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Abstract

This paper examines the quantitative implications of government fiscal policy in a

discrete-time one-sector growth model with a productive externality that generates so-

cial increasing returns to scale. Starting from a laissez-faire economy that exhibits local

indeterminacy, we show that the introduction of a constant capital tax or subsidy can

lead to various forms of endogenous fluctuations, including stable 2-, 4-, 8-, and 10-cycles,

quasi-periodic orbits, and chaos. In contrast, a constant labor tax or subsidy has no ef-

fect on the qualitative nature of the model’s dynamics. We show that the use of local

steady-state analysis to detect the presence of multiple equilibria in this class of models

can be misleading. For a plausible range of capital tax rates, the log-linearized dynamical

system exhibits saddle-point stability, suggesting a unique equilibrium, while the true non-

linear model exhibits global indeterminacy. This result implies that stabilization policies

designed to suppress sunspot fluctuations near the steady state may not prevent sunspots,

cycles, or chaos in regions away from the steady state. Overall, our results highlight the

importance of using a model’s nonlinear equilibrium conditions to fully investigate global

dynamics.
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1 Introduction

It is well-known that a wide variety of equilibrium economic models can exhibit endogenous

cycles, indeterminacy, sunspots, or chaos.1 The conditions needed for such phenomena are

typically less stringent in models with incomplete markets, imperfect competition, or exter-

nalities. These environments also create a motive for government intervention to address the

source of the market failure. In this paper, we show how a government fiscal policy designed to

address a wedge between the social and private marginal products of capital (which is created

by a productive externality) can lead to a much richer set of endogenous dynamics than is

possible in the laissez-faire economy.

The framework for our analysis is a discrete-time version of the one-sector growth model

developed by Benhabib and Farmer (1994). In one variant of their model, an individual firm’s

production process is subject to a positive external effect that is linked to the average level of

inputs across all firms in the economy. Benhabib and Farmer show that when this externality

is strong enough to generate social increasing returns-to-scale, the model can exhibit “local

indeterminacy” whereby a continuum of rational expectations equilibria exists in the neigh-

borhood of the single interior steady state. Such an environment allows for stochastic sunspot

fluctuations driven by “animal spirits.”2 Farmer and Guo (1994) show that a calibrated ver-

sion of this model compares favorably to a standard real business cycle model in being able

to replicate some cyclical features of the postwar U.S. economy.

We begin our analysis of the Benhabib-Farmer-Guo model by solving for a benchmark

fiscal policy that eliminates the wedge between the social and private marginal products of

capital and labor. The benchmark policy involves constant subsidy rates applied to capital and

labor incomes, financed by a lump-sum tax. We show that the subsidy rate applied to capital

income is a key bifurcation parameter for the model’s perfect-foresight dynamics. Starting

from a laissez-faire economy that exhibits local indeterminacy, the nonlinear dynamical system

undergoes a Hopf bifurcation as the capital subsidy rate becomes sufficiently positive and

a flip bifurcation as the capital subsidy rate becomes sufficiently negative (representing a

capital income tax). Both bifurcations are “supercritical,” whereby an attracting orbit or cycle

emerges as the subsidy rate passes a critical value. Pushing the subsidy rate beyond the critical

value in either direction eventually leads to chaos. In these regions of the parameter space,

1Useful surveys of this large literature include Boldrin and Woodford (1990), Guesnerie and Woodford
(1992), Nishimura and Sorger (1996), Reichlin (1997), and Benhabib and Farmer (1999).

2We use the terms “animal spirits,”“sunspots,” and “self-fulfilling beliefs” interchangeably to mean random-
ness not related to uncertainties about economic fundamentals, i.e., technology, preferences, or endowments.
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the largest Lyapunov exponent of the nonlinear map becomes positive, indicating “sensitive

dependence on initial conditions.”

Interestingly, the subsidy rate applied to labor income has no effect on the qualitative

nature of the model’s dynamics. This result is somewhat intuitive. The labor subsidy affects

the tradeoff between consumption and leisure at a given date while the capital subsidy affects

the tradeoff between consumption goods at different dates. The inter -temporal tradeoff is the

crucial mechanism for generating multiple equilibria because agents’ expectations of future

returns must become self-fulfilling.3 Similar logic helps to account for well-known importance

of the discount factor and the capital depreciation rate (which both affect the intertemporal

tradeoff) in growth models that exhibit complicated dynamics.4

For our chosen calibration, the Hopf bifurcation occurs at a capital subsidy rate of 63.8

percent. This is below the benchmark subsidy rate of 66.7 percent needed to eliminate the

wedge between the social and private marginal product of capital. Attempts by the government

to encourage private investment by setting the capital subsidy at or near 66.7 percent will

destabilize the steady state and allow for a much richer set of endogenous dynamics than is

possible in the laissez-faire economy. In particular, as the subsidy rate is increased beyond the

Hopf-bifurcation value of 63.8 percent, an attracting closed orbit (invariant circle) emerges to

surround the steady state thereby allowing for quasi-periodic oscillations. Further increases in

the subsidy rate cause the orbit to break up into a complicated chaotic attractor. The high-

subsidy region is characterized by large intermittent spikes in hours worked which reflect a

“bunching effect” in production as agents’ decisions internalize more of the increasing returns.

The flip bifurcation occurs when gross income from capital is subsidized at the rate of

-8.7 percent. This subsidy rate corresponds to a steady-state tax on capital income net of

depreciation of 20.4 percent. As the capital tax rate increases, the model exhibits a series of

period-doubling bifurcations–a typical route to chaos. In this region of parameter space, the

substitution effect generated by expected movements in the after-tax interest rate overcomes

the corresponding income effect by an amount that is sufficient to induce cycling in agents’

optimal saving decisions. We observe stable 2-, 4-, and 8- cycles which eventually give way to

narrow window of chaotic dynamics. Further increases in the capital tax lead to the emergence

3Guo (1999) shows that a flat rate tax or subsidy applied to labor income does affect the dynamics in
the continuous-time version of the model. This occurs because the clear distinction between intra- and inter-
temporal tradeoffs is lost as the time step becomes vanishingly small.

4Mitra (1998) and Baierl, Nishimura, and Yano (1998) establish some conditions on the discount factor and
the capital depreciation rate that are needed for complicated dynamics in optimal growth models. Becker (1985)
shows that an economy with a capital income tax (or subsidy) can be modeled as an undistorted economy with
a appropriately-defined discount factor.
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of a stable 10-cycle on the other side of the chaotic region.

For capital tax rates beyond the flip-bifurcation value, the steady state exhibits saddle-

point stability. An analysis based solely on the log-linearized model would lead one to conclude

that a unique equilibrium exists in this region of the parameter space. It turns out, however,

that local determinacy of equilibrium near the steady state coexists with global indeterminacy.

Away from the steady state, there exists a continuum of perfect-foresight trajectories leading

to a stable n-period cycle or a chaotic attractor. It is possible, therefore, to construct stochastic

sunspot equilibria away from the steady state, in the vicinity of the n-period cycle or attractor.5

Finally, we demonstrate how the log-linearized model might be used to design a state-

contingent capital subsidy/tax policy that guarantees saddle-point stability of the steady-

state. This type of local control approach has been applied recently by Kass (1998) and

Barnett and He (1998, 1999) in reduced-form macroeconomic models, and by Guo and Lansing

(1998) and Guo (1999) in continuous-time versions of the Benhabib-Farmer-Guo model. The

important distinction here is that the model in question can exhibit global indeterminacy even

in the presence of local determinacy. This result implies that stabilization policies designed

to suppress sunspot fluctuations near the steady state may not prevent sunspots, cycles, or

chaos in regions away from the steady state. Overall, our results highlight the importance of

using a model’s nonlinear equilibrium conditions to fully investigate global dynamics.

Before laying out the details of the model and the quantitative simulations, we briefly

mention some other research that examines the relationship between government policy and

endogenous fluctuations. Within this large literature, some researchers emphasize the use of

fiscal or monetary policy for stabilization purposes while others show how policy may create

an environment that is more conducive to these type of phenomena. These are two sides of

the same coin.

In the area of fiscal policy, Kemp, Long, and Shimomura (1993) show that the optimal

redistributive capital tax policy in a capitalist-worker model can generate endogenous cycles

via a Hopf bifurcation. Bond, Wang, and Yip (1996) and Ben-Gad (2000) show that changes

in the level of the capital income tax can induce indeterminate balanced growth paths in

human-capital based endogenous growth models. Crès, Ghiglino, and Tvede (1997) show

that internalization of a consumption externality in an overlapping generations economy (by

means of government-sponsored legal entitlements) can generate endogenous cycles via a flip

5Azariadis and Guesnerie (1986) show that the existence of a stable two-cycle implies the existence of nearby
sunspot equilibria in an overlapping generations model. This result is further explored by Chattopahyay and
Muench (1999).
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bifurcation.6

Cases of global indeterminacy coexisting with local determinacy are quite common in

models with multiple steady states or multiple balanced growth paths.7 We are aware of only

a handful of examples in models with a single interior steady state, such as ours. These are

Cazzavillan (1996), Venditti (1998), Grandmont, Pintus, and de Vilder (1998), and Pintus,

Sands, and de Vilder (2000).

The remainder of the paper is organized as follows. Section 2 introduces fiscal policy into

the Benhabib-Farmer-Guo model. Section 3 investigates the model’s local and global dynamics

with constant subsidy/tax rates. Section 4 discusses stabilization policy. Section 5 concludes.

2 The Model

The model economy consists of three types of agents: firms, households, and the government.

Benhabib and Farmer (1994) describe two competitive decentralizations that lead to a social

technology with increasing returns-to-scale. To simplify the exposition, we present the version

of the model with a productive externality.8

2.1 Firms

There is a continuum of identical competitive firms with the total number normalized to one.

Each firm produces a homogenous final good using the following constant returns-to-scale

technology:

yt = ztk
θ
t h

1−θ
t , θ ∈ (0, 1) , (1)

where yt is the firm’s output, kt and ht are the corresponding capital and labor inputs, and zt

is the state of technology which the firm takes as given. The decision problem of an individual

firm is

max
kt,ht

(yt − rtkt − wtht) , (2)

6Other research that considers the role of fiscal policy as a stabilizing or de-stabilizing force includes: Farmer
(1986), Reichlin (1986), Schleifer (1986), Deneckre and Judd (1992), Boldrin (1992), Evans and Honkapohja
(1993), Sims (1994), Goenka (1994), Cazzavillan (1996), Schmitt-Grohé and Uribe (1997), and Austin (1999).
Research that considers the role of monetary policy includes: Benhabib (1980), Grandmont (1985, 1986),
Matsuyama (1991), Foley (1992), Sims (1994), Smith (1994), Woodford (1994), Chattopadhyay (1996), Matheny
(1996), Fukuda (1997), Michener and Ravikumar (1998), and Benhabib, Schmitt-Grohé, and Uribe (2001),
among others.

7See, for example, Benhabib and Perli (1994), Greiner and Semmler (1996), Evans, Honkapohja, and Romer
(1998), Cazzavillan, Lloyd-Braga, and Pintus (1998), Christiano and Harrison (1999), and, Benhabib, Schmitt-
Grohé, and Uribe (2001), among others.

8The alternative decentralization allows for monopoly power in the production of intermediate goods.
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subject to equation (1), where rt is the capital rental rate and wt is the real wage. Under the

assumption that factor markets are perfectly competitive, profit maximization implies

rt = θyt/kt, (3)

wt = (1− θ) yt/ht. (4)

In contrast to a standard real business cycle model where zt is governed by an exogenous

stochastic process, the state of technology here is given by

zt =
(
Kθ

t H
1−θ
t

)η

, η ≥ 0, (5)

where Kt and Ht are the economywide average input levels.
9 In a symmetric equilibrium, all

firms take the same actions such that Kt = kt and Ht = ht. Hence we obtain the following

social technology:

yt = kα1
t hα2

t , (6)

where α1 ≡ θ (1 + η) and α2 ≡ (1− θ) (1 + η) . The social technology exhibits increasing

returns-to-scale for η > 0. We restrict our attention to the case of α1 < 1 which implies that

the externality is not strong enough to generate sustained endogenous growth.10

2.2 Households

The economy is populated by a large number of identical, infinitely-lived households, each

endowed with one unit of time, who maximize a discounted stream of utilities over their

lifetime:

max
∞∑
t=0

βt

{
log ct −

Ah1+γ
t

1 + γ

}
, A > 0, (7)

where β ∈ (0, 1) is the discount factor, ct is consumption, ht is hours worked and γ ≥ 0

denotes the inverse of the intertemporal elasticity of substitution in labor supply. We assume

that there are no fundamental uncertainties present in the economy.

The budget constraint faced by the household is

ct + it = (1 + skt) rtkt + (1 + sht)wtht − Tt, (8)

9Kamihigashi (1996) shows that the externality model is observationally equivalent to a standard real busi-
ness cycle model from the standpoint of individual agents who view zt as being determined outside of their
control.

10Christiano and Harrison (1999) adopt the parameterization θ = 1/3 and η = 2 which yields α1 = 1. For
this knife-edge case, the equilibrium marginal product of capital is independent of kt and the model’s global
dynamics collapse to a quadratic difference equation in ht and ht+1. Their setup yields two interior steady
states (a sink and a saddle) in contrast to our model which possesses a single interior steady state.
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where it is investment and kt is the household’s stock of physical capital. Households derive

income by supplying capital and labor services to firms. Fiscal policy is introduced through

the variables skt, sht, and Tt, which represent the subsidy rates applied to capital and labor

incomes, and a lump-sum tax, respectively. Under this formulation, negative subsidy rates

represent distortionary taxes and a negative value of Tt represents a lump-sum transfer received

from the government.11 Households view rt, wt, skt, sht, and Tt as being determined outside

of their control.

Investment adds to the stock of capital according to the law of motion

kt+1 = (1− δ)kt + it, k0 given, (9)

where δ ∈ [0, 1) is the constant depreciation rate. We exclude δ = 1 because this case is

not subject to indeterminacy in a regime of constant subsidy/tax rates. In particular, when

combined with logarithmic utility and a Cobb-Douglas production technology, the assumption

of 100 percent depreciation yields exactly offsetting income and substitution effects so that

households only need to observe the current state the economy to decide how much to consume

and invest. In this case, there exists a closed-form solution where equilibrium allocations are

uniquely pinned down by current-period fundamentals, regardless of the degree of increasing

returns.12

The first-order conditions for the household’s optimization problem are given by

Acth
γ
t = (1 + sht)wt, (10)

1

ct
=

β

ct+1
[(1 + skt+1)rt+1 + 1− δ] , (11)

lim
t→∞

βtkt+1

ct
= 0. (12)

Equation (10) equates the household’s marginal rate of substitution between consumption

and leisure to the after-subsidy real wage. Equation (11) is the consumption Euler equation,

and equation (12) is the transversality condition.

11Since skt is applied to gross income from capital, a negative subsidy rate is equivalent to a tax on capital
income net of depreciation of τkt = 1− (1+skt)rt−δ

rt−δ
, where skt < 0 and δ is the capital depreciation rate.

12When δ = 1, the equilibrium decision rules are: kt+1 = (1 + sk) θβyt, ct = [1− (1 + sk) θβ] yt, and ht =[
(1+sh)(1−θ)
1−(1+sk)θβ

]1/(1+γ)

, where yt is given by equation (6) and sk and sh are the constant subsidy/tax rates.
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2.3 Government

The government sets {skt, sht, Tt}
∞
t=0 , subject to the following budget constraint:

Tt = sktrtkt + shtwtht. (13)

By combining equations (6), (8), (9), and (13), we obtain the following aggregate resource

constraint for the economy:

kt+1 = kα1
t hα2

t + (1− δ)kt − ct. (14)

3 Dynamics with Constant Subsidy/Tax Rates

The increasing-returns technology (6) introduces a nonconvexity into the constraint set of the

social planner’s problem.13 This nonconvexity presents a formidable technical barrier for policy

analysis because it precludes application of the Kuhn-Tucker sufficiency theorem to (i) compute

the first-best allocations and (ii) solve for the optimal fiscal policy that would implement the

first-best as a competitive equilibrium. This barrier cannot be surmounted simply by resorting

to a numerical analysis. A complete characterization of the first-best allocations in a dynamic

economy with increasing returns is an unsolved problem that we leave as an open question for

future research.14 As an alternative to computing the optimal fiscal policy, we consider the

following benchmark fiscal policy that eliminates the wedge between the social and private

marginal products of capital and labor.

Proposition. The wedge between the social and private marginal products of capital and labor

is eliminated when

skt = sht = η, for all t, (15)

Tt = ηyt, for all t. (16)

Proof : The social marginal products from equation (6) are ∂yt
∂kt

= α1yt/kt and
∂yt
∂ht

= α2yt/kt.

The after-subsidy private marginal products are (1 + skt)rt and (1 + sht)wt, where rt and wt

are given by equations (3) and (4). With skt = sht = η, we have (1 + skt) rt = α1yt/kt

and (1 + sht)wt = α2yt/kt. The lump-sum tax needed to finance the subsidies follows directly

from equation (13). �

13The social planner chooses {ct, ht, kt+1}
∞

t=0 to maximize (7) subject to equation (14), with k0 given.
14Gaines and Peterson (1985) show existence but not uniqueness of the first-best allocations in a growth

model with increasing returns-to-scale. Dechert and Nishimura (1983) establish some features of the first-best
allocations when the technology exhibits increasing returns-to-scale for an initial range of capital stocks but
decreasing returns thereafter.
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The benchmark policy involves constant subsidy rates that are linked directly to the ex-

ternality parameter η. A similar result is obtained in models where the productive externality

(or the degree of monopoly power) does not give rise to increasing returns. In those models,

unlike here, the Kuhn-Tucker sufficiency theorem can be used to show that the benchmark

fiscal policy implements the unique first-best allocations.15

We now turn to a quantitative investigation of the model’s local and global dynamics under

a regime of constant subsidy/tax rates, that is, when skt = sk and sht = sh for all t.

3.1 Calibration

Parameter values are chosen based on empirically observed features of the U.S. economy. The

time period in the model is taken to be one year. Table 1 summarizes the baseline parameter

values, together with a brief description of the rationale used in their selection.

Table 1: Baseline Parameter Values

Parameter Value Rationale

θ 0.30 Capital share in U.S. national income, see Poterba (1997, Table 4).
β 0.962 Implies after-tax interest rate of 4 percent, see Poterba (1997, Table 1).
A 2.876 Implies fraction of time spent working = 0.3, see Juster and Stafford (1991).
γ 0 Indivisible labor, see Hansen (1985).
δ 0.067 Estimated from annual U.S. data on kt and it, 1954-1992.
η 2/3 Implies local indeterminacy in the laissez-faire version of the model.

With the exception of the externality parameter η, the baseline parameter settings are

consistent with those typically used in real business cycle models. The degree of returns-to-

scale in the model economy is given by 1+η. Basu and Fernald (1997) note that returns-to-scale

estimates reported in the literature vary dramatically depending on the type of data used, the

level of aggregation, and the estimation method. In attempting to account for the wide

range of estimates, Basu and Fernald (1997) demonstrate that while the average U.S. industry

exhibits approximately constant returns-to-scale, the aggregate private business economy can

appear to exhibit large increasing returns. The largest aggregate estimate they obtain is

1.72 (standard error = 0.36).16 However, when the aggregate returns-to-scale estimation

procedure is corrected to account for reallocation of inputs across industries, Basu and Fernald

(1997) find that the aggregate estimates shrink considerably and are close to the industry

results. The largest corrected aggregate estimate they obtain is 1.03 (standard error = 0.18).17

15See, for example, Puhakka and Wright (1991), Barro and Sala-i-Martin (1992), and Guo and Lansing
(1999a).

16See the first column of Table 1 (p. 259) in Basu and Fernald (1997).
17See the first column of Table 3 (p. 268) in Basu and Fernald (1997).
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Despite these findings, Basu and Fernald (1997, Section V) note that the uncorrected aggregate

estimates may actually be more appropriate for calibrating models (such as ours) that abstract

from heterogeneity in production and assume a single representative firm. This argument turns

out to be helpful for our purposes because it is well-known that one-sector growth models of

the type considered here require strong increasing returns for indeterminacy.

Given the other baseline parameter values, our model requires returns-to-scale in excess

of approximately 1.6 to exhibit local indeterminacy (a point which is discussed further below

in reference to Figure 1). We choose η = 2/3 for the quantitative experiments which implies

returns-to-scale of about 1.67. This calibration yields an indeterminate steady state (a sink) in

the laissez-faire version of the model, consistent with Benhabib and Farmer (1994) and Farmer

and Guo (1994). While our returns-to-scale calibration falls within the range of uncorrected

aggregate estimates reported by Basu and Fernald (1997, Table 1), we acknowledge that a

figure of 1.67 may be viewed as too large to be considered empirically plausible for the U.S.

economy. We note, for example, that Burnside, Eichenbaum, and Rebelo (1995) obtain an

aggregate returns-to-scale estimate of 0.98 (standard error = 0.34) after correcting for cyclical

variation in the utilization of physical capital.18 To the extent that one objects to our returns-

to-scale calibration, the quantitative experiments reported below should be viewed more from a

methodological perspective as illustrating the pitfalls that can arise from focusing exclusively

on log-linearized dynamics rather than considering the model’s true nonlinear equilibrium

conditions.19

3.2 Log-Linearized Dynamics

In the appendix, we show that the perfect-foresight version of the model can be approximated

by the following log-linear dynamical system:[
ln
(
kt+1/k̄

)
ln (ct+1/c̄)

]
=

[
λ1 λ2
λ1λ3
λ4

1+λ2λ3
λ4

]
︸ ︷︷ ︸

J

[
ln
(
kt/k̄

)
ln (ct/c̄)

]
, k0 given, (17)

where k̄ and c̄ represent steady-state values and J is a 2 × 2 Jacobian matrix of partial

derivatives evaluated at the steady state. The elements of J are constructed using the constants

λi, i = 1, 2, 3, 4 which represent combinations of the model parameters θ, β, δ, γ, η, and sk.

18Cole and Ohanian (1999) show that measurements of aggregate returns-to-scale in the U.S. economy are
unavoidably imprecise due to the difficulties in identifying technology shocks.

19Models that allow for multiple sectors of production or varying capital utilization can exhibit local indeter-
minacy for a much lower (and hence more realistic) degree of increasing returns. For examples, see Benhabib
and Farmer (1996), Perli (1998), Benhabib and Nishimura (1998), and Wen (1998a).
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The first-order dynamical system possesses one predetermined variable: kt. The eigenvalues

of J determine the stability of the log-linear system. The labor subsidy rate sh does not

appear in J and thus has no affect on the model’s local stability properties. The household

equilibrium conditions provide some intuition for this result. Equation (10) shows that sh

affects the tradeoff between consumption and leisure at a given date while equation (11)

shows that sk affects the tradeoff between consumption goods at different dates. The inter -

temporal tradeoff is the crucial mechanism for generating multiple equilibria because agents’

expectations of future returns must become self-fulfilling.20

Table 2 summarizes the model’s local stability properties as we vary the capital subsidy

rate sk over a wide range.

Table 2: Stability Properties Near the Steady State

Capital Subsidy Rate Eigenvalues of Jacobian Matrix Steady State

sk < −0.0869 real µ1 < −1, |µ2| < 1 saddle
sk = −0.0869 (flip bifurcation) real µ1 = −1, |µ2| < 1 saddle changes to sink
−0.0869 < sk < 0.2399 real |µ1| < 1, |µ2| < 1 sink
0.2399 < sk < 0.6380 complex |µ1| = |µ2| < 1 sink
sk = 0.6380 (Hopf bifurcation) complex |µ1| = |µ2| = 1, sink changes to source
sk > 0.6380 complex |µ1| = |µ2| > 1 source

3.3 Local Indeterminacy

When both eigenvalues of J lie inside the unit circle, the steady state is indeterminate (a sink)

and the economy is subject to the same type of stochastic sunspot fluctuations as in the original

Benhabib-Farmer-Guo model. Figure 1 plots the combinations of η (the externality parameter)

and sk (the capital subsidy rate) that allow for local indeterminacy. Recall that the degree

of returns-to-scale in the model economy is given by 1 + η. When η = 0 (constant returns-to-

scale), the model exhibits saddle-point stability for all values of sk. From the figure, we see

that η > 0.5937 is needed for the steady state to become a sink. Given η > 0.5937, increases

in sk eventually transform the steady state into a source while decreases in sk eventually

transform the steady state into a saddle point. For our calibration with η = 2/3 	 0.6667,

local indeterminacy occurs for subsidy rates in the range −0.0869 < sk < 0.6380. The model

exhibits a locally unique equilibrium (a saddle point) for sk < −0.0869. This subsidy rate

corresponds to a steady-state tax on capital income net of depreciation of τk = 0.2042.21

20However, as mentioned in footnote 3, this intuition does not extend to the continuous-time version of the
model because there is no clear distinction between the intra- and inter-temporal tradeoffs when the time step
becomes vanishingly small.

21See footnote 11. Auerbach (1996) estimates the effective marginal tax rate on capital income under the
current U.S. tax code. He obtains an estimate of 0.26 for nonresidential capital and 0.06 for residential capital.
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Hence, a government that wishes to stabilize the economy against sunspot fluctuations near

the steady state can do so simply by imposing a sufficiently high tax rate on capital income.

As we shall see, however, such a policy can open the door to other forms of endogenous

fluctuations–those arising from global indeterminacy.

3.4 Hopf Bifurcation

For our calibration, the dynamical system undergoes a Hopf bifurcation as sk is increased past

the value sHopf
k = 0.6380. The eigenvalues of J are complex conjugates and cross the unit

circle with non-zero speed.22 The steady state changes stability from a sink to a source and a

closed orbit (invariant circle) emerges to surround the steady state. At the bifurcation point,

we have det(J) = 1.23 Using the expression for det(J) derived in the appendix, we solve for

the following bifurcation value:

sHopf
k =

(ρ+ δ) (1 + γ) (1 + η)

δ (1 + γ) + α2 (1− δ) (1− β)
− 1, (18)

where ρ ≡ 1
β
− 1 is the household’s rate of time preference. Since the externality parameter η

enters equation (18) in a multiplicative way, it is not immediately obvious whether the Hopf

bifurcation occurs above or below the benchmark subsidy rate sk = η derived earlier in Section

3. For our calibration, it turns out that sHopf
k < η.24 Thus, attempts by the government to

close the wedge between the social and private marginal products of capital by setting sk at

or near η = 2/3 will destabilize the steady state and allow for a much richer set of endogenous

dynamics than is possible in the laissez-faire economy.

While the Hopf bifurcation theorem proves the existence of a closed orbit, it does not

tell us whether the orbit is stable. There are two cases to consider. In a supercritical Hopf

bifurcation, an attracting orbit emerges on the side of sHopf
k where the steady state is unstable

(in our case a source), that is, in the small neighborhood sHopf
k + ε. In a subcritical Hopf

bifurcation, a repelling orbit emerges on the side of sHopf
k where the steady state is stable

(in our case a sink), that is, in the small neighborhood sHopf
k − ε. Both cases have economic

interpretations, as noted by Benhabib and Miyao (1981). An attracting orbit can be viewed

These estimates combine to yield an overall effective marginal tax rate of 0.16.
22The Hopf bifurcation in discrete time is also called the Neimark-Sacker bifurcation. For formal descriptions,

see Medio (1999), pp. 102-103 and Guckenheimer and Holmes (1983), pp 160-165.
23See Azariadis (1993), p. 93.
24 In the continuous-time version of the model, it can be shown analytically that sHopf

k < η whenever α2−1 >
γ, that is, whenever the Benhabib-Farmer (1994) condition for local indeterminacy in a laissez-faire economy
is satisfied.
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as a stylized business cycle while a repelling orbit accompanied by an attracting steady-state

resembles the “corridor of stability” concept described by Leijonhufvud (1973).25

It is possible to distinguish between the two cases analytically by implementing a coordinate

transformation and examining the sign of a coefficient in the third-order Taylor series expansion

of the transformed dynamical system.26 Since the calculation is extremely tedious, we resort

to numerical simulations to establish that the Hopf bifurcation in our model is supercritical.27

The supercritical Hopf bifurcation allows the model to exhibit deterministic, quasi-periodic

oscillations that never converge to the steady state. Moreover, because the invariant circle is

an attractor, there exists a continuum of perfect-foresight trajectories each leading to the

circle. It is possible, therefore, to construct stochastic sunspot equilibria in the vicinity of the

circle that remain away from the steady state. This is a form of global indeterminacy.

3.5 Flip Bifurcation

For our calibration, the dynamical system undergoes a flip bifurcation as sk is reduced past

the value sFlip
k = −0.0867. One eigenvalue of J remains inside the unit circle while the other

eigenvalue crosses the unit circle at −1 with non-zero speed.28 The steady state changes

stability from a sink to a saddle and a two-cycle emerges with points on either side of the

steady state. The two-cycle is aligned in the direction of the eigenvector associated with the

eigenvalue −1. At the bifurcation point, we have det(J) + tr(J) = −1.29 Using the expressions

for det(J) and tr(J) derived in the appendix, we solve for the following bifurcation value:

sFlip
k =

(ρ+ δ) (1 + γ) [2α1 + β (ρ+ δ) (1− α1)] /θ

(4− 2δ) (α2 − 1− γ) + β (ρ+ δ) [δ (1 + γ) (1− α1)− 2α2]
− 1. (19)

As with the Hopf bifurcation, there are two cases to consider regarding stability. In a

supercritical flip bifurcation, an attracting two-cycle emerges on the side of sFlip
k where the

steady state is unstable (in our case a saddle), that is, in the small neighborhood sFlip
k −ε. In a

subcritical flip bifurcation, a repelling two-cycle emerges on the side of sFlip
k where the steady

state is stable (in our case a sink), that is, in the small neighborhood sFlip
k + ε. Although an

25Some helpful diagrams depicting the two cases can be found in Cugno and Montrucchio (1984).
26See Guckenheimer and Holmes (1983), pp 163-165. For examples of such calculations, see Foley (1992) and

Drugeon and Venditti (2001).
27Our method of verifying stability avoids a potential pitfall of the analytical calculation. Kind (1999) shows

that the third-order Taylor series coefficient may indicate a subcritical Hopf bifurcation (normally associated
with a repelling orbit) when in fact an attracting outer orbit surrounds the repelling inner orbit. This phenomena
is described as a “crater” bifurcation.

28For a formal description of the flip bifurcation (which can only occur in discrete time), see Guckenheimer
and Holmes (1983), pp 156-160.

29See Azariadis (1993), p. 93.
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analytical calculation can be used to distinguish between the two cases, we again resort to

numerical simulations to establish that the flip bifurcation in our model is supercritical.30

The supercritical flip bifurcation allows the model to exhibit deterministic cycles that

never converge to the steady state. The two-cycle is an attractor, so it is possible to construct

stochastic sunspot equilibria in the vicinity of the cycle that remain away from the steady

state–another form of global indeterminacy. In this case, the global indeterminacy coexists

with local determinacy because the steady state is a saddle point for sk < −0.0867. This

result implies that stabilization policies designed using the log-linearized model may backfire.

In particular, setting sk < −0.0867 to suppress sunspot fluctuations near the steady state can

open the door to sunspots, cycles, or even chaos, in regions away from the steady state. We

will return to this point later in Section 4 in our discussion of local control policies.

3.6 Nonlinear Dynamics

In the appendix, we show that the model’s perfect-foresight dynamics are governed by the

following nonlinear map:

kt+1 = kα1
t

[
A

(1 + sh) (1− θ)

ct
kα1
t

] α2
α2−1−γ

+ (1− δ) kt − ct, (20)

β

ct+1

{
(1 + sk) θk

α1−1
t+1

[
A

(1 + sh) (1− θ)

ct+1

kα1
t+1

] α2
α2−1−γ

+ 1− δ

}
=

1

ct
. (21)

To investigate the global dynamics, we iterate the above map for a range of values of sk,

holding sh = 0.31 The iteration proceeds as follows. Given k0 and an arbitrarily chosen c0, we

solve equation (20) for k1. Substituting the value of k1 into equation (21) yields a nonlinear

equation that can be solved numerically for c1. The procedure is then repeated to compute k2,

c2 and so on. In practice, we use k0 = k̄ and c0 ∈ [1.01c̄, 1.09c̄] , where k̄ and c̄ are the steady-

state values implied by the settings of sk and sh. The number of iterations is chosen to ensure

that the limiting behavior of the model is not affected by the particular starting values. While

our model is deterministic, the qualitative properties of the nonlinear map should be robust

to the introduction of small stochastic disturbances.32 It is possible, therefore, to construct

30The analytical calculation is described by Guckenheimer and Holmes (1983), pp 156-160. For an example,
see Becker and Foias (1994).

31Although sh does not affect the model dynamics, it does affect the range of values of ht observed during the
simulations. We set sh = 0 to ensure ht ≤ 1, consistent with our assumption of a time endowment normalized
to one.

32This has been demonstrated formally using the discrete logistic map by Crutchfield, Farmer, and Huberman
(1982). Benhabib and Nishimura (1989) show that a stable two-cycle in a deterministic economy generalizes to
the concept of “cyclic sets” in an economy subject to stochastic shocks.
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global sunspot equilibria simply by appending a stochastic disturbance term to equation (21).

Figures 2 through 10 illustrate the simulation results.

Figure 2 plots the bifurcation diagram and the largest Lyapunov exponent over the range

−0.135 ≤ sk ≤ 0.689.33 Figures 3 and 4 provide detailed views near sFlip
k and sHopf

k . The

bifurcation diagram summarizes the long-run behavior of the model by plotting the last 150

points of a very long simulation. The Lyapunov exponent measures the average exponential

rate of divergence of trajectories with nearby starting points. The presence of one or more

positive Lyapunov exponents is an indicator of “sensitive dependence on initial conditions”–a

commonly-used definition of chaos.

We compute the Lyapunov exponents according to the procedure described by Alligood,

Sauer, and Yorke (1997), pp. 199-201. Since equation (21) cannot be solved explicitly for ct+1,

the required derivatives ∂ct+1

∂kt
and ∂ct+1

∂ct
are computed numerically by log-linearizing equation

(21) around each successive point of the trajectory generated by the nonlinear map. This

introduces some approximation error into our computation so that values of the Lyapunov

exponent which are only slightly above zero (those in the range 0.635 ≤ sk ≤ 0.645) are not

reliable indicators of chaos. Nevertheless, the figures show that pushing the capital subsidy

rate beyond sHopf
k or sFlip

k in either direction eventually leads to chaos as indicated by a

significantly positive Lyapunov exponent. The transition to chaos takes place via a “quasi-

periodic” route in the high-subsidy region
(
sk > sHopf

k

)
and via a “period-doubling” route in

the low-subsidy region
(
sk < sFlip

k

)
. Both of these routes to chaos are common in nonlinear

maps, as noted by Medio (1998).

Figures 5 through 10 depict various forms of endogenous fluctuations as sk takes on different

values. Figures 5 and 6 verify that the Hopf bifurcation is supercritical as evidenced by the

attracting nature of the invariant circle. When sk = sHopf
k +0.002, perfect foresight trajectories

eventually converge to the invariant circle for arbitrary starting points either inside or outside

of the circle. Figure 7 shows that the invariant circle starts break up into irregular cycles when

the subsidy rate is slightly increased to sk = sHopf
k +0.007. Figure 8 shows that a complicated

chaotic attractor emerges when the subsidy rate is further increased to sk = sHopf
k + 0.051.

Although not plotted separately, the model exhibits stable 2- 4- and 8-cycles for subsidy rates

in the range −0.133 < sk < sFlip
k . While theory tells us that there are an infinite number

of period-doublings in the cascade, the corresponding intervals of sk are too narrow for the

33For values of sk outside this range, we found that the nonlinear map would often converge to the zero
steady state (which is also an attractor). The Gauss programs used to construct the figures are available from
the authors upon request.
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higher integer cycles to be observed in the bifurcation diagram. In Figure 9, we see that

another type of chaotic attractor emerges when the subsidy rate is reduced to sk = −0.13435.

Figure 10 shows that a stable 10-cycle emerges when the subsidy rate is further reduced to

sk = −0.13510.

Changes in sk affect the amplitude of the cycles or oscillations. The high-subsidy region is

characterized by large intermittent spikes in hours worked and output which reflect a “bunching

effect” in production as agents’ decisions internalize more of the increasing returns. In the

negative-subsidy region, the substitution effect generated by expected movements in the after-

tax interest rate overcomes the corresponding income effect by an amount that is sufficient to

induce cycling in agents’ optimal saving decisions. These stable cycles can only be observed in

the nonlinear model. Once the model is log-linearized, any perturbation away from the stable-

manifold leads to explosive behavior because the crucial nonlinear terms that are needed to

keep the oscillations bounded are no longer present.

The time series plots in Figures 5 through 10 reveal large percentage changes in model

output. The amplitudes are much larger than those observed in the postwar U.S. economy

at business cycle frequencies. The model behavior can be traced to the presence of strong

increasing returns. It would be interesting to conduct similar experiments in a multi-sector

framework or one with varying capital utilization to ascertain whether qualitatively similar

fluctuations can be obtained with a lower degree of increasing returns. Such a model may be

capable of generating endogenous business-cycle movements that more closely resemble those

in the data.

4 Stabilization Policy

4.1 Welfare Implications

Given the model’s susceptibility to endogenous fluctuations, it is natural to ask whether the

government should try to stabilize the economy through some type of activist fiscal policy.

Standard second-best analysis tells us that there is no definitive answer to this normative

question. In our model, a fluctuating economy and its stabilized counterpart will both be

Pareto-inferior due to the presence of the productive externality. A priori, we cannot rank

these economies from a welfare standpoint. Monte Carlo simulations are unlikely to settle the

matter because the results will depend on the assumed fiscal policy in the baseline economy

(which governs the nature of the endogenous fluctuations to be stabilized) and the assumed

variance of a sunspot shock (which can be present whenever the baseline economy exhibits
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local or global indeterminacy). Welfare questions are further complicated by our lack of knowl-

edge regarding the first-best allocations for this economy. In other environments, the first-best

allocations provide an important benchmark for judging the desirability of stabilization pol-

icy.34 Finally, we note that Grandmont (1985) makes a case for stabilization policy even when

endogenous fluctuations are Pareto-optimal. He argues that complicated endogenous dynam-

ics may prevent agents from learning enough about their environment to support convergence

to a rational expectations equilibrium.35

In light of the many complex issues affecting the desirability of stabilization policy for this

economy, we restrict our attention to questions of feasibility. In what follows, we describe

some policy mechanisms that can suppress sunspot fluctuations near the steady state.

4.2 Local Control

Here we demonstrate how the log-linearized model might be used to design a state-contingent

capital subsidy/tax policy that selects a locally unique equilibrium by ensuring saddle-point

stability of the steady-state. To design the policy, we first replace the constant subsidy rate sk

in the Euler equation (21) with its state-contingent counterpart skt+1. Assuming that house-

holds view the subsidy rate as being determined outside of their control, we can construct the

following modified version of (17):[
ln
(
kt+1/k̄

)
ln (ct+1/c̄)

]
=

[
λ1 λ2
λ1λ3
λ4

1+λ2λ3
λ4

]
︸ ︷︷ ︸

J

[
ln
(
kt/k̄

)
ln (ct/c̄)

]
+

[
0
λ5
λ4

]
ln

[
(1 + skt+1)

(1 + s̄k)

]
, (22)

where λ5 = β (ρ+ δ) and s̄k represents the steady-state subsidy rate. Our decision to linearize

around ln (1 + s̄k) , as opposed to ln (s̄k) , allows for negative subsidy rates and maintains the

elements of J unchanged from before.

Now consider a local control policy of the form

ln

[
(1 + skt)

(1 + s̄k)

]
=

[
d1 d2

] [ ln
(
kt−1/k̄

)
ln (ct−1/c̄)

]
, (23)

where d1 and d2 are control parameters that govern the response of skt to the lagged state

variables kt−1 and ct−1. Updating (23) by one time-step and substituting into (22) yields[
ln
(
kt+1/k̄

)
ln (ct+1/c̄)

]
=

[
λ1 λ2

λ1λ3+d1λ5

λ4

1+λ2λ3+d2λ5
λ4

]
︸ ︷︷ ︸

J1

[
ln
(
kt/k̄

)
ln (ct/c̄)

]
, k0 given. (24)

34Deneckere and Judd (1992) examine the welfare implications of stabilization policy in a model where it can
be shown that the unique first-best allocations do not exhibit endogenous fluctuations.

35For additional discussion of the welfare implications of stabilization policy in models with endogenous
fluctuations, see Guesnerie and Woodford (1992, secion 8.2) and Bullard and Butler (1993).
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The basic idea behind local control is to choose d1 and d2 such that the above log-linear

system exhibits saddle point stability. This requires one eigenvalue of J1 to lie inside the unit

circle and the other eigenvalue to lie outside. Figure 11 plots the combinations of d1 and d2 that

achieve the desired outcome, depending on the assumed value of s̄k. A systematic approach to

local control would optimize among the many candidate combinations of d1 and d2 according

to some stabilization criterion. For example, Kaas (1998) chooses control parameters such

that the reduced-form Jacobian (J1 in our case) projects onto the linearization of the stable

manifold. By applying linear optimal control theory, Barnett and He (1998, 1999) choose

control parameters to minimize a weighted combination of the variances of state and control

variables.

Some applications of local control have appeared recently in the indeterminacy literature.

We briefly discuss some examples that are closely related to our analysis. Guo and Lansing

(1998) show that a progressive income tax can ensure saddle-point stability of the steady state

in a continuous-time version of the present model. Specifically, they consider a tax policy of

the form

ln

[
(1− τ t)

(1− τ̄)

]
= φ ln

(
ȳ

yt

)
, (25)

where τ t is the tax rate, φ is the slope of the tax schedule, and yt is current output. Since the

log-linearized equilibrium conditions can be used to express yt in terms of kt−1, ct−1, and τ t,

equation (25) can be viewed as a special case of equation (23).36

Georges (1995) shows that adjustment costs applied to jump variables can be used to

select a locally unique equilibrium. One application of this idea, discussed by Wen (1998b),

is a time-to-build capital accumulation technology. Similarly, explicit adjustment costs for

capital investment can be used to select a locally unique equilibrium. To see how this works,

consider an economy where the household budget constraint (8) is replaced by the following

laissez-faire version:

ct + it


1 + ψ

2

(
kt+1

kt
− 1

)2

︸ ︷︷ ︸
τ t(·)


 = wtht + rtkt. (26)

where it = kt+1 − (1− δ) kt and ψ ≥ 0. Following Abel and Blanchard (1983), adjustment

costs are modeled here as a premium τ t (·) paid for each unit of investment goods relative

to consumption goods. From equation (26), adjustment costs are observationally equivalent

36Guo and Lansing (1998) assume that tax revenues are used to finance wasteful government expenditures
whereas here we assume that tax revenues are rebated to households in a lump sum manner. This difference
has no affect on the results.
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to a state-contingent tax on investment; households internalize the impact of their actions

on the tax rate and tax revenues are simply thrown away. The adjustment cost parameter

ψ now serves as a bifurcation parameter for the model’s perfect-foresight dynamics. For our

calibration, the dynamical system undergoes a flip bifurcation as ψ is increased past the value

ψFlip = 0.3689. At this point, the steady state changes stability from a sink to a saddle and a

two-cycle emerges with points on either side of the steady state.

The above examples show that there are many ways to select a locally unique equilibrium.

Nevertheless, these examples suffer from the drawback of being based on a log-linear approxi-

mation. When global indeterminacy coexists with local determinacy as it can here, equilibrium

selection mechanisms designed using the approximating model may prove unsuccessful when

introduced into the true nonlinear model.37

5 Conclusion

This paper has shown that the introduction of a constant capital tax or subsidy in the

Benhabib-Farmer-Guo model can lead to a much richer set of endogenous dynamics than is

possible in the laissez-faire version of the model. The nonlinear dynamical system undergoes a

Hopf bifurcation as the capital subsidy rate becomes sufficiently positive, and a flip bifurcation

as the capital subsidy rate becomes sufficiently negative (representing a capital income tax).

The model’s perfect-foresight dynamics allow for stable 2-, 4-, 8-, and 10-cycles, quasi-periodic

orbits, and chaos. None of these phenomena can be observed in the log-linearized version of

the model. For a plausible range of capital tax rates, local determinacy of equilibrium near the

steady state coexists with global indeterminacy. This implies that stabilization mechanisms

designed using a log-linearized model may not prevent cycles, sunspots, or chaos away from

the steady state. Overall, our results caution against the use of local steady-state analysis to

make inferences about the global behavior of a nonlinear economic model.

37 In the working paper version of this article, Guo and Lansing (1999b), we show how the nonlinear equilib-
rium conditions might be used to design a state-contingent fiscal policy that selects a globally unique equilibrium.
The global stabilization policy creates an environment where the income and substitution effects of future in-
terest rate movements exactly cancel out. As a result, equilibrium allocations are uniquely pinned down by
current-period fundamentals, regardless of the degree of increasing returns.
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A Appendix

This appendix summarizes the equations used to investigate the model’s perfect-foresight

dynamics under a regime of constant subsidy/tax rates where skt = sk and sht = sh for all t.

The equilibrium conditions are:

kt+1 = kα1
t hα2

t + (1− δ)kt − ct, k0 given, (A.1)

Acth
γ
t = (1 + sh) (1− θ) kα1

t hα2−1
t︸ ︷︷ ︸

wt

, (A.2)

1

ct
=

β

ct+1


(1 + sk) θk

α1−1
t+1 hα2

t+1︸ ︷︷ ︸
rt+1

+1− δ


 , (A.3)

For the parameter values in Table 1, it is straightforward to show that the above economy

exhibits a unique interior steady state. Equation (A.2) implies ht =
[

A
(1+sh)(1−θ)

ct
k
α1
t

] 1
α2−1−γ

which can be used to eliminate ht from equations (A.1) and (A.3) thus yielding equations (20)

and (21) in the text.

In the vicinity of the steady state, equations (20) and (21) can be approximated by the

following log-linear dynamical system:[
ln
(
kt+1/k̄

)
ln (ct+1/c̄)

]
=

[
λ1 λ2
λ1λ3
λ4

1+λ2λ3
λ4

]
︸ ︷︷ ︸

J

[
ln
(
kt/k̄

)
ln (ct/c̄)

]
, (A.4)

where the elements that make up the Jacobian matrix J are given by:

λ1 = 1− δ −
(1 + γ) (ρ+ δ) (1 + η)

(α2 − 1− γ) (1 + sk)
, (A.5)

λ2 = δ +
(1 + γ) (ρ+ δ)

(α2 − 1− γ) (1 + sk) θ
, (A.6)

λ3 = −β (ρ+ δ)

[
(1 + γ)α1 + α2 − 1− γ

α2 − 1− γ

]
, (A.7)

λ4 = 1− β (ρ+ δ)

[
α2

α2 − 1− γ

]
, (A.8)

where ρ ≡ 1
β
− 1 is the household’s rate of time preference. Notice that the elements of J do

not depend on the labor disutility parameter A or the labor subsidy rate sh. Hence, the labor

subsidy rate has no affect the model’s local stability properties.

The expressions for the determinant and trace of J are

det(J) =
λ1
λ4

, (A.9)

tr(J) = λ1 +
1 + λ2λ3

λ4
. (A.10)
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