem in the same way as 

was the case for the initial multinomial logit model. 
7 In the previous models we have analyzed, J and lJ  are allowed to take on negative 

values, but no cross-choice effects are present. 
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with agnosticism or atheism, whereas no cross-choice effects exist between these two 

possibilities.  

 The conditions for identification for the model defined by (17) and (18) with expectations 

described by (16) is very similar to that of Theorem 2. Formally, we have the following 

corollary. 

 

Corollary 1. Identification for generalized multinomial logit model with social interactions 

 

Suppose that individual choice is described by eq. (17) with self-consistent beliefs defined by eq. 

(16). Denote ( ), ( ), ( ),0g i l g i l g im p p= − .  If, in addition to the assumptions found in Theorem 2, the 

support of the set of vectors ( )( ) ( ),1 ( ), 1,...g i g i g i Lm m m −=  does not lie in a proper linear subspace of 

1LR − , then the true set of model parameters ( )1 1 1 1 1 1 1 1, , , , , , , ,L L L Lk c d J k c d J− − − −K  is identified 

relative to any distinct alternative. 

 

 Intuitively, the additional condition in the Corollary adds sufficient variability in 

aggregate choice probabilities to allow for identification of the individual elements of lJ .  This 

additional variability allows us to mimic the proof of Theorem 2 and apply it to Corollary 1 as 

shown in the Technical Appendix. 

Finally, it is worth noting that the multinomial and binary choice models contain an 

interesting difference with respect to the presence of zero restrictions on the model parameters.  

Unlike the binary choice model, for the multinomial choice model there may be zero restrictions 

on particular elements of , , ,l l l lk c d J  that apply to one choice but not another.  This means, for 

example, that a variable that is relevant for two of the choices may be known to be irrelevant for 

the others.  However, since choices are determined by payoff maximization as in (1), the absence 

of a regressor in the payoff for a given possibility does not mean that it is irrelevant to whether 

that possibility is chosen.  This reasoning suggests that there may be ways to employ regressors 

that are omitted from given choice-specific payoffs to identify those choice parameters. This may 

also prove to be a route for finding choice-specific instrumental variables as needed in various 

forms of the model.   
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IV. Multinomial choice under alternative error assumptions 

 

The basic logic of the multinomial model is straightforward to generalize.  This can be 

seen if one considers the preference structure 

 

 1
, , , ,

e
i l i l i l i lV h Jp β ε−= + +  (19) 

 

This is the same preference structure we worked with earlier, except that β  is now explicitly 

used to index the intensity of choice (in the McFadden sense) rather than as a parameter of the 

distribution of the random payoff term ,i lε .  We assume that these unobserved utility terms are 

independent and identically distributed with a common distribution function ( )Fε ⋅ . 

For this model, the probability that agent i  makes choice l  is  

 

 
( ) ( )

( ) ( )
,0 , , ,0 , ,0

, 1 , , , 1 , , 1

,...,e e
i i l i l i i l i

e e
i L i l i l i L i l i L

h h J p p

h h J p p

ε ε β β
µ

ε ε β β− − −

 − ≤ − + −
 
  − ≤ − + − 

 (20) 

 

Following Anderson, dePalma, and Thisse (1992, pg. 36), conditional on a realization of ,i lε , the 

probability that l  is chosen is 

 

 ( ), , , , ,
e e

i l i j i l i j i l
j i

F h h Jp Jpε β β β β ε
≠

− + − +∏  (21) 

 

which immediately implies that the probability of the choice l  without conditioning on the 

realization of ,i lε  is 

 

 ( ), , , , ,
e e

i l i l i j i l i j
j l

p F h h Jp Jp dFε εβ β β β ε
≠

= − + − +∏∫ . (22) 
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Eq. (22) provides a multinomial choice model whose structure is fully analogous to the 

multinomial logit structure developed in Sections II and III. Under self-consistency, the 

aggregate choice probabilities of this general multinomial choice model are the solutions to  

( )l l j l j h
j l

p F h h Jp Jp dF dFε εβ β β β ε
≠

= − + − +∏∫ ∫ (23)

 

 As in the multinomial logit case, the compound parameter Jβ  plays a critical role in 

determining the number of self-consistent equilibrium choice probabilities lp .  This finding is 

formalized in Theorem 3. 

 

Theorem 3. Uniqueness versus multiplicity of self-consistent equilibria in multinomial 

choice models  

 

Suppose that individual choices and associated self-consistent equilibria are described by (22) 

and (23).  Assume that , 0i lh =  ,i l∀ and ,i lε  are independent across i  and l . There exists a 

threshold T such that if J Tβ < , then there is a unique self-consistent equilibrium, whereas if 

J Tβ > there exist at least three self-consistent equilibria. 

 

 The relationship between Jβ  and the number of equilibria is less precise than was found 

in Theorem 1, the multinomial logit case, as Theorem 3 does not specify anything about the way 

in which L , the number of available choices, affects the number of equilibria.  This lack of 

precision is to be expected since we did not specify the distribution of the errors. 

One can also develop an analog to the identification results we have obtained for the 

multinomial logit model.  We will work with the same normalizations as used in the multinomial 

logit case and will again assume that ,i lε  is independent of iX  and ( )g iY  ,i l∀  .  Under self 

consistency, eq. (22) defines a continuous mapping (23) from the simplex  
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( )0 1,..., | 0, 0,..., 1, 1def L l l
l

S p p p j L p−
 = ≥ = − = 
 

∑ (24)

 

into itself.  Assume that this mapping is globally one-to-one.  This is a “high level” assumption 

in the sense that it is an assumption that is imposed on the choice probabilities; ideally it is 

preferable to place assumptions on the payoff function and show that such a condition holds.  

However, for our purposes, the assumption should not be regarded as too extreme as it holds for 

standard cases such as the multinomial logit.   

Global invertibility provides a route to identification.  Recall that nonidentification means 

that there exist two sets of parameters that produce the same choice probabilities ,i lp  and hence 

the same choice probability differences , ,0i l ip p− .  It is immediate that this invariance requires 

that if there exist two distinct sets of parameters ( )1 1 1 1 1 1 1 1, , , , , , , ,L L L Lk c d J k c d J− − − −K  and 

( )1 1 1 1 1 1 1 1, , , , , , , ,L L L Lk c d J k c d J− − − −K  that are observationally equivalent in the sense that the 

individuals choice probabilities they induce are equal, that  

 

( ) ( ), ( ), 0 , ( ), 0l l i l l g i l l l l i l l g i l lk c X d Y J p p k c X d Y J p p′ ′ ′ ′+ + + − = + + + − . (25)

 

Eq. (25) is the same condition that was analyzed in the proof of Theorem 2 (compare with (A.7) 

in the Technical Appendix).  The proof of Theorem 2 can therefore be adapted step by step to 

this case, allowing us to state Theorem 4. 

 

Theorem 4. General parametric identification for the multinomial choice model   

 

Let the true data generating process be given by (17)-(21) with the normalization   

0 0 0 00,  0,   0 , 0k c d J= = = =  and =1β .  Assume that the error distribution Fε  is known.  

Assume that the mapping defined by (23) is globally one-to-one.  Then the true set of model 

parameters ( )1 1 1 1 1 1 1 1, , , , , , , ,L L L Lk c d J k c d J− − − −K  is identified relative to any distinct alternative 

under the same assumptions ...i vii  as found in Theorem 2. 
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 Taken together, Theorems 3 and 4 show that our basic analysis of social interactions 

using the multinomial logit model are not driven by the specific random payoff distribution that 

is assumed but rather stem from the underlying logic of the model.8 

 

 

V. Group choice and behavior choice 

 

Our analysis so far has treated groups as predetermined.  For contexts such as ethnicity or 

gender this is presumably appropriate. However, in other contexts, such as residential 

neighborhoods, group memberships are themselves presumably influenced by the presence of 

social interactions effects.  Hence a complete model of the role of social interactions on 

individual and group outcomes requires a joint description of both the process by which groups 

are formed and the subsequent behaviors they induce.  As yet, the literature on social interactions 

has not fully developed this joint approach.  In particular, analyses such as Glaeser, Sacerdote, 

and Scheinkman (1996) and Brock and Durlauf (2001a,b) that focus on the micro structure of 

social interactions using interacting particle systems methods, have treated the interaction 

structures under study as exogenous.  In contrast, models such as Bénabou (1993,1996) and 

Durlauf (1996a,b) that have focused on the determinants of groups (in both cases neighborhoods) 

have been less concerned with the modeling of the structure of social interactions.  

Further, the failure to account for the way groups form may have important econometric 

implications.  As discussed in Brock and Durlauf (2001b), and Manski (2000) and Moffitt 

(2001), endogenous neighborhood choice has important implications for econometric 

implementation of models of neighborhood effects.  Yet endogeneity of neighborhood 

memberships need not be an impediment to identifying neighborhood effects.  Brock and 

Durlauf (2001b) in fact show, that self-selection into neighborhoods, when correctly specified, 

can facilitate identification via the creation of additional determinants of individual behavior in 

linear models and/or by inducing nonlinearities in individual behavior, each of which eliminates 

possible collinearity between contextual effects and endogenous effects.  

                                                 
8 One limitation of Theorem 3 is that it assumes that the distribution function Fε  is 

known.  We are currently exploring identification in the case where Fε  is unknown. 
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In this section, we outline two approaches for the integration of group determination and 

individual choice in the presence of social interactions.  First, we consider the integration of 

group choices into a linear model of behavior.  Second, we integrate group and behavioral 

choices into a common multinomial choice framework.9  We will not derive these models from 

an explicit formulation of preferences as our goal is to characterize the probability structure of 

behavioral choices in the presence of endogenous group memberships.  

 

i. linear in means models and endogenous group membership 

 

One approach to integrating group choice and behavioral decisions may be developed by 

integrating group choice into a model in which the behavior obeys a linear model.  Such models 

are quite common in the empirical literature on social interactions and have been studied by 

Brock and Durlauf (2001a,b), Manski (1993), and Moffitt (2001).  Following the formulation in 

Brock and Durlauf (2001a,b), behavioral choices iω  are continuous and are described by 

( ) ( )i i g i g i ik c X d Y Jmω ε′ ′= + + + + (26)

 

Relative to the multinomial choice model of behaviors, a key difference in this 

specification is that the possible iω  values are ordered.  Suppose that each individual assigns to 

each group an overall “quality” measure  

*
, , ,i g i g i gI Zγ ν′= + (27)

                                                 
9Other approaches also appear promising in terms of understanding the interplay between 

social interactions and group formation for particular environments.  For example, Ekelund, 

Heckman, and Nesheim (2001) show how prices associated with residential neighborhood 

memberships contain important information that may be used to uncover social interaction 

effects.  Another important approach is due to Epple and Sieg (1999) who show how to develop 

implications for the distribution of families across communities in Tiebout-type environments. 
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where ,i gZ  denotes those observable characteristics of i  that influence his evaluation of group 

g and ,i gν  denotes an unobservable individual-specific quality term. Individual i  is assumed to 

be a member of the group with the highest *
,i gI .  We assume that ( ),, , 0i i g i gE X Y Zε =  and 

( ), ,, , 0i g i g i gE X Y Zν = . ,i g∀ .   Also, we assume that the variance of iε , 2
εσ , and the correlation 

between iε  and ,i gν , ρ , are independent of group membership.  This is more restrictive than the 

assumptions made in Lee (1983); we make this stronger assumption in order to avoid 

unnecessary complications. 

The formulation we have described raises interesting econometric issues.  Specifically, 

the model embodies two major issues that have been studied in the econometrics literature.  First, 

eq. (26), known as the linear-in-means-model, has been shown to suffer from serious 

identification problems in the absence of endogenous group membership. Specifically, Manski 

(1993) has shown that if there is a one-to-one correspondence between iX  and ( )g iY  among the 

independent variables that appear in (26), (i.e. ( )g iY  is the average value of iX  within group g ), 

the parameters in (26) are not identified.  The reason for this is that under the Manski 

assumption, ( )g im  is linearly dependent on ( )g iY . Second, linear models with self-selection into 

groups have received a great deal of attention in the econometric literature because of the 

inconsistency of ordinary least squares estimates of (26).  The basic problem with self-selection 

is that in such cases one needs to account for the possibility that ( | ) 0iE i gε ∈ ≠ , a property that 

will hold if iε  and ,i gν  are correlated.  

Our goal in the subsequent discussion is to show how one can identify the parameters of 

the model we have described.  The identification problem will be shown to revolve around the 

explicit incorporation of a self-selection correction into the behavioral equation (26). Heckman 

(1979) represents the seminal work in how to address the effects of this type of sample selection. 

Lee (1983) has developed an approach to dealing with self-selection that we employ here.  We 

emphasize that our purpose is illustrative in that we demonstrate identifiability only under a 

particular set of parametric assumptions.  However, the logic of our argument is more general 

than the case we study and can be adapted to alternative sets of assumptions. Also, it is important 
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to note that Ioannides and Zabel (2002b) recognized previously that an argument in Brock and 

Durlauf (2001b) on the use of self-selection correction to achieve identification in models with 

two groups could be extended to multiple groups when group membership follows a multinomial 

logit framework.  Our derivation differs from theirs in two respects. First, we employ an 

approach to selection correction developed by Lee (1983) rather than that due to Dubin and 

McFadden (1984); the relative merits of the two are discussed in Schmertmann (1994) and Vella 

(1997). Second, we analyze how the nonlinearity of a selection correction affects identification.10 

We require two assumptions.  First we assume ,i gν  is double exponentially distributed as 

in eq. (4). Then, following Lee (1983, pg. 511 eq. (3.6)) the distribution function ( )gΛ ⋅  is 

defined as  

( )
( ) ( ),

exp
( )

exp expg
i j

j g

Z
υ

υ
υ γ

≠

Λ =
′+∑

(28)

 

where relative to (4) parameter β  is normalized to equal 1.  This is the function that appears in 

(30) below.  This assumption therefore means that the group choices obey the multinomial logit 

model we have already developed.  Second, we assume that ,i gε  is normally distributed; we 

denote the density and distributions of the standardized normal, (0,1)N  as ( )φ ⋅  and ( )Φ ⋅  

respectively. 

These assumptions allow one to transform (26) in such a way as to produce a model that 

accounts for ( | ) 0iE i gε ∈ ≠ . Following Lee (1983, pg. 511, eq. (3.7)), whose analysis extends 

the argument that underlies Heckman (1979), one may rewrite (26) as  

                                                 
10One may also consider issues raised by unobservables which do not involve self 

selection for the linear-in-means model.  For example, Graham and Hahn (2003) study a version 

of (26) where k  is replaced by gk . They explore alternative GMM and instrumental variables 

methods to identify the parameters of (26). Brock and Durlauf (2001b) discuss routes to 

identification that, for example, use differencing within groups to eliminate gk  for this context.   
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( ) ( ) ( ) , ( ) , ( )( )i i g i g i g i i g i i g ik c X d Y Jm Zεω ρσ ϕ γ ξ′ ′ ′= + + + − + (29)

 

where 

1
( )

( )
( )

( ( ))
( )

( )
g i

g i
g i

υ
ϕ υ φ

υ

− Φ Λ
=   Λ 

(30)

 

 The function ( )g iϕ  is ungainly, but is invaluable in terms of identification.  In fact, there 

are two routes to identification in the model that are facilitated by the selection correction.  To 

see this, it is easiest to follow Manski’s assumption on the relationship between iX  and ( )g iY  and 

consider 

  

, ( ) ( ) ( ) , ( ) , ( )( )i i g i g i g i i g i i g ik c X d X Jm Zεω ρσ ϕ γ ξ′ ′ ′= + + + − + (31)

If 0ρ = , then this model is not identified.  In contrast, suppose that 0ρ ≠ and that ( )g im  

is not an element of , ( )i g iZ . In this case ( ) , ( )( )g i i g iZϕ γ ′  is an individual-specific variable whose 

group level average does not appear in (30).  As shown in Brock and Durlauf (2001a, Theorem 

6), the presence of such a regressor means that identification of the regression parameters in (30) 

is possible.11 Alternatively, suppose that , ( ) , ( )i g i i g iZ m= , so that (outside unobserved 

heterogeneity), the only variable that influences group choices is the expected average behavior 

within the neighborhood. In this case, (30) is now a nonlinear in means model, in the sense that 

iω  is linearly related to ( ) ( ) ( )( )g i g i g iJm mερσ ϕ γ− .  Brock and Durlauf (2001b, Theorem 7) show 

that nonlinear in means models of this type are locally identified, except for “hairline” cases.  

                                                 
11 The condition is necessary, rather than sufficient, but the presence of the variable 

breaks the necessary linear dependence of ( )g im  on ( )g iY  
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Intuitively, the nonlinear relationship between iω  and ( )g im  precludes ( )g im  from being linearly 

dependent when ( ) ( )g i g iY X= .12   

This argument thus generalizes the analysis of identification and self-selection found in 

Brock and Durlauf (2001b, pp. 3328-3331). The key message for empirical work is that self-

selection, if properly accounted for, can facilitate the identification of social interactions. 

 

ii. a nested choice approach to integration behaviors and group memberships 

 

A second approach to endogenizing group memberships may be developed using the 

nested logit framework originated by Ben Akiva (1973) and McFadden (1978).  The basic idea 

of this framework is the following.  An individual is assumed to make a joint decision of a group 

{0,... 1}g G∈ −  and a behavior {0,... 1}l L∈ − . We will denote the group choice of i  as iδ .  The 

structure of this joint decision is nested in the sense that the choices are assumed to have a 

structure that allows one to decompose the decisions as occurring in two stages: first, the group 

is chosen and then the behavior.   

The key feature of this type of model is the assumption that choices at each stage obey a 

multinomial logit probability structure. For the behavioral choice, this means that 

( ) ( )
( )

, , , ,
, , , , 1

, , , ,
0

exp
, ,

exp

e
i l g i l ge

i i l g i l g i L
e

i l g i l g
j

h Jp
l h p g

h Jp

β
µ ω δ

β
−

=

+
= = =

+∑
(32)

 

which is the same behavioral specification as (6). Group choices are somewhat more 

complicated. In the nested logit model, group choices are assumed to obey 

                                                 
12While this nonlinearity argument holds in principle, a common concern in empirical 

work with selection corrections is the “quality” of the identification for the range of observed 

data when identification is based on a nonlinearity argument, cf. Vella (1998, pg. 135).  Hence, 

for the model we have described, the presence of an additional iz  that is not linearly dependent 

on iX  or ( )g iY  may be very helpful in practice. 
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( ) ,
, , , ,

,

exp( )
, ,

exp( )
g i ge

i l g i l g
g i g

g

Z
i g h p l g

Z
β

µ
β

∈ ∀ =
∑

(33)

 

where 

, , , , , , ,(max )e
i g l i l g i l g i l gZ E h Jp ε= + + (34)

 

with , ,i l gε  independent and doubly exponentially distributed random variables across i  and l  for 

a given g .  A standard result (e.g. Anderson, de Palma and Thisse (1992, pg. 46)) is that 

 

( )( ) ( )1
, , , , , , , , , , , , ,max , , log expe e e

i l g i l i l g i l g i l g i l g i l g
l

E h Jp h p l g h Jpε β β−  + + ∀ = + 
 
∑ (35)

 

Combining, (31)-(34), the joint group membership and behavior probabilities for an individual 

are thus described by  
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( )
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(36)

 

This probabilistic description may be faulted in that (35) is not directly derived from a 

utility maximization problem. In fact, a number of papers have identified conditions under which 

(35) is consistent with utility maximization, cf. McFadden (1978) and Borsch-Supan (1990) for 

discussion. A simple condition (cf. Anderson, dePalma, and Thisse, 1992, pg. 48) that renders 

(35) compatible with a well posed utility maximization problem is gβ β≤ , which in essence 
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requires that the dispersion of random payoff terms across groups is lower than the dispersion in 

random payoff terms across behavioral choices within a group.  

There has yet to be any analysis of models such as (35) when self-consistency is imposed 

on the expected group choice percentages , ,
e
i l gp . Such an analysis should provide a number of 

interesting results. For example, a nested structure of this type introduces a new mechanism by 

which multiple equilibria may emerge, namely the influence of beliefs about group behaviors on 

group memberships, which reciprocally will affect behaviors.  This additional channel for social 

interactions, in turn, raises new identification questions. 

 

  

VI. Conclusions 

 

This paper has described an approach to modeling social interactions that extends 

standard tools in the discrete choice literature, namely logit models of choice.  The approach 

allows for the incorporation of a range of alternative types of social interactions into individual 

decisionmaking in a way that retains the logic of economic behavior while at the same time 

provides additional richness to the determinants of individual behavior.  A virtue of the approach 

is that the theoretical model can be directly taken to data, both in the sense that the description of 

equilibrium choices is simultaneously a likelihood function and because the various group 

influences embedded in the model are identifiable under intuitive and reasonably weak 

conditions.  This has been demonstrated through the analysis of a leading case, namely, a 

multinomial logit version of the model. We have also shown that the qualitative theoretical and 

econometric features of our leading case, the multinomial logit model, also apply to alternative 

formulations of the random payoff process.  Finally, we have illustrated how one can integrate 

choices about group memberships with choices on behaviors using a nested multinomial logit 

model. 

More generally, we believe that there is wide scope for the better integration of 

sociological ideas and economic reasoning to provide a deeper understanding of the various 

phenomena that engage both disciplines. An important feature of the new social economics 

(Durlauf and Young (2001)) is that it attempts to take account of phenomena ranging from crime 

to fertility to education where sociological factors would seem to play a key role.  Economists 
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have long understood the importance of addressing such factors.  Arrow (1974), for example, 

remarks 

 

“…there are profound difficulties with the price system, even, so to speak, within its own logic, 
and these strengthen the view that, valuable though it is in certain realms, it cannot be made the 
arbiter of social life,” (pg. 21-22) 
 

The models we analyze address one aspect of the general issues raised by Arrow and others by 

embedding individual choice in contexts where social factors exist outside the realm of markets 

or prices.  In turn, we believe that the choice-based approach we have developed is valuable in 

terms of providing a logical structure to sociological-style arguments. One reason for this 

judgment is that social explanations of aggregate phenomena are most useful when the implied 

rules for individual behavior are interpretable as purposeful decisions.  Arrow (1994) makes 

precisely this argument: 

 
“It is a salutary check on any theory of the economy or any other part of society that the 
explanations make sense on the basis of the individuals involved.” (pg.3) 
 

The theoretical and econometric approach we advocate is inspired by and attempts to implement 

Arrow’s vision. 
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Technical Appendix 

 

Proof of Theorem 1 

 

In verifying this theorem, it is convenient to rewrite eq. (8) so as to measure the deviation 

of choice probabilities from 0l = ; i.e. we work with 0l lm p p= −  and , , ,0i l i l ig h h= − , 

1... 1l L= − .  The probability differences lm  may be written as 

 

( )( ),exp 1 /l i l l i hm g Jm W dFβ β= + −∫  (A.1)

 

where  

 

( )
1

,
1

exp 1
L

i i l l
l

W g Jmβ β
−

=
= + +∑ (A.2)

 

Letting ( )1 1,..., Lm m m −=  and ( )1 1,..., Lg g g −= , the 1L −  equations defined by (A.1) and (A.2) 

constitute a mapping from 1[ 1,1]L−−  to 1[ 1,1]L−−  which we denote as ( ), ,m J gψ β .  Fixed points 

of the mapping are defined by ( ), ,m m J gψ β= and constitute the self-consistent equilibria of 

the model.  The question of the relationship between the behavioral parameters of the model and 

the number of equilibria may be answered by determining how this mapping changes as Jβ  

changes under the assumptions of the theorem. 

Under the assumption that ,i lh k=  ,i l∀ , it is of course the case that 0g = , since there are 

no differences in the private deterministic utility differences between choices.  This assumption 

allows the analysis to focus entirely on the effect of Jβ . Under this assumption, there exists a 

fixed point 0m =  for any value of Jβ .  To see whether other fixed points exist, we compute the 

derivative of ( ), ,0m Jψ β  with respect to m  at the fixed point 0m = .  The Jacobian matrix of 

derivatives of ( ), ,0m Jψ β  taken with respect to elements of m  contains diagonal elements 
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( ) ( )
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21 1

1 1

exp 1 exp, ,0 exp
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l ll l
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J Jm Jmm J J Jm
m Jm Jm

β β βψ β β β

β β
− −

= =

−∂
= −

∂     + +        
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(A.3)

 

and off-diagonal elements 

( ) ( )( ) ( )( )
( )

21

1

exp 1 exp, ,0

exp 1

l jl

Lj
i

i

J Jm Jmm J
m

Jm

β β βψ β

β
−

=

−∂
= −

∂   +  
  
∑

(A.4)

 

so for 0m = , 

 

 ( )0, ,0
  ,0 l

k

J J if l k otherwise
m L

ψ β β∂
= =

∂
 (A.5)  

 

Consider the set of vectors m  of the form ( )1,0m , i.e. vectors with zero components 

except for the first element.  Denote the set of all such vectors by 1Γ .  Observe that 1Γ , which 

lies in 1LR − , is an invariant set with respect to ( ), ,0m Jψ β as each element of  1Γ  maps onto an 

element of 1Γ .  We now focus on the first component of the ψ  map, 1ψ , which can always be 

written as a one-dimensional map on R , denote this as ( )1,m Jρ β . 

Finally, consider fixed points for the mapping ( )1,m Jρ β .  One fixed point exists, as 

previously observed, at 1 0m = .  Further, recall that by (A.5), 

 

( )
1

0, J J
m L

ρ β β∂
=

∂
(A.6)
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It is easy to verify that ρ  is a convexo-concave function with respect to its first argument.  This 

means that as J
L

β  becomes greater than 1, two new fixed points must emerge.  This argument is 

sufficient to verify Theorem 1. 

 

 

Proof of Theorem 2 

 

This proof is a generalization of the proof for identification for a binary choice model in 

Brock and Durlauf (2001a,b) which in turns develops a mode of argument found in Manski 

(1988).  Suppose that for ( )1 1 1 1 1 1 1 1, , , , , , , ,L L L Lk c d J k c d J− − − −K , the set of true parameters for the 

multinomial choice model, there exists another vector ( )1 1 1 1 1 1 1 1, , , , , , , ,L L L Lk c d J k c d J− − − −K that 

generates the same observed data.  If both sets of parameters generate the same probabilities for 

the observables, this implies,  

 

( ) ( ) ( )0 , ( ), 0 , ( ), 0ln /li i l l i l l g i l l l l l i l l g i l l lp p k c X d Y J p p k c X d Y J p p′ ′ ′ ′= + + + − = + + + −  (A.7) 

for 1,..., 1l L= − .  From assumption iv of the Theorem, there is at least one neighborhood for 

each choice l such that within that neighborhood, ,i lX  is not contained in a proper linear 

subspace of rR . Hence, (A.7) can hold if and only if l lc c= .  This argument applies to each of 

the possible choices, so  1 1,..., Lc c −  are identified. 

Given that 1 1,..., Lc c −  are identified, it must be the case that the Theorem is true if J J= ; 

lack of identification would imply that either 1) ( ), ( ),,i l g i lX Y  lies in a proper linear subspace of 

r sR + , which would violate assumption i of the theorem or 2) that some linear combination of 

elements in ( ), ( ),,i l g i lX Y  is constant, which would violate assumption iii.  We can therefore 

restrict attention to the case J J≠ .    Define ( ), ( ), ( ),0g i l g i l g im p p= − . Notice that ( ),g i lm  is bounded 

between -1 and 1.  Since 1 1,..., Lc c −  are identified, (A.7) requires that 
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( ) ( )( ), ( ),l l l l g i l l l g i lk k d d Y J J m′ ′− + − = − (A.8)

 

since l lc c= l∀ .  Since , ( )l g im  cannot be zero for all ( )g i  by assumption vi and since assumption 

v implies that ( ) ( ),l l g i ld d Y′ ′−  is unbounded if l ld d≠ , we have a contradiction to the boundedness 

of ( ) ( ),l l g i lJ J m−  unless l ld d= . 

Failure of identification now requires that 

 

( ) ( ),l l l l g i lk k J J m− = − (A.9)

 

holds across all groups. Given assumption vi, the nonconstancy of , ( )l n ip  (and thus ( ),g i lm ) across 

groups, can only hold across neighborhoods if l lJ J= .  Substituting this into (A.7), it is obvious 

that l lk k=  which completes the proof. 

 

 

Proof of Corollary 1. 

  

 Following the proof of Theorem 2, Corollary 1 will be proved if one can show that 

 

( ) ( ) ( )0 , ( ), 0 , ( ), 0ln /li i l l i l l g i l l l l l i l l g i l l lp p k c X d Y J p p k c X d Y J p p′ ′ ′ ′ ′ ′= + + + − = + + + − (A.10)

 

cannot hold for any ( )1 1 1 1 1 1 1 1, , , , , , , ,L L L Lk c d J k c d J− − − −K  distinct from 

( )1 1 1 1 1 1 1 1, , , , , , , ,L L L Lk c d J k c d J− − − −K .  The argument made immediately after (A.7) applies to 

(A.10) as well, which means that  1 1,..., Lc c −  are identified.  Similarly, the argument made after 

(A.8) applies to (A.10) which implies that 1 1,..., Ld d −  are identified. Hence, we can restrict our 

attention to  
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( ) ( )l l l l g ik k J J m′− = − (A.11)

 

 Given the assumption of the Corollary that the support of ( )g im  does not lie in a proper linear 

subspace of 1LR −  (A.11) can only hold if l lJ J= .  This implies l lk k=  which verifies the 

Corollary. 

 

 

Proof of Theorem 3 

 

To verify Theorem 3, we follow the same logic as the proof for Theorem 1.  Define the 

mapping 

 

( ), ,0l i l i hm p p dF= −∫ (A.12)

 

1... 1l L= − .  By eq. (23) in the text, this defines a mapping ( )1,0, ,m Jψ β β  from m  to m .  

Under the assumption that , 0i lh =  ,i l∀ , it is straightforward to verify that ( )1 1,0mΓ =  is an 

invariant set under this mapping.  Hence, in parallel to the proof of Theorem 1, there is a 

mapping ( )1, ,m Jρ β β  from R  to R  such that  

 

( ) ( )1 1 1, , ,0, ,m J m Jρ β β ψ β β= (A.13)

 

 

Under the assumptions that , 0i lh =  ,i l∀ and ,i lε  are independent across i  and l , it is 

immediate that 1 0m =  must be a fixed point of this mapping.  The existence of other fixed points 

will depend on the derivative of ( ), ,ρ ⋅ ⋅ ⋅ at 1 0m = . 

To analyze this derivative, note that  
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( ) ( )

( ) ( )

,1 ,0 1 0
1 0

1 1
1 0

i i j j
j j

j j

p p F Jm Jm dF F Jm Jm dF

F Jm dF F Jm dF

ε ε ε ε

ε ε ε ε

β β ε β β ε

β ε β ε
≠ ≠

≠ ≠

− = − + − − + =

+ − − +

∏ ∏∫ ∫

∏ ∏∫ ∫
(A.14)

 

since 0lm =  for 2,..., 1l L= − .  Further, given the assumptions that , 0i lh =  ,i l∀ and ,i lε  are 

independent across i  and l , ,1 ,0 1i ip p m− = . Therefore, we can define a map A  from 1m  to itself 

such that 

 

( )1 1, ,m A Jm Lβ β= (A.15)

 

This function, which is clearly monotonic and bounded between -1 and 1, depends on L  

through the products in (A.12) via (A.14). The derivative of this function is ( )1, ,JA Jm Lβ β β′ . 

Consider ( )0, ,JA Lβ β′ , the derivative of the function at the fixed point 1 0m = .  Following the 

same argument in the proof of Theorem 1, if ( )0, , 1JA Lβ β′ < , then the fixed point 1 0m =  is 

unique whereas if ( )0, , 1JA Lβ β′ >  then at least two additional fixed points must exist.  Hence 

the magnitude of Jβ  can be varied so as to move from a unique to multiple (at least three) 

equilibria.  This verifies Theorem 3. 
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