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At least since Ramsey's 1928 analysis of optimal capital accumulation, economists have

recognized the advantages of thinking about the macroccononty in terms of dynamic optimization

problems. In more modern times it has even been suggested that young macrocconomists study

dynamic optimization before they learn about Keynes' General Theoi'y. In light of such
developments, economists should know how to solve dynamic optimization problems. This paper

describes a very simple, but not commonly employed, method For numerically solving a certain class

of such problems.2 The method is applied to three growth models.

The Time-Elimination Method is a very powerful and efficient algorithm for numerically

solving dynamic optimization problems. When applicable, it vastly improves upon a common

alternative algorithm, shooting. Time-Elimination can be thought of as an alternative interpretation

of Ken Judd's (1990) work on numerical techniques for solving dynamic models. Judd's paper

suecessfully achieves at least two objectives. First, he provides some very general algorithms for

numerically solving dynamic models. Second. his algorithms economize on computer time.

The objective here is to economize on all of the inputs for the process of solving models.

Among these are computing time, computing power, the 'raw labor' of the researcher and the

human capital of the researcher. I therefore concentrate on only a few of Judd's techniques,

expressing them in terms of the Maximum Principle. The cost of my approach is that I narrow the

class of models which can be examined. However, because relatively little knowledge of the

mathematics of dynamic optimization and no familiarity with numerical methods is required to

make use of the very practical and efficient algorithms in this paper, my approach requires less

human capital and is therefore aceessible by a wider audience.' The exposition here assumes that

the reader:

(I) is familiar with the first order conditions of the 'Hamiltonian method ror

Skiba (197K) eliminates time from his optimal growth problem in order to gain some analytical

insights.

Judd's approach is both elegant and widely applicable. However, his readers should be
wmfortable with continuous time dynamic programming, Ito's calculus, and the idea of numerically
searching for solutions to functional equations. The emphasis of Judd's paper is a detailed
examination of the sixth of my six step algorithm.
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salving dynamic optimization problems
(ii) has a vague understanding of the transversality conditions
(iii) has access to a computer package thai can solve - for initial value problems -

first order ordinary differential equations (eg., MATLAB)

Here 1 apply Time-Elimination to recursive, deterministic continuous-time dynamic

optimization problems. Recursiveness is crucial because it is assumed that optimal controls can be

described by a policy function. In other words, there must be a single functional relationship -

independent of time - between optimal controls and the state of the economy at all dates. The key

advantages of Time-Elimination are more simply communicated by limiting the discussion to

deterministic problems. A theme of this paper is that the continuous-time formulation of economic

problems may not only be mote realistic than a discrete time one, but may offer significant

computational advantages.

To solve a dynamic economic model, I follow a six step algorithm:

(i) Write down the model in terms of a continuous-time dynamic optimization
problem

(ii) Use the Maximum Principle to describe the dynamics of the optimal controls
(iii) Define state-like and control-like variables
(iv) Argue that the transversality conditions (TVC's) require the state-like and

control-like variables to approach constant steady state values
(v) Use the dynamics of the state-like and control-like variables to derive a

system of differential equations describing policy functions
(vi) Numerically solve the system (from (v)). subject to steady state values

If one is specifically interested in the time paths of optimal controls, rather than policy

functions, three steps can be added:

(vii) 'Substitute' the policy functions into the system (written down in step (i))
which describes the dynamics of the state variables

(viii) Numerically solve this system, subject to initial state variables (also specified
in step (i)) and subject to initial controls (use policy functions here).

(ix) Use the policy functions and the results of (viii) to find the time paths for
optimal controls

The first three sections of this note will discuss these steps in more detail. First, a general

dynamic optimal control problem is outlined and frequently encountered computational difficulties

are noted. Following steps (iii) & (iv), the second section proposes a change in variables; the

TVCs can then be conceptualized by thinking about a steady state. Section III stresses the

importance of thinking about policy functions instead of time paths for optimal controls. The

algorithm- yields a system of differential equations - one for which the (numerical) application of
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boundary conditions is quite simple. The system describing policy ftinctions and its new" boundary

conditions offer huge computational improvements over solution procedures which rely on time

dynamics - solutions can be found in a few seconds on . computer as small as an IBM Xl', A

fourth section provides an intuitive explanation of numerical solution procedures for this system.

A fifth section notes that time dynamics can be easily derived from the policy functions.

As an example, the final section considers three growth models: that of RarnseyfCass/

Kooprnans, Jones & Manuelli's (1990) variant of the Ramsey model, and a two sector growth model

in the spirit of Lucas (1988). The analysis of this final section deliberately follows the structure of

the first five so that the reader may look ahead for concrete examples whcn reading the early

sections. Since the algebra behind the solution of these interesting models is trivial and the

computer program provided (for the Ramsey model) is shockingly brief, the reader will agree that

the Timc-Eimination Method also economizes on labor input.

I. A Dynamic Optimization Problem and

the "Shooting" Method of Solution

Consider the following dynamic optimization problem:

max E If(rco.uv).:)ds s.t.
u(s)

A(t) — g(xQ),uQ)j)

x(O) given

Where x(t) is a vector of n state" variables and u(t) is a vector of n "control" variables.

The Maximum Principle yields a set of 2n first order conditions and a set of n 1'VC's.' For

the class of problems that we consider, one can eliminate the shadow prices to obtain a set of

differential equations (in time) for the optimal controls. Together with the assumed dynamics for

the state variables, these Euler equations form a system of in differential equations (in time) to

describe optimal evolution of thc economy - often called the equations of motion:

Optimal u(t) and x(t) are solutions to a bowzdavy value type system of ordinary differcntial

It will he assumed that if a candidate solution satisfies the first order thnditions and the
TVC's, then it is optimal.
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U(S) s h(r(t).u(t)j)

i(s) — gko,u(o,l)

equations in time. The system is the equations of motion and the boundary conditions are the

TVC's. Since closed form solutions for u(t) and x(t) do not always exist, numerical solution

procedures may be necessary. A popular approach for solving boundary value problems, "shooting',

guesses initial controls u(O) (for a given x(O)). The subsequent dynamics of the economy (as

dictated by the equations of motion) are then examined to see if the TVC's are violated. lisa, the

initial guess is revised and the process is repeated.5

There are several problems with shooting. First, the computer programming required may

be lengthy and tedious. Second, when a is greater than 1, ii is quite difficult to determine whether

TVC's will be satisfied by the time path in question. Finally, the procedure will take a significant

amount of computing time (when compared to the methods which follow). The Time-Elimination

Method does not share these problems with shootin&

Numerically, boundary value problems are much more difficult - both conceptually and

computationally - to solve than are initial value problems.' One key advantage of the Time-

Elimination Mcthod is that it transforms the boundary value problem described by the equations

of motion and the TVC's into an initial value problem. Sections II and Ill will explain how one can

make this transformation.

Ii. TVC's & Steady Slates

It is common to think about a 'steady state" describing the behavior of the system at t =

. We will be looking for 'state-like" variables and "control-like' variables. First, state-like and

control-like variables will be constant in the steady state. Second, control-like variables will be a

function of the states and the controls. State-like variables will be functions of the states only.

Section VI includes a discussion of the shooting method for the Ramsey problem.

' One a snore pragmatic level, computer math packages arc much more likely to include
routines that solve initial value problems than to include routines that solve boundary value
problems. I use MATLAWs 0DE23 routine to solve initial value problems. I can therefore worry
about economics rather than numerical mathematics (I believe that I have a comparative advantage
in the former). See Prcss, ci al (1990) for a comparison of initial value and boundary value
problems.
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(vector of) slate —like variables: y(t) — yfrQ))

(vector of) control—like variables: vQ) — v(uQ),xQ))

If the state-like and control-like variables were skillfully chosen, the dynamics for u & x can

be used to find dynamics for v & y:

— q(yQ),vQ).i)

frQ) — r(y(t).vQ).t)

We will assume that the 1VCs are equivalent to requiring that the state-like and control-

like variables approach their constant steady state values?

limv(l)-v_< '
iimyQ) -y_ -c e. limjQ) —o

Numerically, this steady state relationship will be quite advantageous.

Ill. We can't wait Forever, or

Use Policy Functions to TransForm Transvcrsality Conditions into "Initial Conditions"

Instead of time paths, we will look for policy functions, which express optimal choices for

the control-like variables as a function of the state-like variables, instead of as functions of time;

'Consider the Ramsey/Cass/Koopmans growth model (this will be addressed in detail later).
In this model, we commonly assume that the TVC's require that consumption and capital approach
their stcady state values. Capital would both be a state variable and a state-like variable.
Consumption would both be a control variable and a control-like variable.
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policy functions: v - ply)

time paths: v — vQ)

In special cases, the dynamic system of section I (and its TVC's) can he transformed into

a system of ordinary differential equationsforthepoIi.funcajo,is. In such special cases, the TVC's

will be equivalent to requiring that all optimal time paths approach their steady state values.

Second, the functions q and r will not depend explicitly on time. Third, the vector y will be only

one dimensional; each policy function will depend on only one state-like variable:'

v4(l) —pAy(:)) y is a lxi vector I — i.n

To transform the dynamics of section II into a system of ordinary differential equations for

the policy functions, note that the ratio of the lime derivative of a control-like variable to that of

its corresponding state-like variable is equal to the first derivative of the policy function:

dpjy) '(t) q1(y,p) -p1(y) a _____ — — _____ - i.n
dy yQ) r(y,p)

The boundary conditions for this system are the 1'VC's. Conveniently, since time has been

eliminated, the TVC's are no longer asymptotic boundary conditions. Denote this system of n

differential equations as:

p 'Ø) - F(y,p(y)) s.t.

ply11) - I'.

If this third rcquircment is not fulfilled, then wc would end up with a system of partial
differential equations instead of a system of ordinary diffcrential equations. In principle, this is not
a problem, but I am guessing that it is more difficult to access a computer package which solves
partial differential equations. Appendix II discusses how one may find policy functions that depend
on more than one variable without thinking about partial dilferential equations. However, the
Time-Elimination Method looses some of its advantage in such cases.

As presented here, this third requirement is purely a mathematical restriction. However.
I have not found it to be economically restrictive. See Mulligan & Sala-i-Martin (1991) for some
very interesting examples and some economic intuition behind the one state-like variablC
restriction. Appendix III relates the restriction to the existence of a balanced growth path in an
n-sector growth model.

6



Before numerically solving this system, we must address two technical details. First, as

de€ned above, p1(y) is 0,0 in the steady state - we need to find the slope of the policy functions in

the steady state. One way to do this is to apply L'Hopital's rule.'

A second problem is that application of L'Hopital's rule will yield n+ 1 "solutions" for the

slope of the policy function at the steady state. This is because both stable and unstable arms

satisl' the system of differential equations and both pass througJ the steady state (only the stable

ann satisfies the TVC's). Often economic intuition will tell us which 'solution" corresponds to the

stable ann. When this is not the case. I randomly choose a solution, assume that it is stable and

continue with the algorithm. Numerical implementation is so easy and efficient that is not

inconvenient to come back to this step when I realize that I have chosen an unstable arm.

IV. Numerical Solutions

Now we know a point on each policy function - the steady state - and the slope of the policy

functions as a function of p and y. Conceptually, it is obvious that a numerical solution would take

the following steps (let n = I for clarity):

(I) calculate the slope of the policy function at the steady state

(ii) in thc v,y plane, go a "small" distance in the direction of the derivative
calculated in (i)

(iii) recalculate the slope at this new point
(iv) repeat steps (ii) & (iii) until a sufficient portion of the policy function has

been "traced out"

It is common for computer math packages to come equipped with a subroutine that can do the four

steps above."

Note that these four steps will "trace out the policy function for y > y_. Of course, the

process can easily be run "backwards" to obtain the "other haIr of the policy function.

How is it that "time-elimination" is a crucial step in this algorithm? In theory, the

elimination of time only reduces the dimension of the problem by one. In theory, one could start

'Alternatively, linearization around the steady state will give the exact slope at the steady state
and will distinguish stable and unstable arms.

'° In MA11..AB, the subroutines ODE23 and ODE4S perform this function. Strictly speaking.
the method described in the text is the "Euler method." It captures the intuition behind fancier
methods, including the (automatic step size) Runge-Kutta method, which is used by MATLAB. See
Press, et al. (1990), chapter 15 br a discussion of somc fancy methods.
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the economy very near to the steady stale and apply the shooting algorithm backwards." Such

a procedure - let's call it shooting backwards - could enjoy most of the computational savings of the

time-elimination method, since shooting backwards isalso an initial value problem. Where things

become quite difficult in practice is starting the economy "very near to the steady slate.' Even for

simple problems, some human capital and a lot of raw labor is required to write a computer routine

that performs this step. With the Tune-Elimination method, that first point "very near to the steady

state" is expertly chosen by MATLAB's 0DE23 routine.

V. Policy Functions?

But I want time paths!

After numerically finding policy functions, it is quite easy to derive time paths for the state-

like and control-like variables. Since 40) was given in the problem formulation, we know y(O).

Using the policy function, we can therefore find v(O). We therefore have a system of differential

equations (the vector function r) and know initial conditions:

9(1) — rty(l),pcyQ))) GyQ))

s.t. y(O) a y(x(O))

The system 0 can be solved exactly as was the system F in the previous section (the solution is a

time path for the vector of state-like variables y))2

Use the policy functions and the solution to the system 0 to find time paths for the control-

like variables:

v(t) —p(y(t))

" It is this proccdure that Appendix II suggests for problems with more than one state-like
variable.

In section IV, we did not find polic-y functions in the usual sense of the word . we found a
(finite clement) set of ordered pairs that lie on the true policy function. In practice, I treat these
ordered pairs as a function by interpolating betwçen them. Conveniently. MATLAB provides
subroutines to perform this intcrpolation.
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VI. Three Growth Models"

This final section applies the Time-Elimination Method to three growth models. The

simplest is the Ramsey/Cass/Koopmans one sector growth model. Here there is no steady slate

growth, so we do not have to define new state-like and control-like variables. Appendix I provides

the two very brief MATLAB files that [use to find policy functions for the Ramsey model. The

second part of this section considers a one sector growth model for which there is endogenous

growth. I therefore define a state-like variable, the potential output to capital ratio, that is constant

in the steady state. Finally, this section concludes with a two sector growth model. Although there

are two state variables, there is still only one state-like variable - the potential output to capital

ratio. Even though shooting is a nightmare for the model, Time-Elimination is applied just as easily

as it was for the one sector models.

As one works with these three growth models, two methodological rules of thumb emerge.

First, the potential output to capital ratio is an appropriate state-like variable for all of these

prototypical growth models. Second, dynamic economic problems may be more easily analyzed in

a continuous-time framework. This is because continuous-time models tend to have, at least for

particular (but fairly interesting) parameterizations, elegant closed form solutions. These closed

form solutions can be easily used to think about empirical implications of the model. For more

general parameterizations - those for which closed form solutions are not available, the Time-

Elimination Method can be used to check the qualitative robustness of conclusions based on a

particular closed form formula.

A. Ramsey/Cass/Koopmans

The characteristic assumptions of this one sector growth model are the infinite horizon

representative agent, a production ftinction which satisfies the Inada conditions and the linearity

of c in the capital accumulation equation. Optimal growth can be described as the solution to a

dynamic optimization problem:

" See Sala-i-Martin (1990) and Mulligan & Sala-i-Martin (1991) for economic interpretations
and empirical implications of these (and othcr) growth modcls.
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max ft
c(s)

s.t. k(s) a f(kQ)) —4') —S*Q)

k(O) given

Let production be Cobb-Douglas and utility exhibit CIES. Write down the Hamiltonian for

this problem:

H(c,k,A.t) - e.ft') + - c - 5k]

The usual first order conditions describe the time dynamics for optimally chosen consumption:

• !Q.{-,q,y'-' — P — a]

For this problem consumption will serve as both the control variable and the control-like

variable. k is both a state and a state-like variable. This is because, in this problem, the state and

control variables do themselves approach constant steady state values:

lime(s)—c_c — limtQ) •O

od IimkQ)—()

One finds the steady state values:

k — (_i, c —k -.5-ka a

Shoothsg

Figure 1 below is a phase diagram for the Ramsey problem. Three curves are emerging

from the origin. The top curve is the gross production function f(k) . The middle curve is the

net production function, f(k) — S•k . It is also the locus of points (Icc) for which (net) capital

/0



accumulation is zero. The lowest curve is the stable arm. The steady stale (Ic. c_) is thc

intersection of the k — 0 and t — 0 schedules.

The four arrowed curves are paths which satis, the equations of motion. We have argued

that the optimal solution - the stable arm - must necessarily obey the equations of motion, but also

approach (Ic, cj, In order to numerically find the stable ann. the shooting method (for some k(0))

guesses initial consumption. One then finds the time path through (k(0), c(0)) that obeys the

equations of motion. If this path does not reach the steady state (you're really lucky if it does), as

is the case for three paths in Figure 1, then the guess for initial consumption c(0) is adjusted

'appropriately" and the process is repeated until a time path is found that gets sufficiently close to

the steady state.

Clearly it will take some time for you to code (without bugs) this algorithm irto your

computer. For more complicated problems, it is not obvious how to 'appropriately' adjust your

guess for the optimal initial control.'4

c(L)

C
as

Figure I Pha.cc Diagram for the Ramsey Problem

H invite (dare) the reader to draw a phase diagram for the Lucas model in section VIC and
br the more general two sector models in Mulligan & Sala-i-Mariin (1991).
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Policy Functions

The first order condition and 11w steady state relationships can used to describe a policy

function c(k) for consumption. in particular, the policy function satisfies the following differential

equation (in k):

c'(k) — .±!1. — iS. ak' — (p,S)
A(s) U k -c(k) -5k

s.t. — c(k)

The above differential equation'3 specifies the slope of the policy function eveiywhere

except at the steady state. Figure 1 shows that the differential equation (in k) and its boundaiy

condition is solved by both the stable and unstable arms - since both satisfy the equations of motion

and both get arbitrarily close to the steady state. Once the slope at the steady state is specified,

the differential equation and its boundanj condition will be uniquely solved by the stable arm. One

can use L'Hopitai's Rule on the above differential equation (and the economic intuition that the

slope of the policy function is positive) to find the slope of the policy function at the steady state;

2p +
c'(k) —

2

lime Paths

For sonic applications, one may want to express an economic variable, say consumption, as

a function of time. To do this, notice that - with the policy function - the rate of change of k with

respect to time is a function of k only. This is a differential equation (in time)1' which can be

numerically solved in the same manner as was the differential equation for the policy function:

k(s) — — c(kQ)) — .5-lc(t)

s.t. k(O) — prespecified initial capital stock

With some interpolation, variables which could be expressed as functions of k can now be expressed

' This systcni corresponds to the system F in section 111.

"This system corresponds to the system G in section V.
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as functions oft.

A Program

The (only) two MATLAB files that I use to find policy functions for the Ramsey model are

included in Appendix I. For simplicity, this program does not find time paths. Note that 0DE23

is the MATL&B iubroutine for solving systems of ordinary differential equations.

On my 386SX 16MHz (with a math co-processor), I can use these files to find the policy

(unction (conditional on a set of parameters) in a mere 4 seconds! Some experimentation reveals

that, on a 33Mhz 386, one can find policy functions for one hundred sets of parameters in one

minute. By contrast, shooting would take about 15 minutes (or each set of parameters!

Potential Output per Unit of CapitaL Slate-like Vañables Again

The above solution procedure chose c & k as state-like and control-like variables. This was

done because these are the variables that growth theorists like to think about in the Ramsey model.

However, the solution of two 'endogenous' growth models which follow suggest a different choice,

potential output per unit of capital:"

control—like variable: aQ) —
kQ)

state—like variable: 4:) — ______
k(s)

My conjecture is that whenever c enters linearly in the capital accumulation equation. z(t)

(or a simple transformation) can be used as a state-like variable. This is true in the three models

examined here. Using the Time-Elimination Methods one can quickly analyze these models for

various sets of parameters. One quickly notices that the policy function a(z) is very nearly linear

in these models:

a(z) — A + B-z
i.e., c(k) A-k + B-f(k)

'Closed Fonn Solàlwns'

Thus, to a dose approximation, we have a closed form solutions for these models. Look

at the 'closed form solution' for the Ramsey model (production is still Cobb-Douglas):

" The need for the qualifier 'potential' will become apparent with the Lucas model.
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c(k) a
(fL. _s) k

+

(.fJ)f(k)

This closed ftwm solution 4*) shares the following properties with the true solution c(k):

(I) concavity for large B

(ii) constant savings for the same sets of parameters

i.e., when B • &t., the solution is exact:

c(k) -4k) -

(iii) For some parameterizations, consumption is a linear function of capital

This occurs for the true policy function when 0 — a and for the

approximation when 0 — 1

(iv) c — c(k_) — 4k_)

(v) 0 — c(0) — 40)

(vi) No investment when consumers arc unwilling to substitute intcrtcmporally

limcQc) — lim4k) —f(k) — S-k
I-.—

14



B. Jones & Manuelli (1990)

Consider modifying the Ramsey model so that production no longer satisfies the Inada
conditions:

______ di
max[ 1-0
c(s)

s.t 14r) — A-k(s) t B-k(s) —c(s) —ok(s)

k(O) given

First order conditions describe the time cjnaniics for optimally chosen consumption:

t(s) . .f i{4+a.a.k(sy —

Control4ike & Slate-Me Variables

In this model, consumption and capital do not approach finite steady state values - there

is endogenous growth. Possible choices for control-like & state-like variables are:

control—like variable: a(s) E

state—like variable: i(s) E y(kQ)) — A-k(s) + B-k(s)
k(s) k(s)

Using these definitions, one can derive time dynamics for the state-like & control-like

variables:

4(1) — a(s).{A'(1)94) + .f.±-z(s) + a(s) • oJ

2(1) — (a—I)-(zQ) —AJ-fr(s) —a(s) — 81

These state-like & control-like variahics do approach constant steady staic-valucs:
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Iima(t)—a_ C limdQ) .0

IimzQ) —i_c — HmiQ) —o

Polky Functions

Use the dynamics of the state-like and control-like variables to describe a policy function

a(z) :

a'(z) — 4(1) — a(z) A-(1—a) — (p.3) + (a—9)-z , a(z)-9 + 8-S

2(1) (a—1)(z—A)4 z — a(z) — S

s.t. a_ — a(z)

lime Paths

These are derived as with the Ramsey model. When the policy function is known, the

dynamics for the state-like variable (z) is a differential equation in time:

2(t) — (a—1)jzQ) —AJjzQ) — aQQ)) — 3)

"This system corresponds to the system F in section III.
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C. Lists. (1968): Two Sedor Growth"

Growth in a two sector economy can be described as the solution to the following dynamic

optimization problem (this is a special case of Lucas (1988)):

I ti—'max v — C.f, dt s.t
cQ),uQ) ° 4 1—0

kQ) a u(l)'-k(l)h(t)' — ci)) — S-k(s)

h(s) — 4r(1 —u(t))4tQ)

The usual first order conditions can be reduced to equations for thc (time) dynamics for optimal

controls:

tQ) t*)4x.u(g)Ie.k(,rs.h(,)l._ — p - a]

a(s) — u(s)-
—a-u(s)' k(sy'4-h(s)'- +

— Ta]

with definition:

— k(s)
V

x(t)

Define the steady state:

— E y
Ic - 0

From this definition, the first order conditions andthc dynamics for h & Ic, the following sseady stale

relationships can be dcrivcd:

Interpretations. out of steady-state behavior, and other interesting Icaturcs of sonic more
general two sector growth models arc discussed in Mulligan & Sala-i-Martin (1991).
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•i•
0.4,

I3+4,—I

- - 4,-p - S
a

a(t) a !41.
kQ)

b(t) a uQ) zQ) s kQ)

From these definitions, find dynamics for the state-like and control-like variables. Use these

dynamics to describe the policy functions by a system of two first order differcntial equations:

Define the vector v:

a (z)
v(z) s

b (z)

z is a transformation of potential output per unit of capital. Potential output is that level of
output that would be obtained if u = 1.

18

1

— -(# -p)

jk\

(c
a

Describing the Policy Functions

Define control-like variables a & b and stale-like variable VL

is — it — —

— it — Y,

a'(z) — —

1(z)

b'(z) _ —

11

1 ()'—la-l_-—_ p—S —
0 (z(t) zQ)

(r) +5

I
—o(z) — S —4.-(1 —bQ))y)

+_.S +a(z)l
0—1

a

j

a g(a(z).b(z).z)

z 7,
a f(a(z),b(z),z)



v'(z) —
f(a(z),b(z)j)

b'(z) g(a(z),b(z),z)

The following system dcscribes the policy tiinctions and fits exactly into thc framework of
section III:

v'(z) . F(v(z).z)

5.1 v(zJ — {::J

Tins. Paths

To find time paths, substitute the policy functions in the equation describing the dynamics

oft

1(i)-
{( b(ZQ)))

- a(zQ)) - S - Øjl - b(ZQ))I] zQ)

si. z(O) —

19



VII. Concluding Remarki

As a numerical technique, Time-Elimination has two main practical advantages. First, a

boundary value problem is transformed into an initial value problem. The Initial" condition is the

steady state. As is standard for initial value problems, a computer algorithm will calculate the

solution at points that are progressively further from the steady state. Therefore, the first point

chosen outside of the steady state is crucial. The second advantageof Time-Elimination is that.

unlike shooting backwards in time, this step is expertly performed by a black box (i.e., MATLAB)

about which the economist need not worry.

The Time-Elimination Method has proven to be a very simple yet powerful tool for solving

dynamic optimization problems. As such a simple tool, it should be in every dynamic

macroeconomist's toolbox. Mulligan & Sala-i-Martin (1991) demonstrate that, when 'lime-

Elimination is used together with other tools, interesting economic questions that would ordinarily

be considered quite complicated can be answered in short order. At the vciy least, Time-

Elimination's exact solutions can allow us to determine just how approximate our analytical

approximations arc. Applications to some growth models suggest that the potential output to

capital ratio may be an important concept in growth theory. Finally, the amazing speed of the

algorithm allows the economist to draw lots of pretty pictures with very little time investment.
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Appendix I
MATLAB files that find the policy function for the Ramsey model

'h RAIISEY.H

X Finds the policy function for the Ramsey model for k < steady state
X c per capita consumption
% k = per capita capital
% ke steady state capital

X Initialize parameters
n a .014; X population growth rate
d .10; X depreciation rate of aggregate capital
delta n + d; X depreciation rate of Ic
p a .065; % rate of time preference
theta — 2; % (inverse of) intertemporal elas. of substitution
a a .5; X capital share (production per capita is ka)
rho - p — n; % exponent in dynastic utility function

% Calculate steady state values
ks a (aJ(rho+delta)Y(i/(i—a));
cs — (kca — deltaks);
% Find the policy function
kO a ks/SO; kf a ks;

X HATLAB needs initial conditions, so run backwards from steady—state
X define ssd = ks — k
ssdO ks — kO;
ssdf = ks — kf;
global theta rho delta a ks cs
jssd,cI a ode23('cprime',ssdf.ssdo,cs,.oooofl;
Ic — ks — ssd;

% Calculate some interesting functions of k
y—k.a; XOutput
s - (y-c)./y; X saving rate
ys a ks. a; tC steady state output
ss a (ys — cs)/ys; V. steady state saving rate
kdotisO y — deltak; X those (c.k) for which kdot a 0
gk k.*(a_1) — c./k — delta; % capital growth rate
piot(k.c,k.kdotiso) X Plots policy function c(k) S. kdot — 0 schedule

function cdot cprime(ssd.c);

Ic = ks — ssd;
if Ic ks

cdot — —.5(rho + sqrt(rhorho+4'cs(i—a)a(kc(a—afl/thetafl;
e 1 se

cdot — c.(rho + delta — a(k,(a—1))) / (theta9(k.a) — c — deltakfl;
end % if kaalcs



Appendix It

Numerical Solutions with Multiple Stats-LIke Variables

Not ill dynamic optimization problems can be studied with only one state-Like variable.

However, with some additional algebra and coding time, one can find numerical solutions with

multiple state-like variables and still enjoy some of the advantages of the Time-Elimination Method.

In particular, one will stilt be dealing with initial value type systems of ordinary differential

equations.31 Most of the numerical mathematics will be left to your "black box" (eg, MATL.AB).

In section IV, I noted that a "shooting backwards" algorithm was in many ways equivalent

to Time-Elimination. The only hangup was the choice of that first crucial point 'near to the steady

state." I-Ierè, I will show how one can obtain that first point from your computer package. One

then only needs to shoot backwards from that point. To clarif, the exposition, I will assume that

there arc two state-like variables - y' & y2. The system of differential equations in time is therefore:

0(i) —

91(1)
— r1(y1Q),y2(t),vQ))

y3Q) a (y1(t),y2Q), vQ))

With two state-like variables, a policy function is a swface. rather than a curve. Numerically,

we must look for a set of sets of tripLets & y2, v). rather than a single set of ordered pairs (y, v).

I WILL think of each set of triplets as representing a curve that lies on the policy surface. A set of

sets of triplets therefore represents a set of curves that lie on the policy surface. Here, each curve

will be a possible path that the economy could follow from some initial vaLues of the state-like

variables to the steady state. In other words, any given economy must remain on the same curve.2

As in the one state-like variable case, each curve will be calculated hy beginning with a point near

to the steady state and then finding those points that are successively farther.

First one must pick a curve to calculate. A curve will be identified by its point that is

nearest to (but not equal to) the steady state - let's call it the near point. To pick a near point - and

therefore a curve - I will pick a function y2 = y2(y1)Y The values of the two state-like variables

for thc near point will satisfy this functional relationship. Now, form the system of ordinary

2t There is a tradeoff between human capital, raw labor and computing time. Here I propose
to do some additional algebra and spend some extra programming time (Ic, usc more "raw labor"
and a little more computer time) in order to cling to the Maximum Principle and systems of
ordinary differential equations (ie. economize on human capital). An alternative approach could
take a dynamic programming approach and attempt to numerically solve the resulting system of
partial differential equations using Judd's Minimum Weighted Residual techniques.

Note that in the one state-Like variable case, there were "two' curves - one for economies for
which y(O) < y,,, the other for economics for which y(O) > y_.

11 It is probably easiest to let these functions be rays originating at the steady stale.



differential equations (in y1):

p?(y.)
dp(yy2(y1)) — 2. — qy1,y2(y1),p)

—

dy1 iQ) r1(y,,y2(y1),p)

s.t. p('1)_) — (vJ_ I — 1 ...n

Numerically solve this system and choose the near point of the curve to be estimated to be the near

point of the solution of this system?' Finally, shoot backwards from the near point to find the rest

of the curve. Remember that shooting backwards is the numerical solution to the following system

of differential equations in time - an initial value problem:

Q) — — q(y1(i),y2(t),v(:))
j1Q) — —

j2(1) — — r (y1Q).y2Q), "(0)

s.t. (,y1(fl,y2(fl,v(fl) — the near point

The solution to the above system will be a curve that lies in the policy surface.

Repeat this procedure until there are enough curves to appropriately represent the policy

surface. If one is interested in the evolution of the economy through time from a particular initial

condition rather than the policy function itself, then this repetition can be thought of as a shooting

solution to a boundary value problem where the boundary conditions are y = y(O). I still prefer

this procedure to shooting from y = y(O) towards the steady state because the steady state is only

reached at t = . Also, the shooting is done in two dimensions (the number of state-like variables)

rather than (n+2) dimensions (the number of state-like and control-like variables).

24 Note that the solution here does no? lie in the policy surface because I have restricted y2 =
y:(yj I am only interested in the near point of thc solution and hope that it is sufficiently close
to the true policy surface.



Appendix Ill

N-Sector Balanced Growth and the One State-Like Variable RestrictIon

Here I related a balanced growth" restriction to restrictions on the number of state-like

variables in an n-sector Cobb-Douglas economy. For this economy, the various capital goods evolve

according to:

k1(t) — g1(k1Q).kQ),uQ))
— cQ)

k(s) — g(k1(t).kQ),uQ))

u(t) is a vector of control variables. k(t) and g(k1(t). k(t), u(t)) are (n-1)xl vectors:

k2Q) g2(k1Q),k(t),uQ))
kQ) , g(k1(t),kQ),u(t)) E

k,(t) gjk1(t),k(t),uQ))

Gross production in each sector is Cobb-Douglas with constant depreciation:

g(k1(t),k(r).uQ)) E k(uQ)).[Jk,Q - S-k(t)
i—I

Therc is balanced growth when c and k1 arc growing at the same constant rate, all other

capital stocks are growing at constant (although possibly differcnt) rates and u is constant.

Algebraically, balanced growth requires that a determinant be zero: -

a11 —1) a12
--

a21 (a—l) •'. tO

(a — 1)

In order (or this determinant to be zero, the matrix must have rank less than n- Economically, 11w

potential output to capital ratio cannot bc independent in every sector. At least one sector's potential

output to eapital ratio (gjk1 when the u's arc 1) must be a transformation ol theothers. 1bereIirc.

there are as most n-I state-like widables - the n-I independent potential output to capital ratios.

As one would expect from the above argument. Mulligan & Sala-i-Martin (1991) Find that

for two sector models, there is only one state-like variable if there exists a balanced growth path.

We can extend this result and say that for (Cobb-Douglas) economies with two nonlinear sectors

and n linear sectors, there will be only one state-like variable if there is a balanced growth path -



for any n, however large."

For a linear sector production is & h,(u)xk1


