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ABSTRACT

This paper studies the econometric problems associated with estimation of a stochastic process

that is endogenously sampled. Our interest is to infer the law of motion of a discrete-time stochastic

process {pt} that is observed only at a subset of times {t1,..., tn} that depend on the outcome of a

probabilistic sampling rule that depends on the history of the process as well as other observed covariates

xt . We focus on a particular example where pt denotes the daily wholesale price of a standardized steel

product. However there are no formal exchanges or centralized markets where steel is traded and pt can

be observed. Instead nearly all steel transaction prices are a result of private bilateral negotiations between

buyers and sellers, typically intermediated by middlemen known as steel service centers. Even though

there is no central record of daily transactions prices in the steel market, we do observe transaction prices

for a particular firm -- a steel service center that purchases large quantities of steel in the wholesale

market for subsequent resale in the retail market. The endogenous sampling problem arises from the fact

that the firm only records pt on the days that it purchases steel. We present a parametric analysis of this

problem under the assumption that the timing of steel purchases is part of an optimal trading strategy that

maximizes the firm’s expected discounted trading profits. We derive a parametric partial information

maximum likelihood (PIML) estimator that solves the endogenous sampling problem and efficiently

estimates the unknown parameters of a Markov transition probability that determines the law of motion

for the underlying {pt} process. The PIML estimator also yields estimates of the structural parameters that

determine the optimal trading rule. We also introduce an alternative consistent, less efficient, but

computationally simpler simulated minimum distance (SMD) estimator that avoids high dimensional

numerical integrations required by the PIML estimator. Using the SMD estimator, we provide estimates

of a truncated lognormal AR(1) model of the wholesale price processes for particular types of steel plate.

We use this to infer the share of the middleman’s discounted profits that are due to markups paid by its

retail customers, and the share due to price speculation. The latter measures the firm’s success in

forecasting steel prices and in timing its purchases in order to “buy low and sell high”. The more

successful the firm is in speculation (i.e. in strategically timing its purchases), the more serious are the

potential biases that would result from failing to account for the endogeneity of the sampling process.
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1 Introduction

This paper studies the econometric problems associated with estimation of a stochastic process that is

endogenously sampled. Our interest is to infer the law of motion of a discrete-time stochastic process
�

pt � that is observed only at a subset of times
�
t1 ��������� tn � that depend on the outcome of a probabilistic

sampling rule that depends on the history of the process as well as other observed covariates xt . We focus

on a particular example where pt denotes the daily wholesale price of a standardized steel product. There

are no formal markets or centralized exchanges where steel is traded. Instead nearly all steel transaction

prices are a result of private bilateral negotiations between buyers and sellers, typically intermediated by

middlemen known as steel service centers.1 Even though there is no central record of daily transactions

prices in the steel market, we do observe transaction prices for a particular firm — a steel service center

that purchases large quantities of steel in the wholesale market for subsequent resale in the retail market.

The endogenous sampling problem arises from the fact that the firm only records pt on the days that is

purchases steel.

We introduce the endogenous sampling problem in the context of price speculation in the steel market

in order to provide a concrete example. However we believe that similar endogenous sampling problems

arise in many other contexts. Examples include financial applications where transaction prices are ob-

served at randomly spaced intervals (see Aı̈t-Sahalia and Mykland, 2001, Engle and Russell, 1999, and

Russell and Engle, 1998), and in marketing applications where the prices of goods that a household pur-

chases are generally only recorded for the items the household purchased and on the dates it purchased

them (see Allenby, McCulloch and Rossi 1996, and Erdem and Keane, 1996). However we are not aware

of any econometric literature that is directly relevant for handling endogenous sampling problems in a time

series context. The most directly related work is the literature on likelihood-based methods for correcting

for endogenous sampling in cross-sectional and panel contexts (Heckman, 1981, Manski and McFadden,

1981, and McFadden, 1997).

We present a parametric analysis of the endogenous sampling problem under the maintained assump-

tion that the timing of steel purchases is part of an optimal trading strategy that maximizes the firm’s ex-

1It is a puzzle why centralized exchanges exist for some commodities such as pork bellies, but not for steel. Rust and
Hall (2003) develop a theory of intermediation in which the microstructure of trade in a commodity or asset is endogenously
determined. Depending on the parameters of this model there are equilibria consistent with all trade occurring via a market
maker on a centralized exchange, or all trade occurring via decentralized transactions with middlemen,, or trade segmenting
between middlemen and market makers. This theory could explain the variety of different trading institutions that we see in
different markets, including the nonexistence of centralized exchanges for steel.
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pected discounted trading profits. We derive a parametric partial information maximum likelihood (PIML)

estimator that solves the endogenous sampling problem and efficiently estimates the unknown parameters

of the Markov law of motion for
�

pt � together with the structural parameters that determine the optimal

trading rule. We also introduce an alternative consistent, less efficient, but computationally simpler sim-

ulated minimum distance (SMD) estimator that avoids high dimensional numerical integrations required

by the PIML estimator. The SMD estimator can also be viewed as a simulated moments estimator (SME)

(Lee and Ingram, 1991 and Duffie and Singleton, 1993), applied to a situation where the data are endoge-

nously sampled. Using the SMD estimator, we estimate the parameters of a truncated lognormal AR(1)

model of the wholesale price processes for particular types of steel plate. We use these estimates to infer

the share of the firm’s discounted profits that are due to markups paid by its retail customers, and the share

due to price speculation. The latter measures the firm’s success in forecasting steel prices and in timing

its purchases in order to “buy low and sell high”. The more successful the firm is in speculation (i.e. in

strategically timing its purchases), the more serious are the potential biases that would result from failing

to account for the endogeneity of the sampling process.

This paper originated from previous work (Hall and Rust, 1999, 2000 and 2001) on modeling the

speculative trading and inventory investment decisions of a particular steel wholesaler. This firm does

minimal production processing: its main activity is to stockpile quantities of various types of steel via bulk

purchases at wholesale prices from steel producers and other large intermediaries in order to profit from

subsequent resale to retail customers at a mark-up. This firm has provided us with a unique new data set

with daily observations on purchases and sales of the more than 2,300 products it carries. While these data

are unique in their level of detail and quality, the firm does not record any prices in its computerized data

base unless a purchase, sale, or adjustment occurs. The essence of the endogenous sampling problem is

that we only observe purchase prices on the days that purchases occur.

Let
�

pt � denote the stochastic process representing the lowest price offered by any seller of a particular

steel product on day t. We assume that the firm observes pt at each day t, but it only records pt when it

decides to place an order. Let qo
t denote the quantity orders (purchased) on day t. The endogenous sampling

rule can be stated as follows:

pt is observed ��� qo
t
� 0 �

It is notationally convenient to treat the endogenous sampling problem as a censored sampling problem:

i.e., we set pt to some arbitrary value such as pt � 0 when qo
t � 0, and let pt equal the observed purchase
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price when qo
t
� 0. Note that we also observe the retail sales prices

�
pr

t � that the firm charges its customers.

Since retail sales occur much more frequently than purchases on the wholesale market, retail price data
�

pr
t � can provide a key source of information for learning about

�
pt � . However on the subset of days

where both pt and pr
t are observed, we observe that markups pr

t � pt are quite volatile, and vary by time,

location, and type of the customer. In other words, there is considerable price discrimination in the retail

market for steel. As a result the retail price of steel pr
t is best regarded as a noisy and biased signal of the

wholesale price pt and therefore the retail price may not provide information that is directly relevant for

estimating the unknown parameters of the wholesale price process.2

The estimation methods we propose requires nested numerical solution of a dynamic programming

problem that determine the firm’s optimal trading strategy. This must be done for each trial value for the

unknown parameter vector θ, and as a result, the estimators we propose are computationally intensive.

However significant computational savings can be achieved by exploiting special features of the solutions

to these dynamic programming problems. Extending a seminal result by Scarf (1959) for a simpler class

of inventory investment problems, Hall and Rust (2001) showed that the optimal speculative investment

strategy for a fairly general class of commodity price speculation problems takes the form of a generalized
�
S � s � rule. In a generalized

�
S � s � rule, S and s � are functions of the current wholesale price p and a vector

of other state variables x such as interest rates, demand shifters, and other variables that affect the firm’s

beliefs about future prices and sales levels. The functions S
�
p � x � and s

�
p � x � satisfy S

�
p � x ��� s

�
p � x � . The

lower band s
�
p � x � is the firm’s order threshold: it is optimal for the firm to place an order whenever its

current inventory level q falls below s
�
p � x � . The upper band S

�
p � x � is the firm’s target inventory level:

whenever the firm places an order to replenish its inventory, it orders an amount sufficient to insure that

inventory on hand (the sum of the current inventory plus new orders) equals S
�
p � x � .

2Our treatment of the wholesale price process
�

pt � as an exogenously specified “forcing process” that is known up to a
finite number of parameters is admittedly only a first approximation to reality. The assumptions that

�
pt � is observed each

day by the firm and evolves as an exogenous stochastic process (i.e. its realizations do not depend on actions of the firm)
are particularly strong restrictions that we intend to relax in future work. As we noted above, prices in the steel market
are determined via bilateral negotiations: there is no central market place where the lowest price can be easily observed.
Instead, in order to get price quotes, purchasing agents within the firm must communicate with steel producers or other
intermediaries via telephone, fax, telex, or recently, the WWW. Thus each price quote involves a small monetary and time
cost. However this leads potential endogeneity problems, since the best price the firm is able to negotiate depends on the
intensity of its search/bargaining process, and this intensity level could vary depending on the conditions it faces. We defer
the difficult issues associated with potential endogeneity in

�
pt � to future research. However while a more realistic model

of speculation would result in a more complicated dynamic programming problem, we believe the general approaches to
estimation of the underlying price processes described in this paper will still apply. The main modification is that when there
is no spot wholesale market and the “law of one price” does not hold, we would need to estimate a conditional probability
distribution representing the firm’s beliefs about the distribution of potential prices available at a given point in time.
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The order threshold function s
�
p � x � is the source of the endogenous sampling problem since the firm

only records the wholesale price p on those days where a purchase occurs. Therefore the endogenous

sampling rule can be restated as the following threshold rule:

pt is observed iff qt � s
�
pt � xt � � (1)

Conditional on a purchase occurring, we observe an order of size qo
t given by

qo
t � S

�
pt � xt � � qt � (2)

and qo
t � 0 otherwise. Using the generalized

�
S � s � rule as our model of the endogenous determination of

sampling dates, we propose estimators that are able to consistently estimate the unknown parameters of

the
�

pt � process even though we only have incomplete information on
�

pt � .

The main idea behind the likelihood based approach to solving the endogenous sampling problem is

to write down a likelihood that reflects a correctly specified probability law for the endogenous sampling

scheme. In some cases, consistent, but less efficient quasi-maximum likelihood and GMM estimators

have been proposed. These estimators work by appropriately re-weighting the observations to adjust for

the effects of non-random sampling, similar in some respects to the way the conditional probabilities in

the likelihood reflect an appropriate weighting of the outcomes. We follow this general strategy in this

paper, and propose a partial information maximum likelihood (PIML) estimator that is consistent and

asymptotically normally distributed. However the PIML estimator requires high dimensional numerical

integrations that can only be feasibly done via recursive quadrature, or by Monte Carlo or quasi-Monte

Carlo methods.

We introduce an alternative less efficient but computationally simpler simulated minimum distance

(SMD) estimator that does not attempt to re-weight the observations in order to insure consistency and

thus avoids the need for high dimensional integrations. The SMD estimator only relies on the ability to

simulate realizations of the optimal trading model. These simulations are then censored in exactly the same

way as the observed data are censored, an approach that is similar in many respects to the strategy of “data

augmentation” used in Bayesian inference of latent variable models. The idea behind the SMD estimator is

to choose parameter values that result in simulated moments that match the observed moments as closely

as possible, where both the real and simulated data are censored according to the same sampling rule;

namely the one given in equation (1). Even though the moments entering the SMD criterion are biased

and inconsistent due to the endogenous sampling problem, the fact that we can censor the data entering the

4



simulated and real moments in the same way implies that the SMD estimator itself is consistent. It should

be apparent that although the two estimation methods we present here are specialized to our particular steel

example, it should be straightforward to generalize these methods to other types of endogenous sampling

problems that arise in a variety of other contexts.

Section 2 describes our data set and introduces the steel speculation and inventory problem that moti-

vates this research. Section 3 presents a parametric, full information approach to inference using a gener-

alization of a model of optimal commodity price speculation and inventory investment developed in Hall

and Rust (1999, 2000, 2001). An independent contribution of this section is to provide a tractable spec-

ification for unobserved state variables affecting the speculator’s trading decisions that accounts for the

frequently binding inequality constraints that purchases of steel must be non-negative. The fact that this

constraint is strictly binding at qo
t � 0 prevents the use of standard Euler equation methods to uncover the

trader’s decision rule and the associated endogenous sampling rule for wholesale steel prices. By intro-

ducing an unobserved state variable, we derive a nondegenerate conditional probability distribution for qo
t

that allows us to derive a partial information likelihood function for the full set of data that we observe,

ξt �
�
qt � qo

t � pt � pr
t � xt � . We establish the consistency of the PIML estimator by showing that the values

of the joint process
�
ξti � on successive purchase dates ti (when all components of ξt are observed) is an

embedded Markov chain. This allows us to invoke a standard Information Inequality argument to establish

the consistency of the PIML estimator. Via a standard Taylor series approximation and an appeal to an

appropriate Central Limit Theorem for mixing processes, it is possible to establish the asymptotic normal-

ity of the PIML estimator. Section 4 introduces the simulated minimum distance estimator and derives

its asymptotic distribution. Section 5 presents some initial Monte Carlo evidence on the performance of

the estimators proposed in this paper as well as results of an empirical application to several plate steel

products for which wholesale prices are assumed to evolve according to a univariate truncated lognormal

AR(1) process. We estimate the unknown parameters of the price process and the unknown parameters

affecting the firm’s cost of purchasing and holding inventory. We then evaluate how well our generalized
�
S � s � trading strategy fits these data, and use our results to infer the fraction of the firm’s discounted profits

are due to the markups it charges its retail customers, and the fraction that is due to pure commodity price

speculation, i.e., its success in timing purchases of steel in order to profit from “buying low and selling

high.”
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2 Description of the Data and the Model of Price Speculation

In this section we introduce the data and describe a generalized version of a model of commodity price

speculation introduced by Hall and Rust (1999, 2000, 2001) that allows for additional covariates and

unobserved state variables. This model provides the framework for inference and provides the key insights

that enabled us to pose and solve the endogenous sampling problem.

2.1 The Data

Via a personal contact with an executive at a large U.S. steel wholesaler, we acquired a new high frequency

micro database on transactions in the steel market. This firm has provided us with an ongoing data feed

that enables us to observe virtually all aspects of its operations, including the purchase and sale prices and

quantities and the identities of its customers for all of its 2300 � individual steel products on a daily basis.

The empirical results presented in section 5 are based on data on every transaction the firm made between

July 1, 1997 to March 14, 2002 (1191 business days) for two of its highest volume steel products. For each

transaction we observe the quantity (number of units and/or weight in pounds) of steel bought or sold, the

sales price, the shipping costs, and the identity of the buyer or seller.

Although this is an exceptionally clean and rich dataset, we only observe prices on the days the firm

actually made transactions: the firm does not record any price information on days that it does not transact

(either as a buyer or seller of steel). This shortcoming of our dataset is much more important for steel

purchases than steel sales, since the firm purchases new steel inventory in the wholesale market much less

frequently than it sells steel to its retail customers. Indeed, even for its highest volume products, it makes

purchases only about once every two weeks. The
�
S � s � theory we present below predicts that purchases

are not made at random. Instead, the firm tends to make purchases when prices are low, so that the average

price on the days the firm makes purchases will be lower than the average wholesale price on days the

firm does not purchase. The exception to this general rule is that the firm may make purchases even when

prices are relatively high if its inventories are low. Conversely, the firm may refrain from purchasing even

if prices and inventories are low if it expects that the rate of retail sales will be depressed for a long period

of time, say due to bad macroeconomics conditions. Thus, while the firm is attempting to “buy low and

sell high”, its purchase decisions involve a tradeoff among a number of different considerations.

We illustrate our data by plotting the time series of inventories and prices of one of the firm’s products

in figures 1 and 2. This product, which we call product 4, is one of highest volume products sold by this
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firm. It is also a benchmark product within the industry since the prices of several other steel products are

often computed as a function of this product’s price. It is possible to get weekly and monthly survey data

on prices for certain classes of steel products through trade publications such as Purchasing Magazine

and American Metal Market. However, since there are no public exchange markets for steel products,

transaction in the steel market are carried out in private negotiations. Hence these price surveys rely

on participants in the steel market to report truthfully the prices they paid or received for various steel

products. The firm often faces considerably different prices than those in the survey data.

As a result, in our plots of wholesale transaction prices in figure 2 (the lower curve with the large black

circles), we used straight line interpolations between observed purchase prices at successive purchase

dates. The black circle at each purchase date is proportional to the size of the firm’s purchase in pounds.

This gives us our first visual indication of the endogenous sampling problem. First, we see that even

though we have 1191 observations on this firm, we observe purchases in the wholesale market on only

184 days. Second, the patterns of the black dots suggests that the firm is more likely to purchase large

quantities of steel when wholesale prices are low, although other economic factors seem to be influencing

the firm’s purchase decisions as well. One key factor is the level of inventory: the firm tends to make large

purchases when its inventory is low. We also see that even though wholesale prices continued to decline

during 2000 and 2001, the firm’s largest purchases of steel occurred during the “turning point” in prices

in early 1998. The firm may have avoided making large purchases in late 2000 and 2001 due to economic

uncertainties resulting from the “dot com crash” and the economic uncertainties following the 9/11/2001

terrorist attack on the U.S.

Overall, our interpolated plot of steel wholesale prices in figure 2 suggests that we should be wary

of using the relatively small number of irregularly spaced observations to make inferences about the un-

derlying law of motion for
�

pt � . The observed purchase prices are unlikely to be representative of the

unconditional mean level of prices in the wholesale market (especially if the firm is attempting to “buying

low and sell high”), and the estimated serial correlation coefficient for these irregularly spaced transac-

tions is unlikely to be a good estimate of the serial correlation coefficient between daily wholesale prices

(assuming we were able to observe them).

Figure 2 also plots the interpolated sequence of daily retail sales prices. Retail sales occur on about

two out every three business days, so the amount of interpolation in the retail price series is modest. The

wholesale and retail prices move in a roughly parallel way, although there appears to be considerable day-

to-day variation in retail prices. Retail prices are quoted net of transportation costs, but still much of the
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Figure 1: Times series plot of the inventory for product 4.
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Figure 2: Purchase prices (solid line) and retail prices (dashed line) for product 4. For the purchase price
series, the size of the marker is proportional to the size of the purchase.
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the high frequency variation is due to observable factors. Athreya (2002) finds that roughly 65% of the

high frequency variation in retail prices can be explained by observable customer characteristics such as

geographical location and past volume of purchases. The remaining 35% of the variation in retail prices

appears to be due either to high frequency fluctuations in wholesale prices or to some sort of “informational

price discrimination” in the retail market. Using the limited number of days on which both wholesale and

retail prices are available, Chan (2001) finds that at most 50% of the variation in retail prices can be

explained by variations in the wholesale price of steel. This conclusion is possible due to the fact that on

many days there are multiple retail sales to different customers. These findings suggest that a large share

of the high frequency variation in retail prices can be ascribed to price discrimination, i.e. the firm charges

higher prices to more impatient or poorly informed retail customers (see Chan, Hall and Rust (2003) for a

more detailed analysis of bargaining, price setting, and price discrimination in the retail market for steel).

We conclude that even though retail sales occur much more frequently than wholesale purchases, the fact

that retail prices involve a number of other different considerations (including price discrimination based

on observable and unobservable characteristics of the customer) suggest that the retail price is at best a

very noisy and (upward) biased signal of the underlying wholesale price.

Figure 1 plots the evolution of inventories over the same period. Purchases of steel are easily recog-

nizable as the discontinuous upward jumps in the inventory trajectories. As is evident from the saw-tooth

pattern of the inventory holdings, the firm purchases the product much less frequently than it sells it. The

firm’s opportunistic purchasing behavior is very clear for this product. As can be seen in figures 1 and 2,

during the first ten months of the sample, from July, 1997 until March, 1998, the firm held relatively low

levels of inventories at a time when the average price the firm paid for steel was about 20.5 cents per

pound. However as the Asian financial crisis deepened, foreign steel producers began cutting their prices

and aggressively increasing their exports. We see this clearly in our data, where in April 1998, wholesale

prices dropped to 18.5 cents per pound. At that time the firm made a large purchase. As the price of

steel continued to fall to historical lows during the remainder of 1998 the firm made a succession of large

purchases that lead it to hold historically unprecedented high levels of inventories. We view this as clear

evidence that the firm is attempting to profit from a “buy low, sell high” strategy.
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2.2 The Model

Our model is an extension of previous work by Hall and Rust (2001), who showed that in a broad class of

commodity price speculation problems, the optimal trading rule is a generalized version of the classic
�
S � s �

rule from inventory theory. Their work can be viewed as linking contributions by Arrow et. al. (1951) and

Scarf (1959) who first proved the optimality of
�
S � s � policies in inventory investment problems to more

recent work by Williams and Wright (1991), Deaton and Laroque (1992) and Miranda and Rui (1997) on

the rational expectations commodity storage model. The fixed
�
S � s � thresholds derived by Scarf under the

assumption that the price (cost) of procuring (producing) inventories is constant are clearly suboptimal in

a speculative trading environment, since the stochastic fluctuations in the price of steel affects the firm’s

perception of the optimal level of inventory S, and the threshold for purchasing new inventory s. Hall

and Rust (2001) showed that the firm’s optimal speculative trading strategy is a generalized the
�
S � s � rule

where S and s are functions of certain underlying state variables including the wholesale price of steel p.3

Before we describe how the generalized
�
S � s � rule allows us to formulate and solve the problem of

endogenous sampling of steel wholesale prices, we describe the notation and key assumptions underlying

Hall and Rust’s model of commodity price speculation. Then we formally define the
�
S � s � trading strategy,

and show how in a broad class of models of speculation, the
�
S � s � rule constitutes the optimal strategy for

“buying low and selling high”. We assume that a middleman (which we also refer to as the “firm”) can

purchase unlimited quantities of steel at a time-varying wholesale price pt that evolves according to a

Markov transition density to be specified below. We assume that the middleman subsequently sells this

steel to retail customers at a retail price pr
t that includes a randomly varying markup over the current

wholesale price pt (if we think of the firm as selling to different customers on different business days, this

3This analysis extends previous results in the operations research literature such as Fabian et. al. (1959), Kingman
(1969), Kalymon (1971), Golabi (1985), Song and Zipken (1993), Moinzadeh (1997), and Ozekici and Parlar (1999) that
prove the optimality of generalized versions of the � S � s � rule when the cost (price) of producing (procuring) new inventory
fluctuates stochastically. While Hall and Rust (2001) are not the first to prove the optimality of generalized versions of
the � S � s � rule, they build on the OR literature by making the connection between models of optimal inventory policies and
models of storage and commodity prices. Moreover in the current paper we computationally solve and estimate our model.
Thus we can formally compare the model’s optimal policies to the inventory policies we see in the data. Besides the work
noted above, the most closely related recent work that we are aware of is the ambitious paper by Aguirregabiria (1999) that
models price and inventory decisions by a supermarket chain. A supermarket is similar to our steel wholesaler in that both
types of firms hold inventories of a substantial number of different products, purchasing them in the wholesale market and
selling their inventories at a markup to retail customers. The key difference is that prices in supermarkets are almost always
posted so there is no direct price discrimination and there is presumably a larger “menu cost” to changing prices on a day
by day basis. Aguirregabiria also did not directly address the endogenous sampling issue, using monthly price averages as
proxies for underlying daily prices. For this reason we are unable to directly employ his innovative and ambitious approach
to estimation.
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randomly varying markup is intended to be a “reduced-form” approach to capturing the pricing and price

discrimination decisions by the firm).

On each business day t the following sequence of actions occurs:

1. At the start of day t the firm knows its inventory level qt , the current wholesale price pt , and the

values of the other state variables xt .

2. Given
�
qt � pt � xt � the firm orders additional inventory qo

t for immediate delivery.

3. Given
�
qt � qo

t � pt � xt � the firm sets a retail price pr
t that is modeled as a random draw from a density

γ
�
pr

t � qt � qo
t � pt � xt � .

4. Given
�
qt � qo

t � pt � pr
t � xt � the firm observes a realized retail demand for its steel, qr

t , modeled as a draw

from a distribution H
�
qr

t � pt � pr
t � xt � with a point mass at qr

t � 0.

5. The firm cannot sell more steel than it has on hand, so the actual quantity sold satisfies

qs
t � min � qt � qo

t � qr
t � � (3)

6. Sales on day t determine the level of inventories on hand at the beginning of business day t � 1 via

the standard inventory identity:

qt � 1 � qt � qo
t � qs

t � (4)

7. New values of
�
pt � 1 � xt � 1 � are drawn from a Markov transition density g

�
pt � 1 � xt � 1 � pt � xt � .

Note that we abstract from delivery lags and assume that the firm cannot backlog unfilled orders. Thus,

whenever demand exceeds quantity on hand, the residual unfilled demand is lost. Thus, in addition to the

censoring of the purchase and retail prices
�
pt � pr

t � , we only observe a truncated measure of the firm’s retail

demand, i.e., we only observe the minimum of qr
t and qt � qo

t as given in equation (3). Since the quantity

demanded has support on the � 0 � ∞ � interval, equation (3) implies that there is always a positive probability

of a stockout given by:

δ
�
q � p � pr � x � � 1 � H

�
q � pr � p � x � � (5)

Since retail sales occur much more frequently that purchases of new inventory, the retail sales price p r
t

provides an important source of information about the wholesale price pt . Presumably for most transac-

tions we should have pr
t � pt , reflecting nonnegative markups over the current wholesale price of steel.

11



However as noted above markups vary in an apparently random fashion from day to day, so at best pr
t is

a biased and noisy indicator of the wholesale price pt . In this version of the paper we bypass some of the

difficult issues associated with modeling endogenous price setting and price discrimination by adopting a

“reduced-form” model of price setting. We model the daily average retail price as a draw from a condi-

tional density γ
�
pr

t � qt � qo
t � pt � xt � . This way of modeling prices is sufficiently flexible to be consistent with

a variety of theories of bargaining and price discrimination by the firm.4

The firm’s expected sales revenue function, ES
�
p � q � x � is the conditional expectation of realized sales

revenue prqr given the current wholesale price p, quantity on hand q, and the observed information vari-

ables x. The firm’s retail sales on date t is a random draw qr
t from a conditional distribution H

�
qr

t � pr
t � pt � xt �

that depends on the retail price quote pr
t , the current wholesale price pt , and the values of the other ob-

served state variables xt . We assume that there is a positive probability η
�
pr � p � x � � H

�
0 � pr � p � x � that the

firm will not make any retail sales on a particular day, so H can be represented by

H
�
qr � pr � p � x � � η

�
pr � p � x � � � 1 � η

�
pr � p � x � �

� qr

0
h
�
q � pr � p � x � dq � (6)

where h is a continuous strictly positive probability density function over the interval � 0 � ∞ � . Given this

stochastic “demand function”, the firm’s expected sales revenue ES
�
p � q � x � is:

ES
�
p � q � x � � E

�
p̃rq̃s � p � q � x �

� E
�

p̃rE
�
min � q � q̃r � � pr � p � q � x � � p � q � x � (7)

�

� ∞

0
pr � 1 � η

�
pr � p � x � ��� � q

0
qrh

�
qr � pr � p � x � dqr � δ

�
q � pr � p � x � q � γ

�
pr � q � p � x � d pr �

In order to state the per period profit function, we need to describe the costs that the firm incurs. The

main cost is the cost of ordering new inventory, represented by the order cost function co � qo � p � . We

assume that the firm incurs a fixed cost K � 0 associated with placing new orders for inventory, which

implies that co � qo � p � is given by

co � qo � p � ��� pqo � K if qo � 0
0 otherwise,

(8)

4Hall and Rust (2000) solved a version of the model in which the firm chooses both qo
t and pr

t . In this case, the value
function is no longer guaranteed to be K-concave, and the solution to the inventory problem may no longer be of the
generalized � S � s � form. Solving this model takes considerably longer than the model presented here for two reasons. First,
the Hall and Rust (2000) model requires a two-dimensional optimization instead of an one-dimensional optimization at each
iteration of the Bellman equation. Second, in models with endogenous price setting, the generalized � S � s � rule is not always
guaranteed to be an optimal trading strategy. As a result we cannot restrict our search to the subclass of generalized � S � s �
policies as we can when we solve the model presented here. This greatly increases the computational time required to solve
models that incorporate either endogenous (uniform) price setting (as in Hall and Rust 2000), or in models of bargaining and
price discrimination (as in Chan, Hall and Rust, 2003).
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The firm’s remaining costs are summarized by the holding cost function ch � q � p � x � . These costs include

physical storage costs, and “goodwill costs” representing the present value of lost future business from

customers whose orders cannot be filled due to a stockout. Goodwill costs can be viewed as the inverse of

the “convenience yield” discussed in the commodity storage literature (Kaldor, 1939, Williams and Wright,

1991). In this case a convenience yield emerges from a desire to hold a buffer stock or precautionary level

of inventories in order to minimize goodwill costs from stockouts. This allows the model to capture

other reasons besides pure price speculation for holding inventories.5 The firm’s single-period profits π

equals its sales revenues, less the cost of new orders for inventory co � qo � p � and inventory holding costs

ch � q � qo � p � x � :
π
�
p � pr � qr � q � qo � x � � prqs � co � qo � p � � ch � q � qo � p � x � � (9)

where qs � min � qr � q � qo � . Each period the firm chooses investment qo
t given

�
pt � qt � xt � to maximize the

discounted present value of profits:

V
�
pt � qt � xt � � max

qo
E � ∞

∑
j � t

ρ � j � t � π � p j � pr
j � qr

j � qo
j � q j � x j ����� pt � qt � xt � � (10)

where ρ � 1 � � 1 � r � and r is the firm’s discount rate. The value function V
�
p � q � x � is given by the unique

solution to Bellman’s equation:

V
�
p � q � x � � max

0 	 qo 	 q � q 
 W �
p � q � qo � x � � co � qo � p ��� � (11)

where q is the firm’s maximum storage capacity and

W
�
p � q � x ��
 
 ES

�
p � q � x � � ch � q � p � x � � ρEV

�
p � q � x ��� � (12)

and EV denotes the conditional expectation of V given by:

EV
�
p � q � x � � E

�
V
�
p̃ � max � 0 � q � q̃r � � x̃ � � p � q � x � (13)

� λ1
�
p � q � x �

�
p � � x � V � p � � q � x � � g � p � � x � � p � x � d p � dx �

� λ2
�
p � q � x �

�
p � � x � V � p � � 0 � x � � g � p � � x � � p � x � d p � dx �

� λ3
�
p � q � x �

�
p � � x � � q

0
V
�
p � � q � q � � x � � h � q � � p � q � x � g � p � � x � � p � x � dq � d p � dx � �

5The firm obtains much of its steel from foreign sources. In the model orders occur instantaneously with certainty. In
practice, however, delivery lags can be several months and the steel delivered can often be of lower quality than agreed on.
The firm does have the option of refusing to take delivery if the steel is not of the quality promised. Having a buffer stock of
inventories on hand reduces the cost to firm of exercising this option. Also foreign producers of steel do from time to time
renege on previously negotiated deals, failing to deliver the amount of steel originally promised.
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where

λ1
�
p � q � x � �

�
pr

η
�
pr � p � x � γ � pr � p � q � x � d pr (14)

λ2
�
p � q � x � �

�
pr

� 1 � η
�
pr � p � x � � δ � pr � p � q � x � γ � pr � p � q � x � d pr

λ3
�
p � q � x � �

�
pr

� 1 � η
�
pr � p � x � � γ � pr � p � q � x � d pr

h
�
q � � p � q � x � �

�
pr

h
�
q � � pr � p � q � x � γ � pr � p � q � x � d pr �

The optimal decision rule qo � p � q � x � is given by:

qo � p � q � x � � inf argmax
0 	 qo 	 q � q 
 W �

p � q � qo � x � � co � qo � p ��� � (15)

We invoke the inf operator in the definition of the optimal decision rule in equation (15) to handle the case

where there are multiple maximizing values of qo. We effectively break the tie in such cases by defining

qo � p � q � as the smallest of the optimizing values of qo.

In this model the variables q and qo do not enter as separate arguments in the value function W given

in (12): rather they enter as the sum q � qo as shown in equation (15). This symmetry property is a con-

sequence of our timing assumptions: since new orders of steel arrive instantaneously, the firm’s expected

sales, inventory holding costs, and expected discounted profits only depend on the sum q � qo, representing

inventory on hand at the beginning of the period after new orders qo have arrived. It follows that if the firm

is holding less than its desired level of inventories S
�
pt � xt � at the start of day t, it will only have to order

the amount qo � p � q � x � � S
�
p � x � � q in order to achieve its target inventory level S

�
p � x � . Another way to

see this is to note that when it is optimal for the firm to order, the optimal order level solves the first order

condition:
∂W
∂qo

�
p � q � qo � x � � p � (16)

If W were strictly concave in q, there would be a unique value of q � qo that solves equation (16) for any

value of p. Call this solution S
�
p � x � :

∂W
∂qo

�
p � S � p � x � � x � � p � (17)

Then we have q � qo � S
�
p � x � , or qo � p � q � x � � S

�
p � x � � q.

In turns out that if K � 0 the function W
�
p � q � x � will not be strictly concave. However under fairly
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general conditions W is K-concave as a function of q for each fixed p.6 Using the K-concavity property

we can prove that whenever q � s
�
p � x � , it is not optimal to order: qo � p � q � x � � 0. When q � s

�
p � x � the

symmetry property implies that qo � p � q � x � � S
�
p � x � � q as discussed above. In particular Hall and Rust

(2001) proved:

Theorem 1: Consider the function W
�
p � q � qo � x � defined in equation (12), where W is defined in terms of

the unique solution V to Bellman’s equation (11). Under appropriate regularity conditions given in Hall

and Rust (2001), the optimal speculative trading strategy qo � p � q � x � takes the form of an
�
S � s � rule. That

is, there exist a pair of functions
�
S � s � satisfying S

�
p � x � � s

�
p � x � where S

�
p � x � is the desired or target

inventory level and s
�
p � x � is the inventory order threshold, i.e.

qo � p � q � x � � � 0 if q � s
�
p � x �

S
�
p � x � � q otherwise

(18)

where S
�
p � x � is given by:

S
�
p � x � � argmax0 	 qo 	 q � q 
 W �

p � qo � x � � co � qo � p ��� (19)

and the lower inventory order limit, s
�
p � x � is the value of q that makes the firm indifferent between ordering

and not ordering more inventory:

s
�
p � x � � inf

q � 0

�
q � W �

p � q � x � � pq � W
�
p � S � p � x � � x � � pS

�
p � x � � K � � (20)

By a simple substitution of the generalized
�
S � s � rule in equation (18) into the definition of V in equation

(11) we obtain the following corollaries:

Corollary 1: The value function V is linear with slope p on the interval � 0 � s � p � x � � :

V
�
p � q � x � � � W

�
p � S � p � x � � x � � p � S � p � x � � q � � K if q � � 0 � s � p � x � �

W
�
p � q � x � if q �

�
s
�
p � x � � q � � (21)

Corollary 2: The S
�
p � x � and s

�
p � x � functions are non-increasing in p and are strictly decreasing in p in

the set
�

p � 0 � S
�
p � x � � q � .

Corollary 3: If fixed costs of ordering is zero, K � 0, then the minimum order size is 0 and

S
�
p � x � � s

�
p � x � � (22)

6A function W � p � q � : � p � p ����� 0 � q��� R is K-concave in its second argument q if and only if 	 W � p � q � is K-convex in its
second argument. More directly, W � p � q � is K-concave in q iff 
 K � 0 such that for every p �
� p � p � , and for all z � 0 and
b � 0 such that q � z � q and q 	 b � 0 we have W � p � q � z ��	 K � W � p � q ��� z �W � p � q ��	 W � p � q 	 b ����� b.
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3 Maximum Likelihood Estimation

This section derives the likelihood function for the commodity price speculation problem presented above.

The problem is complicated by the existence of frequently binding inequality constraints on inventory

investment, qo. This implies that it is not possible to use standard Euler equation methods to estimate the

unknown parameters of the model via generalized method of moments. Note that Theorem 1 does yield

a first order condition that could possibly provide a basis for a generalized methods of moments (GMM)

strategy for estimating the unknown parameters of the model:

∂W
∂q

�
p � S � p � x � � x � � p � 0 � (23)

If we assume that there is additive measurement error ε in the wholesale price p, or assume that ε represents

other unobserved (per unit) components of the cost of ordering new inventory, then it is tempting to treat

equation (23) as an “Euler equation” and use GMM to estimate parameters of the model. However there are

several big obstacles to this approach. First, we do not have a convenient analytical formula for the partial

derivative of the value function, ∂W � ∂q. Second, as we show in Theorem 2 below, even if the unconditional

mean of ε is zero, the conditional mean of ε over those values of
�
p � ε � for which it is optimal to purchase

(i.e. for which q � s
�
p � x � ), is generally nonzero. Finally, there is the issue of endogenous sampling, and

the fact that we observe purchases only an a relatively small subset of business days in our overall sample.

These problems motivate a search for an alternative likelihood-based approach that is capable of in-

corporating other information such as retail sales prices in order to improve our ability to make inferences

about the
�

pt � process. We show how to derive a non-degenerate likelihood function via the inclusion of

a single IID unobservable state variable εt in the firm’s optimization problem. The resulting conditional

probability distribution function for qo has a mass point at qo � 0 that reflects the frequently binding con-

straint that inventory investment cannot be negative. This conditional distribution allows us to derive a

full-information maximum likelihood estimator that provides a complete solution to the problem of en-

dogenous sampling of the whole price process. It does this by integrating out the unobserved values of

the wholesale prices in periods where they are unobserved. This likelihood is the analog of the Chapman-

Kolmogorov equation for computing multi-step transition probabilities from a one-step transition prob-

abilities. We will discuss some of the drawbacks of this approach in order to motivate computationally

simpler but less efficient simulated minimum distance estimator in section 4.

Some form of measurement error or unobserved state variable must be included as one of the state

variables x in the model presented in section 2. Without some sort of “error term” the model yields a de-
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terministic optimal decision rule qo � p � q � x � that can be contradicted by any observation
�
qo

t � qt � pt � xt � that

does not lie on its graph. To avoid the resulting “zero likelihood” problem, consider the case where there is

an unobserved component of the per unit cost of steel, denoted by εt . We assume that the distribution of εt

has support on the entire real line and continuous, strictly positive density φ
�
ε � . Theorem 2 below derives

the implied conditional distribution of qo given
�
p � q � x � formed by integrating out ε from the deterministic

decision rule qo � p � q � x � ε � .

Theorem 2: Let εt be an (unobserved to the econometrician) component of the per unit cost of ordering

new inventory. Assume that
�
εt � is an IID process whose density φ is continuous and strictly positive over

the entire real line. Then the optimal trading strategy is still a generalized
�
S � s � rule and the conditional

distribution of the optimal order quantity qo given
�
p � q � x � is given by

F
�
qo � p � q � x � � Pr

�
qo � p � q � x � ε ��� qo � p � q � x �

�

� � ∞� ∞
I
�
qo � p � q � x � ε ��� qo � φ

�
ε � dε

�

� ∞

s � 1 � p � x � q � φ
�
ε � dε

� I
�
S
�
p � x � s � 1 � p � x � q � ��� qo � q � q �

� s � 1 � p � x � q �
S � 1 � p � x � q � qo � φ � ε � dε

� I
�
qo � q

�
q �
� S � 1 � p � x � q �� ∞

φ
�
ε � dε � (24)

where

S � 1 � p � x � q � � inf
�
ε � S � p � x � ε � � q �

s � 1 � p � x � q � � inf
�
ε � s � p � x � ε � � q � � (25)

Let f � dF denote the mixed discrete/continuous conditional density of qo given
�
p � q � x � . It is given by

f
�
qo � p � q � x � �

��� ��	� ∞
s � 1 � p � x � q � φ

�
ε � dε if q0 � 0

� S � 1 � p � x � q �� ∞ φ
�
ε � dε if q0 � q � q� φ � S � 1 � p � x � q � qo � �

∂2W 
 ∂2q � p � x � q � qo � otherwise.

(26)

The formula for the density of qo in equation (26) can be derived by differentiating the conditional distri-

bution in equation (24) with respect to qo for qo in the interval � S � p � x � s � 1 � p � x � q � � � q � q � q � to obtain:

dF
�
qo � p � q � x � � � φ

�
S � 1 � p � x � q � qo � � ∂S � 1

∂qo

�
p � x � q � qo � � (27)
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Using the definition of S
�
p � x � ε �

∂W
∂q

�
p � S � p � x � ε � � x � � p � ε � (28)

and the inverse and implicit function theorems we obtain:

∂S � 1

∂qo

�
p � x � q � qo � � 1

∂S
�
p � x � S � 1

�
p � x � q � qo � � � ∂ε �

1
∂2W

�
p � q � qo � x � � ∂2q � (29)

Note that Theorem 2 implies that the transition density for qo is mixed discrete and continuous, with mass

points at qo � 0 and qo � q � q, and strictly positive density over the interval � S � p � x � s � 1 � p � x � q � � � q � q � q � .
However there is a “gap” where there is zero density for qo in the interval � 0 � S � p � x � s � 1 � p � x � q � � � q � since

the quantity S
�
p � x � s � 1 � p � x � q � � � q represents the minimum order size implied by the

�
S � s � model in the

state
�
p � q � x � . The gap is problematic for maximum likelihood estimation since a single observation with

an order smaller than the predicted minimum order size would result in a zero value for the likelihood

function. To obtain a fully nondegenerate likelihood function, we would have to introduce a second unob-

servable, such as an unobservable component υ of the fixed cost K of placing an order. If the distribution

of this component is such that there is positive probability that the combined order cost K � υ is arbitrarily

close to zero for sufficiently small realizations of υ, then consistent with Corollary 3 of section 2, the gap

will be zero, thus eliminating the possibility of a “zero likelihood problem.” In practice for the values of K

we encountered in our estimation, the gap is sufficiently small that zero likelihood problems did not arise.

Therefore in order to simplify the the model and the exposition we decided to omit the case where there

are unobservable components of K as well as p.

Let the conditional density of next period inventory qt � 1 given
�
pt � pr

t � xt � qt � qo
t � be denoted by µ. From

our discussion of the model in section 2, it is easy to see the µ is a mixed discrete/continuous density with

three classes of outcomes for qt � 1: 1) with probability η
�
pr � p � x � the firm will not make any sales and

qt � 1 � qt � qo
t ; 2) with probability

�
1 � η

�
pr

t � pt � xt � � δ
�
pr

t � pt � qt � qo
t � xt � the firm will have a stockout and

qt � 1 � 0; 3) otherwise qt � 1 is distributed continuously over the interval
�
0 � qt � qo

t � with density given by
�
1 � η

�
pr

t � pt � xt � � h
�
qt � qo

t � qt � 1 � pr
t � pt � xt � where h is the density of retail sales and qr

t � qt � qo
t � qt � 1 is

the implied value of retail sales given
�
qt � 1 � qt � qo

t � . We summarize this as:

Theorem 3: The (mixed discrete/continuous) density of next period inventory q � given
�
p � pr � q � qo � x � is

given by:

µ
�
q � � p � pr � q � qo � x � �

�� � � 1 � η
�
pr � p � x � � δ � pr � p � q � qo � x � if q � � 0

η
�
pr � p � x � if q � � q � qo�

1 � η
�
pr � p � x � � h � q � qo � q � � pr � p � x � otherwise

(30)
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Under our setup, we can show that the observables
�

pt � pr
t � qt � qo

t � xt � evolve as a joint Markov process

which also has a discrete/continuous transition probability density λ. We state this as Theorem 4:

Theorem 4: The joint process
�

pt � pr
t � qt � qo

t � xt � is Markov with (discrete/continuous) transition density λ

given by:

λ
�
pt � 1 � pr

t � 1 � qt � 1 � qo
t � � xt � 1 � pt � pr

t � qt � qo
t � xt � � g

�
pt � 1 � xt � 1 � pt � xt �

� µ
�
qt � 1 � pt � pr

t � qt � qo
t � xt �

� f
�
qo

t � 1 � pt � 1 � qt � 1 � xt � 1 �
� γ

�
pr

t � 1 � pt � 1 � qt � 1 � qo
t � 1 � xt � 1 � � (31)

Now consider the full information case where all of the variables
�

pt � pr
t � qt � qo

t � xt � are observed over the

entire sample period t � 0 ������� � T .

Definition 1: The full information maximum likelihood (FIML) estimator θ̂ f
T is defined as:

θ̂ f � argmax
θ � Θ

l f
� �

pt � pr
t � qt � qo

t � xt � T
t � 1 � p0 � pr

0 � q0 � qo
0 � x0 � θ � � (32)

where l f is given by:

l f
� �

pt � pr
t � qt � qo

t � xt � T
t � 1 � p0 � pr

0 � q0 � qo
0 � x0 � θ � �

T

∏
t � 1

λ
�
pt � pr

t � qt � qo
t � xt � pt � 1 � pr

t � 1 � qt � 1 � qo
t � 1 � xt � 1 � θ � � (33)

where θ denotes a vector compromising the unknown parameters of the densities
�

f � g � h � η � µ � γ � φ � and

the unknown parameters entering the firm’s cost functions
�
co � ch � and the firm’s discount factor ρ. Let Θ

denote a compact parameter space.

Now consider the partial information case where we only observe wholesale prices on the subset of n

trading days, Tn 
 �
t1 ��������� tn � at which purchases occur. To simplify notation we assume (without loss of

generality) that the data begin on the day of the first observed purchase, so t1 � 0, and end on the day of

the last observed purchase, tn � T . The relevant likelihood in this case is a marginal likelihood l p formed

by integrating the full likelihood function l f in equation (33) over wholesale prices pt for all time indices

t in the complement of Tn. For simplicity, we will consider the case where retail sales are observed in

every period. Otherwise, an additional set of integrations would need to be performed over the values

of pr
t for business days t where no retail sales occurred. As noted in the Introduction, it is notationally

convenient to convert the endogenous sampling problem into a censored sampling problem by defining an

observed censored price sequence
�

pt � in terms of the underlying uncensored price process
�

p
�
t � . Thus,
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the observed prices pt are given by:

pt � � p
�
t if qo

t
� 0

0 otherwise.
(34)

Definition 2: The Partial Information Maximum Likelihood (PIML) estimator θ̂p
T is defined as:

θ̂p � argmax
θ � Θ

lp
� �

pt � pr
t � qt � qo

t � xt � T
t � 1 � p0 � pr

0 � q0 � qo
0 � x0 � θ � � (35)

where lp is given by:

lp
� �

pt � pr
t � qt � qo

t � xt � T
t � 1 � p0 � pr

0 � q0 � qo
0 � x0 � θ � �

�
pTn

�
εTn

�����

�
pT1

�
εT1

l f ∏
t 
� Tn

I
�
qt
� s

�
pt � xt � εt � � q

�
εt � d pt dεt �

(36)

Thus, the PIML likelihood lp is derived from the FIML likelihood l f by integrating out the unobserved

wholesale prices over the dates t �� Tn that purchases do not occur. The region of integration is limited

to the region of the state space where making a purchase is not optimal. This is given by the indicator

function I
�
1t
�

s
�
pt � xt � εt � � . Notice that this region involves the unobserved state variable εt . Thus the

integration must be done over both unobserved variables
�
pt � εt � over all of the T � n dates t �� Tn at which

purchases do not occur.

We will now sketch the asymptotic properties of the PIML estimator under the assumption that there

is only one firm, but T � ∞. The asymptotic properties of the FIML estimator are well known: the

logarithm of l f can be approximated as a (normalized) sum of random variables. Despite the correlation

in these random variables in successive time periods, standard limit theorems for ergodic processes can be

used to show that this normalized sum converges to a well defined score function. A standard “information

inequality” argument can then be used to show that this score function is maximized at the true parameter

value θ
�
, assuming that the model is correctly specified. A formal proof would require specification of

regularity conditions similar to Billingsley (1961) and White (1982) to ensure that the convergence of

these normalized sums to the score function is uniform and that the score function is uniquely maximized

at θ
�
. These are standard sufficient conditions for the consistency of maximum likelihood.

However the argument for the consistency of the PIML estimator is more complicated. The high-

dimensional integrations over the irregularly spaced intervals between successive purchases create linkages

between the observations in the PIML estimator. When we take the logarithm of the likelihood it no

longer decomposes into a normalized sum of T random variables as in the FIML case. Thus the standard

arguments used to prove the consistency and asymptotic normality in the FIML case do not appear to apply
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in the PIML case. At best, the logarithm of the PIML likelihood decomposes into a sum of n terms, where

each term is the logarithm of a high dimensional integral of the transition probability density λ over the

times between successive purchases. However if the joint process
�

pt � pr
t � qt � qo

t � xt � is ergodic, we should

have n � ∞ with probability 1 as T � ∞. Our strategy will be to do the asymptotics for the PIML estimator

as a function of the number of purchases n rather than as a function of the number of time periods T over

which the firm is observed. In order to derive the asymptotic properties of the PIML estimator, we will

use the fact that the state of the process at successive purchase dates is an embedded Markov chain and the

sequence of realized states between successive purchases forms a segmented Markov chain. We will then

argue that the segmented Markov chain is ergodic, which will allow us to apply the relevant limit theorems

to establish the asymptotic properties of the PIML estimator.

Let
�
ξt � denote the joint Markov process in theorem 4, i.e., the process whose value at t is given by:

ξt 
 �
pt � pr

t � qt � qo
t � xt � � (37)

Definition 3: The purchase set Γ is given by:

Γ �
� �

ξ � ε � � qo
� 0 � � � �

ξ � ε � � q � s
�
p � x � ε � � � (38)

and the set of purchase dates Tn �
�
t1 ��������� tn � is defined recursively as:

ti � 1 � inf
�
t � ti � ξt � Γ � � (39)

Definition 4: Let
�
ζi � denote the embedded process associated with

�
ξt � and Γ. This is the discrete time

Markov process which is observed at successive purchase dates t � Tn, i.e.,

�
ζi � � �

ξti � � (40)

We derive the transition density ν for the embedded process
�
ζi � as a ti � ti � 1-step transition density for

successive visits to the purchase set Γ.

Lemma 1: The embedded process
�
ζi � is a Markov chain with transition density νe given by:

νe
�
ζi � ζi � 1 � θ � � λ

�
ξti � ξti � 1 � θ � �

�
ξti � 1 � 1

�
εti � 1 � 1

�����

�
ξti � 1

�
εti � 1

t � ti � 1

∏
ti � 1 � 1

I
� �

ξt � εt � �� Γ � λ
�
ξt � ξt � 1 � θ � dξt dεt � (41)

Definition 5: Let
�
ωi � be the segmented process associated with

�
ξt � , i.e. the process for which ωi is

defined as the realized (observed) values of
�
ξt � for the sequence of ti � ti � 1 time periods following the

purchase at ti � 1 until the purchase at ti:

ωi �
�
ξti � 1 � 1 ������� � ξti � � (42)
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Notice that the number of components in the segment ωi is a random variable, equal to the difference

ti � ti � 1, in the successive times that
�
ξt � visits the purchase set Γ.

Lemma 2: The segmented process
�
ωi � is a Markov chain with transition density νs given by:

νs
�
ωi � ωi � 1 � θ � � (43)�

pti � 1

�
εti � 1

�����

�
pti � 1 � 1

�
εti � 1 � 1

ti � 1

∏
t � ti � 1

λ
�
ξt � ξt � 1 � θ �

ti � 1 � 1

∏
t � ti � 1

I
�
qt
� s

�
pt � xt � εt � � q

�
εt � d pt dεt �

Thus, the transition density for the segmented chain
�
ωi � is basically the product of the transition densities

for the uncensored
�
ξt � process between successive purchases at periods ti and ti � 1, ∏ti � 1

t � ti � 1 λ
�
ξt � ξt � 1 � θ � ,

but integrated over the region of
�
pt � εt � space between time periods ti � 1 ��������� ti � 1 � 1 when purchases are

not observed. The appropriate region of integration is defined by the product of the indicator functions

I
�
qt
� s

�
pt � xt � εt � � that specify that the relevant price paths are those for which inventories lie above the

s
�
p � x � ε � band, so that it is not optimal to purchase during this time interval.

Notice that due to the Markov property for
�
xt � , only the last element of the segment ωi � 1, ξti � 1 , is

needed to fully determine the conditional probability of ωi �
�
ξti � 1 � 1 ������� � ξti � . Let τ � ti � 1 � ti, be the

duration between successive purchases, or in the language of Markov processes, the recurrence time for

successive visits to the purchase set Γ. If the mean recurrence time to Γ is finite, E
�
τ � � ∞, the process

�
ξ t �

will visit Γ infinitely often and the number of visits n observed over any horizon T tends to infinity with

probability 1 as T � ∞.

Assumption 1: The Markov chain
�
ξt � is ergodic (i.e. it possesses a unique stationary distribution), the

purchase set Γ is recurrent (i.e. E
�
τ � � ∞), and the embedded and segmented processes

�
ζ i � and

�
ωi �

are ergodic Markov chains.

To study the asymptotic properties of the PIML estimator, it is useful to rewrite the likelihood function

lp as a product of n � 1 terms, each of which describes the integrated likelihood between the n purchase

dates:

lp
� �

pt � pr
t � qt � qo

t � xt � T
t � 1 � p0 � pr

0 � q0 � qo
0 � x0 � θ � �

n � 1

∏
i � 1

νs
�
ωi � 1 � ωi � θ � � (44)

By Assumption 1 and the Renewal Theorem for Markov chains (see, e.g. Resnick 1992), we have with

probability 1

lim
T � ∞

n
T �

1
E

�
τ � � (45)

Thus, as long as E
�
τ � � ∞, the process

�
ξt � visits Γ infinitely often and n � ∞ with probability 1 as

T � ∞. Therefore we will carry out the asymptotic analysis indexing the sample size by the number of
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purchases n rather than the total number of time periods that the process is observed, T . To establish

consistency of the PIML estimator, it is convenient to work with the normalized log-likelihood functions.

First, we multiply and divide the likelihood lp by a product of the conditional densities of the recurrence

times ∏n � 1
i � 1 Pr

�
τ � ti � 1 � ti � ξti � θ � where

Pr
�
τ � ti � 1 � ti � ξti � θ � �

�
ξti � 1

�
εti � 1

I
�
qti � 1 � s

�
pti � 1 � xti � 1 � εti � 1 ��� λ

�
ξti � 1 � ξti � 1 � 1 � θ � � (46)� �

ξti � 1

�
εti � 1

�����

�
ξti � 1 � 1

�
εti � 1 � 1

ti � 1 � 1

∏
t � ti � 1

I
�
qt
� s

�
pt � xt � εt � � λ

�
ξt � ξt � 1 � θ � dξt dεt � dξti � 1 dεti � 1 �

Taking logs and dividing by n � 1 we obtain the following form for the normalized log-likelihood function

1
n � 1

log lp
� �

pt � pr
t � qt � qo

t � xt � T
t � 1 � p0 � pr

0 � q0 � qo
0 � x0 � θ �

�
1

n � 1

n � 1

∑
i � 1

logρ
�
ωi � 1 � ωi � ti � 1 � ti � θ � �

1
n � 1

n � 1

∑
i � 1

logPr
�
ti � 1 � ti � ωi � θ �

�
1

n � 1

n � 1

∑
i � 1

v1
�
ωi � 1 � ωi � θ � �

1
n � 1

n � 1

∑
i � 1

v2
�
ωi � 1 � ωi � θ � � (47)

where

ρ
�
ωi � 1 � ωi � ti � 1 � ti � θ � � (48)�

pti � 1

�
εti � 1

�����

�
pti � 1 � 1

�
εti � 1 � 1

ti � 1

∏
t � ti � 1

λ
�
ξt � ξt � 1 � θ �

Pr
�
ti � 1 � ti � ξti � θ �

ti � 1 � 1

∏
t � ti � 1

I
�
qt
� s

�
pt � xt � εt � � q

�
εt � d pt dεt �

Thus, ρ is the conditional density of the segment ωi � 1 given the previous segment ωi, and given that the

length of segment ωi � 1 is ti � 1 � ti, i.e. the duration between purchases at times ti and ti � 1. Comparing

equations (44) and (49) and noting that due to the Markov property we have Pr
�
τ � ω � � Pr

�
τ � ξ � when the

last subvector in ω is ξ, we see that

νs
�
ω � � ω � θ � � ρ

�
ω � � ω � τ � θ � Pr

�
τ � ω � θ � � (49)

Note that ωi � 1 implicitly contains the information on ti � 1 � ti since this duration is also proportional to

the length of ωi � 1 as we can see in Definition 5. Thus, since the realized value of the duration between

successive purchases ti � 1 � ti is implicitly determined by ωi � 1, we suppress ti � 1 � ti in formula (47) in order

to emphasize that the normalized log-likelihood function can be written as a normalized sum of random

variables that depend on the realizations of an ergodic segmented Markov chain
�
ω i � . Under suitable

regularity conditions on the moments of the functions v j , j � 1 � 2, Assumption 1 and the Ergodic Theorem
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for Markov processes imply that as n � ∞ we have with probability 1:

1
n � 1

n � 1

∑
i � 1

v j
�
ωi � 1 � ωi � θ � � E

�
v j
�
ω � � ω � θ � � � j � 1 � 2 � (50)

where the expectation is taken with respect to the invariant distribution for
�
ω � � ω � and is given by

E
�
v j
�
ω � � ω � θ ��� � � � v j

�
ω � � ω � θ � νs

�
dω � � ω � θ � � ψ � dω � θ � � � j � 1 � 2 � (51)

where νs
�
ω � � ω � θ � � is the transition density for the segmented process given in equation (44) and ψ

�
ω � θ � �

is the invariant distribution for the segmented chain
�
ωi � . Using the alternative representation of lp in

equation (47), we are now able to verify the consistency of the PIML estimator. Note that as n � ∞, the

existence of the ergodic limits in equation (51) imply that the following limits hold

1
n � 1

n � 1

∑
i � 1

log ρ
�
ωi � 1 � ωi � ti � 1 � ti � θ � � E

�
log ρ

�
ω � � ω � τ � θ � � � (52)

and
1

n � 1

n � 1

∑
i � 1

logPr
�
ti � 1 � ti � ξti � θ � � E

�
log Pr

�
τ � ω � θ � � � (53)

where τ is the recurrence time to the purchase set Γ. We have

E
�
log ρ

�
ω � � ω � τ � θ ��� � � ∞

∑
τ � 1
� � log ρ

�
ω � � ω � τ � θ � ρ � dω � � ω � τ � θ � � � Pr

�
τ � ω � θ � � ψ

�
dω � θ � � � (54)

Note that for any ω and τ, the Information Inequality guarantees that the expression in brackets in (54) is

maximized at θ � θ
�
. Similarly we have

E
�
log � Pr

�
τ � ξ � θ � � � � E

�
log � Pr

�
τ � ω � θ � � � �

� ∞

∑
τ � 1

log � Pr
�
τ � ω � θ � � Pr

�
τ � ω � θ � � ψ

�
dω � (55)

will also be maximized at θ � θ
�
. This implies that the limiting expected log likelihood is maximized at

θ
�
. Standard uniform consistency arguments can be used to show that with probability 1 we have θ̂p

� θ
�

as n � ∞.

We conclude this section with a brief sketch the derivation of the asymptotic distribution of the PIML

estimator. If model is correctly specified and appropriate regularity conditions hold, the first order con-

ditions for θ̂p can be expanded in Taylor series about the true parameter θ
�
. Applying a Central Limit

Theorem for mixing processes to the key score term in this Taylor series expansion one can show that:

�
n � θ̂p � θ

���
� � N

�
0 � I � 1 � θ � � � (56)
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where

I
�
θ

� � � I1
�
θ

� � � I2
�
θ

� �

where

I1
�
θ

� � � E � ∂2

∂θ∂θ � log � ρ � ω � � ω � τ � θ � � ���
and

I2
�
θ

� � � E � ∂2

∂θ∂θ � log � Pr
�
τ � ξ0 � θ � � � � �

Further it is not difficult to show that the difference between the information matrices for the FIML and

PIML estimators is a positive semi-definitive matrix. This implies that there is indeed a loss of information,

and therefore an increase in variance, caused by the endogenous sampling problem. However as long as

our model is correctly specified, the PIML estimator will be consistent. If the model is misspecified, then a

modification of arguments in White (1982) can be used to show that the PIML and FIML still converge and

have an asymptotically normal distribution, but they converge to a value of θ
�

that minimizes the Kullbeck-

Liebler distance between the parametric model and the true data generating process. The formulas for the

asymptotic variance of the estimators must be changed to the outer product of the information and the

inverse Hessians of the log likelihood when the model is misspecified, since in that case the covariance of

θ̂ j
n is no longer given by the inverse of the information matrix, see White (1982).

The drawback of the PIML estimator is that it is computationally intensive due to the high dimensional

integrations that are required to evaluate lp. Since no purchases of steel are observed on the majority of

business days in our sample, the mean time between purchases is about 10 business days, so that on av-

erage 10 dimensional integrals must be calculated for each term entering the likelihood. Although there

have been important advances in simulation estimation and low discrepancy methods for computing high

dimensional integrals (see, e.g. Rust, Traub and Woźniakowski, 2002), the PIML will still be a fairly

computationally burdensome estimator. A second drawback is that if our interest is primarily on making

inferences about the law of motion for
�

pt � xt � , the other structural parameters that must be estimated to

adjust for the endogeneity of the sampling process amount to nuisance parameters. Errors in the specifi-

cation of the firm’s optimal investment and speculation problem will result in inconsistent estimates of the

parameters of interest in the transition density g
�
pt � 1 � xt � 1 � pt � xt � .

It is possible to consider the use of flexible reduced-form specifications for the densities entering the

overall decomposition of the transition density λ given in Theorem 4. However without some strong prior

parametric restrictions on some of these densities, it is doubtful that an unrestricted model where the

25



densities
�
g � µ � f � γ � are treated as unknown objects to be estimated non-parametrically is even identified.

In particular the
�
S � s � model combined with the observations of retail transaction prices provides strong

identifying restrictions, limiting how far the wholesale price process
�

pt � can drift away from observed

retail price for a given sequence of observed purchases. In particular, as the implied markup gets larger

or smaller, the
�
S � s � model predicts that the number of orders should be increasing and decreasing in a

corresponding fashion. Given the observed sequence of purchases, this property enables us to separately

identify the parameters of g
�
p � � x � � p � x � and the structural parameters of the

�
S � s � model. However if a non-

parametric model does not impose any sort of profit maximizing or loss minimizing behavioral motivation

on the part of the firm, then the wholesale market price
�

pt � could drift arbitrarily far away from the retail

prices
�

pr
t � without there being any strong effect on the likelihood of the observed sequences of purchases.

Thus it is impossible to non-parametrically identify the form of g
�
p � � x � � p � x � and the trading rule used by

the firm when we only have access to endogenously sampled data.

4 Simulated Minimum Distance Estimation

This section introduces a simulated minimum distance estimator (SMD) that may be less efficient than

the PIML estimator, but which does not require the high dimensional integration and is much easier to

compute. Similar estimators have been proposed in other contexts by Lee and Ingram (1991) and Duffie

and Singleton (1993). The idea behind the SMD estimator is quite straightforward, and is similar in spirit

to the method of “calibration”. The main difference is that the SMD estimator is based on an explicit sta-

tistical criterion function that enables us to compute asymptotic distributions for the parameter estimator,

evaluate the fit of alternative specifications, and to conduct goodness of fit tests.

The SMD estimator is simply the parameter value that minimizes the distance between a set of simu-

lated and sample moments using the observed censored observations. First we calculate sample moments

using the censored observations in the data, i.e. with pt � 0 when qo
t � 0. Then we generate one or more

simulated realizations of the
�
S � s � model for a given trial value θ of the unknown parameter vector. We

define θ̂smd as the value of θ that minimizes a quadratic form in the difference between the sample mo-

ments for the actual data and the sample moments of the simulated data, where the simulated data has been

censored in exactly the same fashion as the actual data, i.e. we set pt � 0 whenever the simulated value of

qo
t � 0. Thus even though various moments based on censored data may be biased, inconsistent estimators

of the corresponding moments of the ergodic process in the absence of censoring, this does not prevent us
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from deriving a consistent SMD estimator for θ
�
. In fact we show that the SMD estimator is consistent

even if we use only a single simulated realization of the
�
S � s � model.

The asymptotic variance of the SMD estimator is multiplied by a factor
�
1 � 1 � S � where S is the

number of simulations. Consequently, there is an efficiency gain to running additional simulations since it

reduces the variance of the estimator. However the “penalty” to forming an SMD estimator based on only

a single realization appears relatively small: the asymptotic variance is only twice as large as the variance

of an estimator that eliminates all simulation noise by letting S � ∞. This increase in variance seems small

in comparison to the substantial reduction in computational burden from using only a single simulation

of the model. Estimation still requires a nested fixed point algorithm to solve for the optimal
�
S � s � policy

and a re-simulation of the model using a fixed set of random shocks (see below) each time the parameter

θ is updated, so the SMD estimator is still fairly computationally demanding. Its other drawback is that

it requires the analyst to determine an appropriate set of moments to represent the relevant metric for

assessing the distance between the predictions of the model and the data. In principle an infinite number

of different moment conditions could be specified, but only a finite number can be used in practice.

Let
�
ξt � denote the censored process introduced in section 3 (i.e. with pt � 0 when qo

t � 0), and let θ

denote the K � 1 vector of parameters to be estimated. The SMD estimator is based on finding a parameter

value that best fits a J � 1 vector of moments of the observed process:

hT 
 1
T

T

∑
t � 1

h
�
ξt � ξt � 1 � � (57)

where J � K and h is a known (smooth) function of
�
ξt � ξt � 1 � that determines the moments we wish to

match. We include ξt and its lag ξt � 1 as arguments of h in order to handle situations were we are trying to

fit moments such as means and covariances of the components of ξt . It is straightforward to allow moments

that involve more than one lag: we only include a single lagged value of ξt in our presentation below for

notational simplicity.

By Assumption 1, the process
�
ξt � is ergodic so that, with probability 1, hT converges to a limit

E
�
h
�
ξ � � ξ � � where the expectation is taken with respect to the ergodic distribution of

�
ξ � � ξ � (i.e. the limiting

distribution of
�
ξt � 1 � ξt � as t � ∞). Under suitable additional regularity conditions, a central limit theorem

will hold for hT , i.e. we have �
T � hT � E

�
h � � � � N

�
0 � Ω � h � � � (58)

where

Ω
�
h � � E

� �
h
�
ξ � � ξ � � E

�
h � � � h � ξ � � ξ � � E

�
h � � � � � (59)
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where the expectation in (59) is taken with respect to the ergodic distribution of
�
ξ � � ξ � .

Now assume it is possible to generate simulated realizations of the
�
ξt � process for any candidate value

of θ, and that this process is censored in exactly the same way as the observed
�
ξt � process is censored,

i.e., with pt � 0 when qo
t � 0. These simulations depend on a T � 1 vector, u, of IID U

�
0 � 1 � random

variables that are drawn once at the start of the estimation process and held fixed thereafter in order for the

estimator to satisfy stochastic equicontinuity conditions necessary to establish asymptotic normality of the

SMD estimator. We will consider simulated processes of the form

�
ξt
� �

us � s 	 t � θ � ξ0 � � � t � 2 ��������� T (60)

where for each t
� 1, ξt

� �
us � s 	 t � θ � ξ0 � is a continuously differentiable function of θ. The notation

�
us � s 	 t

reflects the fact that the simulated process is adapted to the realization of the
�
ut � process, i.e. the first t

realized values of
�
ξt
� �

us � s 	 t � θ � � depend only on the first t realized values of
�
us � and not on subsequent

realized values of us for s � t. Note that we allow the simulated process to depend on the first value ξ0 of

the observed data as an initializing condition.

To show that it is possible to construct such smooth simulators, consider the unidimensional case

where ξt � R1 for all t. Let λ
�
ξt � 1 � ξt � θ � denote its transition density and P

�
ξt � 1 � ξt � θ � be the corresponding

conditional CDF. The first value of the simulated process is simply set to the observed value ξ0. Using the

probability integral transform, we can define ξ1
�
u1 � θ � ξ0 � by:

ξ1
�
u1 � θ � ξ0 � � P � 1 � u1 � ξ0 � θ � � (61)

Clearly ξ1
�
u1 � θ � ξ0 � will be a continuously differentiable function of θ if P � 1 � u1 � ξ0 � θ � is a continuously

differentiable function of θ. Now define recursively for t � 2 � 4 �������

ξt
� �

us � s 	 t � θ � ξ0 � � P � 1 � ut � ξt � 1
� �

us � s 	 t � 1 � θ � ξ0 � � θ � � (62)

We can see recursively that ξt
� �

us � s 	 t � θ � ξ0 � will be a continuously differentiable function of θ provided

that P � 1 � u � ξ � θ � is a continuously differentiable function of ξ and θ.

In the case where
�
ξt � is the multidimensional process with ξt �

�
pt � pr

t � qt � qo
t � xt � , we can do a similar

simulation as in the univariate case described above, using a factorization of the transition density of
�
x t �

into a product of univariate conditional densities such as given in Theorem 4. For example, if ξt has two

components, ξt �
�
ξ1 � t � ξ2 � t � , suppose that its transition density λ can be factored as

λ
�
ξt � 1 � ξt � θ � � λ2

�
ξ2 � t � 1 � ξ1 � t � 1 � ξt � θ � λ1

�
ξ1 � t � 1 � ξt � θ � � (63)

28



with corresponding conditional CDFs denoted by P1 and P2. Now we can generate simulations of
�
ξt � that

will be smooth function of θ just as in the univariate case, except that in the two-dimensional case we need

to generate two random U
�
0 � 1 � variables ut �

�
u1 � t � u2 � t � for each time period simulated. For example to

generate a simulated value of ξ1 �
�
ξ1 � 1 � ξ2 � 1 � we compute

ξ1 � 1 � P � 1
1

�
u1 � 1 � ξ0 � θ �

ξ2 � 1 � P � 1
2

�
u2 � 1 � ξ1 � 2 � ξ0 � θ � � (64)

Clearly the resulting realization for ξ1 is of the form ξ1
�
u1 � ξ0 � θ � and will be a smooth function of θ

provided that P1 and P2 are smooth functions of
�
ξ � θ � . Continuing recursively we have:

ξ1 � t � 1 � P � 1
1

�
u1 � t � 1 � ξt � θ �

ξ2 � t � 1 � P � 1
2

�
u2 � t � 1 � ξ1 � t � 1 � ξt � θ � � (65)

The resulting simulations take the form
�
ξt
� �

us � s 	 t � θ � ξ0 � � and will be smooth functions of θ provided

that P1 and P2 are smooth functions of their conditioning arguments
�
ξ � θ � .

Now consider using a single simulated realization of
�
ξt
� �

us � s 	 t � θ � ξ0 � � to form a simulated sample

moment hT
� �

us � s 	 T � ξ0 � θ � given by

hT
� �

us � s 	 T � ξ0 � θ � � 1
T

T

∑
t � 1

h
�
ξt
� �

us � s 	 t � θ � ξ0 � � ξt � 1
� �

us � s 	 t � 1 � θ � ξ0 � � � (66)

Let
� �

u1
s � s 	 T ������� � � uS

s � s 	 T � denote S IID T � 1 sequences of U
�
0 � 1 � random vectors used to generate the

S independent realizations of the endogenously sampled process
�
ξt
� �

ui
s � s 	 t � θ � ξ0 � � , i � 1 ������� � S. Define

hS � T � θ � as the average of S independent time averages hT
� �

ui
s � s 	 T � ξ0 � θ �

hS � T � θ � � 1
S

S

∑
i � 1

hT
� �

ui
s � s 	 T � ξ0 � θ � � (67)

Definition 6: The simulated minimum distance estimator θ̂T is defined by:

θ̂T � argmin
θ � Θ

�
hS � T � θ � � hT ��� WT

�
hS � T � θ � � hT � � (68)

where WT is a J � J positive definite weighting matrix.

In order to simplify the asymptotic analysis, we initially assume that we have a correct parametric

specification of the endogenous sampling problem. That is we make
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Assumption 2: The parametric model introduced in section 2 is correctly specified, i.e., there is a θ
� � Θ

such that:
�
ξt
� �

us � s 	 t � θ � � ξ0 � ��� �
ξt � (69)

that is, when θ � θ
�
, the simulated sequence initialized from the observed value ξ0 has the same probability

distribution as the observed sequence
�
ξt � .

We believe that it is possible to relax assumption 2 to allow the parametric model to be misspecified,

following an analysis similar to that of Hall and Inoue (2002) who characterized the asymptotic properties

of the GMM estimator in the misspecified case. We conjecture that their analysis will also apply to the

case of SMD estimation and that the asymptotic properties of the SMD estimator that we derive for the

correctly specified case will still hold, except that now θ
�

is interpreted as the value of θ the minimizes the

distance between the moments of the true data generating process and the parametric simulated process,

where the expectation is taken in the limit as both S � ∞ and T � ∞.7

We now sketch the derivation of the asymptotic distribution of the SMD estimator, listing the key

assumptions and showing how its asymptotic variance depends on the number of simulations S.

Assumption 3: For any θ � Θ the process
�
ξt
� �

us � s 	 t � θ � ξ0 � � is ergodic with unique invariant density

ψ
�
ξ � θ � given by:

ψ
�
ξ � � θ � �

�
λ
�
ξ � � ξ � θ � dψ

�
ξ � θ � � (70)

Define the functions E
�
h � θ � , ∇E

�
h � θ � , and ∇hS � T � θ � by:

E
�
h � θ � �

�
h
�
ξ � � ξ � dλ

�
ξ � � ξ � θ � dψ

�
ξ � θ �

∇E
�
h � θ � �

∂
∂θ

E
�
h � θ �

∇hS � T � θ � �
∂

∂θ
hS � T � θ � � (71)

Assumption 4: θ
�

is identified; that is, if θ
�
� θ

�
, then E

�
h � θ � �� E

�
h � θ � � � E

�
h � . Furthermore,

rank
�
∇E

�
h � θ � � � K and limT � ∞ WT � W with probability 1 where W is a J � J positive definite ma-

trix.

The consistency of the SMD estimator can be established by providing appropriate regularity con-

ditions under which the simulated process is uniformly ergodic, i.e., under which with probability 1 we

7When there is misspecification, the standard formula for the asymptotic covariance matrix when the model is correctly
specified will generally not be consistent when the model is misspecified. However similar to the case of maximum likeli-
hood estimation of misspecified models (White, 1982), there are alternative estimators of the asymptotic covariance matrix
which are consistent when the model is misspecified and when the model is correctly specified.
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have

lim
T � ∞

sup
θ � Θ

�� � hS � T � θ � � hT � � WT
�
hS � T � θ � � hT � �

�
E
�
h � θ � � E

�
h � θ

� � � �W �
E
�
h � θ � � E

�
h � θ

� � � �� � 0 � (72)

Assumption 3 guarantees that the unique minimizer of
�
E
�
h � θ � � E

�
h � θ � � � �W �

E
�
h � θ � � E

�
h � θ � � � is θ

�
,

and this combined with the uniform consistency result implies the consistency of θ̂T . The asymptotic

normality of θ̂T can be established by a Taylor series expansion of the first order condition

�
hS � T � θ̂T � � hT ���WT ∇hS � T � θ̂T � � 0 � (73)

Expanding hS � T � θ̂T � about θ � θ
�

we have

hS � T � θ̂T � � hS � T � θ � � � ∇hS � T � θ̃T �
�
θ̂T � θ

� � � (74)

where θ̃T denotes a vector that is (elementwise) on the line segment between θ̂T and θ
�
. Substituting (74)

into the first order condition for θ̂T in equation (73) and solving for
�
θ̂T � θ

� � we obtain

�
θ̂T � θ

� � � � � ∇hS � T � θ̃T � � WT ∇hS � T � θ̂T �
� � 1 ∇hS � T � θ̂T � �WT � hS � T � θ � � � hT � � (75)

where we assume that � ∇hS � T � θ̃T � �WT ∇hS � T � θ̂T �
�

is invertible, which will be the case with probability 1

for sufficiently large T due to assumptions 3 and 4. Now multiply both sides of equation (75) by
�

T and

apply a Central Limit theorem to the difference
�

T � hS � T � θ � � � hT � to obtain

�
T � hS � T � θ � � � hT � � � N

�
0 � � 1 � 1 � S � Ω � h � θ � � � � (76)

To understand this result, note that hS � T � θ � � is an average of S independent realizations of
�
ξt
� �

us � s 	 t � θ � ξ0 � � ,

which by assumption 2 has the same distribution as
�
ξt � . As a result each of the terms entering hS � T � θ � � ,

hT
� �

ui � � θ � � , has the same probability distribution as hT and are distributed independently of hT . The

Central Limit Theorem applied to hT yields

�
T � hT � E

�
h � θ

� � � � � N
�
0 � Ω � h � θ � � � � (77)

Similarly, for each i � 1 ������� � S we have

�
T � hT

� �
ui

s � s 	 T � θ � � � E
�
h � θ � � � � � N

�
0 � Ω � h � θ � � � � (78)

Note that

� hS � T � θ � � � hT � �
�
1
S

S

∑
i � 1

� hT
� �

ui
s � s 	 T � θ � � � E

�
h � θ � � � � E

�
h � θ � � � hT � � (79)

31



so that we have �
T � hS � T � θ � � � hT � � �

�
1
S

S

∑
i � 1

X̃i � X̃0 � � (80)

where
�
X̃0 � X̃1 ��������� XS � are IID N

�
0 � Ω � h � θ � � � random vectors. It follows immediately that the asymptotic

distribution of
�

T � hS � T � θ � � � hT � is N
�
0 � � 1 � 1 � S � Ω � h � θ � � � . Using this result and equation (75) we have

�
T � θ̂T � θ

� �
� � N

�
0 � � 1 � 1 � S � Λ � 1

1 Λ2Λ � 1
1 � � (81)

where

Λ1 � � ∇E
�
h � θ � � � � W ∇ � E �

h � θ � � �
Λ2 � � ∇E

�
h � θ � � � � W Ω

�
h � θ � � W � ∇E

�
h � θ � � � � (82)

Borrowing from the literature on generalized method of moments estimation, the optimal weight matrix

W � � Ω � h � θ � � � � 1 results in an SMD estimator with minimal variance. In this case the asymptotic distri-

bution of θ̂T simplifies to:

Theorem 5: Consider the SMD estimator θ̂T formed using a weighting matrix WT equal to the inverse of

any consistent estimator of Ω
�
h � θ � � . Then we have:

�
T � θ̂T � θ

� � � � N
�
0 � � 1 � 1 � S � Λ � 1 � (83)

where:

Λ � � ∇E
�
h � θ

� � � � Ω � h � θ � � � � 1∇E
�
h � θ

� � � � (84)

The most important point to note about this result is that the penalty to forming an SMD estimator using

only a single realization S � 1 of the endogenously sampled process
�
ξt
� �

us � s 	 t � θ � ξ0 � � is fairly small.

The variance of the resulting estimator is only twice as large as an estimator that computes the expectation

of hT
� �

u � � θ � exactly, such as would be done via Monte Carlo integration when S � ∞.

The SMD estimator can be implemented in practice by solving

θ̂T � argmin
θ � Θ

�
hS � T � θ � � hT � � � Ω̂ � h � θ � � � 1 �

hS � T � θ � � hT � � (85)

where

Ω̂
�
h � θ � � 1

T

T

∑
t � 1

εt
�
θ � εt

�
θ ��� (86)

where

εt
�
θ � � h

�
ξt
� �

us � s 	 t � θ � ξ0 � � ξt � 1
� �

us � s 	 t � 1 � θ � ξ0 � � � hT
� �

us � s 	 T � ξ0 � θ � � (87)
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Thus, an estimate of the optimal weighting matrix Ω
�
h � θ � is recomputed each time the parameter θ is

updated.

More efficient estimators can be obtained by selecting “efficient moment functions” h such as the score

of the partial information maximum likelihood function derived in section 3. Such an estimator can attain

the Cramer-Rao efficiency bound derived for the PIML estimator in equation (56). However the score

involves a ratio of integrals, and it is not clear that these integrals can be replaced by simulation estimates

and still obtain a consistent SMD estimator. If accurate numerical integrals are required, the computational

advantage of the SMD estimator is lost and it may be less computationally burdensome to compute the

PIML estimator directly. This is a topic for future work. We note that the definition of the SMD estimator

can be extended to allow moments formed from the segmented Markov chain
�
ω i � defined in section 3.

This formulation would be required in the case where h is the score of the partial information likelihood

function, since the components of the score involve the segmented chain as shown in section 3. Using

moments from the segmented chain involves some minor modifications of the arguments given above. We

now do the asymptotics as a function of the number of purchases n rather than the total number of time

periods T over which the process is observed. In this case we define the sample moments hn by

1
n � 1

n � 1

∑
i � 1

h
�
ωi � 1 � ωi � � (88)

and the simulated moments hS � n � θ � can be defined accordingly, using the simulated process
�
ξt
� �

ui
s � s 	 t � θ � ξ0 � � ,

i � 1 ������� � S to construct S IID realizations of the segmented process.

Finally, we note that it is appears that it is possible to relax assumption 2 that the parametric model

is correctly specified. As long as assumptions 3 and 4 hold, there will still exist well defined limiting

moments for the simulated process, E
�
h � θ � , for each θ � Θ. Define θ

�
as the value that minimizes the

distance between the simulated model and the true data generating process:

θ
�
� argmin

θ � Θ
� E �

h � θ � � E
�
h � � � W � E �

h � θ � � E
�
h � � � (89)

where E
�
h � denotes the limit of hT as T � ∞ for the true data generating process. If the value of θ

�
that

minimizes this distance is interior to the parameter space Θ, then the following first order condition must

hold at θ
�
:

�
E
�
h � θ

� � � E
�
h � � �W ∇E

�
h � θ

� � � 0 � (90)

where E
�
h � denotes the long run or ergodic expectation of h with respect to the true data generating
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process. This implies that as t � ∞ the random vector

Xt 
 ∇E
�
h � θ � � �W �

h
�
ξt
� �

us � s 	 t � θ � � ξ0 � � � h
�
ξt � � � (91)

satisfies

lim
t � ∞

E
�
Xt � � 0

lim
t � ∞

cov
�
Xt � � Λ2 (92)

for some J � J covariance matrix Λ2. However in the misspecified case, Λ2 may not equal the same

formula as the Λ2 given in equation (82). Using a suitable Central Limit theorem for mixing processes, we

should have �
T∇E

�
h � θ � � �W � hT

� �
u � � θ � � � hT � � � N

�
0 � Λ2 � � (93)

Following a Taylor expansion argument just as in the correctly specified case above, we should be able to

derive the same general form for the asymptotic distribution of θ̂T in the misspecified case, i.e.

�
T � θ̂T � θ

� �
� � N

�
0 � � 1 � 1 � S � Λ � 1

1 Λ2Λ � 1
1 � � (94)

where

Λ1 � � ∇E
�
h � θ

� � �W ∇E
�
h � θ

� � � (95)

and where �
T∇hT

� �
us � � θ � � �WT � hT

� �
us � � θ � � � hT � � � N

�
0 � Λ3 � � (96)

The main outstanding issue is to actually establish the limiting asymptotic distribution that is conjectured

in (96) and relate the asymptotic covariance matrix Λ3 to the asymptotic covariance matrix Λ2 in (93).

As we noted above, we believe that results of Hall and Inoue (2002) on GMM estimation of misspecified

models can be adapted to establish the asymptotic distribution of the SMD estimator in the misspecified

case. However given the space constraints we leave this topic, together with Monte Carlo tests and an

empirical application of the SMD estimator for a misspecified model, as a topic for subsequent research.

5 Empirical Application

To illustrate the simulated minimum distance estimator, we consider a special case of the model in which

there are no additional state variables, x. In this case, the
�
S � s � bands are only functions of the current
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wholesale price, S
�
p � and s

�
p � . We first estimate the model using data generated from the model itself.

In this case, we know the model is correctly specified, and we know the true parameter vector. Second,

we estimate the model twice using actual data for two products from the steel service center. Finally,

we decompose the firm’s profits by product into four components. We use this decomposition to infer

the share of the firm’s profits that are due to markups paid by retail customers and the share due to price

speculation. We also use this decomposition to compare the general manager’s purchasing decisions to the

model’s trading rules.

5.1 A special case of the model

Consider a version of the model in which the firm’s general manager solves the following problem:

max�
qo

t � E
∞

∑
t � 0

ρt � pr
t qs

t � co � qo
t � pt � � ch � qt � qo

t � pt ��� (97)

subject to (3) and (4), and where

co � qo
t � pt � � � ptqo

t � K if qo
t
� 0

0 otherwise,
and

ch � qt � qo
t � pt � � φ

�
qt � qo

t � 2 �

As before, the manager takes the wholesale price pt and quantity demanded qr
t as given. The manager

knows pt before deciding qo
t . The manager then draws qr

t . The order cost function, co � � � � � and holding

cost function, ch � � � , are described in section 2. The holding cost function is quadratic so the marginal

convenience yield is decreasing in the level of inventories.

We assume the wholesale price evolves according to a truncated lognormal AR
�
1 � process:

log
�
pt � 1 � � µp � λplog

�
pt � � wp

t (98)

where wp
t is an IID N

�
0 � σ2

p � sequence. If we let µ̄p and σ̄p denote the uncensored mean and standard

deviation of the wholesale price distribution, we can compute

σ̃p ��� log
�
σ̄2

p � µ̄2p � � 2log
�

µ̄p � � (99)

Using σ̃p we can compute µp and σp by:

µp �
�
1 � λp �

�
log

�
µ̄p � � σ̃2

p � 2 � and σp � σ̃p
� � 1 � λ2

p � (100)

35



The firm sets the retail price by using a fixed linear markup rule over the current wholesale price:

pr
t � α0 � α1 pt � (101)

The firm draws a quantity demanded qr
t each period from a mixed truncated lognormal distribution condi-

tional on pt That is, with probability η, qd
t � 0, and with probability 1 � η, qd

t is drawn from a truncated

normal distribution with location parameter µq
�
p � � µp � ςlog

�
pt � . Both ς, the price elasticity of demand,

and η are fixed, time-invariant constants.

Let µ̄q and σ̄q denote the unconditional mean and standard deviation of the quantity demanded distri-

bution. We can compute

µ̃q � log
�

µ̄q � � σ̃2
q � 2 and σ̃q ��� log

�
σ̄2

q � µ̄2q � � 2log
�

µ̄q � �

Then the mean and standard deviation of quantity demanded conditioned on pt and a sales occurring, µq

and σq, are computed by:

µq � µ̃q � ς � µp � � 1 � λp � and σq � � σ̃2
q � ς2 � σ̃2

p � � 1 � λ2
p � �

Finally θ denotes the
�
K � 1 � parameter vector to be estimated: θ �

�
K � α0 � α1 � λp � µ̄p � σ̄p � µ̄q � σ̄q � ς � φ � �

5.2 Computation

The SMD estimation procedure requires us to solve for the optimal inventory investment rule each time

we evaluate the criterion for a new parameter vector. We solve the model by the method of parameter-

ized policy iteration (PPI). The PPI algorithm involves approximating the value function V
�
p � q � given in

equation (11) as a linear combination of N basis functions,
�
ϕ1
�
p � q � � ϕ2

�
p � q � ��� � � � ϕN

�
p � q � � :

V
�
p � q ���

N

∑
n � 1

ϑnϕn
�
p � q � � (102)

We discretize the state space into M pairs
�
p � q � , and we denote the mth pair by

�
pm � qm � . Thus we transform

the value function into a system of M linear equations with N unknowns
�
ϑ1 � ϑ2 ��� � � � � ϑN � :

N

∑
n � 1

ϑnϕn
�
pm � qm � � max

0 	 qo 	 q � qm

�
ES
�
pm � qm � � co � qo � pm � � ch � qm � pm � �

ρE � N

∑
n � 1

ϑnϕn
�
p � � max � 0 � qm � qs � qo � � � pm � qm � � for m � 1 ��� � � � M. (103)
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As the name suggests, PPI employs an iterative strategy to find the N coefficients on the basis functions

that solve the system of equations in (103). Given an initial guess of the coefficient vector, ϑ, we solve

the two-period problem on the right-hand side of (103) for each discretize pair of
�
p � q � . This yields an

�
M � 1 � vector of the decision rule qo � p � q � . Note that although we discretized the state variables, qo is a

continuous variable subject to the frequently binding constraint: 0 � qo
i � q̄ � q.

Using the decision rule vector, we construct two
�
M � N � matrices, P and EP, with elements Pm � n and

EPm � n given by:

Pm � n � ϕn
�
pm � qm �

EPm � n � E
�
ϕn
�
p � � qm � qs � qo � pm � qm � � � pm � qm � �

Define the
�
M � 1 � vector y with the mth element given by

ym � ES
�
pm � qm � � co � qo � pm � qm � � pm � � ch � qm � pm � �

and let the
�
M � N � matrix X be given by X �

�
P � ρEP � . Then the system of equations (103) can written

in matrix form as y � Xϑ. If M � N and X is invertible, the solution for ϑ is simply ϑ̂ � y � X . If M
�

N,

we form an approximate solution using ordinary least squares estimation, i,e. ϑ̂ �
�
X � X � � 1X � y. Using ϑ̂

as our updated coefficient vector, we iterate on this procedure until the coefficient vector converges to a

fixed point.

We approximated the value function by a complete set of Chebychev polynomials of degree 3 in

p and q (so N � 10). We discretized the state space into 225
�
p � q � pairs choosing 15 discrete values

for p and 15 discrete values for q. The grid points are fixed at the Chebychev zeros, so they are more

heavily weighted toward the boundaries of the state space. This parametrization of the value function

does not guarantee concavity of the value function; never the less, for the problem at hand we found PPI

to be relatively accurate, robust, and fast compared to alternative solution methods. See Benitez-Silva,

Hall, Hitsch, Pauletto, and Rust (2001) for detailed comparisons of the PPI algorithm with other solution

techniques for a variety of different models.

5.3 Estimation

We have considerable freedom in our choice of moments functions, the h vector, to use in the criterion. As

discussed above, the most efficient moment functions we could use would be the score of the partial infor-

mation maximum likelihood function derived in section 3. However given the difficulties in computing the
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high dimensional integrals involved in evaluating the score, we instead match the means and histograms

(four of the five quintile binds) of the p, pr, qo, qs, and q processes for a total of 25 moment conditions.

We set the number of simulations, S, to 10.

Computing histogram bins requires the use of indicator functions. To ensure these indicator functions

do not add discontinuities into the criterion function, we use the exponential transformation of the indicator

functions. In general, the criterion is (at least visually) a smooth function of the parameters. However we

did find regions in the parameter space in which concentrated “slices” of the criterion function had “steps”

and “cliffs.” Therefore to verify that MATLAB’s constrained minimization routine fmincon.m found a

global minimum in each case, we visually inspected concentrated slices of the criterion function after each

estimation.

As presented in equations (86) and (87) of the previous section, the inverse of the optimal weighting

matrix, Ω̂
�
h � θ � is the variance-covariance of the residuals from the simulation sequence. However if the

model is correctly specified, then when θ � θ
�
, the simulated sequence will have the probability distribu-

tion as the observed sequence; therefore we use inverse of the variance-covariance matrix of the residuals

of the observed sequence as our weighting matrix, W . Since this weighting matrix is just a function of the

sample moments, it remains fixed throughout the estimation.

Simulation 1 Simulation 2 Simulation 3
parameter truth point standard point standard point standard

estimate error estimate error estimate error
K 100 108.6 11.6 138.7 16.5 87.4 10.5
α0 1.50 1.46 0.66 1.80 0.47 1.45 0.45
α1 1.15 1.13 0.04 1.11 0.03 1.20 0.03
λp 0.990 0.991 0.0003 0.989 0.0007 0.990 0.0003
µ̄p 19.50 20.06 0.60 20.10 0.49 19.78 0.55

σ̄p 5.60 6.39 0.29 6.18 0.27 5.33 0.30
µ̄q 150.0 137.1 6.5 157.1 4.7 130.3 3.6

σ̄q 300.0 363.5 25.2 270.3 12.1 250.5 11.4
ς 1.50 1.31 0.17 1.41 0.17 1.62 0.21
φ -2.5 -2.69 1.36 -1.87 1.37 -2.67 1.01
r 0.075/365 0.075/365 0.075/365 0.075/365
η 0.35 0.35 0.36 0.33

χ2 � 15 � 381 187 217

Table 1: Estimation results on data generated by the model.
Two parameters were fixed prior to estimation. The daily interest rate, r, was set to 0.075/365, and the fraction of days in which
quantity demanded is zero, η, was set to 1 	 � ∑ I � qs

t
� 0 � � � T .
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In our initial exercise, there are two sets of simulations: first, we fixed the parameter values in the

model to those in second column of table 1; we solved the model and created three simulated data sets

of 1191 periods from the model; second using these simulated data sets, we estimated the model using

our simulated minimum distance estimator. The point estimates and standard errors for each of the ten

parameters are reported in table 1. Prior to estimation, we set the interest rate equal to its’ true value and

η equal to the fraction of days in which no sale occurred.

The quantity data are in hundred-weight (i.e. in 100’s of pounds) so the price parameters are in dollars-

per-hundredweight (or cents per pound). The fixed cost, K, is set to $100 per order. The parameter choices

for µ̄p and σ̄p imply the uncensored price process has a mean of $17.60 per hundred-weight or 17.6 cents

per pound and a standard deviation of $3.70 dollars per hundred-weight. The parameter values of µ̄q, σ̄q

and ς imply the average sale is 107 hundred-weight or 1,070 pounds. The interest rate r is set to 7.5 percent

per annum. The storage cost net of convenience yield, φ is set -2.75 dollars per squared hundred-weight,

so the convenience yield dominates the storage cost.

For most of the parameters, the point estimates seem reasonably close to their true values. For example,

all three of the point estimates of the AR(1) coefficient of the wholesale price process, λ p, are within

two-tenths of one percent of the true value. All three point estimates of the fixed cost, K, are sensible

particularly given the difficulty in estimating K. The fixed cost of ordering largely determines the distance

between the S and s bands and thus the minimum order size. To accurately identify this fixed cost requires

numerous observations of days in which the firm is holding inventory levels close to s particularly at low

prices. Given the relatively few days the firm purchases, particular at low prices, there are very few days

the firm holds inventories close to s.

While we feel the SMD estimator delivers sensible point estimates, only two-thirds of the point esti-

mates are within two standard errors of the true values. Unfortunately, several of the numerical standard

errors seem implausibly small, particularly given the variation in the three point estimates. For example,

the standard deviations of the point estimates for K and λp are considerably larger than the standard errors.

Moreover, the estimation procedure provides a formal criterion of the validity of model. Since the number

of moment conditions exceeds the number of parameters estimated (J � K ) the model is overidentified.

Following Hansen (1982), we use the objective function to test the overidentifying restrictions:

T�
1 � 1 � S � 2

�
hS � T � θ̂ � � hT ��� � Ω̂ � h � � � 1 �

hS � T � θ̂ � � hT � � χ2 � J � K � (104)

In bottom row of table 1 we report the value of this χ2 statistic for each of three estimates. In each case, the

39



model is decisively rejected. We have run several diagnostics to check that these small standard errors and

large χ2 statistics are not due to computational or approximation errors. Ideally, we would like to compare

our numerical standard errors with empirical standard errors computed from a full-fledged Monte Carlo

exercises. However, since it take several days to estimate the model, at the moment a true Monte Carlo

exercise is computationally infeasible. We are working on speeding up the code. In particular, we want to

experiment further with various choices of the weight matrix, W .

Product 2 Product 4
parameter point standard point standard

estimate error estimate error
K 39.2 6.1 59.6 6.9
α0 1.33 0.98 0.99 1.10
α1 0.98 0.04 1.10 0.05
λp 0.992 0.0006 0.984 0.003
µ̄p 24.40 0.66 18.55 0.60

σ̄p 7.98 0.25 4.83 0.41
µ̄q 215.2 7.7 301.8 6.9

σ̄q 747.6 41.8 496.5 31.1
ς 1.48 0.20 0.92 0.15
φ -2.70 3.65 -2.72 2.74
r 0.075/365 0.075/365
η 0.34 0.34

χ2 � 15 � 522 334

Table 2: Estimation Results using data for product 2 and product 4.
Two parameters were fixed prior to estimation. For both products, the daily interest rate, r, was set to 0.075/365; for each product
individually, the fraction of days in which quantity demanded is zero, η, was set to 1 	 � ∑ I � qs

t
� 0 � � � T .

We now estimate the model for two products independently. In table 2 we report the point estimates

and standard errors for the parameters of the model for products we call product 2 and 4. As before, the

interest rate r, and η are fixed prior to estimation: r is set to 0.075/365 and η was is to the fraction of days

no sale occurred. The general manager would not provide us specific data on the firm’s borrowing and

lending (many sales involve trade credit), but told us that one and three-quarter points over a short-term

LIBOR rate was a good estimate of the interest rate they faced. The average 3-month LIBOR rate over the

period studied is about 5.75, which implies an average annual borrowing rate for the firm of about 7.5%.

Although we estimated the parameters for each of these products independently, it is reassuring that

several of the point estimates are similar across the two products. It is reasonable to expect that the
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parameters, K, α0, α1, λp, ς, and φ to be quite similar, if not identical, across products.8 In general this is

case. After we estimated the models, we asked the general manager for his estimate of K. He stated $50 –

the midpoint of our two estimates. The main fixed cost to ordering is the value of the general manager and

his administrative assistant’s time in takes to complete the paperwork.

The marginal cost of storage parameter, φ, is negative for both products so the marginal convenience

yield dominates the physical costs of storage. This result is consistent with the observation in the commod-

ity storage literature that negative storage costs are a key determinate of the autocorrelation in commodity

prices. We experimented with various function forms for the holding cost function and stock-out penalty

functions. If the marginal value of holding inventories is small when inventories are close to zero (i.e.

when the wholesale price is high), the optimal strategy is for the firm to effectively shut down by holding

no inventories until the wholesale price falls. In other words, the s
�
p � band equals zero for p greater than

some threshold. While we do observe near-zero levels inventories in the data from time to time, these near

stockout levels do not persist for more than a few days. If the marginal value of holding inventories is “too

large” even when the firm is holding large levels of inventories, the model implies the firm should (coun-

terfactually) always hold inventories near its capacity constraint. Hence we found having some convexity

in the holding cost helpful in matching mean and spread of inventories holdings we see in the data.

The endogenous sampling problem is illustrated in figures 3, 4, and 5. In figure 3 we plot we the S
�
p �

and s
�
p � bands derived from the optimal decisions rules for the manager’s problem using the estimated

parameter vector for product 4. Due to the fixed costs of ordering, the S
�
p � band is strictly above the s

�
p �

band although the difference between the two bands decreases as the price increases. In other words, the

minimum order size is a decreasing function of the price. In figure 3 we also scatterplot a set of simulated

state space pairs (pt � qt ). According to the firm’s optimal trading rule, the firm only makes purchases when

the
�
pt � qt � pair is below the s

�
p � band (in the southwest corner of the graph). In the simulation presented,

this occurs less than 16 percent of time.

In table 2 we also report the minimized SMD estimation criterion. Although both models are for-

mally rejected, the models at the estimated parameter values capture several of the salient features of the

inventory and price data. facts of inventory investment behavior that we observe in our data (for further

discussion, see Hall and Rust, 1999). Figures 3, 4, 5 highlight some of the strengths of the model. First, in

the data purchases are made infrequently. Figure 5 presents the censored and uncensored purchase price

8We could have estimated the model jointly across the two products, constraining these value to be equal across products.
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Figure 3: Scatterplot of purchase price and inventory holding pairs from a simulation for product 4. The
solid lines are the S

�
p � and s

�
p � bands from the model.
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Figure 4: Simulated inventory data from the estimated
model for product 4.
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Figure 5: Censored (solid line) and uncensored (dot-
ted line) purchase prices, pt from a simulation for
product 4.
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series, pt . The solid line is the analogue of what we observe in the data: we linearly interpolated between

the prices at which transactions took place; the dotted line includes the unobserved prices at which no

transactions occurred. During periods of low prices (e.g. days 100-200, 350-400 and 750-800) the firm

aggressively made purchases to build up large levels of inventories. The large levels of inventories were

slowly drawn down as prices inevitably rose. Note there were only four purchases made between business

days 200 and 320. Thus after exploiting a low price opportunity, the firm may subsequently make no new

purchases for many days. Second, we observe both small and large purchases in the data. Again this can

been in both graphs. In figure 3 when the
�
pt � qt � pair (dot) is below the s

�
p � band, the size of the order is

the vertical distance between the S
�
p � band and the

�
pt � qt � pair (dot). When the purchase price is less than

16 cent per pound, we observe both large and small orders. When the purchase price is above 18 cents per

pound we only observe small orders. In figure 5, the size of the marker is proportional to the size of the

purchase. Again once can see that the model predicts relatively large purchases when the price is low and

relatively small purchases when the price is high. Third, in the data we observe periods of with high levels

of inventories and periods with low levels of inventories. From the scatterplot in figure 3 and the time path

of inventories plotted in figure 4 we can see that the model predicts that inventory levels will vary over the

sample between almost zero and 2.0 million pounds.

The main shortcoming of the estimation is our inability to match the downward trend of the price

process that we see in almost all of the firm’s products. As illustrated in 2 the wholesale price for product

4 fell from 20 cents per pound in 1997 to about 12 cents per pound in 2002. No such trend is evident in

simulations such as the one presented in figures 4 and 5. In our model, prices are stationary though highly

persistent. Consequently, as can been seen in the
�
S � s � bands plotted in figure 3 the optimal decision rules

imply counterfactually that the firm should make only small purchases and hold low levels of inventories

whenever the procurement price is above 17 cents per pound. From figures 1 and 2 we see that, for product

4, the firm made large purchases around 18.5 cents per pound in April 1998, and around 15 dollars per

hundred-weight in the later part of the sample.

An often suggested solution to this trend problem is that we assume prices follow a random walk. For

product 4, if we concentrate out all the other parameters except λ p, the criterion surface is a steeply sloped

and smooth cup centered around 0.984 so the small standard error associated with the AR(1) coefficient is

not surprising. But the concentrated criterion surface actually turns down slightly between .995 and 1.01.

(The model still solves numerically for values of λp slightly greater than one.) The global minimum is

still located at 0.984, but there appears to be a local minimum just above 1.00. However if we assume the

43



price process follows a (or a very nearly) random walk, the optimal decision rules implies frequent small-

to medium-size orders such that the inventory level fluctuates closely around a fixed target level. A version

of the model which assumes pt follows a random walk will not imply the large variation in inventory

holdings that we see in the data. A second potential solution is to detrend the data. However when we first

started working on this project, no one we talked to expected steel price to decline 40% in four years. To

some extent we are just working with too short a sample period. A third candidate solution is to add an

additional macroeconomic state variable. Such a variable could allow for “high price” regimes and “low

price” regimes. As we discuss below, we view this third solution as the most promising.

5.4 A profit decomposition exercise

Finally, we use simulations of the estimated model to deduce the relative importance of capital gains versus

markups for the overall profitability of the firm. By substituting the law of motion for inventories (4) into

the firm’s objective function, (97), the discounted present value of the firm’s profits can be expressed by

T

∑
t � 1

ρtπ
�
pt � pr

t � qr
t � qt � qo

t � �
T

∑
t � 1

ρt � pr
t � pt � qs

t � q1 p1 �
T

∑
t � 2

ρt � pt �
�
1 � r � pt � 1 � qt �

T

∑
t � 1

ρt I
�
qo

t � K �
T

∑
t � 1

ρt ch � qt � qo
t � pt � (105)

The first term on the right hand side of equation (105) can be interpreted as the discounted present value of

the markup paid by the firm’s retail customers over the current wholesale price while the third term can be

interpreted as the discounted present value of the capital gains or loss from holding the steel from period

t � 1 into period t. The fourth, and fifth terms are the discounted present values of the order costs and the

holding costs incurred by the firm over the sample period.

Since this decomposition depends on the wholesale price path between purchases, we simulate between

purchase dates via importance sampling. That is, for each interval between successive purchase dates, we

simulate wholesale price paths that are consistent with the estimated law of motion (98) and the observed

purchase prices at the beginning and end of the interval. Since our theory implies that the firm places an

order anytime the quantity falls below the order threshold, s
�
p � , we truncate the simulated price process by

rejecting any paths such that qt � s
�
pt � for any draw within the simulated paths. We discuss our simulation

method in more detail in the appendix.

We first employ this decomposition to evaluate the general manager’s actual performance over the four-

and-a-half year sample period for products 2 and 4. For a given interpolated price series, we decomposed
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Product 2 Product 4
G.M.’s actual Model’s Policy G.M.’s actual Model’s Policy
Performance Prescription Performance Prescription

markup $264,671 (26,216) 71% $262,288 (24,379) 60% $370,864 (35,798) 85% $347,023 (31,908) 54%
capital gain 110,148 (28,561) 29% 173,309 (16,524) 40% 66,354 (38,248) 15% 291,500 (20,825) 46%
holding cost 214,397 (0) 226,031 (4,212) 243,179 (0) 218,630 (6,097)
order costs -5,951 (0) -6,981 (321) -9,742 (0) -13,456 (524)
total profits 583,264 (3,479) 654,647 (34,067) 670,655 (3,825) 875,695 (43,840)

Table 3: Profit Decomposition For Product 2 and 4 Using Equation (105)
Both the actual and the counter-factual profits cover the 1191 days studied and are discounted back to the start of the sample period, July 1, 1997. The profit numbers
reported are the average across 100 simulations. The numbers in parentheses are the standard deviations from the 100 simulations. Total profits are the sum of the first four
rows.
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the firm’s profits using the actual data for qt , qs
t , and qo

t , our fixed value for the interest rate, r, and our point

estimates for K, and φ. In table 3 we report the average decomposition from 100 simulated wholesale price

paths. As discussed in the introduction, the price of steel fell steadily over the sample period. Never the

less, by our accounting, the firm made $375,000 (product 2) and $435,000 (product 4) from the markup

and capital gains on each of these two product over the four-and-a-half year period.9 Ignoring the fixed

order cost and the returns from the convenience yield, about 71 percent (product 2) and 85 percent (product

4) of these profits came from the markup, while the remaining 29 and 15 percent came from capital gains.

We find it remarkable and evidence of the general manager’s acumen in steel trading that the firm made

positive capital gains over this period despite the price of steel falling about 40 percent. While the firm’s

success in price speculating is good for its profits, it increasing the potential biases from failing to account

for the endogeneity of the sampling process.

As a diagnostic of our model, we compare the general manager’s performance to the model’s predic-

tions. In this exercise we take as given the 100 interpolated wholesale price series, the firm’s quantity

demanded series, and the firm’s initial level of inventories for each product. But in this case, we let the

model’s optimal decision rule dictate when and how much to order.10 Inventories follow the accumulation

identity given by equation (4). As reported in table 3, had the general manager counter-factually followed

the optimal order strategy implied by our model, his discounted profits from the markup would have been

modestly smaller: $2,000 less for product 2; $23,000 less for product 4. However, his capital gains would

have been considerable larger: $63,000 more for product 2; $225,146 more for product 4.

The model implies that the firm should aggressively price speculate. In figures 6 and 7 we plot the

prices and inventory holdings for one simulation of the model. In figure 6 we plot both the actual inven-

tory holdings along with the implied holdings under the model’s decision rules. In figure 7 we plot the

corresponding retail and wholesale price paths. The model’s counter-factual inventory path differs consid-

erably from the firm’s actual inventory path. In the beginning of the sample, years 1997 and 1998, when

prices were high, the model implies the firm should have made frequent small purchases and held relatively

low levels of inventories. As was discussed in the introduction, in April 1998 when the wholesale price of

steel dropped from 20 cents per pound to 18.5 cents per pound, the firm built up its inventory of product 4

9Profits are discounted back to July 1, 1997.
10We placed one ad hoc restriction on our decision rule. In mid-December 2000, the G.M. had an opportunity to buy a

limited quantity of products 2 and 4 for a little over 10 cents per pound. The G.M. bought as much as he could at these
prices. Our model dictated that he should have purchased large quantities at these prices. For the counter-factual experiment
we constrained the model purchase no more steel than we actually observe on these dates.
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Figure 6: Actual (dashed line) and counter-factual (solid line) inventory holdings for product 4.
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substantially. In contrast the model does not view 18.5 cents as a particularly good price; as can be seen

in the
�
S � s � bands plotted in figure 3, the target inventory level at 18.5 cents is around 300,000 pounds. In

April 1998, the firm’s inventory of product 4 exceeded 2,000,000 pounds.

It is not until December 1999 when prices fell below 13 cents a pound that the model recommends

holding more than 1,000,000 pounds of inventory. However during December 1999 and January 2000, the

general manager let his inventory of product 4 fall to almost zero. The sharp contrast between model’s

counter-factual inventory policy and the firm’s behavior is also evident during the second half of the sam-

ple. In this period, the firm held relatively low levels of inventories, whereas the model’s inventory was

often in excess of 2,000,000 pounds. The only time during the sample that the model’s inventory holdings

tracked well the firm’s inventory holdings was in the first half of 2001. Basically, the model recommends

the firm’s purchasing strategy should have been the opposite of what it did: the firm should have held low

inventory levels in 1997, 1998 and 1999, and high inventory levels in 2000, 2001, and the start of 2002.

This counter-factual exercise is “rigged” in the model’s favor in one dimension and “rigged” against

the model in another. Since we used the entire sample period to both estimate the model and evaluate

the model’s performance, the model “knows” the mean and the standard deviations of prices and quantity

demanded for the entire period. The model knows, whereas the general manager did not know, that a price

of 18.5 cents per pound in the Spring of 1998 was an above-average price for the 1997-2002 period. In

this way the model has an advantage over the manager. However the model is constrained to sell at most

the quantity of steel the general manager actually sold. The model does not get the opportunity make any

sales the general manager might have had the option to make but decided to turn down.

While we do not report an out-of-sample comparison between our model and the general manager, if

we had estimated the model through the Fall of 2001, and then used our model to dictate purchases for the

firm for the Winter and Spring of 2002, our model would have outperformed the general manager. In the

Fall of 2001, the firm was purchasing steel around 10 to 12 cents per pound. We told the general manager

at that time that our model recommended building up inventories at these prices. He did not follow this

advice since he anticipated further price declines. He argued (and to be honest, we did not disagree) that

our model did not take into account the potential slowdown in the economy in the wake of the terrorist

attack of September 11, 2001 that he expected to reduce demand for steel. He also expected new production

capacity from the Nucor Corporation to put additional downward pressure on prices. However, with the

bankruptcy of Bethlehem Steel in October 2001 as well as both the anticipation of an increase and the

actual increase in steel tariffs imposed by President Bush in March 2002, steel price increased about 20
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percent in the Spring of 2002 to the 12 to 14 cent range. In the Spring of 2002, we reminded the general

manager that in the fall our model recommended he build up inventories. He sighed, “I wish I had.”

In this case, our model “got it right” but perhaps not for the right reasons. Our model was predicting

an increase in prices since our model always expects prices to return to the sample mean. Our model had

no way of predicting where the economy was going. It just expects demand to be stationary; moreover,

our model could provide no help in forecasting the President’s actions regarding steel tariffs. In future

work, we hope to add a macroeconomic state variable to the analysis. Thus we could use our model jointly

with a macroeconomic forecasting model to provide conditional inventory level recommendations to the

firm such as “If you expect the economy to remain strong, the model recommends holding inventories in a

range from X to Y; if you expect the economy to weaken, ...”

6 Conclusion

In this paper we develop two econometric procedures for estimating an endogenously-sampled Markov

process. We first derive a parametric partial information maximum likelihood (PIML) estimator that solves

the endogenous sampling problem. While the PIML estimator efficiently estimates the unknown parame-

ters of a Markov transition probability, it requires repeatedly computing numerical approximations to high

dimensional integrals. Therefore we introduce an alternative consistent, less efficient, simulated minimum

distance (SMD) estimator. This estimation method is computationally simpler than the PIML estimator,

but it still requires solving the dynamic programming problem at each trial value of the unknown param-

eter vector for the endogenous sampling rule. Using this sampling rule, the SMD estimator is able to

consistently estimate the unknown parameters of the Markov process even though the econometrician has

incomplete information on the process.

While this research was motivated by a new dataset from a single steel wholesaler, most datasets in

which agents have the choice of whether and when to participate in a market activity will be endogenously

sampled. In most markets, the only prices recorded are the transaction prices – econometricians almost

never get to observe prices offered but not transacted on. For example, econometricians rarely get to

observe the wages unemployed job seekers are offered but refuse.11 It should be straightforward to apply

the SMD estimator to other types of endogenous sampling problems that arise in time series contexts.

11A counter-example is the limit order books for equities posted on ECNs such as www.island.com. But specialists on the
NYSE are very reluctant to reveal any information about their limit order books.
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Appendix: Simulating Price Paths with Fixed Starting and Ending Points

We thank Michael Keane for suggesting and explaining this procedure to us.

We assume the spot procurement price follows the AR(1) process given in equation (98) of the paper.

To simplify the presentation in this appendix, let pt denote the log
�
pt � . Assume we observe pt1 and pt2 on

dates t1 and t2, but we do not observe any prices on dates in between. We want to simulate realizations of
�

pt1 � 1 � pt1 � 2 ��� � � � pt2 � 1 � that are consistent with both pt1 and pt2 and the law of motion (98). Let τ � t2 � t1,

be the recurrence time.

We write the price system using state-space notation using a nonstandard ordering of the state vector:����������
�

1
pt1
pt2

pt1 � 1

pt1 � 2
...

pt2 � 1

�����������
�
�

����������
�

1 0 0 0 0 0 ����� 0 0
0 0 0 1 0 0 ����� 0 0
µp 0 λp 0 0 0 ����� 0 0
0 0 0 0 1 0 ����� 0 0
0 0 0 0 0 1 ����� 0 0
...

...
...

...
...

. . .
...

0 0 0 0 0 0 ����� 1 0

�����������
�

����������
�

1
pt1 � 1

pt2 � 1

pt1
pt1 � 1

...
pt2 � 2

�����������
�

�

����������
�

0
0

σp

0
0
...
0

�����������
�

wp
t2 � (106)

We rewrite this equation using more compact notation as:

p � � Ap � Cwp � (107)

where the p denotes the vector of logged prices and the prime denotes the next period’s values.

We then compute the variance-covariance matrix of the price vector:

Ω �
τ � 1

∑
j � 0

A jCC � A � j �
We then compute the Cholesky decomposition of the (2:τ+2,2:τ+2) elements of Ω � ϒϒ. This allows us

to write p � � µp � ϒη where η is a vector of shocks drawn from a standard normal distribution. Writing in

more expansive notation yields������
�

pt1 � µp

pt2 � µp

pt1 � 1 � µp
...

pt2 � 1 � µp

�������
� �

������
�

υ11 0 0 ����� 0
υ21 υ22 0 ����� 0
υ31 υ32 υ33 ����� 0

...
...

...
. . .

...
υτ � 11 υτ � 12 υτ � 13 ����� υτ � 1τ � 1

�������
�

������
�

ηt1
ηt2

ηt1 � 1
...

ηt2 � 1

�������
� � (108)

Since we know pt1 and pt2 we can solve for ηt1 and ηt2 directly from

�
pt1 � µp � � υ11ηt1

�
pt2 � µp � � υ21ηt1 � υ22ηt2 �
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�
ηt1 � 1 � ηt1 � 2 ��� � � � ηt2 � 1 � are random draws from a standard normal distribution. Once the η vector is con-

structed, we use equation (108) to compute the simulated price vector p � � ϒη � µp. Note that each of the

simulated prices is a function of ηt1 and ηt2 .

To construct a single simulation for the entire time period we repeated this procedure for each interval

between successive purchase dates. For each interval, we then applied an acceptance/rejection criterion.

Since our model implies that the firm makes a purchase whenever current inventories fall below the order

threshold s
�
exp

�
p � � , we rejected paths such that exp

�
pt � � s � 1 � qt � for any t1 � t � t2. For each interval,

we repeated the procedure described above until we found a path that did not violate the order thresh-

old constraint. For both products there are intervals in the price series in which we could not find any

acceptable paths. In these cases, we accepted one of the rejected price paths.
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