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Annuls of Economic and Social Measurement, 3, I, 1974

METHODS FOR COMPUTING OPTIMAL CONTROL SOLUTIONS

ON THE SOLUTION OF OPTIMAL CONTROL PROBLEMS AS
MAXIMIZATION PROBLEMS

BY Ray C. Far*

In this paper the problem of obtaining optimal controls for econumetric models is ireated as a simple
unconstrained nonlinear maximization problem. Various maximization algorithms are tested. and the
results indicate that quite large problems can be solved. For deterministic problenis it appears feasiblc to
compute optimal controls for most econometric models encountered in practice. Stochastic problems cen
also be solved by the approach of this paper by means of stochastic simulation.

1. INTRODUCTION

There appears to be among many economists the view that the computation of
optimal controls for moderate- to large-scale nonlincar econometric models is
not feasible. Pindyck [19], for example, has questioned whether “nonlinear
optimization [is] worth all of the computational difficulty that it entails,” ! and
Shupp [24] has stated that “the size and complexity of these models preclude
formal optimization.” 2 The results presented in this paper indicate that this view
is not correct, even for models of up to 100 or 200 equations. The results suggest
that it is feasible to compute optimal controls for most econometric models
encountered in practice.”

Historically, optimal control problems have been formulated in continuous
time and have been looked upon as problems in choosing functions of time to
maximize an objective function. Fairly advanced mathematical techniques are
required to solve these problems. For discrete-time models. however, which
include virtually all large-scale econometric models, optimal control problems
can also be looked upon as problems in choosing variables to maximize an
objective function. The number of variables to be determined is equal to the
number of control variables times the number of time periods chosen for the
problem. From this perspective, optimal control problems are straightforward
maximization problems. and in attempting to sclve problems in this way. one
can take advantage of the recent advances that have been made in computational
algorithms for maximizing nonlinear functions of variables. This approach, of
treating optimal control problems as problems of maximizing a nonlinear function
of variables. is the approach taken in this paper.

* Department of Economics. Princeton University. 1 would like to thank Gregory C. Chow.
Kenneth D. Garbade, Stephen M. Goldfeld, and Richard E. Quandt for many helpful comments.

! Pindyck [19], p- 388.

2 Shupp (24], p. 94.

3 Gee also Holbrook [13] for a method cf controlling a nonlinear system witha quadratic objective
function.



20 T GeNeRAL METHOD OF SOLUTION

Assume that the model under consideration is deterministic* and has ¢
equations. Write cach equation for cach period of time as

() Salvee 2 X 2 = 0

wherz v, is a vector of observations for period £ on the ¢ endogenous vartables jn
the model. =, is a veetor of observations for pertod + on the noncontrol, pre-
determined variables in the model. Xy is @ vector of observations for period ¢ op
the control variables in the model. and %, 18 a vector of nonzero parameters thu
are included in equation i for period 1. The ¢ subscripts in x, and f;, allow for e
possibility that some parameters and some functional forms are changing over
time.* Lagged endogenous variables are included in the z, vector. 7T is the total
number of periods to be considered in the control problem.

The model in (1} is assumed to be such that. for cach ¢. given values for .
Npeand o (=1, g). one can solve numerically for v,. In practice. most large-
scale econometric models are solved cach period by some version of the Seidel
method.® Further. one can frequently isolate cach component of the y, vector on
one side of one equation. which greatly aids in the solution of the model, If the
modelissolved for more than one period, then the solution values of the endogenous
variables for previous periods are used. when appropriate. as values for the lagged
endogenous variables in the I vecter. For lincar models. of course, values of v,
are merely obtained from reduced form equations.

For a time horizon of T periods. the objective function. . is taken to be a
function of v,. z,. and X e=1..... T):

(2) W=hi,. ... Vol P R Xy

where W.a scalar_ is the value of the objective function corresponding to values
of vz and x, (r = 1. T).

The optimal control problem for this discrete-time. deterministic model s
'o choose values of A PR X7 50 as to maximize W subject to the equation-
constraints in (1). The givens of the problem are the value of each %, . the values
for each period of the purely exogenous variables. and initial values for the lagged
endogenous variables. Assume that x; 15 of dimension k. so that there are kT
contrel values to determine. Let be a kT-component veetor deroting these
values: x = {x, . vy). Now. for each value of v. one tdan compute a value of
W by first solving the model in (Bfor y, .. .. vy and then using these values along
with the values for “1-----Ipand x to compute Woin (2). The optimal control
problem can thus be looked upon as a problens in choosing variables (the clements
of X) to maximize an tnconstrained nonlinear function. By substitution. the con-
stramed maximization problem is transformed into the problem of maximizing

. . . . .
Stochastic models are diseussed in Section 7.

o u iah s
) Itis assumed throughout this paper that the values of %, and the values of the exogenous variables
in the =, vector are known with certainty.

® See. for example. Fromm and K lein [10]. pp. 373 382,
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an unconstrained function of the control variables:
W= iy,

where ¢ stands for the mapping x - x. ¥, ... by 2. =y — W. In general it
will not be possible to express y, explicitly in terms of z,. x,. and ;. so that in
general it will not be possible to write W in (2) explicitly as a function of =, x,.
and «;, (t = 1,.... T). Nevertheless. given values for 7, and o, (t = 1.... 1),
values of W can be obtained numerically for different valucs of x.

There are many algorithms available for maximizing (or minimizirig) non-
linear functions of variables. Since W cannot in general be written as an explicit
function of x, it will in general be difficult to obtain analytically the partial deriva-
tives of h with respect to the elements of x. Therefore. in attempting to solve optimal
control problems by treating them as problems in maximizing a nonlincar function
of variables one will usually be required cither to use aigorithms that do not
require derivatives or else to compute derivatives numerically. Both approaches
have been followed for the results in Sections 4 and 5.

Algorithms that do not require derivatives and algorithms for which deriva-
tives are obtained numerically spend most of their time doing function evaluations.
For the results i Sections 4 and 5, over 75 percent of the time was spent doing
function evaluations for ail algorithms tried except in two cases. where the figures
were 52 and 53 percent. One function evaluation in the present context corresponds
to the solution of a g-equation model for T pcriods (plus the rather trivial com-
putition, once y, ,. ... yrare determined. of Win(2)). It 1s therefore quite important
to solve a model in the most efficient way possible. since for one solution of the
optimal control problem a model will usually be soived hundreds or thousands
of times. Some suggestions are presented in Section 6 for efficient ways of solving
models.

Much of the engineering literature on optimal control is concerned with
continuous-time models and so is not of direct concern here. Polak [20]. however.
does present a good discussion of the discrete optimal control problem in engin-
eering.” The discrete-time model considered by Polak differs from the standard
econometric model considered in this paper in that his model is already in reduced
form. In the notation of this paper. each component of ¥, would be written as an
explicit function of z,, x,, and g, for Polak’s model. The fact that the derivatives
of y, with respect to z, and x, can be directly obtained for Polak’s model allows
Poiak to obtain fairly easily the derivatives of the objective function with respect
10 the values of the control variables. Polak also reports that the time horizon
for the problems he is considering may be as large as 1.000 periods,® which is
much larger than the time horizon for most problems in economics. where the
horizon is likely to be much less than even 100 periods. The discrete optimal
control problem in economicsis thuson the one hand easier than the corresponding
problem in engineering in that the time horizon appears to be much smallcr
and on the other hand more difficult in that analytic derivatives of the objective

" See cspecially pp. 66-71. Sce also Athans [1] for a discussion of the lirear-guadratic-Gaussian
stochastic control problem for discrete-time models.

% Polak [20]. p. 67. Polak docs not. however. report on any actual solutions of problems of this
sort in his book.



function with respect to the values of the contro! variables are not easy to obtain
because of the non-reduced-form nature of most econometric models.

3. Tue CoMPUTATIONAL ALGORTHIMS USED

Three basic algorithms were used for the results in Sections 4 and 5. The first
is the 1964 algorithm of Powell [21], which does not require any derivatives. The
second is a gradient algorithm, which requires first derivatives. The third is the
quadratic hill-climbing algorithm of Goldfeld, Quandt, and ’_Frotler [12], which
requires both first and second derivatives. The gradient algorithm that was used
in this study is a member of the class of algorithms considered by Huang [15]°
The algorithms within this class basically differ from each other in how the
approximation to the inverse of the matrix of second partial derivatives is updated
after each iteration. One member of this class is the well-known DFP variable

netric algorithm.!'® Some results using the DFP algorithm are reported below:,
but the main gradient algorithm that was used in this study is the one that updates
by means of the “rank one correction formula.”™'! This algorithm appears to
give the best results. Some results using one other member of the class ofalgorithms
considered by Huang arealso reported below.! 2 All three of the gradient algorithms
considered in this study use linear searches on each iteration.

All of the computer programs were compiled in FORTRAN-H and were
run on an [BM 360-91 computer at Princeton University.'* All derivatives for
the gradient and quadratic hill-climbing algorithms were computed numerically.
For the gradient algorithms the derivatives were computed in two ways. For one
set of runs derivatives were obtained for cach iteration by computing two function
evaluations per variable, each variable being perturbed by equal amounts around
the value available from the previous iteration. For the other set of runs derivatives
were obtained for each iteration by computing only one function evaluation per
variable. The perceniage amount by which variables were perturbed (0.01 percent)
Was not varied from iteration 1o iteration,* Stewart [25] has proposed a more
sophisticated way of computing numeric derivatives when using gradient
algorithms, but his method was not tried in this study. For the quadratic hill-
climbing algorithm first derivatives were always obtained by computing two
function evaluations per variable, as these computaticns had to be made anyway
to obtain the own second deri vatives, but the cross partial derivatives were com-
puted in two ways. For one set of runs the cross partial derivatives were cbtained
by computing four extra function evaluations per set of two variables. and for the
other set of runs the derivatives were obtained by computing only one extra

° See Powell [23] for an excellent summary of Huang's theory.

*° See Davidon [7] and Fletcher and Powell [9).

" See Powell [23], p. 41.

'? See Powell {23, equations {31) and (32). p. 41. for a presentation of this algorithm.

'* The Powell and quadratic-hill-climbing algorithms were programnied by Stephen M. Goldfeld
and Richard E. Quandt. The three gradient algorithms were programmed by Thomas Russell.

“Letfla.b)be a function of two variables, Then the formulas that were used to obtain the partial
derivative of f with respect to a for the two runs are fla+eb) - jla — b):2¢ and (fta + e.b) —
fa.b)e. where ¢ = 0.00014 or 0.000001, whichever is larger. For all of the runs the problems were
set up so that the solution values of the variables would be between about 0.1 and 1.0,



function evaluation per set of two variables.'> The reason two methods were
used to obtain derivatives for the gradient and quadratic hill-chmbing aigorithms
—one more expensive but likely to be more accurate and one less expeasive but
likely to be less accurate—was to see how sensitive the results were to the way
in which the derivatives were obtained. Box. Davies, and Swann [5], for example,
repoit that their experience is that “gradient methods cmploying numerical
differentiation are (with the exception of Stewart, 1967) usually inferior to the best
direct search methods, and therefore not recommended.”'® The results in this
study do not confirm this view.

In the programs, the algorithms were taken to have converged when the
absolute value of the difference between the value of each variable on successive
iterations was within a prescribed tolerance level. The Powell algorithm was
generally more sensitive to the particular tolerance level used than were the gradient
and quadratic hill-climbing algorithms. and for the results in Section 4 two sets
of runs were obtained using the Powell algorithm. corresponding to two different
tolerance levels.

Studies that have been done comparing different computational algorithms
have tended to limit the size of the problems considered to 20 variables or less.
This is true. for exampie. of the comparisons in Bard [3]. Box [4]. Goldfeld and
Quandt [1i], Kowalik and Osborne [16]. Murtagh and Sargent [17], Pearson
[18], and Stewart [25). Powell [22] reports that the DFP algorithm using analytic
derivatives has been successful for problems of size 100and that his 1964 algorithm
and the DFP algorithm using numeric derivatives in the manner proposed by
Stewart have solved problems of size 20."” Wolfe [26] states that the upper limit
to the size of problems that can be solved in which derivatives can be calculated
analytically is around 100. For problems in which derivatives cannot be calculated.
Wolfe’s diagram indicates that the upper limit is about 10.'® The results reported
below indicate that the upper limit to the size of problems that can be solved when
derivatives are not caiculated analytically is much larger than 10 or 20. The largest
problem solved below was of size 239, and a number of problems between size
59 and 100 were solved. In fact. one of the main reasons why the method proposed
in this paper appears feasible for most econometric models is the ease in which
algorithms appear to beable to solve farge problems even when analytic derivatives
are not calculated.

4. AN FxaMpLE UsING A LINEAR MODEL WITH A QUADRATIC
OBIECTIVE FUNCTION

The method proposed in Section 2 was first used to solve one of the optimal
control problems solved by Chow [6] for his nine-equation. linear econometric

15 Using the notation in footnote 14. the formula used for the own sccond derivatives 1s
(fla + &by — 2f(a. b} + fla — £.b)e>. The two formulas used for the cross partial derivatives are
(f@a+eb+n—fla-eb+a —fla+e,b—n+fla—eb-nhden and (fla +ea b+ )~
fla,b +n) — fla + &b} + fla b))en. wheren = 0.00015 or 0.000001. whichever islarger. In thesecond
formula. values for f(a. b + m)and f(a + . b} are available from the own second derivative calculations.

i6 Box, Davies, and Swann (5]. p. 32.

17 powell [22]. p. 95

13 Wolfe [36]. pp. xi-xii. [t should be noted. however. that it is not clear from Wolfe's notes whether
for these particular figures Wolfe is also including problems in which there are inequality constraints.
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model. The model has tWo control variables. Chow solved varions 10-period
optimal control problems corresponding to different quadratic objective: fimetions
(to be minimized). The problem chosen to solve in this study is the sccond problem
tr Table 3 of Chow [6]. Two control variables and ten periods means that there
are 20 variables to be determined. The initial values for the 20 variables werc
chosen to be zero. although in practice one could obviousty choosc better initial
values than these. The results of solving this problem are presented in the first
row of Table 1. Two runs for the Powell algorithm are reported. one which used
a tolerance level of 00005 and one which used a tolerance level of 0.00001. Two
runs cach for the gradient and quadratic hill-climbing algorithm are also reported.
corresponding to the two ways of computing derivatives. The latter two algorithms
used a tolerance level of 0.00001.

Powell's no-derivative algorithm required 1687 function evaluations to atiain
the optimum using a tolerance level 0f 0.0005 and 2.633 function evaluations using
a tolerance level of 0.00001. The value of the objective function at the stopping
point was smaller for the smaller tolerance level. but only by a very small amount.
The corresponding variable values for the two runs agreed to three significant
digits, with the largest difference being 0.00015 (0.70272 vs. 0.70287). The gradient
algorithm required 614 function evaluations to attain the optimum using one
function evaluation per derivative per variable and 1.033 function evaluations
using two. The value of the objective function at the stopping point was smaller
for the second run. but again by only a very small amount. The corresponding
variable values for these two runs also agreed to three significant digits. The
quadratic hill-climbing algorithm required 929 tunction evalvations to attain the
optimum using one function evaluation per cross derivative and 3.209 function
evaluations using four. For these two runs the values of the objective function at
the stopping point were the same. The time per function evaluation for the Chow-
model, 10-period problem was 0.0018 of second. The optimum obtained for
this problem was the same as Chow had obtained.

Theoptimal control problem for the Chow model was next made progressively
larger by increasing the time horizon. The largest problem considered was a time
horizon of 50 periods, which meant that there were 100 variables to estimate.
The resuits for 40. 60, 80, and 100 variables are presented in rows 2 through 5 in
Table 1| respectively. For the various problems the gradient algorithm clearly
dominated Powells in terms of speed of convergence. The use of the smaller
tolerance level for the Powell algorithm increased the number of function evalua-
tions considerably. and the values of the objective functions at the stopping points
were only slightly larger for the larger tolerance level. Likewise. for the gradient
algorithm the values of the objective functions at the stopping points were only
slightly larger for the runs using one function evaluation per derivative. For the
quadratic hill-climbing algorithm no accuracy at all was lost using one function
evaluation per cross derivative. The quadratic hill-climbing algorithm was not
tried after 40 parameters, although the usc of the algorithm for problems of. say.
size 100 is not completely out of the question. Using the Jess expensive way of
obtaining cross derivatives, jt requires 0.5N2 4+ | SN function evaluations to
compute the vector of firs derivatives and the maltrix of second partial derivatives
per iteration (where N is the number of variables). If four iterations are required
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to attain convergence. then roughly 20.600 function cvaluations would be required
to solve the 100-variable problem.

Adding cxtra periods for the Chow model in gencral had ittle <ffect on the
optimal variable values of previous periods. so that. for example. ic answer to
the 60-variable problem was closc to the answer to the &0- or 100-variable probiem
for the first 60 variables. In view of this. the answer to smaller problems should
be a good starting point for larger problems. and 5o to test this. the answer to the
60-variable problem was used as a starting point for the first 60 variables of the
80-variable problem. Starting points for the other 20 variables were obtained by
tetting the values of the two control variables grow by 6 and 5 percent respectively.
these figures being obtained by observing how the control variables were growing
in the answer te the 60-variable problem. The results of this test are presented
in row 6 of Table 1. For the gradient algorithm the number of function evaluations
was cut by about a Fictor of 3 (from 4.432 to 1.396 and from §.517 to 2.842) a
substantial savings. For the Poweil algorithm the number of function evaluations
was cut from 10.960 to 6.253 using the larger tolerance level and from 15371 to
6.253 using the smaller tolerance level. In both cases for the Powell algorithm. a
stightly smaller value of the objective function was obtained by starting the variablc
values from zero.

As a final test using the Chow model. two other gradient algorithms were
tried for the 60-variable problemn. The results are reported in rows 7 and 8§ of
Table 1. Neither algorithm worked as well as the rank one algorithm. The DFP
algorithm required about 1.554 more function evaluations than did the rank-one
algorithm for the run using one function evaluation per derivative. For the run
using two function evaluations per derivative. the DFP algorithm did not qQuite
attain the optimumn.

5. AN ExaMPLE USING A NONLINEAR MODEL WITH A NoON QUADRATIC
OwJECcTIVE FUNCTION

The method of Section 2 was next used to solve a more complicated optimal
control problem. The model used was the Fair modet [8]. less the monthly housing
starts sector. The model used consists of 19 equations. is nonlincar. has lags of
up to eighth order. and was cstimated under the assumption of hrst-order serial
correlation of most of the error terms.'? The initial period was taken to be 1962111
and the horizon for the various runs was either 10. 20. 25, or 60 quarters. The
number of control variables was varied between one and four. Government
spending was always taken (o be a control variable. The other three variables
that were sometimes used as control variables were the level of consumer sentiment.
plant and equipment investment expectations. and nonfarm quartcrly housing
starts. These latter three variables are clearly not variables under the direct control
of the government, but for purposes of illustrating the method of solution. there
is no harm in treating them as if they were. The objective function was deliberately
chosen to be non-quadratic in the variables of (he model. The objective function

'® The coefficients were taken from Table 11-4 in [81
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(to be minimized) was:

T [ (D 2
W 10(gpe,)? | 10 UR, — 00302 4 i Y § 3]

CN, tocs 2

_ - b o 2

+ | Gnw, 0.~75) +\Gnp, 0._57)

Y ELLTERTY B LYY !
GNP, GNP, f

where gpp, is the rate of growth (at an annual rate) of the private output deflator.
UR, is the unemployment rate. and the five ratios are the ratios of durable con-
sumption. non-durable consumption, service consumption, plant and equipment
investment, and housing investment to gross national product respectively. The
slashes around UR, — 0.030 denote the fact that ‘UR, — 0.030, was taken to be
equal to UR, — 0.0301f UR, > 0.030 and zero otherwise. In other words, welfare
was not improved for an unemployment rate below 0.030. but it was not decreased
cither. as a straight quadratic function would imply. The objective function is
non-quadratic in this respect. as well as in targeting ratios of the various com-
ponents of GNP to GNP itself. The rate of inflation and the unemployment rate
were weighted ten times more heavily in the objective function than were the
ratios. It should be noted that the welfare function is not differentiable at
UR, = 0.030. In the present case. however. the optimum values of UR, were always
greater than 0.030, and the lack of differentiability at UR, = 0.030 did not appear
to be a problem for the algorithms for which numeric derivatives had to be com-
puted. In general, if the lack of differentiability of either the mode! or the welfare
function appears to be important {as it might be. for example. for models in which
capacity ceilings play an important role). then algorithms that do not require the
computation of derivatives may be better choices than those that do.

The results for the various runs using the Fair model are presented in Table 2.
The second control variable. the level of consumer sentiment. does not enter the
model currently, but only with lags of one or more periods. so when this variable
was used as a control variable. the number of values of this variable to be deter-
mined was one less than the number of periods. Except for lines 7 and 8. historic
values were used as starting points for the values of the control variables. Again,
two runs each for the gradient and quadratic hill-climbing algorithms are reported.
corresponding to the two ways of computing derivatives. The tolerance level used
for these two algorithms was 0.00005. The tolerance level used for the Powzell
algorithms was 0.000005.

From the results in Table 2, it can be seen that the gradient algorithm worked
better than Powell's. The number of function evaluations was usually less for the
gradient algorithm. and for the problems of greater than 20 variables the Powell
algorithm did not quite attain the optima that the gradient algorithm did. For
the 39- through 99-variable problems, the largest differences between the variable
values computed by the Powell algorithm and the corresponding variable values
computed by the gradient algorithm were 26. 8. 34. and 88 percent respectively.
An even smaller tolerance level was tried for some of the runs using the Powell
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algorithm (0.0000001 vs. 0.000005) to see if this resnited in a smaller value of the
objective function, but the results were not improved nsing the smaller tolerance
levels. For the gradient algorithm the use of the less expensive way of obtaining
derivatives resulted in virtually no less in accnracy for any of the runs. For the
quadratic hill-climbing algorithm the use of the less expensive way of computing
cross partial derivatives resnlted in no loss in accuracy at all and, of conrse,
substantial savings on cost. For the problem of 4 control variables and 25 periods
(99 variables), the gradient algorithm using the less expensive way of compnting
derivatives required 10,181 function evaluations and took about 3.4 minutes to
attain the optimum.

When the 79-variable problem was started from the answer to the 59-variablc
problem plus historical values otherwise (line 8), the speed of convergence was
only slightly increased for the gradient algorithm. The number of function evalua-
tions fell from 7,314 to 7047 for the one run and from 12,807 to 12,793 for the
other. The number of function evaluations fell substantially for the Powell
algorithm, but the optimum was still not attained.

When the other two gradient algorithms were tried for the 59-variable
problem (lines 9 and 10). the results were virtually the same as for the rank one
algorithm. For this problem there is nothing to choose among the three algorithms.

The largest problem tried for the Fair model was four control variables and
6G periods (1962H1-197711) for a total of 239 variables. The answer to the 99-
variable problem was used as a starting point plus historical or extrapolated
values otherwise. Only the gradient algorithm using the less expensive way of
obtamning derivatives was tried for this problem. The program was allowed to
run for approximately 20 minutes. At the end of 20 minutes and 104 iterations,
the value of the objective function was changing only in the eighth decimal place
between iteraticns and the largest difference between any corresponding parameter
values on the last two iterations was 0.0007. The value of the objective function at
the starting point was 0.80730797 and the valuc after 104 iterations was 0.58885958.
The starting point turned ot to be fairly far away from the stopping point, with
unemployment rates of about 7 percent near the end of the horizon compared
with the stopping-point values of around 5 percent. The stopping-point valnes
for the 239-variable problem appeared to be in line with what would be expected
from observing the answers to the smaller problems. The Powell algorithm was
started from the values attained by the gradient algorithm on the 53rd iteration
(an objective-function valne of 0.58890611) to sec if it would go anywhere. A
tolerance level of 0.000005 was used. The algorithm went one iteration, lowered
the objective function to 0.58890571, and stopped (the convergence criterion
having been met for all parameters), a clear failure in view of the value obtamed
by the gradient algorithm. One other result is also of interest to note here. The
gradient algorithm was also started from the values attained on the 53rd iteration.
A tolerance level of 0.000035 was used. The algorithm went one iteration, lowered
the objective fitnction to 0.58890575, and stopped (the convergence criterion having
been met), also a clear failure. By starting the gradient algorithm over on the 53rd
iteration, one lost the approximation to the inverse of the matrix of second partial
derivauves that had been developed over 53 iterations, which in the present case
was obviously quite important. A similar result occurred when cxperimenting
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with the 99-variable problem. These results suggest that if one contemplates having
to restart the gradient algorithm for one reason or anothier (like mnning out of time
on the computer), onc ought to save the latest approximation to the mverse of
the matrix of second partial derivatives to be used when the algorithm is restarted.
The results also suggest, oddly enoungh. that when using the gradient algorithm
one cught not to start the algorithm too close to the (presumed) optimum for fear
that the algorithm will get stuck before it has a chance to build up a good approxi-
mation to the inverse of the matrix of second partial derivatives.

The answers to the problems for the Fair model were characterized by a
large value of government spending in the first period {compared with the historical
value) and large values near the end of the tinie horizon. In the model employment
responds faster to government spending than does the price level. and so the
relatively large values of government spending for the last few periods of the
horizon are taking advantage of this fact and lowering the unemployment rate
without having too much effect on the price level.2% The large value of spending in
the first period is apparently designed to lower the imemployment rate quickly
from its relatively high historic level. Excluding beginning and ending effects. the
particular objective function used resulted in an unemployment rate of about
5.0 percent and an annual rate of inflation of about 2.2 percent. The IP /GNP,
and IH,/GNP, ratios were met almost exactly when plant and equipment invest-
ment expectations and housing starts were used as control variables, as would be
expected. The three consumption ratios were not met as exactly when consumer
sentiment was used as a control variable since in this case there was, in effect.
only one main control variable mflnencing three ratios.

In Table 3 are presented estimates for each run in Tables | and 2 of the per-
centage of time that was spent doing function evaluations. The estimates were
obtained by multiplying the time per function cvaluation by the number of function
evaluations and dividing this fignre by the total time for the job. For the Fair
model abnormal exits sometimes occurred from the function-evaluation program
(before all of the compntations were performed). which causes some of the per-
centages for the Fair model in Table 2 to be too high. Abnormal exits occnr when
variable values imply that the logarithm of a negative number should be taken.
The estimatesin Table 3 are also subject to error for reasons that have to do with
the way that computation time in the computer is estimated. In general. the
percenitages are quite high in Table 3, indicating the importance of writing efficient
programs for evaluating functions.

6. AN EVALUATION oF THE PRACTICAL USEFULNESS OF THE METHOD

The results in Sections 4 and $ are VEry enconraging as to the feasibility of
using the rnethod proposed in Section 2 even for large-scale models. For a 20
period problem the 19-equation Fair model takes 0.0148 of a second per function
evalnation on the IBM 360-9] computer. The Fair model can be solved withont

** To avoid undesirable end-point effects in practice, one can always extend the horizon a few
periods beyond the actual horizon of interest. For the Fair model it appeared that the horizon should
be lengthened by about Squarters, Because of the end-pointeffects. the last few answers to the 99-variable
problem for each control variable were not used as starting points for the 239-variable problem.
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TABLE 3
ESTIMATES OF PERCENTAGE 0 Time SPENT DOING FUNCTION EVALUATIONS

From Table |

Powell Gradient Hill-Climbing

Row n (2) tH (2) (1 2)

t 93 97 83 95 52 82

2 93 95 83 Q3 53 79
3 94 90 83 91
4 S0 92 87 90
S 97 95 86 91
6 L 98 18 94
? - 86 93
8 - R7 92

From Table 2

Poweil Gradient Hill-Climbing

Row (n (2) (n (2)

1 96 87 90 83 91

2 97 95 97 89 91

3 97 97 i 71 91

4 98 97 96 - -

5 100 95 96 .-

6 100 90 92

7 95 -

8 99 94 96

9 - 7 96 - -
10 - 97 97

the use of the Seidel method since the nonlinear part of the model is recursive.
If a 100-equation model could be solved in the same way, it should take only
about five times longer to solve this model than it takes to solve the Fair model
since the number of computations per equation is not likely to vary much from
model to model. Econometric models tend to be larger because of more equations
and not because of more variables per equation. If the Seidel method must be
used to solve a model and if for each iteration for each period the entire model
must be passed through, then the cost per solution of the model is increased in
proportion to the number of iterations that are required to solve the model each
period. If, for example, it takes five iterations to solve a 100-equation model each
period, it should take about 25 times longer to solve this model than it takes to
solve the Fair model. Since algorithms that do not require derivatives or for which
derivatives are computed numerically spend most of their time doing function
evaluations, the total time that it takes to solve a control problem for a 100-
equation model that requires five iterations per solution of the model should be
about 25 times greater for the same problem than the corresponding time in Table 2
for the Fair model. A 20-period problem with one control variable should thus
take about 2.0 minutes using the gradient algorithm and the less expensive way
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of obtaining dervatives (25 x 4.78 scconds). A 20-period probleni with two
control \'z!ri:!bl\.‘.‘; should take about 8.7 minutes {25 ~ 20.83 seconds). The problem
offourcontrol variables and 28 pertodsshould take about 8§52 minutes(25 x 204.47
seconds).

Althongh the times just mentioned are not completely out of the range of
practicality. it is possible that in practice the times can be substantially cut dowr.
First, good starting points can be quite important, and significant time may be
saved by first solving a small problem (say one control vartable), using the answer
to this problem as a starting point for i somewhat larger problem (say two control
variables), and so on, building up to the largest problem that one wants to consider.
Also, once one has solved particular optimal control problem once, the answer
to this problem may be a good starting point for a slightly different problem (say,
a slight change in the objective function). In other words, it may not be too costly
to experiment with different objective functions or shightly different specification
of the model once one solution 1o a patticular problem has been obtained. It may
also be the case that from a welfare point of view or from the pomt of view of
feasibility one wanis to keep the control variables within certain bounds. This
can be done by including control variables in the objective function and penalizing
deviations of the values of the control variables from target values. If this is done,
one has a natural starting point for the control variables—the target values—and
this may significantly increase the speed of convergence of the algorithm being used,
in addition perhaps to decreasing the likelihood that the algorithm goes to a local
but not ihe giobal optimum.

A second way in which much time might be saved by models that need to be
solved by the Secidel method is by choosing good initial values of the endogenous
variables to begin the solution of the model each period. Since most algorithms
perturb the variables (in the presence case, the values of the control vartables) only
a shight amount between function evalwations, particnlarly when derivatives :ire
being computed. a good choice for the initial values of the endogenous variables
is likely to be the solution values obtained in the process of computing the previous
function evaluation. It is possible that this choice can cut the number of iterations
needed per solution of the model per pertod to two or three, which would greatly
Save on cost.

A third way in which time can be saved is to write the program that does
function evaluations in such a way that no computations are performed other
than those that are absolutely needed in going from values of the control variables
to the value of the objective function. For example, any sets of calculations using
€xogenous variables that are not changed as a result of changes in the valucs
of the control variables should not be done in the function -evaluation prog-
ram, but only once before the solution of the optimal control problem begins.
This kind of efficient programming was not done for the results in Tables i
and 2.

If for a 100-equation model one could. by following the above suggestions,
cut the number of iterations using the Seidel method to an average of 2.5 and
could further cut the time per function evaluation by 25 percent. then the times
quoted above (2.0, 8.7, and 852 minutes) would be cut to 0.75. 3.3, and 32.0
minutes respectively. These times may be further cut by a factor of 2 or more
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by better choices of initial parameter values than those used for the results m
Table 2.2

in terms of the size of the problems that the method proposed in this paper
can handle. there is an obvious tradeoft between the size of the modetd. the number
of control variables. and the length of the decision horizon. It is hard to establish
any precise rules as to what problems are practical to solve and what arc not
because no two models and problems arc the same. Furthermore. for some
problems one algorithm may work best and for others another may work best.
Each person must to some exient determine for oneself through experimentation
the practical limits to the size of probiems that one can solve. Nevertheless. the
results in this study can give some indication of the likely cost of various problems.
One important question in this regard is how rapidly the number of function
evaluations increases as the number of variables to be estimated increases. From
the results in Tables | and 2 on¢ can compute the extra number of function
evaluations required per additional variable (AFE;AN. where FE is the nuniber
of function evaluations and N is the number of variables) and observe how this
quantity varies as the total number of variables varies. These compuiations are
presented in Table 4. For the quadratic hill-climbing algorithm, AFE AN clearly
increases as N inereases since the number of function evaluations required to
compute first and second derivatives per iteration inereases as the square of N.
From the results for the Chow model there is only a slight tendency for AFE/AN
toincrease as N increases for the Powell and gradient algorithrus. From the results
for the Fair model there is somewhat more of a tendeney in this direction for the
two algorithms, but this tendency is far from being uniform. In general. the results
in Table 4 indicate that there is only a slight tendency for AFE/AN to increase as
N increases for the Powell and gradient algonthms.

The time required per funetion evatuation should be roughly proportional
to the number of periods times the number of equations in the model times the
number of Seidel iterations requived to solve the model. The time required to
solve a control problemis roughly equal to the time required per function evalua-
tion times the nuinber of function evaluations. If the number of function evaluations
varies only in proportion to the number of variables (AFE/AN not increasing
as N increases), then the time required to solve a contrel problem should be
roughly proportional to the square of the number of periods times the number of
control variables times the number of equations times the number of Seidel
iterations. In this case, if the number of Seidel iterations required to solve a model
does not increase as the number of equations of the model increases. then the time

21 Albert Ando has communicated to the author a ““conservative™ estimate that for the solution
of the 200-eguation FMP model it takes about 0.00500 of a second per iteration per period on an iBM
370-165 computer. This figure compares with 0.00072 for the solution of the 19-equation Fair model
(divide 0.0072 in Table 2 by 10). Since the FMP model has 10.5 times inore equations than the Fair
model, one would expect the time per iteration per period to be about 10.5 times greater for the FMP
model. The figure supplied by Ando indicates that the time is only 6.9 tinies greater. Ando’s results
thus suggest that the times cited in the text above may be tco conservative. It should also be noted
that Ando's results are for a program that was not written with optimal control problems in mind.

The FMP model usually takes between 10 and 15 jterations to solve per period using the Scidel
method. However, the values used as initial values for the endogenous variables are the solution values
of the previous quarter. and, as suggested above. in an optimal-control context one should be able to
do much better than this.
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TABLE 4
VALUES Or AFE AN

From Table 1

Powell Gradient Hill-(‘limbing
N AN (n (2) (N (2) (1) )
20 20 84.4 141.6 30.7 517 46.5 160.5
40 20 1533 216.8 48.1 91.1 126.1 480.1
60 20 1534 214.5 68.5 1306
80 20 157.0 238.1 74.4 1526

100 20 196.2 236.1 71.1 1320

From Table 2

Gradient Hill-Climbing
- . -—
N AN Powell ) (2) (n (2)
10 10 1123 16.3 23 26.9 50.9
20 10 102.9 14.4 34.8 66.0 240.0
39 9 2.1 56.0 1149 1239 4719
59 20 121.9 48.7 101.6 : .
79 20 246.7 2485 401.0 - -
99 20 1155 1434 341.2 -
239 140 — 110.6* - -

N = number of variables. FE = number of function evaluations.
* The 239-variable run was started from a more accurate point than the others and was terminated
at a tolerance level of only .0007 versus .00005 for the others.

required to solve a control problem should increase only in proportion to the
increase in the number of equations. Otherwise, the time will increase more than
in proportion to the increase in the number of equations.?? The time required to
solve a control problem is proportional to the square of the number of periods
because an increase in the number of periods increases both the number of variables
and the time required per function evaluation. Ifthe number of function evaluations
increases more than in proportion to the number of variables, then the time required
to solve a control problem will increase more than in proportion to the increase
in the square of the number of periods times the number of control variables.
Barring further results, some tentative conclusions can be drawn from ihe
results in this study as 1o the size of problems that it appears feasible to solve
using the method discussed in Section 2. For models of about 20 equations, it
appears quite practical to solve problems in which the product of the number of
control variables and the number of periods is greater than 100. For models of
about 100 equations, a product of 100 is probably within the range of practicality.
For models of about 200 equations, a product of 60 may be close to the limit of
practicality. The use of good starting points and efficient programming may, of
course, greatly extend even these limits. Since most econometric models do not
22 Ifthe objective function to be maximized becomes less well behaved as the number of equations
increases. this should also cause the time required to solve a control problem to increase more than

1n proportion 1o the increase in the number of equations. Without further experimentation using other

models it is not clear how sensitive the shape of the objective function is likely to be to the number of
equations in the medel.
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exceed 200 equations and since the number of control variables in any one model
can usually be kept under, say, five without seriously restricting the problem, the
method considered in this paper should be able to handle most problems of mterest
to policy makers who use econometric models in their decision-making process.
it should also be noted that the method considered in this paper requires relatively
little human effort. All one has to do is writ¢ a program to solve the model and com-
pute the objective function. No derivatives are required, no analytic approxima-
tions have to be made, and the model does not have to be set up in any special form.
The results in Tables ! and 2 indicate that the gradient algorithm using the
less expensive way of obtaining derivatives is the most efficient. Slightly more
accuracy may be obtained by using the more expensive way of obtaining derivatives
or by using the quadratic hill-climbing algorithm, but in general this increased
accuracy is not likely to be worththe cost. For the quadratic hill-climbing algorithm
no accuracy was gained using the more expensive way of computing cross pactial
derivatives, and so this way is not recommended. The Powecil algorithm was
generally more expensive than the gradient algorithm, and for the Fair model it
had a tendency to get close to but not quite to the optimum. The results in the
two tables do, of course, indicate that quite large problems can be solved even
when derivatives are obtained numerically. In practice, it may be desirable, after
having attained an answer from one algorithm, to start another algorithm from
this answer to be more certain that the true optimum has been attained. The
quadratic hill-climbing algorithm, while being the most expensive for large
problems, is likely to be the most robust to attaining the true optimum.

7. STOCHASTIC MODELS

In the case of a linear model with additive error terms and a quadratic objective
function it is well known that solving the deterministic control problem derived
by setting the error terms to their expected values will provide the optimal first-
period control values for the stochastic, closed-loop, feedback control problem.
Therefore, if one solves the deterministic control problem each period, after
observations on the state of the system for the previous period become available,
one will over time make the same decisions regarding the current values of the
control variables (i.e., the values of the control variables that the decision maker
actually sets) as would be made by one who had solved the stochastic, closed-loop,
feedback control preblem explicitly in terms of feedback equations. To this extent,
feedback equations need not be obtained, and one can concentrate on solving
deterministic control problems as considered in the previous sections of this
paper.2* For most economic applications sufficient time is usually available to
recompute the entire sequence of optimal controls each period.

For nonlinear models the first-period certainty-equivalence property does not
hold. One procedure that might be followed in this situation is merely to treat
the nonlinear-model case in the samg way asone would treat the linear-model case,
i.e., setting error terms to their expected values, and solve the deterministic control

23 K nowledge of feedback equations for a panicular model may aid one in understanding the
dynamic properties and other characteristics of the model. and for this reason it may be useful to
compute feedback equations even though they are not actually needed for the solution of the optimal

control problem.
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problem cach period. This procedurc is probably the one most often used in practice
for solving nonlincar modcls. althongh Howrey and Kelejian [14] have shewn thag
solving 4 nonlincar noded by sctting the erron terms eyual to their expected values
15 not equivalent to solving the reduced-form cquations of the modcl.

For a nonlincar model the mean values of tlic endogenons variables can be
obtaincd by means of stochastic simulation. A number of drawings from the joint
probabihty distribution of the error tcrms can be taken, and for cach drawing onc
can obtain by solving the model a set of values for the endogenons variables,
The mean value for each endogenous vaniable can then be compuicd as the
average of the values obtained from solving the model for the various drawings.
Using the procedure of stechastic simulation. it may be possible for rclatively
small problems to obtain optimal open-loop controls for nonlinear. stochastic
models in a manner similar to that done above for nonlincar. deterministic models.
Say the aim werc to maximize the expected value of the objective function. For
each choice of control values, one could compute by means of stochastic simulation
the mean value of W. The computed mean value of W would be the value returned
to the maximization algorithm. and the algorithm would be nsed in the nsnal
way in an attempt to find that set of control values for which the mean value of
W were at a maximum. Each function evaluation in the stochastic case would
correspond to an entire stochastic simulation. If. for example. 50 drawings from
the joint probability distribution of the error terms were needed to obtain an
adequate approximation to the expected value of W. then approximately 50
times more time would be necded per function evaluation for the stochastic
problem then for the detcrministic problem. Even though the cost is high for the
stochastic problem, it may be feasible for small problems to carry ont the above
suggestion. If one did carry out the above suggestion and found the optimum and
it onc recompuited the entire sequence of optimal controls cach period. one would
over time make the same decisions regarding the current values of the control
variables as would be made by one who had solved the stochastic, open-loop.
feedback control problem explicitly in terms of feedback cquations.

For the control problem for noniinear, stochastic models. Athans (1], [2] has
stiggested first solving the deterministic control problem (the deterministic problem
being obtained by setting the error terms equal to their expected values) and then
linearizing around the deterministic-control paths to obtain linear feedback
equations aronnd the paths. The aim is over time to keep the actual paths close to
the deterministic-control paths. While Athans’ suggestion may be useful for
engineering applications. wherc reoptimization cach period may not be feasible.
the suggestion is likely to be of less use for economic applications. If sufficient time
is available 1o reoptimize cach period. then it is much morc straightforward just to
solve the deterministic control problem each period.** The resnlts in this paper

** These remarks should not be interpreted as meaning that Athans would necessarily disagree
wilh them. For exampic. Athans (1!, p- 449, has stated: 1t should be stressed that trends in stochastic
control rescarch by enginecrs has been greally influenced by two factors : (a) a need to minimize on-line
computations, and (b) the requirenienls in many acrospace applicaitons that the control system be
realized by analog hardware.

In economic applicalions these requirements arc not present. since the time period between
decisions does ailow for extensive digital computer calculations. Thus. onc docs have the lusury of
cxamining more sophisticated decision and control algorithms. which however have increascd com-
putational requirements.”
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certainly indicate that it is feasible to reoptimize each periad when. say. the
period is @ month ot a quarter. The procedure of reoptimizing cach penad is also
somewhat more appealing on intuitive grounds than Athans” procedurc. if
stochastic simulation is ruled out, then both procedures are based on the incorrect
practice of setting error terms equal to their expected values. 1f onc follows Athans’
procedure, however, further approximations have to be made that do not have to
be made if one reoptimizes each period.

{1
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