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Anllals or Economic 0",1 Social Mca.l"llrt·mt'1/1, 3'4. 1974

ON THE ROBUST ESlIMATION OF ECuNuMU RIC MODELS

BY RAY C. FAIR*

The compl/lalirlna/ mpe('ls of ublainin/( rohllsl ('slil/WI('S alii !;l'neralnOlllinwr ecot/amelric madd ar..
described, and some r('.ltdIS of eSlimming 1I pmlicl//ar modd are prt·sellted. When robllsl ('slimaror.~ {lTr

considered as .....eighted-leasl-squarn eslinwlor.l. il dwrly appears feasible. br iI wmilinllliun af solrilly,
unco.,slrained oplimizulion problems {lnd ilailliug. 10 obtain robllS! eSlirnales of eCOllomclr;, nIadels.
In ('slimaling Ihe parlielliar model, IItt- r"bl/sl (·.sl;mm"r.' perjilTrned 11'1'11 in lerms of predicliall anI/racy.

Most of the work that has been done on robust estimation techniques has been
concerned with the estimation of a small number of parameters. l This paper
considers the usc of such techniques for the estimation of econometric models.
The computational aspects of obtaining robust estimates of a general nonlinear
econometric model are described, and then some results of estimating a particular
model are presented. The partiwlar model. described in Fair [4]. is nonlinear in
both variables and parameters, and the version used here consists of 11 stochastic
equations and has 61 unknown parameters to estimate.

1. THE COMPUTATION OF ROBUST ESTIMATES OF ECONOMETRIC MODELS

Write the g-th equation of the model to be estimated as:

(I)
(g = 1, G)

(t=I, Tl

where the lil are endogenous variables, the XiI are predetermined variables, fIg is
a vector of unknown parameters, and "g{ is an error term.

It will be useful to consider first the estimation of the model by full information
maximum likelihood (FIML). The FIML estimates of the unknown parameters
in (1) are obtained by maximizing

(2)
T

L = -1Tlog lSI + L log \1 II
,= 1

with respect to the unknown parameters,2 where

(3) (
CcfJ )J - --~

1- (11' •
_ hi

g. II = I. .... G.

IfG - M of the G equations are identities, then Sis M x M. butJ, remains G x G.

• Research supported in pari by National Science Foundation Grant GJ-II54X2 to the National
Bureau of Economic Research, Inc. The author is indebted to David Belsley, Gregory Chow. DaVid
Hoaglin, Paul Holland, and Edwin Kuh ror helpful comments, and to David Jones and Rod Gretlin
for research assistance. Computations reported here wer~ performed m part on the TROLL system.

I See, for example. the studies of Andrews el al. [2J. Andrews [I], and Hughes [9].

1 See, for example, Chow [3J.
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The maximization of L in (2) is a com~litationally difficult problem, and few
nonlinear models of any sIZe have been cstllnaled hy FI ML. There has, however
neen recent progress in the development of tl.lgnnthms for solving uncollstrained
optimization problems. Some .of thes~ algOrIthms were tested and compared in
Fair [5] in the context of solvIng optImal control problems; the results indical
that large unconstrained optimization problems can be solved. One problem o~
239 unknown parameters was solved, and problems of 100 parameters were solved
routinely. Another encouraging aspect of these results is that analytic derivatives
were never used. Ifan algorithm required first or second derivatives, the derivatives
were always obtained numerically. The advantage of not having to compute
analytic derivatives is the human effort saved. When numeric derivatives are used,
the only human effort needed to set lip the problem (other than acquiring the
algorithm programs) is to write a program to compute the value of the objective
function for a given vector of parameters.3 The three main algorithms considered
in [5] were the 1964 algorithm of Powell [11], which does not require any deriva.
tives; a member of the class ofgradient algorithms considered by Huang [8], which
requires first derivatives; and the quadratic hill-climbing algorithm of Goldfeld,
Quandt, and Trotter [7], which requires both first and second derivatives. These
are the algorithms that were used to obtain the FIML estimates for the results in
Section 2.

Consider next the estimation of a single equation of (I) by the least-absolute
residual (LAR) technique, a type of robust estimator. The LAR estimates are ob.
tained by minimizing

(4)

with respect to the unknown parameters. Since in generalllgl is a nonlinear function
of the unknown parameters, Q cannot be minimized through the solution of a
linear programming problem. An attempt was first made in this study to minimize
Q for the results in Section 2 by using the approach and algorithms discussed above,
but this attempt failed. The algorithms were not in general successful in finding
global optima. Often they converged to different answers from different starting
points, and many times different algorithms converged to different answers from
the same starting point.

LAR estimates can, however, be obtained, at least approximately, by con·
verting the problem into a weighted-least-squares problem. Rewrite Q as:

(5) Q = i (UgY.
I~ I IU~11

The problem of minimizing Q in (5) is merely a weighted-least-squares problem
if the denominator is known. An iterative procedure can thus be used to mini·
mize Q. Initial estimates of the residuals arc first obtained, say by ordinary leasl

J For the FI ML problem, derivatives are, of course, invoh'ed in computing J, in (21. In most case>
of thi~ type it is probably better to obtain analylic expressions for the derivatives that are invohed in
the direct computation of the objective function, rather than to compute these deril'alil'es numencally
as well.
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squares, and are then used as weights to obtain lIew estimates of the plrameters
and residuals by weighted least squares. These new residual estimates are then used
as new weights to obtain new parameter and residual estimates, and so on. If ugl

is a nonlinear function of the parameters, then a nonlinear optimization problem
has to be solved to obtain the weighted-least-squares estimates for eadt iteration.
This type of a nonlinear optimization problem is, however, usually easy to solve. In
the iterative techniqm: just described some ac\.:Ount has to be taken of zero or ncar
zero residual estimates. 4 The easiest way to handle this is to set residual estimates
that are less than some small number L in absolute value equal to f.. For the work
in Section 2, t; was taken to be 0.00001, and the program was allowed to run for
four iterations. The estimates were usually changing only slightly after the first or
second iteration following the initial ordinary-least-squares estimates. Because of
the £-treatment of small residuals, the estimates obtained by the procedure just
described will not be exactly LAR estimates, but for practical purposes they should
be quite close. The estimates obtained by this procedure will be called WLS-I
estimates.

Many other robust estimators can be considered as weighted-least-squares
estimators; two of these were used for the work in Section 2. The first is a combina
tion of ordinary-least-squares for small residuals and LAR for large residuals. For
this estimator the denominator in (5) was still taken to be !ugtl if Iugtl ~ k, but was
taken to be k if IlIgrl < k. The value of k was taken to be a robust estimate of the
standard error of the regression, namely fil/0.6745, where 1n is the median of the
absolute value of the estimated residuals. 5 The WLS-I estimates were used as
starting points, and the program was allowed to run for four iterations. The median
of the absolute value of the residual estimates was reestimated at each iteration,
and the value of k was changed from iteration to iteration. This estimator will be
cailed WLS-II.

The second of the other weighted-least-squares estimators weights each
residual as6

and 0 otherwise, where

- - IIg1
~ - k

z
·

This estimator is attributed to John W. Tukey by Andrews [1]. Values for k l of
both 6 and 9 have been proposed, and the value of 6 was used for this study. The
value of k2 was taken to be 1iI/0.6745, where again mis the median of the absolute
value of the residuals. The WLS-I estimates were used as starting points, and the
program was allowed to run for four iterations. The value of k l was changed from
iteration to iteration. This estimator will be called WLS-III.

4 In the linear case, the true optimum will, of course, correspond to k oj the residual estimates
being exactly zero, where k is the number of parameters estimated.

5 See Andrews el af. [2] for a use of this estimator.
6 The weights used for this estimator are to be compared to lllu.,1 for the WLS-I estimator and

Iflu,,1 or lik for the WLS-I1 estimator.
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Both WLS-ll and WLS-III also require that a nonlinear optimization pronl
. I' f . embe solved for each iteration if 1I~1 IS a non mear unctIOn of the parameters: but

again this type of problem is llSl~ally easy to solve.. .
The robust estimators considered so far all; srngle-equatlon estimators and

do not take into account the problems associated with estimating systems of
equations. Nevertheless. when robust estimators are considered as weighted-Ieas!_
squares estimators, it is easy to modify, say, the FI.ML estimator to be a robust
estimator. Consider, for example, the WLS-I estimator, which in the single_
equation case weights each residual by 1/llIg,l. The natural extension to the FIML
case is to consider maximizing

(6)
T

L* = - ±,F1og IS*I + L log IJ,I,
,= I

where

g,1I = I, ... ,G,
.,.

S* - ( *). * - L " _~/h' .._
- Sgh' Sgh -T '~I J~R~ Jlt1ltrl '

and where J, is the same as in (3). Given an initial set of residual estimatcs to be
used as weights, L* can be maximized with respcct to the unknown parameters.
In the maximization process each residual is weighted by one over the square root
of the absolute value of the initial residual estimate. Weighting schemes otherthan
the one used for WLS-I can, of course, also be used, which merely changes the
computation of S;h in (7). One can also iterate, if desired, in the same manncr as
described above for the single-equation estimators. In this case, each iteration
corresponds to the solution of one weighted FJML maximization problem.

The same algorithms that were used to maximize L in (2) can be used to
maximize L* in (6). The only change needed in the program [hat computes the
objective function is to change the computation of 'sgh' The advantage of using
computational procedures that do not require the use of analytic derivatives is
obvious in the present case, where it would be laborious to modify the analytic
derivatives for each new weighting scheme tried. For the results in the next section
only the WLS-I weighting scheme was combined with FIML. The weights were
taken from the WLS-I residual estimates, with residual estimates of less than
0.00001 being set equal to 0.00001. Because of cost considerations, no iterations on
the weights were performed. In other words, L * was only maximized once, and the
new residual estimates from this solution were not used to construct new weights
to be used for a second maximization, and so on. This estimator will be called
FIMLWLS-1.

Any other estimators of simultaneous equations models that are based on
minimizing a function of the residuals can likewise be modified to be robust
estimators by weighting the residuals in different ways. One obvious way to modify
the two-stage least squares estimator, for example, is to run the first-stage regres
sions in the usual way, replace in the usual way the actual values ofthe right-hand
side endogenous variables in the structural equation being estimated with the
resulting fitted values, and then run a weighted-least-squares regression for the
second stage. One could iterate, if desired, in the same way as described above.
Again, the avaiJability of optimization procedures that do not require analytic

(7)
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derivatives should greatly increase the number of modific:alions of a particular
estimator that it is feasible to l:onsider.

2. AN EXAMPLE

The model used for the results in this section is described in [4] and will not be
discussed in any detail here. For present purposes, the monthly housing starts
sector in the model has not been used, and housing starts have been taken to be
exogenous. Imports were also taken to be exogenous. The period of estimation
was 1960 11-1973 I, a total of 52 observations. Dummy variables were added to a
few of the equations to adjust for the effects of two auto strikes. 7 Adjusting for
strikes in this way is, of course, already a form of robust estimation in the sense
that one has adjusted for large residuals that occur because of the strikes.

The model was estimated using six different estimators: ordinary least squares
(OLS), FIML, WLS-I, WLS-II, WLS-III, and FIMLWLS-I. All but one of the
equations were estimated under the assumption of first-order serial correlation of
the error term. For each of the six estimators, first-order serial correlation was
handled by transforming each equation into one with a non-serially correlated
error term and then treating the resulting equation as nonlinear in the parameters.
If, for example, the equation to be estimated is:

(8)

where

(9)

&, not being serially correlated, the equation can be written:

(to) y, = PY,-I + b l (1 - p} + b2(x, - px,._ d + b3(Yr-l -- PY,-l) + e"

which is a standard nonlinear equation in the parameters. This is a convenient
way of handling serial correlation in the present context, since the only complica
tion it introduces is to make what might otherwise be a linear equation in param
eters into a nonlinear one.

The model has the computational advantage that it decomposes into two
blocks: a linear, simultaneous block and a nonlinear, recursive block. This means
that J, in (3) can be factored into two parts: one that is a function of some param
eters but not of time and one that is a function of time but not of any parameters.
Consequently, in the computation of the FIML and FIMLWLS-I estimates, the
determinant of J only had to be computed once per evaluation of Lor L*, rather
than the T times required for the more general case. In computing the FIML
estimates, estimates were first obtained for the two blocks separately. using the
ordinary least squares estimates as starting points, which required estimating 38
and 23 parameters, respectively. FIML estimates of all 61 parameters were then

7 Aside from treating housing starts and Imporl~ as exogenous and adding a few dummy variables,
two other small changes were made to the model in [4]. The price equation was taken to be linear with
a length of lag of 20, and in equation (9.12) E, was replaced by M, + MA, + MeG,. See Table 11-4
in [4J for the original model. Dummy variables were not used for the work in [4], and strike observations
were merely excluded from the sample Jlllriod.
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obtained, using the FJML estimates of the two blocks as starting poinis.
FIMLWLS-I estimates were obtained in a similar manner. In contrast to the
work in [5}, no systematic attempt was mad~ in this study to. compare the various
optimization algorithms, and sO no compansom of alternative algorithms will be
presented here. Powell's no-derivative algorithm w.as usually ~sed first to obtain
an answer, and then this answer was checked by startmg the gradient and quadratic
hill-climbing algorithms from the answer to see if a larger value of the likelihood
function could be found. In some cases a larger value was found using the other
two algorithms, and in some cases the quadratic-hill-climbing algorithm found a
larger value than did the gradient algorithm. In general it appeared that the
FIML and FIMLWLS-I computational problems here were not as well behaved
and as robust to the use of different algorithms as were the optimal COntrol prob
lems in [5].

The six sets of estimates are available from the author on request. The two
sets of FIML estimates tended to differ more from the other four sets of estimates
than the other four sets of estimates differed from each other. There were no
important cases of sign reversals among the different estimates of the same
parameter.

The six different sets of estimates are l:ompared in Table I in terms of within
sample prediction accuracy. Each set of estimates was used to generate static and
dynamic predictions of the endogenous variables. Root mean square errors and
mean absolute errors for five variables are presented in Table I for each set of
estimates. The comparison here is similar to the comparison in Fair [6), where
ten estimators were analyzed. The study [6] dealt only with the eight-equation
linear subset of the model in [4], however, while this paper considers the nonlinear
part of the model as well. The results in [6] indicate that accounting for first-order
serial correlation of the error terms is important, and for this reason all the esti
mators have been modified to account for serial correlation here.8

The five variables in Table I are GNP in current dollars (GNP,), the private
output deflator (PO,), GNP in constant dollars (GNPR,), private nonfarm em·
ployment (M,), and the level of the secondary labor force lLF2'). The errors for the
six variables are not independent of one another in the sense that, for example,
large errors in predicting GNP, are likely to lead to large errors in predicting the
other variables. GNP, is determined in the linear, simultaneous-equations block
of the model, and the other variables are determined in the nonlinear, recursive
block. The four variables presented in Table I from the recursive block are the
four most important variables in the block. The estimates of the serial correlation
parameters were used in the generation of all the predictions from the model.

The results in Table I are fairly self·explanatory. Consider GNP l first. OLS is
obviously the worst, being last on all grounds except the one- and two-quarter
ahead predictions, where it is better than FIMLWLS-I. WLS-I is better than
WLS-Il and WLS-lIl for the three-Quarter-ahead predictions and beyond, beating
them on all counts, although not by much for the three-quarter-ahead prediction.
For the one- and two-quarter-ahead predictions, the results are close. FIML does

8To be consiSlenl wilh Ihe nalalion in [6], "AUTOl" should be added to Ihe name of each
eslimalor in Table I, bUI since all eSlimalors considered in Ihis seclion are "AUTOt" eslimalors.lhis
will nol be done.
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well for all but the simulation over the entire period, where it falls down somewhat.
FIMLWLS-I is the best for the simulation over the entire period, but is not
particularly good for the other predictions.

Consider PDt next. The two FIML estimators are the worst, which turns out
to be caused in large part by different FIML and FIMLWLS-I estimates of the
constant term in the PDt equation. The results for the other four estimators arc
dose except for the simulation over the entire period, where the ranking is
WLS-I, WLS-II, WLS·III, and OLS. This ranking is the same as that for GNP

t

for the simulation over the entire period, which is explained by the fact that for
the simuiatiotl over the entire period the predictions of GNP, have an important
effect on the predictions of POI'

For GNPRI' OLS is again the worst, being last on all grounds. WLS-I is
better than WLS-II and WLS-III on all grounds. FIML does better than WLS-I
for the one- and two-quarter-ahead predictions, even considering the poorer
FIML predictions of PDt> which are used in the computation of the predictions
of GNPR

"
but the opposite is true for the three-quarter-ahead predictions and

beyond. FIMLWLS·I is the best for the two- through five-quarter-ahead pre
dictions, but falls down slightly for the other two.

For M
"

the results are fairly close except for the simulation over the entire
period, where the RMSE ranking is WLS·I, WLS-II, WLS-III, OLS, FIMLWLS-I,
and FIML, and the MAE ranking is WLS-I, WLS-II, FIMLWLS.I, FIML,
WLS-III, and OLS. For LF 21' the FIML estimators get worse as the period ahead
lengthens. For the simulation over the entire period, OLS is best by a slight amount.

The following is a tentative list of conclusions drawn from the results in
Table 1.

I. WLS-I appears better than WLS-II and WLS·III, and all three appear
better than OLS. It is not just the treatment of large residuals that appears impor
tant, since WLS-II, which is a combination of OLS for small residuals and WLS-I
for large residuals, does not do as well as WLS·I. The different treatment of small
residuals by WLS-I compared with OLS appears also to be important.

2. For the predictions of GNPI' FJML is obviously better than OLS, which
is the same conclusion reached in [6]. For the other variables, which are not
determined simultaneously, FIML is not always better. In other words, more
gain appears likely from using FIML over OLS when the model is simultaneous
than when it is recursive.

3. Among WLS-I, FIML, and FIMLWLS-I there is no obvious winner since
the rankings differ depending on the variable predicted and the number of periods
ahead for which the prediction is made. Overall, however, WLS-I probably has
an edge, especially if emphasis is put on the results for the variables in the recursive
block, where FIML and FIMLWLS-I do not in general do particularly well.

4. For the one-quarter-ahead (static) predictions, the results are all fairly close,
which means that if one is only interested in static predictions, the choice of an
estimator may not be too important (assuming the estimator accounts for first
order serial correlation).

Predictions were also generated based on WLS·I estimates obtained after the
first iteration from ordinary least squares (rather than after the fourth iteration as
above). The results were better than the OLS results, but no! as good as the
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TABLE I

PREDICTION ERRORS FOR GNP,. PO" GNPR,. M,. AND LF 2 •

RMSE = Root Mean Square Errors MAE = Mean Absolute Errors
- ..

~-- .--

RMSE MAE
EstImator Number of Quarters Ahead Number dQuarters Ahead

Entire Entire

'" I 2 3 4 5 Period I 2 3 4 5 Period
-J GNP, 52obs. 51 oDs. 500bs. 490bs. 48 cbs. 520bs. 52obs. 5lobs. 50obs. 490bs. 480bs. 520bs.J:>.

OLS 3,64 6.08 7.78 9.11 10.26 14.00 2.84 4.89 6.37 7.73 882 Ji,78
F/ML 3.50 5.85 7.28 8.21 9.02 13.32 2.80 4.72 5.72 6.56 720 10.]6
WLS·/ 3.59 5.88 7.27 8.21 8.86 9.63 2.82 4.58 5.73 6.46 6.93 7.73
F1MLWLS·) 3.89 6.21 7.63 8.60 9.39 9.37 3.22 4.75 5.72 6.23 6.64 7.33
WLS-ll 3.56 5.83 7.30 8.35 9.20 11.99 2.74 4.62 5.84 6.92 7.66 9.67
WLS-Ill 3.60 5.88 7.43 &.61 9.65 13.68 2.76 4.69 6.01 7.19 8.10 11.24

PO,
OLS 0.29 0.45 0.56 0.67 0.77 2.99 0.22 0.35 0.43 0.50 0.58 1.57
FIML 0.32 0.52 0.70 0.87 1.05 3.19 0.26 U.44 0.61 0.77 0.95 2.54
WLS-I 0.29 0.45 0.56 0.67 0.77 2.16 0.22 0.35 0.43 0.50 0.58 1.97
FIMLWLS·! 0.33 0.53 0.70 0.88 1.08 2.75 0.25 043 0.60 0.76 0.96 2.2l
WLS-II 0.29 0.45 0.56 0.67 0.77 2.29 0.22 0.35 0.43 0.50 0.57 2.07
WLS-III 0.29 0.45 0.56 0.66 0.77 2.60 0.22 0.35 0.43 0.50 0.57 2.28



GNPR,
OLS 3.05 5.06 6.59 7.79 8.87 20.39 2.39 4.08 5.46 6.56 7.71 17.32
FIML 2.87 4.72 6.08 7.16 8.28 20.20 2.34 3.68 4.89 5.92 6.78 15.04
WLS-I 2.94 4.78 6.01 6.84 7.50 15.03 2.36 3.79 4.62 5.31 5.98 13.24
FIMLWLS·I 2.99 4.65 5.70 6.46 7.25 18.15 2.44 3.55 4.40 5.21 6.14 13.81
WLS-II 2.98 4.83 6.16 7.16 8.02 17.01 2.37 3.88 4.99 5.86 6.72 14.84
WLS-III 3.02 4.89 6.30 7.43 H.47 18.91 2.37 3.93 5.16 6.17 7.14 16./4

M,
OLS 166 296 416 516 602 1618 138 245 327 422 479 1423
FIML 168 291 397 483 566 1718 137 235 325 393 459 1267
WLS-I 167 290 395 475 540 1106 134 239 324 403 460 943
FIMLWLS-l 168 291 396 477 549 1707 135 239 324 402 472 1259

0\ WLS-II 166 295 414 508 588 1374 137 242 331 422 478 1188..... WLS-Ill 165 293 408 504 587 1490 137 241 323 415 468 i29lo1V1

LF2 •

OLS 218 272 295 313 321 357 171 230 245 246 269 271
FIML 220 281 314 341 357 501 172 244 270 280 302 410
WLS·I 220 273 298 315 321 365 171 233 249 251 266 287

FIMLWLS-I 220 282 316 347 374 559 174 244 273 286 312 506
WLS·ll 220 272 292 304 303 380 169 227 240 234 248 288
WLS-I1I 219 270 291 305 307 361 170 227 239 236 252 272

~



TARLE 2

OUTSIPf.-SAMI'I.I' PRI'IlIClION ERRORS

Estimation Period: 1960 111968 IV Predidion Periud: 1969 I 1973 I
(Erwr meaSUfl'S flu the simulation over the elltire prediction period \mly)
RMSE = Root Mean Square Emm MAE = Mean Absolute hrors

RMSE
-----------

MAE

OLS WLS-I OLS WLS-I

GNP, 13.48 9.84 10.76 822

PO, 0.85 0.82 0.72 0.69

GNPR, 8.23 7.46 6.64 5.81
M, 421. 468. 355. 429.

LF l • 2276. 2230. 2109. 2067.

WLS-I results based on four iterations. Iterating more than once clearly improved
the prediction accuracy of the estimator.

One final comparison was made here to see if the superiority of WLS-I over
OLS also held for outside-sample predictions. The model was reestimated by
WLS-I and OLS only through 1968 IV. Predictions for the 19691·-19731 period
were then generated based on these two sets of estimates. In Table 2, error measures
for the simulation over the entire prediction period (17 observations) are presented
for the same five variables presented in Table I. For GNP.. WLS-I outperforms
OLS. Of the other four variables, which are determined in the recursive block,
WLS-I is better for all but one (M I ). Overall, WLS-I appears to outperform OLS,9
although the superiority of WLS-I here does not appear as pronounced as it was
for the within-sample comparisons. This same conclusion also emerged from
examining in more detail the predictions for the period 19691-1973 I (e.g., by the
number of periods ahead predicted) and from examining predictions for the
period 1970 III-I 973 1 based on estimates through 1970 II.

3. CONCLUSiON

The purpose of this paper has been to discuss the computational aspects of
robust estimates of econometric models and to present a few results of estimating
a particular modeL When robust estimators are considered as weighted-least
squares estimators, robust estimates can be obtained by a combination of solving
unconstrained optimization problems and iterating. The unconstrained optimiza
tion problem for unweighted or weighted FIML estimates is likely to be by far the
most expensive to solve for a given model, but even in this case it now appears
feasible to estimate models of up to about 50 parameters. Certainly the computa
tions involved in obtaining robust, single-equation estimates appear feasible for
any model. Also, by using optimization algorithms that do not require derivatives
or for which derivatives are obtained numericaIly, one greatly decreases the human
effort involved in considering alternative estimators.

9 This conclusion is consistenl with Ihe results of Meyer and Glauber [IOJ, who found Ihe lAR
eSlimalor 10 be lin improvemenl over ordinary leasl squares in lerms of oUlside-sampJe, single-equation
predidion accuracy.
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The conclusions in Section 2 are dearly tentative. The comparisons among
the estimators are based only on the criterion of prediction accuracy, and the
model used for the comparisons has some special features that are not character
isli.: of other models. Nevertheless, the robust. estimators do predict well. and the
results should at least provide encouragement to further work in this area.

Yale University and NBER Computer Research Cellter
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