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ABSTRACT

In this paper we propose a new variance estimator for OLS as well as for nonlinear estimators such
as logit, probit and GMM, that provcides cluster-robust inference when there is two-way or
multi-way clustering that is non-nested. The variance estimator extends the standard cluster-robust
variance estimator or sandwich estimator for one-way clustering (e.g. Liang and Zeger (1986),
Arellano (1987)) and relies on similar relatively weak distributional assumptions.  Our method is
easily implemented in statistical packages, such as Stata and SAS, that already offer cluster-robust
standard errors when there is one-way clustering.  The method is demonstrated by a Monte Carlo
analysis for a two-way random effects model; a Monte Carlo analysis of a placebo law that extends
the state-year effects example of Bertrand et al. (2004) to two dimensions; and by application to two
studies in the empirical public/labor literature where two-way clustering is present.
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1. Introduction

A key component of empirical research is conducting accurate statistical inference. One
challenge to this is the possibility of clustered (or non-independent) errors. In this
paper we propose a new variance estimator for commonly used estimators, such as OLS,
probit, and logit, that provides cluster-robust inference when there is multi-way non-
nested clustering. The variance estimator extends the standard cluster-robust variance
estimator for one-way clustering, and relies on similar relatively weak distributional
assumptions. Our method is easily implemented in any statistical package that provides
cluster-robust standard errors with one-way clustering.1

Controlling for clustering can be very important, as failure to do so can lead to
massively under-estimated standard errors and consequent over-rejection using standard
hypothesis tests. Moulton (1986, 1990) demonstrated that this problem arose in a much
wider range of settings than had been appreciated by microeconometricians. More
recently Bertrand, Duflo and Mullainathan (2004) and Kezdi (2004) emphasized that
with state-year panel or repeated cross-section data, clustering can be present even after
including state and year effects and valid inference requires controlling for clustering
within state. These papers, like most previous analysis, focus on one-way clustering.

In this paper we consider inference when there is nonnested multi-way clustering.
The method is useful in many applications, including:

1. Clustering due to sample design may be combined with grouping on a key regres-
sor for reasons other than sample design. For example, clustering may occur at
the level of a Primary Sampling Unit as well as at the level of an industry-level
regressor.

2. The survey design of the Current Population Survey (CPS) uses a rotating panel
structure, with households resurveyed for a number of months. Researchers using
data on households or individuals and concerned about within state-year clustering
(perhaps because of important state-year variables or instruments) should also
account for household-level clustering across the two years of the panel structure.
Then they need to account for clustering across both dimensions.

3. In a state-year panel setting, we may want to cluster at the state level to permit
valid inference if there is within-state autocorrelation in the errors. If there is also
geographic-based spatial correlation, a similar issue may be at play with respect
to the within-year cross-state errors (Conley 1999). In this case, researchers may
wish to cluster at the year level as well as at the state level.

1An ado file for multi-way clustering in Stata is available at the following website:
www.econ.ucdavis.edu/faculty/dlmiller/statafiles/index.htm
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4. More generally this situation arises when there is clustering at both a cross-section
level and temporal level. For example, finance applications may call for clustering
at the firm level and at the time (e.g., day) level. Petersen (2006) compares a
number of approaches for OLS estimation in this panel setting.2

5. Even in a cross-section study clustering may arise at several levels simultaneously.
For example a model may have geographic-level regressors, industry-level regres-
sors and occupation-level regressors.

6. Clustering may arise due to discrete regressors. Moulton (1986) considered infer-
ence in this case, using an error components model. More recently, Card and Lee
(2004) argue that in a regression discontinuity framework where the treatment-
determining variable is discrete, the observations should be clustered at the level
of the right-hand side variable. If additionally interest lies in a “primary” dimen-
sion of clustering (e.g., state or village), then there is clustering in more than one
dimension.

Our method builds on that for one-way cluster-robust inference. Initial controls for
one-way clustering relied on strong assumptions on the dgp for the error term, such
as a one-way random effects error model. This has been superseded by computation
of “cluster-robust” standard errors that rely on much weaker assumptions — errors are
independent but not identically distributed across clusters and can have quite general
patterns of within cluster correlation and heteroskedasticity. These standard errors
generalize those of White (1980) for independent heteroskedastic errors. Key references
include White (1984) for a multivariate dependent variable, Liang and Zeger (1986)
for estimation in a generalized estimating equations setting, and Arellano (1987) and
Hansen (2005) for the fixed effects estimator in linear panel models. Wooldridge (2003)
provides a survey, andWooldridge (2002) and Cameron and Trivedi (2005) give textbook
treatments.

For two-way or multi-way clustering that is nested, one simply clusters at the highest
level of aggregation. For example, with individual-level data and clustering on both
household and state one should cluster on state. Pepper (2002) provides an example.

If multi-way clustering is non-nested, the existing approach is to specify a multi-
way error components model with iid errors. Moulton (1986) considered clustering due

2We thank Mitchell Petersen for sending us a copy of his paper. One of the methods he uses is that
proposed in this paper for OLS with two-way clustering. Petersen cites as his source for this method a
paper by Thompson (2005) that we were unaware of until after working out our theoretical results and
doing substantial Monte Carlo work. Sometime after we described our work to Petersen, he informed us
that Thompson (2006) had been posted on the internet. Thompson (2006) correctly derives the formula
for OLS in the two-way case, but the theoretical discussion does not address the general multi-way case
and nonlinear estimators that we also consider. Thompson’s Monte Carlo results are basically consistent
with ours, though they are somewhat narrower in scope.
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to grouping of three regressors (schooling, age and weeks worked) in a cross-section
log earnings regression. Davis (2002) modelled film attendance data clustered by film,
theater and time and provided a quite general way to implement feasible GLS even
with clustering in many dimensions. But these models impose strong assumptions,
including homoskedasticity and errors equicorrelated within cluster. And even the two-
way random effects model for linear regression is typically not included in standard
econometrics packages.

In this paper we take a less parametric cluster-robust approach that generalizes
one-way cluster-robust standard errors to the non-nested multi-way clustering case.

Our new estimator is easy to implement. In the two-way clustering case, we obtain
three different cluster-robust “variance” matrices for the estimator by one-way clustering
in, respectively, the first dimension, the second dimension, and by the intersection of the
first and second dimensions (sometimes referred to as first-by-second, as in “state-by-
year”, clustering). Then we add the first two variance matrices and subtract the third.
In the three-way clustering case there is an analogous formula, with seven one-way
cluster robust variance matrices computed and combined.

The methods and supporting theory for two-way and multi-way clustering and for
both OLS and quite general nonlinear estimators are presented in Section 2. Like the
one-way cluster-robust method, our methods assume that the number of clusters goes
to infinity. This assumption does become more binding with multi-way clustering. For
example, in the two-way case it is assumed that min (G,H) → ∞, where there are G
clusters in dimension 1 and H clusters in dimension 2. In Section 3 we present two
different Monte Carlo experiments. The first is based on a two-way random effects
model and some extensions of that model. The second follows the general approach of
Bertrand et al. (2004) in investigating a placebo law in an earnings regression, except
that in our example the induced error dependence is two-way (over both states and
years) rather than one-way. Section 4 presents two empirical examples, Hersch (1998)
using OLS and Gruber and Madrian (1995) using both probit and OLS, where we
contrast results obtained using conventional one-way clustering to those allowing for
two-way clustering.3 Section 5 concludes.

2. Cluster-Robust Inference

This section emphasizes the OLS estimator, for simplicity. We begin with a review of
one-way clustering, before considering in turn two-way clustering and multi-way clus-
tering. The section concludes with extension from OLS to m-estimators, such as probit
and logit, and GMM estimators.

3We thank Marianne Bertrand, Esther Duflo, Sendhil Mullainathan, and Joni Hersch for assisting
us in replicating their data sets.
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2.1. One-Way Clustering

The linear model with one-way clustering is

yig = x
0
igβ + uig, (2.1)

where i denotes the ith of N individuals in the sample, g denotes the gth of G clusters,
E[uig|xig] = 0, and error independence across clusters is assumed so that for i 6= j

E[uigujg0 |xig,xjg0 ] = 0, unless g = g0. (2.2)

Errors for individuals belonging to the same group may be correlated, with quite general
heteroskedasticity and correlation.

Grouping observations by cluster the model can be written as

yg = Xgβ + ug, (2.3)

where yg and ug are Ng × 1 vectors, Xg is an Ng × K matrix, and there are Ng
observations in cluster g. Further stacking over clusters yields

y = Xβ + u,

where y and u are N × 1 vectors, X is an N ×K matrix, and N =
P
gNg.

The OLS estimator is

bβ = ¡X0X¢−1X0y =
⎛⎝ GX
g=1

X0gXg

⎞⎠−1 GX
g=1

X0gyg. (2.4)

Given error independence across clusters, this estimator has variance matrix (conditional
on regressors)

V[bβ] = ¡X0X¢−1
⎛⎝ GX
g=1

X0gΩgXg

⎞⎠ ¡X0X¢−1 , (2.5)

which depends on the unknown cluster error variance matrices

Ωg = V[ug|Xg] = E[ugu0g|Xg]. (2.6)

If the primary source of clustering is due to group-level common shocks, a useful
approximation is that for the jth regressor the default OLS variance estimate based on
s2 (X0X)−1, where s is the standard deviation of the residual distribution, should be
inflated by τ j ' 1 + ρxjρu(N̄g − 1), where ρxj is the within cluster correlation of xj ,
ρu is the within cluster error correlation, and N̄g is the average cluster size; see Kloek
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(1981), Scott and Holt (1982) and Greenwald (1983). Moulton (1986, 1990) pointed out
that in many settings the adjustment factor τ j can be large even if ρu is small.

A cluster-robust variance matrix estimate is

bV[bβ] = ¡X0X¢−1
⎛⎝ GX
g=1

X0gbugbu0gXg
⎞⎠ ¡X0X¢−1 , (2.7)

where bug = yg − Xgbβ. This provides a consistent estimate of the variance matrix if
G−1

PG
g=1X

0
gbugbu0gXg−G−1PG

g=1E[X
0
gΩgXg]

p→ 0 as G→∞. White (1984, p.134-142)
presents formal theorems for a multivariate dependent variable, directly applicable to
balanced clusters. Liang and Zeger (1986) proposed this method for estimation in a gen-
eralized estimating equations setting, Arellano (1987) for the fixed effects estimator in
linear panel models, and Rogers (1993) popularized this method in applied econometrics
by incorporating it in Stata. The method generalizes White (1980), which considered
the case Ng = 1. Note that (2.7) does not require specification of a model for Ωg, and
thus it permits quite general forms of Ωg.

A helpful informal presentation of (2.7) is that

bV[bβ] = (X0X)−1 bB(X0X)−1, (2.8)

where the central matrix

bB =
GX
g=1

X0gbugbu0gXg (2.9)

= X0

⎡⎢⎢⎢⎢⎣
bu1bu01 0 · · · 0

0 bu2bu02 ...
...

. . . 0
0 · · · · · · buGbu0G

⎤⎥⎥⎥⎥⎦X

= X0

⎛⎜⎜⎜⎜⎝bubu0. ∗
⎡⎢⎢⎢⎢⎣
E1 0 · · · 0

0 E2

...
...

. . .
0 · · · · · · EG

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠X,

where .∗ denotes element-by-element multiplication and Eg is an (Ng ×Ng) matrix of
ones.

More generally we can view bB in (2.9) as being given by

bB = X0(bubu0. ∗ SG)X (2.10)

6



where SG is an N ×N indicator, or selection, matrix with ijth entry equal to one if the
ith and jth observation belong to the same cluster and equal to zero otherwise. SG in
turn equals ∆G∆G0 where ∆G is an N × G matrix with igth entry equal to one if the
ith observation belongs to cluster g and equal to zero otherwise. The (a, b)-th element
of bB is

PN
i=1

PN
j=1 xiaxjbbuibuj1[i, j in same cluster], where bui = yi − x0ibβ.

An intuitive explanation of the asymptotic theory is that the indicator matrix SG

must zero out a large amount of bubu0, or, asymptotically equivalently, uu0. Here there
are N2 = (

PG
g=1Ng)

2 terms in bubu0 and all but PG
g=1N

2
g of these are zeroed out. For

fixed Ng,
PG
g=1N

2
g /N

2 → 0 as G→∞. In particular, for balanced clusters Ng = N/G,
so
PG
g=1N

2
g /N

2 = 1/G→ 0 as G→∞.

2.2. Two-Way Clustering

Now consider situations where each observation may belong to more than one “dimen-
sion” of groups. For instance, if there are two dimensions of grouping, each individual
will belong to a group g ∈ {1, 2, ..., G}, as well as to a group h ∈ {1, 2, ...,H}, and we
have

yigh = x
0
ighβ + uigh, (2.11)

where we assume that for i 6= j

E[uighujg0h0 |xigh,xjg0h0 ] = 0, unless g = g0 or h = h0. (2.12)

If errors belong to the same group (along either dimension), they may have an arbitrary
correlation. For non-nested two-way clustering, which we consider, Ω = V[u|X] can no
longer be written as a block diagonal matrix.

The intuition for the variance estimator in this case is a simple extension of (2.10)
for one-way clustering. Instead of keeping only those elements of bubu0 where the ith and
jth observations share a cluster in one specified dimension, we keep those elements ofbubu0 where the ith and jth observations share a cluster in any dimension. Then

bB = X0(bubu0. ∗ SGH)X, (2.13)

where SGH is an N ×N indicator matrix with ijth entry equal to one if the ith and jth

observation share any cluster, and equal to zero otherwise. Now, the (a, b)-th element
of bB is

PN
i=1

PN
j=1 xiaxjbbuibuj1[i, j share any cluster].bB and hence bV[bβ] can be calculated using matrix algebra. The N × N selection

matrix SGH may be large in some problems, however, and even if N is manageable
many users will prefer to use readily available software that calculates cluster-robust
standard errors for one-way clustering.
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This is done by defining three N ×N indicator matrices: SG with ijth entry equal
to one if the ith and jth observation belong to the same cluster g ∈ {1, 2, ..., G}, SH
with ijth entry equal to one if the ith and jth observation belong to the same cluster
h ∈ {1, 2, ...,H}, and SG∩H with ijth entry equal to one if the ith and jth observation
belong to both the same cluster g ∈ {1, 2, ...,G} and the same cluster h ∈ {1, 2, ...,H}.
Then

SGH = SG + SH − SG∩H ,

so bB = X0(bubu0. ∗ SG)X+X0(bubu0. ∗ SH)X−X0(bubu0. ∗ SG∩H)X. (2.14)

Substituting (2.14) into (2.7) yields

bV[bβ] = (X0X)−1X0(bubu0. ∗ SG)X(X0X)−1 (2.15)

+(X0X)−1X0(bubu0. ∗ SH)X(X0X)−1
−(X0X)−1X0(bubu0. ∗ SG∩H)X(X0X)−1.

The three components can be separately computed by

1. OLS regression of y onX with variance matrix estimate computed using clustering
on g ∈ {1, 2, ..., G};

2. OLS regression of y onX with variance matrix estimate computed using clustering
on h ∈ {1, 2, ...,H}; and

3. OLS regression of y onX with variance matrix estimate computed using clustering
on (g, h) ∈ {(1, 1), ..., (G,H)}.

Given these three components, bV[bβ] is computed as the sum of the first and second
components, minus the third component.

Some statistical packages, for example Stata, permit separate estimation of the vari-
ance matrices using stored estimation results. In this case one need only estimate and
invert (X0X) once. As a result estimating bV[bβ] often adds little computational time
over that of one-way cluster-robust inference.

For one-way clustering small-sample modifications of (2.7) are typically used, since
without modification the cluster-robust standard errors are biased downwards.4 For
example, Stata uses

√
cbug in (2.7) rather than bug, with c = G

G−1
N−1
N−K ' G

G−1 . Sim-
ilar corrections may be used for two-way clustering. One method is to use the Stata
formula throughout, in which case the errors in the three components are multiplied
by, respectively, c1 = G

G−1
N−1
N−K , c2 =

H
H−1

N−1
N−K and c3 = I

I−1
N−1
N−K where I equals the

4Cameron, Gelbach, and Miller (2006) review various small-sample corrections that have been pro-
posed in the literature, for both standard errors and for inference using resultant Wald statistics.
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number of unique clusters formed by the intersection of the H groups and the G groups.
A second is to use a constant c = J

J−1
N−1
N−K where J = min(G,H). We use the first of

these methods in our OLS simulations and applications.
A practical matter that can arise when implementing the two-way robust estimator

is that the resulting variance estimate bV[bβ] may have negative elements on the diago-
nal. Because this problem is more likely to arise when the third covariance matrix is
relatively large, using the Stata-style formula for residual adjustment reduces the likeli-
hood of estimating a negative variance. This is because it uses a smaller (inflationary)
adjustment to the standard errors in the third matrix, since I < G or H. Our experi-
ence suggests that this problem is infrequent, and primarily occurs when there are very
few clusters and when there is actually no need to cluster in more than one dimension.
Should negative variances arise in practice, a researcher may need to fall back on a more
ad hoc rule of thumb such as using the maximum of the standard errors obtained from
one-way clustering along each possible dimension.

Most empirical studies with clustered data estimate by OLS, ignoring potential
efficiency gains due to modeling heteroskedasticity and/or clustering and estimating
by feasible GLS. The method outlined in this paper can be adapted to weighted least
squares that accounts for heteroskedasticity, as the resulting residuals bu∗igh from the
transformed model will asymptotically retain the same broad correlation pattern over
g and h. But adapting the method to robustify feasible GLS estimators that model
clustering may be difficult. For example, if a one-way random effects model that clusters
over g is specified, then the resulting residuals bu∗igh from the transformed model will
asymptotically retain the same broad correlation pattern over g, but not over h.

2.3. Multi-Way Clustering

Our approach generalizes to clustering in more than two dimensions. We now give a
quite general treatment that requires some new notation and definitions.

Suppose there are D dimensions within which clustering must be accounted for.
For example, if we want to cluster on industry, occupation, and state, then D = 3.
Let Gd denote the number of clusters in dimension d. Let the D-vector δi = δ(i),
where the function δ : {1, 2, ..., N} → ×Dd=1{1, 2, ..., Gd} lists the cluster membership
in each dimension for each observation. For example, if δi = (5, 8, 2) then there are
three dimensions and the ith observation is in the fifth cluster in the first dimension, the
eighth cluster in the second dimension, and the second cluster in the third dimension.
We will say that di ≈ dj if and only if δid = δjd for some d ∈ {1, 2, ...,D}, where δid
denotes the dth element of δi. Thus 1[i, j in same cluster for some d]⇔ δi ≈ δj .

Now let r be a D-vector, with dth coordinate equal to rd, and define the set R ≡
{r: rd ∈ {0, 1}, d = 1, 2, ...,D} − 0, where the subtraction of the vector 0 means that
R has 2D − 1 elements. For example, for D = 3 we have R = {(1, 0, 0), (0, 1, 0),
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(0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 0), (1, 1, 1)}. Elements of the set R can be used to index
all cases in which two observations share a cluster in at least one dimension. To see
how, define the indicator function Ir(i, j) ≡ 1[rdδid = rdδjd,∀ d]. This function tells
us whether observations i and j have identical cluster membership for all dimensions
referenced by r. For example, with D = 3 and r = (1, 1, 0), Ir(i, j) = 1 if and only
if (δi1, δi2) = (δj1, δj2), so that i and j are in the same group in dimensions 1 and 2
(regardless of whether δi3 = δj3). Define I(i, j) = 1 if and only if Ir(i, j) = 1 for some
r ∈ R.

Now define the 2D − 1 matrices

eBr ≡ NX
i=1

NX
j=1

xix
0
jbuibujIr(i, j), r ∈ R. (2.16)

For example, if D = 2, then bB in (2.14) can be expressed in the new notation asbB = eB(1,0)+ eB(0,1)− eB(1,1). And if D = 3 and r = (1, 1, 0), then eBr is the middle matrix
we get when we cluster on the variable I(1,1,0); when the first two dimensions are industry
and occupation, this is the matrix we get when we cluster on industry-occupation cells.

Our proposed estimator may be written as

bV[bβ] = (X0X)−1 eB(X0X)−1, (2.17)

where eB ≡ X
krk=k, r∈R

(−1)k+1 eBr. (2.18)

Thus we sum over all possible values of k r k=
P
d rd. Cases in which the matrix eBr

involves clustering on an odd number of dimensions are added, while those involving
clustering on an even number are subtracted (note that k r k≤ D for all r ∈ R).

As an example, when D = 3, eB may be written as³eB(1,0,0) + eB(0,1,0) + eB(0,0,1)´− ³eB(1,1,0) + eB(1,0,1) + eB(0,1,1)´+ eB(1,1,1).
Each of the first three matrices clusters on exactly one dimension. In some cases,
observation pairs are in the same cluster in dimensions one and two; thus if we included
only the first three matrices, we would double-count these pairs. Thus we cluster on
each of the three combinations of two dimensions and subtract the resulting matrices,
eliminating double-counting of such pairs. However, some observation pairs share the
same cluster in all three dimensions; if we stopped after the first six matrices, these
pairs would be included three times and excluded three times, so that they would not be
accounted for. Hence we add back the seventh matrix, which is the clustering matrix for
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observation pairs sharing the same cluster on all dimensions (e.g., industry-occupation
cells within state).

To prove that this approach is identical to the earlier one, so that eB = bB identically,
it is sufficient to show that (i) no observation pair with I(i, j) = 0 is included, and (ii)
the covariance term corresponding to each observation pair with I(i, j) = 1 is included
exactly once in eB. The first result is immediate, since I(i, j) = 0 if and only if Ir(i, j) = 0
for all r (see above). The second result follows because it is straightforward to show by
induction that when I(i, j) = 1,X

krk=k, r∈R
(−1)k+1Ir(i, j) = 1.

(Actually, the first result also follows using this expression, since the left hand side is 0
when all Ir(i, j) = 0.) This fact, which can also be shown to be an application of the
inclusion-exclusion principle for set cardinality, ensures that eB and bB are numerically
identical in every sample.

As a practical matter, the inclusion-exclusion approach may be computationally
dominated by direct computation of (2.13) whenever D is relatively large. This is
because the computational cost of this approach grows at rate 2D − 1. However, our
experience suggests that when D is small (e.g., 2 or 3), it may be quicker to use the
inclusion-exclusion approach.

A related concern is the possibility of a curse of dimensionality with multi-way
clustering. This could arise in a setting with many dimensions of clustering, and in
which some dimensions have few clusters. However, this need not necessarily be the
case, as it depends on the nature of the clustering. For example, with cross-section
data and clustering due to grouped regressors, it is quite possible in a sample of several
thousand observations to have several grouped regressors each taking, say fifty distinct
values, as should be clear from the application in Section 4.1.

2.4. Multi—way Clustering for m-estimators and GMM Estimators

The preceding analysis considered the OLS estimator. More generally we consider multi-
way clustering for other (nonlinear) regression estimators commonly used in economet-
rics.

We begin with an m-estimator that solvesXN

i=1
hi(bθ) = 0. (2.19)

Examples include nonlinear least squares estimation, maximum likelihood estimation,
and instrumental variables estimation in the just-identified case. For the probit MLE
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hi(β) = (yi − Φ(x0iβ))φ(x0iβ)xi/[Φ(x0iβ)(1 − Φ(x0iβ))], where Φ(·) and φ(·) are the
standard normal cdf and density.

Under standard assumptions, bθ is asymptotically normal with estimated variance
matrix bV[bθ] = bA−1 bBbA−1,
where bA =

P
i
∂hi
∂θ

¯̄̄
bθ or bA =

P
i E
h
∂hi
∂θ

i¯̄̄
bθ , and bB is an estimate of V[

P
i hi].

Computation of bB varies with assumptions about clustering. Given independence
over i, V[

P
i hi] =

P
iV[hi] and bB =PN

i=1
bhibh0i, where bhi = hi(bθ). Note that for OLSbhi = buibxi, so bB =PN

i=1 bu2i bxibx0i, leading to White’s heteroskedastic consistent estimate.
For one-way clustering bB =

PG
g=1

bhgbh0g where bhg is the sum of bhi for those ob-
servations in cluster g. Clustering may or may not lead to parameter inconsistency,
depending on whether E[hi(θ)] = 0 in the presence of clustering. This is likely to be
the case for a probit model, for example, but less likely for a Tobit model, for example.
In the latter case the estimated variance matrix is still as above, but the distribution of
the estimator will be instead centered on a pseudo-true value.

Our concern is with multiway clustering. The analysis of the preceding section
carries through, with buixi in (2.16) replaced by bhi. Then bθ is asymptotically normal
with estimated variance matrix bV[bθ] = bA−1 eBbA−1, (2.20)

where as usual bA =
X
i

∂hi
∂θ

¯̄̄̄
bθ , (2.21)

or bA =
P
i E
h
∂hi
∂θ

i¯̄̄
bθ , and noweB ≡ X

krk=k, r∈R
(−1)k+1 eBr, (2.22)

as in (2.18), with the 2D − 1 matrices eBr defined analogously to (2.16) as
eBr ≡ NX

i=1

NX
j=1

bhibh0jIr(i, j), r ∈ R. (2.23)

Implementation is similar to before. For example for two-way clustering in the probit
model estimate the three components separately by

1. Probit regression of y on X with variance matrix estimate computed using clus-
tering on g ∈ {1, 2, ..., G};
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2. Probit regression of y on X with variance matrix estimate computed using clus-
tering on h ∈ {1, 2, ...,H}; and

3. Probit regression of y on X with variance matrix estimate computed using clus-
tering on (g, h) ∈ {(1, 1), ..., (G,H)}.

Given these three components, bV[bβ] is computed as the sum of the first and second
components, minus the third component.

Commonly-used examples of nonlinear estimators to which this method can be ap-
plied are nonlinear-least squares, just-identified instrumental variables estimation, logit,
probit and Poisson. In the case of Poisson, for example, the method controls for under-
dispersion or overdispersion in addition to multiway clustering.

The standard small-sample correction for standard errors of these nonlinear estima-
tors in the one-way clustering case leads to use of

√
crbhi rather than bhi in (2.23), where

cr = Gr/(Gr−1) and Gr is the number of clusters defined by r. We use this adjustment,
which is used in Stata, in our probit application in Section 4.2.

If a package does not provide one-way cluster-robust standard errors it is possible
to implement our procedure using several one-way clustered bootstraps. In the two-way
clustered probit example above, in step 1 do a pairs cluster bootstrap that resamples
with replacement from the G clusters, (y1,X1), ...., (yG,XG), in step 2 do a pairs cluster
bootstrap that resamples with replacement from the H clusters, (y1,X1), ...., (yH ,XH),
and in step 3 do a pairs cluster bootstrap that resamples with replacement using clus-
tering on (g, h) ∈ {(1, 1), ..., (G,H)}. The resulting three separate variance matrix
estimates are then combined as before — add the first two and subtract the third. This
bootstrap provides the same level of asymptotic approximation as that without boot-
strap, and does not additionally provide an asymptotic refinement (see Cameron et al.
(2006) for a discussion of clustering and asymptotic refinement in the one-way case).

Finally we consider GMM estimation for over-identified models. Then bθ minimizes
Q(θ) =

µXN

i=1
hi(θ)

¶0
W

µXN

i=1
hi(θ)

¶
,

whereW is a symmetric positive definite weighting matrix. Under standard regularity
conditions bθ is asymptotically normal with estimated variance matrix

bV[bθ] = ³bA0WbA´−1 bA0WeBWbA³bA0WbA´−1 , (2.24)

where bA is defined in (2.21), and eB is an estimate of V[
P
i hi] that can be computed

using (2.22) and (2.23).
The procedure is qualitatively the same as for OLS and m-estimation. In the two-

way clustering case, we obtain three different cluster-robust variance matrices for the
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GMM estimator by one-way clustering in, respectively, the first dimension, the second
dimension, and after grouping by the intersection of the first and second dimensions.
Then we add the first two variance matrices and subtract the third.

3. Monte Carlo Exercises

The preceding section provides methods to obtain cluster-robust standard errors given
multi-way clustering. In this section we analyze the size performance of Wald tests
based on these standard errors, rather than on the standard errors per se, in two different
settings for two-way clustering. We compare our Wald test to those based on alternative
standard error estimates and, in the first example, investigate the performance of our
asymptotically-justified method when there are few clusters.

3.1. Monte Carlo based on Two-way Random Effects Errors

The first Monte Carlo exercise is based on a two-way random effects model for the
errors. This has the advantage of providing a more parsimonious competitor, a Moulton-
type correction that assumes the error process is that of a two-way random effects
model. We eventually introduce group-level heteroskedasticity into the errors that can
be accommodated by our two-way cluster-robust method, but not by the other methods.

We consider the following data generating process for two-way clustering

ygh = β0 + β1x1gh + β2x2gh + ugh, (3.1)

where β0 = β1 = β2 = 1 throughout, while the regressors x1gh and x2gh and the errors
ugh vary with the experiment performed, as described below. The subscript i does not
appear in (3.1) as i is redundant since we use rectangular designs with exactly one
observation drawn from each (g, h) pair, leading to G ×H observations. The first ten
designs are square with G = H varying from 10 to 100 in increments of 10, and the
remaining designs are rectangular with G < H.

We consider inference based on the OLS slope coefficients bβ1 and bβ2, reporting
empirical rejection probabilities for asymptotic two-sided tests of whether β1 = 1 or
β2 = 1. That is we report in adjacent columns the percentage of times

t1 =

¯̄̄̄
¯ bβ1 − 1se[bβ1]

¯̄̄̄
¯ ≥ 1.96, and t2 =

¯̄̄̄
¯ bβ2 − 1se[bβ2]

¯̄̄̄
¯ ≥ 1.96.

Since the Wald test statistic is asymptotically normal, asymptotically rejection should
occur 5% of the time. As a small-sample adjustment for two-way cluster-robust stan-
dard errors, discussed below, we also report rejection rates when the critical value is
t.025;min(G,H)−1.
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The standard errors se[bβ1] and se[bβ2] used to construct the Wald statistics are com-
puted in several ways:

1. Assume iid errors: This uses the “default” variance matrix estimate s2(X0X)−1.

2. One-way cluster-robust (cluster on first group): This uses one-way cluster-robust
standard errors, based on (2.7) with small-sample modification, that correct for
clustering on the first grouping g ∈ {1, 2, ..., G} but not the second grouping.

3. Two-way random effects correction: This assumes a two-way random effects model
for the error and gives Moulton-type corrected standard errors calculated frombV[bβ] = (X0X)−1X0bΩX(X0X)−1, where bΩ is a consistent estimate of V[u] based
on assuming two-way random effects errors (ugh = εg + εh + εgh where the three
error components are iid).

4. Two-way cluster-robust: This is the method of this paper, given in (2.15), that
allows for two-way clustering but does not restrict it to follow a two-way random
effects model.

Tables 1-3 generally use 2,000 simulations, which yields a 95% confidence interval of
(4.0%, 6.0%) for the rejection rate, given that the true rejection rate is 5%. For methods
1-3 with larger designs, specifically G ×H > 1600, we use only 1,000 simulations due
to computational cost; the 95% confidence interval is (3.6%, 6.4%).

3.1.1. Dgp with no clustering

Table 1 reports results for a dgp with iid errors and regressors. Specifically ugh = εgh ∼
N [0, 1], x1gh ∼ N [0, 1], x2gh ∼ N [0, 1].

Here all four methods are asymptotically valid, since the errors are not clustered.
This fact is reflected by simulations with the largest sample, the G = H = 100 row,
presented in bold in Table 1. The rejection rates for the four methods range from 4.7%
to 6.1%, with one case marginally outside the already-mentioned simulation confidence
intervals.

We now consider in detail inference with smaller numbers of clusters. Then rejec-
tion rates may exceed 5%, as even with a Gaussian dgp, the Wald test statistic has a
distribution fatter than the standard normal, due to the need to estimate the unknown
error variance (even if the standard error estimate is unbiased).

The Wald test based on assuming iid errors is exactly T distributed with (GH − 3)
degrees of freedom under the current dgp, so that even in the smallest design with G =
H = 10 the theoretical rejection rate is 5.3% (since Pr [|t| > 1.96|t ∼ T (97)] = 0.053),
still quite close to 5%. Results in Table 1 reflect this fact, with rejection rates in the
first two columns ranging from 4.1% to 6.7%.
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Exact finite-sample results are not available for the other methods. For one-way
clustering a common small-sample correction is to use the T (G−1) distribution, though
this may still not be fat enough in the tails (see, for example, Cameron et al. (2006)).
Assuming a T (G − 1) distribution, with G = 10 the rejection rate should be 8.2%
(since Pr [|t| > 1.96|t ∼ T (9)] = 0.082), which can be compared with the actual one-way
rejection rates that range from 7.0% to 9.7% for various rows of Table 1 with G = 10.

Wald tests based on standard errors computed using a two-way random effects model
have rejection rates in Table 1 that are qualitatively similar to those assuming iid errors.
This is expected as the random effects method has little loss of degrees of freedom as
just two additional variance parameters need to be computed. A T distribution with
degrees of freedom close to the number of observations, essentially a standard normal,
may provide a good approximation.

The next two columns of Table 1 present Wald tests based on two-way cluster-robust
standard errors. From the first two rows of the table, with a small number of clusters
the test over-rejects considerably when standard normal critical values are used.

The final two columns present rejection rates when the critical value is instead that
from a T distribution with min(G,H) − 1 degrees of freedom. The motivation is that
for one-way cluster-robust standard errors a common small-sample adjustment is to
use critical values from the T distribution with G− 1 degrees of freedom. This leads to
rejection rates of no more than 7.2% for all designs except the smallest withG = H = 10.

3.1.2. Dgp with two-way clustered homoskedastic errors

Table 2 reports results for a dgp with two-way random effect errors and with clustered
regressors. Specifically, ugh = εg + εh + εgh where the three errors are iid N [0, 1], the
regressor x1gh is the sum of an iid N [0, 1] draw and a gth cluster-specific N [0, 1] draw,
and similarly x2gh is the sum of an iid N [0, 1] draw and an hth cluster-specific N [0, 1]
draw. The intraclass correlation coefficient for errors that share one but not two clusters
is 0.33.

Here the third and fourth methods are asymptotically valid. With two-way clustering
the second method will generally fail, but for our particular dgp, one-way cluster-robust
standard errors (with clustering on group 1) will be valid for inference on β1 but not
β2. Specifically, here the regressor x1gh is correlated over only g (and not h), so that
for inference on β1 it is necessary to control for clustering only over g, even though the
error is also correlated over h. If the regressor x1gh was additionally correlated over h,
even mildly so, then the one-way standard errors for bβ1 would also be incorrect.

Simulations for the largest sample, the G = H = 100 row presented in bold in Table
2, confirm these assertions. The rejection rates for the third and fourth methods, and
the second method for β1, range from 3.6% to 6.4%.

For Wald tests based on the erroneous assumption of iid errors there is considerable
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over-rejection, and we observe the well-known result (presented after (2.6)) that the
over-rejection is increasing in the number of observations within each cluster, while
it is invariant in the number of clusters. For example, with 20 group 1 clusters the
rejection rates for tests on β1 are 34.0% , 50.8% and 62.9%, respectively, as the number
of observations in each cluster (which equals the number of group 2 clusters in our
design) increases from 20 to 50 and to 100, while the corresponding rejection rates for
tests on β2 are 32.3%, 33.1% and 33.9%.

Controlling for clustering by using standard one-way cluster-robust standard errors
that cluster on group 1 leads to rejection rates for β1 that go to 5% as the number of
clusters increases, though there is a high rejection rate of 13.7% when (G,H) = (10, 10).
The high over-rejection rates for inference on β2 even exceed those when iid errors are
assumed.

The random effects correction does very well. This is to be expected as this corre-
sponds to the dgp, and because in finite samples the Wald test is close to T distributed
with many degrees of freedom (roughly the number of observations).

The next two columns of Table 2 show that the two-way cluster-robust correction
with standard normal critical values does fine for large number of clusters, but there is
considerable over-rejection when there are few clusters.

The final two columns show considerable improvement for the two-way cluster-robust
method when T critical values are instead used. The rejection rate is less than 9% for
all designs except those with 10 clusters. And even with 10 clusters the rejection rate
falls as the number of clusters in the other dimension rises. Thus the rejection rate for
tests on β1 is 12.6% when (G,H) = (10, 10), 10.2% when (G,H) = (10, 50) and 9.2%
when (G,H) = (10, 100). This fact suggests that our design with only one observation
per (g, h) cluster may be especially challenging.

3.1.3. Dgp with two-way clustered heteroskedastic errors

Table 3 considers a dgp with heteroskedastic two-way random effect errors and clustered
regressors. Specifically, ugh = εg + εh + εgh where εg and εh are again N [0, 1] but now
εgh is N [0, |x1gh × x2gh|], while the regressors are distributed as in the dgp for Table
2. This dgp induces heteroskedasticity, so the Moulton-type standard error estimator
that assumes homoskedastic error components is inconsistent and will lead to Wald
tests with rejection rate different from 5%. Note that compared to the Table 2 dgp, the
variances of the cluster components εg and εh are unchanged while the variance of εgh
has increased. This reduces the correlation of ugh over g and h, so that rejection rates
of methods that do not control for clustering will not be as high as in Table 2.

Here the first three methods will in general fail. As already mentioned however
inference on β1 (but not β2) is valid using the second method, due to the particular dgp
used here. The fourth method remains asymptotically valid.
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The simulations with the largest sample, the G = H = 100 row presented in bold in
Table 3, confirm these expectations. The two-way cluster-robust method has rejection
rates between 6% and 7% that may be high due to simulation variability as the rejection
rates for (G,H) = (90, 90) are between 5% and 6%. All the other methods, (except the
one-way cluster-robust for β1 with clustering on group 1), have rejection rates for one
or both of β1and β2 that exceed 9%.

Assuming iid errors, the first two columns of Table 3 display over-rejection rates
that are lower than those in Table 2, due to lower correlation in the errors as already
explained.

The next two columns are qualitatively similar to those in Table 2 — controlling for
one-way clustering on group 1 improves inference on β1, but tests on β2 over-reject even
more than when iid errors are assumed.

The Moulton-type two-way effects method clearly fails when heteroskedasticity is
present. The lowest rejection rate in Table 3 is 8.5%, and the rejection rates generally
exceed those assuming iid errors.

The two-way cluster robust standard errors are clearly able to control for both two-
way clustering and heteroskedasticity. When standard normal critical values are used
there is some over-rejection for small numbers of clusters, as in earlier Tables, but except
for (G,H) = (10, 10) the rejection rates are lower than if the Moulton-type correction
is used. Once T critical values are used, the two-way cluster-robust method’s rejection
rates are always lower than using the Moulton-type standard errors, and they are always
less than 10% except for the smallest design with (G,H) = (10, 10).

3.2. Monte Carlo Based on Errors Correlated over Time and States

We now consider an example applicable to panel and repeated cross-section data, with
errors that are correlated over both states and time. Correlation over states at a given
point in time may occur, for example, if there are common shocks, while correlation over
time for a given state typically reduces with lag length. This is unlike the preceding
section random effects model that assumes constant autocorrelation.

One possibility is to adapt the random effects model to allow dampening serial
correlation in the error, similar to the dgp used by Kezdi (2004) and Hansen (2005) in
studying one-way clustering, with addition of a common shock.

Instead we follow Bertrand et al. (2004) in using actual data, augmented by a
variation of their randomly-generated “placebo law” policy that produces a regressor
correlated over both states and time.

The data on 1,358,623 employed women are from the 1979-1999 Current Population
Surveys, with log earnings as the outcome of interest. The model estimated is

yist = αdst + x
0
istβ + δs + γt + uist, (3.2)
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where yist is individual log-earnings, the grouping is by state and time (with indices s
and t corresponding to g and h in Section 2), dst is a binary state-year-specific regressor,
xist are individual characteristics, and some models may include state-specific effects δs
and time-specific effects γt. Here G = 50 and H = 21 and, unlike in Section 3.1, there
are many observations per (g, h) cell.5

Interest lies in inference on α, the coefficient of a randomly-assigned “placebo policy”
dummy variable. Bertrand et al. (2004) consider one-way clustering, with dst generated
to be correlated within state (i.e., over time for a given state). Here we extend their
approach to induce two-way clustering, with within-time clustering as well as within-
state clustering. Specifically, the placebo law for a state-year cell is generated by dst =
1[εs + 0.333εt > 0], with εs and εt iid N [0, 1]. This law is the same for all individuals
within a state-year cell. This dgp ensures that dst and ds0t0 are dependent if and only
if at least one of s = s0 or t = t0 holds. In each of 1,000 simulations the variable dst
is randomly generated, model (3.2) is estimated and the null hypothesis that α = 0
is rejected at significance level 0.05 if |bα|/se[bα] > 1.96. Given the design used here, bα
is consistent and Table 4 will display asymptotic rejection rates of 5%, provided that
the correct standard error is calculated. Because we use the actual data for the yist
and xist, the error terms uist will be correlated within states and over time to an extent
typical for many repeated cross-section studies of earnings in the U.S. If this correlation
is non-trivial, then testing bα = 0 will asymptotically reject more than 5% of the time.

The first column of Table 4 considers regression on only dst (and an intercept). Since
log earnings yist are correlated over both time and state and dst is a generated regressor
uncorrelated with yist, the error uist is correlated over both time and state. Using
heteroskedastic-robust standard errors leads to a very large rejection rate (93%) due to
failure to control for clustering. The standard one-way cluster-robust cluster methods
partly mitigate this, though the rejection rates still exceed 17%. Note that, as argued
by Bertrand et al. (2004), clustering on the 50 states does better than clustering on
the 1,050 state-year cells. The two-way cluster-robust method does best, with rejection
rate of 8.9%. This rate is still higher than 5%, in part due to use of critical values from
asymptotic theory. Assuming a T (H − 1) distribution, with H = 21 the rejection rate
should be 6.4% (since Pr [|t| > 1.96|t ∼ T (20)] = 0.064), and with 1,000 simulations a
95% confidence interval is (4.9%, 7.9%). Thus we see the empirical relevance of the fact
that the T (H − 1) distribution is not exactly correct here.

We see in the second column of Table 4 that the results change little when we partial
out a quartic in age and four education dummies. Evidently the correlation over states
and time in the error uist is little changed by inclusion of these regressors, leading to

5 In most of their simulations Bertand et al. (2004) run regressions on data aggregated into state-year
cells, to reduce computation time for their many simulations. Here we work with the individual-level
data in part to demonstrate the feasibility of our methods for large data sets (here over one million
observations).
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little change to inference on α.
The correlation in the error uist does change substantially with the inclusion of

year fixed effects. In particular, the rejection rate with year fixed effects included as
regressors and one-way clustering on state is 7.9% (which is close to the rejection rate of
9.1% that we estimate when we do not partial out year fixed effects but do use two-way
clustering on state and year). Evidently for these data the correlation over states is well
modelled by a time-specific fixed effect that is state-invariant. But for other types of
data, such as financial data on firms over time, this need not be the case.

The results show that when we include both year and state dummies as regressors, we
need to account for clustering: the rejection rate using heteroskedastic-robust standard
errors is 27%. But now all cluster-robust methods (one-way and two-way) give roughly
similar rejection rates. Surprisingly, clustering on state-year cell, rather than just state,
works best.

In this example, the two-way cluster-robust method works comparatively well re-
gardless of whether or not state and year fixed effects are included as regressors. But
once both these effects are included the one-way clustering methods also work well.

4. Empirical examples

In the two empirical examples we contrast results obtained using conventional one-way
cluster robust standard errors to those using our method that controls for two-way
(or multi-way) clustering. The first example considers two-way clustering in a cross-
section setting. The second considers a rotating panel, and considers probit estimation
in addition to OLS. Since, unlike Section 3, there is no benchmark for rejection rates of
Wald tests, we compare computed standard errors across various methods.

4.1. Hersch - Cross-Section with Two-way Clustering

In a cross-section study clustering may arise at several levels simultaneously. We con-
sider a cross-section study of wages with clustering at both the industry and occupation
level. Ideally one would obtain cluster-robust standard errors that control for both
sources of clustering, but previous researchers have been restricted to the choice of one
or the other.

We base our application on Hersch’s (1998) study of compensating wage differentials.
Using industry and occupation injury rates merged into CPS data, Hersch examines the
relationship between injury risk and wages for men and women. The model is

yigh = α+ x0ighβ + γ × rindig + δ × roccih + uigh, (4.1)

where yigh is individual log-wage rate, xigh includes individual characteristics such as
education, race, and union status, rindig is the injury rate for individual i0s industry
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(there are 211 industries) and roccih is the injury rate for occupation (there are 387
occupations). Hersch emphasizes the importance of using cluster-robust standard errors,
noting that they are considerably larger than heteroskedastic-robust standard errors.
But she is able to control only for one source of clustering - industry or occupation -
and not both simultaneously. Instead she separately reports regressions with just rind
as a regressor with clustering on industry, with just rocc as a regressor with clustering on
occupation, and with both rind and rocc as regressors with clustering on just industry.

We replicate results for column 4 of Panel B of Table 3 of Hersch (1998), with
both rind and rocc included as regressors, using data on 5,960 male workers. We
report a wider array of estimated standard errors: default standard errors assuming
iid errors, White heteroskedastic-robust, one-way cluster-robust by industry, one-way
cluster-robust by occupation, and our preferred two-way cluster-robust with clustering
on both industry and occupation.

The results given in our Table 5 show that heteroskedastic-robust standard errors
differ little from standard errors based on the assumption of iid errors. The big change
arises when clustering is appropriately accounted for. One-way cluster-robust standard
errors with clustering on industry lead to substantially larger standard errors for rind
(0.643 compared to 0.397 for heteroskedastic-robust), though clustering on industry has
little effect on those for rocc. One-way cluster-robust standard errors with clustering on
occupation yield substantially larger standard errors for rocc (0.363 compared to 0.260
for heteroskedastic-robust), with a lesser effect for those for rind. Clearly for rind it is
best to cluster on industry, and for rocc it is best to cluster on occupation.

Our two-way cluster-robust method permits clustering on both industry and oc-
cupation. It is to be expected that the increase in the standard error for rind will be
greatest when compared to one-way clustering on occupation (rather than industry), and
for rocc the increase will be largest when compared to one-way clustering on industry
(rather than occupation). This is indeed the case. For rind, the two-way cluster-robust
standard error is ten percent larger than that based on one-way clustering at the in-
dustry level, and is forty-five percent larger than that based on one-way clustering on
occupation. For rocc, the two-way standard error is little different from that based on
clustering on occupation, but it is forty percent larger than that based on clustering on
industry.

In this application it is obvious that for rind it is most important to cluster on
industry, while for rocc it is most important to cluster on occupation. Our method
provides a way to do simultaneously do both. For the industry injury rate this makes a
substantial difference. The standard error of rind increases from 0.40 without control
for clustering to 0.64 with one-way clustering on industry, and then increases further to
0.70 with two-way clustering on both industry and occupation. This application nicely
illustrates the importance of using our procedure when we are interested in estimating
coefficients for multiple variables having different intraclass correlation coefficients in
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different clustering dimensions.

4.2. Gruber and Madrian - Rotating Panel

Many surveys taken on a regular basis involve a panel-type structure for households,
which are resurveyed for several months. The U.S. Current Population Survey (CPS)
uses a specific rotation scheme to survey households: a household is surveyed for four
consecutive months, then not surveyed for the next eight months, and then surveyed
again for four more months. Then any study that uses the CPS data for more than one
time period will have households appearing more than once in the data set (unless the
time periods are more than 15 months apart).

Household errors can be expected to be correlated from one period to the next. This
correlation is typically ignored, due to a perceived need to control first for other sources
of error correlation (note that any control for clustering on region, such as on state, will
subsume household error correlation).

In this example we use similar data to that in Gruber and Madrian’s (1995) study
of health insurance availability and retirement. The probit model estimated is

Pr[yist = 1] = Φ(αdst + x
0
istβ + δs + γt), (4.2)

where yist is a binary variable for whether or not retired in the past year, the key
regressor dst is a state-year policy variable that equals the number of months in a state-
year of mandated continuation of health insurance coverage after job separation, xist
denotes individual-level controls, and state fixed effects and year fixed effects are also
included. The data are on 39,063 men aged 55-64 years from the 1980-90 March CPS.

One natural dimension for clustering is the state-year group since this reflects the
variation in dst. Given the rotating design, if a household is in a given year’s March
CPS, it is likely to also appear in the data set in the previous year or in the subsequent
year. If household outcomes are correlated from one year to the next, then the household
identifier serves as a natural second dimension for clustering. The maximum possible
increase in standard errors due to error correlation at the household level is about forty
percent (corresponding to a doubling of the variance estimate:

√
2 = 1.41). This would

occur under the strong assumptions that all households appear in two consecutive years,
that the errors for the same household are perfectly correlated across the two years,
that dst for the same household is perfectly correlated across the two years (i.e., dst is
time invariant), and that already accounted for state-year correlation is negligible. The
difference turns out to be considerably less than that here.

Our results are given in Table 6.6 We use White heteroskedastic standard errors,
which differ little from those assuming iid errors, as the benchmark.

6We have come close to replicating Gruber and Madrian’s data, but we have not done not so exactly.
The means of key variables in our data set are close to those in their 1993 and 1995 papers, with small
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For the probit estimator, the standard error increases by 9.2% when we control
for one-way clustering at the state-year level (6.265/5.732 = 1.092) and by 2.3% when
we control for one-way clustering at the household level. When we allow for two-way
clustering (with state-year as one dimension and household as the other dimension),
the standard error increases by 11.5% which in this example coincides with the sum of
the two-separate one-way clustering corrections. A more common correction for these
data would be one-way clustering on state, which leads to a smaller 5.2% increase in
the standard error.

The results for OLS estimation of this model are qualitatively similar. The standard
errors increase by 11.1% using one-way clustering on state-year, by 2.6% using one-
way clustering on household, and by 13.3% using two-way clustering on state-year and
household.

5. Conclusion

There are many empirical applications where a researcher needs to make statistical
inference controlling for clustering in errors in multiple non-nested dimensions, under
less restrictive assumptions than those of a multi-way random effects model. In this
paper we offer a simple procedure that allows researchers to do this.

Our two-way or multi-way cluster-robust procedure is straightforward to implement.
As a small-sample correction we propose adjustments to both standard errors and Wald
test critical values that are analogous to those often used in the case of one-way cluster-
robust inference. Then inference appears to be reasonably accurate except in the small-
est design with ten clusters in each dimension.7

In a variety of Monte Carlo experiments and replications, we find that accounting
for multi-way clustering can have important quantitative impacts on the estimated
standard errors. At the same time, we also note in some settings the impact of the
method is modest. The impact is likely to be greatest when both the regressor and
the error are correlated over two dimensions. But the Hersch (1995) example illustrates
that even if the regressor is most clearly correlated over only one dimension, controlling
for error correlation in the second dimension can also make a difference. Moreover, in
general a researcher will not know ex ante how important it is to allow for multi-way
clustering, just as in the one-way case. Our method provides a way to control for multi-
way clustering that is a simple extension of established methods for one-way clustering,
and it should be of considerable use to applied researchers.

exceptions. The basic probit estimates provide point estimates and (nonclustered) standard errors that
are broadly similar to those reported in their paper.

7 It is not clear whether the small-sample correction of Bell and McCaffrey (2002) for the variance
of the OLS estimator with one-way clustering, used in Angrist and Lavy (2002) and Cameron et al.
(2006), can be adapted to two-way clustering.
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A. Appendix

For two-way clustering and G,H → ∞ we establish consistency and obtain the limit
distribution of the OLS estimator.

The model is
yghi = x

0
ghiβ + ughi,

for the ith of Ngh observations in cluster (g, h). The OLS estimator bβ = (X0X)−1X0y
yields

bβ − β =
⎛⎝T−1 GX

g=1

HX
h=1

X
i∈Cgh

xghix
0
ghi

⎞⎠−1 T−1 GX
g=1

HX
h=1

X
i∈Cgh

xghiughi, (A.1)

where T = GH is the total number of clusters (not observations), Cgh denotes the
observations in cluster (g, h), and we assume a finite number Ngh of observations in
each cluster.

The first term in (A.1) is the average T−1
PG
g=1

PH
h=1Zgh where Zgh =

P
i∈Cgh xghix

0
ghi

is aK×K matrix for cluster (g, h). This has finite nonzero probability limit if E[xghix0ghi]
is nonzero and bounded from above and Ngh is finite. The second term in (A.1) can be
more compactly written as

T−1
GX
g=1

HX
h=1

zgh,

where zgh =
P
i∈Cgh xghiughi is a K × 1 vector for cluster (g, h). This term has mean

E
h
T−1

P
g

P
h zgh

i
= 0 if E[ughi|xghi] = 0 as then E[zghi] = 0, and variance

V
h
T−1

PG
g=1

PH
h=1 zgh

i
= E

h
T−2

PG
g=1

PH
h=1

PG
g0=1

PH
h0=1 zghz

0
g0h0

i
= T−2

P
g

P
h

P
h0 E[zghz

0
gh0 ] + T

−2P
h

P
g

P
g0 E[zghz

0
g0h]− T−2

P
g

P
h E[zghz

0
gh],

where the first triple sum uses dependence if g = g0, the second triple sum uses depen-
dence if h = h0, and the third double sum subtracts terms when g = g0 and h = h0 which
are double counted as they appear in both of the first two sums. Assume E[zghz0g0h0 ] < P
which will be the case if V[xghiughi] is bounded and Ngh is finite. Then counting the
number of terms in the first two triple sums, we have

V
∙
T−1

XG

g=1

XH

h=1
zgh

¸
< T−2(GH2P+HG2P)

=

µ
1

G
+
1

H

¶
P as T = GH

→ 0 if G→∞ and H →∞.
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This establishes convergence in mean square to zero of T−1
P
g

P
h zgh and hence con-

vergence in probability to zero of the second term in (A.1). We conclude that bβ−β p→ 0,
so OLS is consistent.

For the limit distribution it is convenient to assume that G → ∞ and H → ∞ at
the same rate, so that G/H → constant. We rescale (bβ − β) in (A.1) by √G, so that
√
G(bβ − β) =

⎛⎝(GH)−1 GX
g=1

HX
h=1

X
i∈Cgh

xghix
0
ghi

⎞⎠−1G−1/2H−1 GX
g=1

HX
h=1

X
i∈Cgh

xghiughi,

(A.2)

using T = GH. For the second term in (A.2) we have already shown that V
h
(GH)−1

P
g

P
h zgh

i
converges to zero at rate 1/G, where zgh =

P
i∈Cgh xghiughi, so V

h
G−1/2H−1

P
g

P
h zgh

i
converges to the matrix

VG = V[G−1/2H−1
X
g

X
h

X
i∈Cgh

xghiughi] (A.3)

= G−1H−2
X
g

X
h

X
h0

E[zghz
0
gh0 ]

+ G−1H−2
X
h

X
g

X
g0

E[zghz0g0h]

− G−1H−2
X
g

X
h

E[zghz
0
gh].

Then applying a central limit theorem to the second term in (A.2) we have

V
−1/2
G G−1/2H−1

X
g

X
h

X
i∈Cgh

xghiughi
d→ N [0, I].

The first term in (A.2) has already been assumed to have finite probability limit, say
MG = plimT

−1X0X. Combining it follows that
√
G(bβ − β) p→ N [0, M−1

G VGM
−1
G ]. (A.4)

Equation (2.15) in the main text and, equivalently, equations (2.16)—(2.18) with
D = 2 provide implementation of (A.4). The quantity (X0X)−1 in these formulae arises
due to estimation ofM−1

G = (plimT−1X0X)−1. The three different components of bB in
(2.14) or of eB in (2.18) arise due to estimation of the three components of VG defined
in (A.3).
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Table 1
Rejection probabilities for a true null hypothesis

Number of Group 
1 Clusters

Number of Group 
2 Clusters

10 10 5.6% 6.7% 9.0% 9.7% 4.4% 5.8% 13.3% 14.9% 9.9% 11.5%

20 20 6.5% 4.8% 7.9% 5.7% 5.9% 4.9% 9.0% 7.6% 7.2% 5.9%

30 30 5.1% 4.8% 5.9% 5.9% 5.1% 5.0% 6.8% 7.1% 6.1% 6.1%

40 40 5.3% 4.8% 5.8% 5.5% 5.3% 4.7% 6.6% 6.1% 5.5% 5.4%

50 50 5.0% 5.3% 5.7% 6.1% 5.2% 5.8% 5.7% 6.5% 4.9% 5.6%

60 60 4.9% 5.6% 5.7% 5.8% 4.9% 5.4% 6.5% 6.0% 6.0% 5.2%

70 70 4.7% 5.3% 4.3% 5.6% 4.9% 5.5% 5.9% 6.0% 5.7% 5.7%

80 80 4.6% 5.3% 5.2% 6.0% 4.7% 5.2% 6.0% 6.4% 5.6% 5.9%

90 90 5.7% 4.8% 6.2% 5.0% 5.7% 4.8% 6.1% 4.6% 5.6% 4.3%

100 100 4.7% 5.1% 4.9% 5.3% 4.7% 5.2% 5.1% 6.1% 4.9% 5.7%

10 50 5.6% 4.0% 8.6% 7.3% 5.5% 4.1% 8.9% 9.7% 5.9% 6.8%

20 50 5.2% 5.1% 6.2% 7.3% 5.3% 5.1% 6.7% 7.4% 5.2% 5.8%

10 100 4.8% 5.1% 7.0% 7.7% 4.7% 5.0% 8.9% 8.9% 5.9% 5.8%

20 100 4.1% 3.8% 5.8% 5.0% 3.9% 3.7% 6.7% 7.7% 5.4% 5.9%

50 100 5.2% 5.0% 5.5% 5.4% 5.0% 4.9% 5.9% 6.5% 5.2% 5.7%
Note:  The null hypothesis should be rejected 5% of the time.  Number of monte carlo simulations is 2000, except that for methods 1-3 it is 1000 
when G*H > 1600.

Assumption about errors in construction of Variance
Two-way cluster-
robust, T critical 

values

True model: iid errors

One-way cluster 
robust (cluster on 

group1)
Two-way cluster-

robustAssume iid errors
Two-way random 

effects



Table 2
Rejection probabilities for a true null hypothesis

Number of Group 
1 Clusters

Number of Group 
2 Clusters

10 10 23.4% 23.7% 13.7% 33.2% 6.2% 6.6% 17.4% 17.4% 12.6% 13.4%

20 20 34.0% 32.3% 8.6% 42.7% 5.7% 5.3% 10.3% 9.6% 8.7% 7.6%

30 30 39.7% 41.7% 7.4% 50.6% 5.2% 5.6% 8.6% 9.1% 7.8% 7.7%

40 40 47.7% 47.6% 8.7% 55.2% 6.5% 5.4% 9.0% 9.3% 7.9% 8.1%

50 50 50.0% 50.4% 6.0% 58.8% 4.9% 4.8% 7.0% 6.7% 6.3% 6.2%

60 60 54.5% 56.3% 6.4% 64.1% 5.6% 6.5% 6.7% 6.1% 5.9% 5.6%

70 70 54.2% 57.6% 5.5% 64.8% 4.8% 6.0% 6.4% 6.5% 5.9% 6.0%

80 80 61.1% 60.9% 6.5% 67.0% 4.9% 4.7% 6.3% 7.0% 5.7% 6.5%

90 90 63.4% 60.7% 5.6% 67.9% 5.0% 5.4% 6.0% 6.7% 5.8% 6.3%

100 100 62.2% 60.4% 5.8% 67.9% 5.3% 3.6% 6.4% 5.3% 6.1% 5.1%

10 50 49.9% 21.3% 13.3% 33.4% 8.9% 4.0% 15.0% 9.3% 10.2% 5.8%

20 50 50.8% 33.1% 9.8% 44.5% 6.7% 4.5% 9.3% 8.1% 8.2% 6.2%

10 100 63.0% 21.0% 14.1% 31.7% 10.4% 3.3% 14.2% 8.1% 9.2% 4.6%

20 100 62.9% 33.9% 10.0% 43.7% 6.2% 3.7% 9.2% 6.3% 7.7% 4.6%

50 100 63.9% 54.0% 6.6% 60.5% 5.3% 3.6% 6.9% 6.9% 6.4% 6.1%

Two-way cluster-
robust, T critical 

values

True model: random effects on both Group1 and Group 2

Note:  See Table 1.

Assume iid errors

One-way cluster 
robust (cluster on 

group1)
Two-way random 

effects
Two-way cluster-

robust

Assumption about errors in construction of Variance



Table 3
Rejection probabilities for a true null hypothesis

Number of Group 
1 Clusters

Number of Group 
2 Clusters

10 10 7.3% 6.6% 11.9% 8.9% 13.8% 13.2% 16.3% 15.2% 12.3% 11.8%

20 20 7.5% 7.0% 9.0% 8.1% 12.9% 12.4% 10.3% 11.3% 8.6% 8.5%

30 30 7.0% 6.7% 7.5% 7.2% 11.0% 10.7% 9.2% 9.2% 8.6% 8.1%

40 40 7.3% 7.7% 7.3% 8.7% 10.4% 11.0% 8.9% 7.8% 7.7% 7.1%

50 50 6.5% 8.0% 6.0% 8.8% 9.4% 9.9% 8.1% 7.5% 7.3% 6.7%

60 60 9.0% 7.2% 5.4% 7.3% 10.3% 8.8% 6.0% 6.4% 5.4% 5.8%

70 70 8.7% 9.5% 6.3% 10.7% 10.2% 9.8% 6.6% 6.8% 6.2% 6.5%

80 80 9.2% 10.0% 7.0% 9.5% 9.3% 9.5% 6.2% 7.4% 5.9% 7.1%

90 90 8.8% 10.9% 4.2% 10.7% 8.6% 9.8% 6.0% 5.7% 5.7% 5.4%

100 100 11.3% 9.8% 6.4% 11.5% 9.0% 8.5% 6.8% 6.9% 6.3% 6.7%

10 50 8.5% 7.4% 13.1% 10.4% 13.2% 14.7% 12.6% 10.6% 8.4% 7.3%

20 50 8.6% 7.0% 8.9% 7.9% 10.9% 11.8% 9.5% 7.7% 7.2% 6.1%

10 100 10.0% 5.9% 11.6% 9.1% 10.7% 12.9% 12.8% 9.0% 9.2% 5.3%

20 100 10.0% 6.3% 8.5% 7.2% 9.5% 11.3% 9.6% 7.9% 8.0% 6.1%

50 100 12.8% 8.7% 7.8% 8.4% 10.9% 11.0% 6.9% 6.9% 6.0% 6.4%

Two-way cluster-
robust, T critical 

values

True model: a random effects common to each Group, and a 
heterscedastic component.

Note:  See Table 1.

Assume iid errors

One-way cluster 
robust (cluster on 

group1)
Two-way random 

effects
Two-way cluster-

robust

Assumption about errors in construction of Variance



Table 4
Rejection probabilities for a true null hypothesis
Monte Carlos with micro (CPS) data

none
quartic in age, 4 

education dummies

quartic in age, 4 
education dummies, 

year fixed effects

quartic in age, 4 
education dummies, 
state and year fixed 

effects

Standard error assumption:
Heterscedasticity robust 92.8% 90.8% 91.2% 27.0%

One-way cluster robust (cluster on state-by-year cell) 31.0% 30.5% 62.5% 6.1%
One-way cluster robust (cluster on state) 17.1% 17.1% 7.9% 9.2%
One-way cluster robust (cluster on year) 17.6% 18.6% 76.5% 8.1%

Two-way cluster-robust (cluster on state and year) 8.9% 9.1% 9.0% 10.2%

Note: Data come from 1979-1999 March CPS.  Table reports rejection rates for testing a (true) null hypothesis of zero on the coefficient of fake dummy 
treatments.  The "treatments" are generated as: 1(e_s + .333 * e_t > 0), with e_s a state-level N(0,1) and e_t a year-level N(0,1).  1000 Monte Carlo 
replications

RHS control variables



Table 5
Replication of Hersch (1998)

Industry 
Injury Rate

Occupation 
Injury Rate

Estimated slope coefficient: -1.894 -0.465

Estimated standard errors: Default (iid) (0.415) (0.235)
Heteroscedastic robust (0.397) (0.260)

One-way cluster on Industry (0.643) (0.251)
One-way cluster on Occuptation (0.486) (0.363)

Two-way clustering (0.702) (0.357)

Note: Replication of Hersch (1998), pg 604, Table 3, Panel B, Column 4.  Standard 
errors in parentheses.  Data are 5960 observations on working men from the Current 
Population Survey.  Both columns come from the same regression.  There are 211 
industries and 387 occupations in the data set.

Variable



Table 6
Replication of Gruber and Madrian (1995)

Probit OLS
Estimated slope coefficient (* 1000): 13.264 1.644

Estimated standard errors (* 1000): Default (iid) (5.709) (0.675)
Heteroscedastic robust (5.732) (0.684)

One-way cluster on state-year (6.265) (0.759)
One-way cluster on household id (5.866) (0.702)

One-way cluster on hhid-by-state-year (5.732) (0.685)
Two-way clustering (6.389) (0.775)

One-way cluster on State (6.030) (0.718)

Note: Replication of Gruber and Madrian (1995), pg 943, Table 3, Model 1, Column 1.  Standard errors in 
parentheses.  Data are 39,063 observations on 55-64 year-old men from the 1980-1990 Current Population 
Surveys.

Model




