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1 Introduction

According to the new Keynesian Phillips curve (NKPC), the inflation rate πt depends

linearly on the expected inflation rate next period, Etπt+1, and a measure of marginal

costs, xt. This equation is a central building block of modern macroeconomic models,

and it can be derived from several sets of microfoundations, although probably most

often it is attributed to Calvo’s (1983) price-setting model where only a fraction of

firms can change prices in a given period (or equivalently, each firm is able to adjust its

price with a fixed probability). Incorporating lagged inflation πt−1 into this equation

has typically been found to improve the empirical fit, and Galí and Gertler (1999)

called this augmented equation the hybrid NKPC. They showed that this version can

be obtained by modifying the assumptions of Calvo’s (1983) model such that only

some firms that are able to change prices, choose to do so optimally, while the rest

use a simple rule of thumb based on recent history of aggregate price behavior.

There is an ongoing debate about the importance of forward-looking behavior in

the determination of inflation. The issue is particularly important from the viewpoint

of monetary policy whose design depends on the sources of inflation persistence.

In empirical studies employing univariate methods (see, e.g., Cecchetti and Debelle

(2006)), inflation has invariably been found highly persistent, and this persistence has

typically been interpreted as dependence on past inflation in forming expectations

and, hence, as evidence against the NKPC. Also, Rudd and Whelan (2005a, 2007),

and Nason and Smith (2008a), inter alia, have found little evidence of forward-looking

inflation dynamics in analyses based on estimated NKPCs for the U.S. On the other

hand, the recent results of Lanne and Saikkonen (2011a) and Lanne et al. (2011) based

on so-called noncausal autoregressive (AR) models suggest that the persistence in the

U.S. inflation results from agents’forward-looking behavior rather than dependence

on past inflation. The NKPC estimation results of Galí and Gertler (1999), and Galí
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et al. (2005), to name but a few, also lend support to the NKPC in the U.S.

The principal econometric method used in single-equation estimation of the NKPC

is the generalized method of moments (GMM), where various lags of inflation and the

marginal cost variable have typically been used as instruments. As already pointed

out above, the results have been contradictory. In particular, they seem to strongly

depend on the set of instruments and the variable used as a proxy for marginal costs

that are not directly observable. Because πt, πt−1, and xt included in the NKPC

equation cannot act as instruments for πt+1, higher-order dynamics are called for,

i.e., inflation should be predictable by higher lags of these variables. Alternatively

some other variables could be used as instruments, but it is not easy to find variables

with predictive power for inflation (see, e.g., Stock and Watson (1999, 2009)). Nason

and Smith (2008a) show that lack of higher-order dynamics gives rise to the problem of

weak instruments in estimating the NKPC, resulting in weak identification and strong

dependence of the results on the choice of instruments. To avoid these problems, they

employ methods robust with respect to weak instruments and find little evidence in

favor of the hybrid NKPC in U.S. data.

In addition to the problem of weak instruments, there may be another problem

hampering the GMM estimation of the NKPC. Namely, Lanne and Saikkonen (2011b)

have recently shown that if any of the time series used as instruments is noncausal,

i.e., depends on its future values, the GMM estimator is inconsistent. Moreover,

in this case, endogeneity of such an instrument is not reliably revealed by Hansen’s

(1982) J test. Noncausality of inflation found by Lanne and Saikkonen (2011a) and

Lanne et al. (2011) thus indicates that using lags of inflation as instruments as is

commonly done in the previous literature, is likely to yield misleading results. Lanne

and Saikkonen (2011b) also found noncausality very common in a comprehensive

data set compirising more than 300 macroeconomic and financial time series, which

suggests that finding valid additional instruments for the estimation of the NKPC
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may be challenging.

In this paper, we introduce a single-equation estimator of the parameters of the

NKPC based on a noncausal AR model specified for inflation. As discussed in Sec-

tion 2 below, identification of noncausality requires non-Gaussian errors, and it is

this feature that facilitates identification. This is different from the GMM where

identification is based on a suitable proxy for the marginal cost variable. Hence, our

identification is statistical, with the drawback that is does not directly yield an esti-

mate of the coeffi cient of the marginal cost. On the other hand, we obtain consistent

estimates of the coeffi cients of lagged and expected future inflation that are indepen-

dent of any selected marginal cost proxy. Furthemore, leaving a marginal cost proxy

unspecified, facilitates reverse-engineering of the process driving inflation consistent

with the model.

In short, the benefits of the proposed estimation procedure are twofold. First, no

instrumental variables are needed, which abolishes the problems of weak and non-

causal instruments prevalent in much of the previous literature. Second, we avoid

the diffi cult problem of finding a proxy for the marginal cost as none is needed. As

pointed out by Schorfheide (2008), measurement errors pertaining to the marginal

cost series can potentially distort the inference about the NKPC parameters in dy-

namic stochastic general equilibrium (DSGE) models. We expect this problem to

be even more severe in the single-equation setup. Indeed, Nason and Smith (2008b)

recently compared the estimates of the U.S. NKPC with nine different marginal cost

variables and found that most of them were highly insignificant and greatly affected

the values of the parameters of interest. Similarly, Rudd and Whelan (2005b) found

that neither labor’s share of income nor detrended real GDP provide good proxies for

the U.S. marginal cost.

With quarterly U.S. data from 1955:1—2010:3, we demonstrate the problems of the

GMMmentioned above. For two inflation measures, we find the best-fitting noncausal
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non-Gaussian AR model. There is strong evidence of deviations from normality of the

errors of the estimated AR models. In both cases, the selected model turns out to be

mixed, including both lags and leads of inflation. This suggests that both expected

future inflation and lagged inflation are important in determining the inflation rate.

Estimates of the parameters of the hybrid NKPC based on the noncausal AR models

indicate that expected inflation is the dominant factor determining inflation, but

backward-looking behavior is not insignificant either. Moreover, inflation persistence

is found to follow mostly from agents’forward-looking behavior, while the persistence

inherited from the driving variable plays a minor role.

The rest of the paper is structured as follows. Section 2 describes the noncausal

AR model of Lanne and Saikkonen (2011a) and discusses model selection. In Section

3, we derive the maximum likelihood estimator of the NKPC based on the selected

noncausal AR model for inflation. In Section 4, the empirical results are presented.

Finally, Section 5 concludes.

2 Noncausal Autoregression

2.1 Model

The starting point of our procedure for estimating the NKPC is an adequate noncausal

ARmodel for inflation, and in this section, we briefly describe the noncausal ARmodel

of Lanne and Saikkonen (2011a). Consider a stochastic process yt (t = 0,±1,±2, ...)

generated by

φ (B)ϕ
(
B−1) yt = εt, (1)

where φ (B) = 1− φ1B − · · · − φrBr, ϕ (B−1) = 1−ϕ1B−1− · · · −ϕsB−s, and εt is a

sequence of independent, identically distributed (continuous) random variables with

mean zero and variance σ2 or, briefly, εt ∼ i.i.d. (0, σ2). Moreover, B is the usual

backward shift operator, that is, Bkyt = yt−k (k = 0,±1, ...), and the polynomials
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ϕ (z) and φ (z) have their zeros outside the unit circle so that

φ (z) 6= 0 for |z| ≤ 1 and ϕ (z) 6= 0 for |z| ≤ 1. (2)

We use the abbreviation AR(r, s) for the model defined by (1). If ϕ1 = · · · = ϕs =

0, model (1) reduces to the conventional causal AR(r, 0) model with yt depending on

its past but not future values. We sometimes call this the AR(r) model. The more

interesting cases arise, when this restriction does not hold. If φ1 = · · · = φr = 0, we

have the purely noncausal AR(0, s) model with dependence on future values only. In

the mixed AR(r, s) case where neither restriction holds, yt depends on its past as well

as future values.

A well-known feature of noncausal autoregressions is that a non-Gaussian error

term is required to achieve identification. Thus, we assume that the error term

εt is non-Gaussian and that its distribution has a (Lebesgue) density fσ (x;ω) =

σ−1f (σ−1x;ω) which depends on the parameter vector ω (d× 1) in addition to the

scale parameter σ already introduced. The function f (x;ω) is assumed to satisfy

the regularity conditions stated in Andrews et al. (2006) and Lanne and Saikkonen

(2011a). These conditions imply that f (x;ω) is twice continuously differentiable with

respect to (x,ω), non-Gaussian, and positive for all x ∈ R and all permissible values

of ω. For the U.S. inflation we use Student’s t distribution as the error distribution

in Section 4.

Lanne and Saikkonen (2011a) showed how model (1) can be consistently estimated

by the method of maximum likelihood (ML). They also showed that the (local) ML

estimator is asymptotically normally distributed, and a consistent estimator of the

limiting covariance matrix is obtained in the usual way from the standardized Hessian

of the log-likelihood function. Thus, standard errors of estimators and conventional

Wald tests with an asymptotic χ2-distribution under the null hypothesis can be con-

structed as usual.
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2.2 Model Selection

In practice the model orders r and s are always unknown and have to be specified

based on the data. Because noncausal AR processes are not identified by Gaussian

likelihood, the first step in modeling a potentially noncausal time series is to search for

signs of nonnormality. To this end, Lanne and Saikkonen (2011a) suggest estimating a

Gaussian AR(p) model that adequately captures the autocorrelation in the series and

checking its residuals for nonnormality. As mentioned above, Student’s t distribution

might be a suitable error distribution for the U.S. inflation as the residuals of Gaussian

AR models turn out to be leptokurtic.

Provided nonnormality is detected, the next step is to select the best-fitting model

among the alternative AR(r, s) specifications. As the AR(p) model has been found to

adequately capture the autocorrelation in the series, it seems reasonable to restrict

oneself to models with r+s = p. Following Breidt et al. (1991), Lanne and Saikkonen

(2011a) suggest selecting among these the model that produces the greatest value of

the likelihood function. Finally, the adequacy of the selected specification is checked

diagnostically and the model is augmented if needed. In addition to examining the fit

of the t distribution, Lanne and Saikkonen (2011a) checked the residuals for remaining

autocorrelation and conditional heteroskedasticity. The former can conveniently be

checked by testing the significance of an additional lead and lag.

3 Estimation of the New Keynesian Phillips Curve

In this section, we discuss the different versions of the NKPC and their estimation

based on an adequate AR(r, s) model specified for inflation. The NKPC,

πt = γfEtπt+1 + λxt, (3)
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incorporates staggered price setting, and it can be derived from a number of different

sets of microfoundations, including Calvo’s (1983) price-setting model where a fraction

of the firms cannot change their prices in a given period. Here πt denotes the inflation

rate, and xt is a measure of marginal costs. Galí and Gertler (1999) modified Calvo’s

(1983) model by assuming that some firms able to change prices, choose not to do so.

This assumption leads to the so-called hybrid NKPC,

πt = γfEtπt+1 + γbπt−1 + λxt (4)

that allows for dependence on past inflation. Augmenting the NKPC with πt−1 has

typically been found to improve the empirical fit considerably.

As already pointed out in the Introduction, a major problem and cause of con-

troversy in the empirical implementation of the NKPC is the fact that the marginal

cost variable xt is not directly observable. In empirical studies employing the single-

equation framework, the most common x-variable is the real unit labor cost. A

theoretically consistent alternative is the output gap that can be measured in several

alternative ways. Arguments in favor of and against both of these variables have

been brought up in the previous literature (see, e.g., Nason and Smith (2008) and

the references therein). Unfortunately, the choice of the marginal cost proxy greatly

affects the estimates and, hence, the assessment of the relative importance of forward-

looking and backward-looking behavior in determining inflation. In our approach, no

x-variable need be prespecified. This is also possible in the DSGE framework, where

xt can be treated as a latent variable, but to our knowledge, this is the first paper to

present estimates of the NKPC in the univariate single-equation framework.

Let us first consider the estimation of the hybrid NKPC (4). By adding and

subtracting γfπt+1, equation (4) can be rewritten as

πt = γfπt+1 + γbπt−1 + ηt+1
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where ηt+1 = γfEtπt+1−γfπt+1+λxt ≡ ξt+1+λxt, and, as typically done in the ratio-

nal expectations literature, the expectation error ξt+1 is assumed to be independently

and identically distributed (i.i.d.) in time. The time-series properties of ηt depend

on those of xt, but we assume that its process can be adequately approximated by

a finite-order autoregression. By dividing through by γf and lagging by one period,

the model can be written as

γ−1f πt−1 = πt + γ−1f γbπt−2 + γ−1f ηt

or, using the backshift operator B, as

(
1− γ−1f B + γ−1f γbB

2
)
πt = −γ−1f ηt. (5)

The polynomial a (z) ≡ 1 − γ−1f z + γ−1f γbz
2 can equivalently be written as a (z) =

(1− φz) (1− ϕ∗z), where

φ =
1

2

(
γ−1f −

√
γ−2f − 4γ−1f γb

)
and ϕ∗ =

1

2

(
γ−1f +

√
γ−2f − 4γ−1f γb

)
(6)

are the characteristic roots of equation (5). With plausible values of γf and γb, φ is

smaller and ϕ∗ is greater than unity in absolute value (cf. Galí and Gertler (1999)

and Galí et al. (2005)). It is now convenient to write the polynomial a(z) as

(1− φz) (1− ϕ∗z) = − (1− φz)ϕ∗z
(
1− 1

ϕ∗
z−1
)
= −ϕ∗ (1− φz) z

(
1− ϕz−1

)
,

where ϕ∗ = 1/ϕ. Subsituting this into (5) yields

(1− φB)
(
1− ϕB−1) πt = εt, (7)

where εt ≡
(
ϕ∗γf

)−1
ηt+1. If ηt were i.i.d., this would be the AR(1, 1) model of Lanne

and Saikkonen (2011a) described in Section 2, and consistent estimates of the para-

meters of the NKPC would be obtained by estimating an AR(1, 1) model for inflation

by the method of maximum likelihood (ML) and solving γf and γb from equations
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(6). As long as the expression under the square root in (6) is positive, φ and ϕ∗ are

real and distinct, and γf and γb are uniquely identified. The shaded area in Figure

1 contains the admissible values of γf and γb, and it is seen to cover virtually all

reasonable combinations of the values of these parameters. The figure also incorpo-

rates the restrictions implied by the structural models undelying the hybrid NKPC,

including the model of Galí and Gertler (1999), that γf and γb should lie between

zero and one. The consistency of this estimator is guaranteed by the consistency of

the ML estimator of the AR(1, 1) model under the general conditions in Lanne and

Saikkonen (2011a) that, in particular, assume the adequacy of the AR specification.

Because the marginal cost variable xt is not likely to be i.i.d., the approach above

must be modified to allow ηt to be autocorrelated. This is suggested by the per-

sistence of the theoretically implied variables driving inflation. As already pointed

out, we assume the autocorrelation in the error term to be adequately captured by a

(potentially noncausal) AR(r − 1, s− 1) process, i.e.,

ρ (B) θ
(
B−1) ηt = ζt,

where ρ (B) = 1− ρ1B − · · · − ρr−1Br−1, θ (B−1) = 1− θ1B−1 − · · · − θs−1B−s+1 and

ζt is an i.i.d. error term. Substituting this into (7) yields

ρ (B) θ
(
B−1) (1− φB) (1− ϕB−1) πt = εt

or

φ (B)ϕ
(
B−1) πt = εt, (8)

where φ (B) ≡ ρ (B) (1− φB), ϕ (B−1) ≡ θ (B−1) (1− ϕB−1), and εt ≡
(
ϕ∗γf

)−1
ζt+1.

This is the AR(r, s) model of Lanne and Saikkonen (2011a) (cf. model (1)), and ML

estimation under the constraints (6) yields consistent estimates of γf and γb. Equa-

tion (8) may have multiple real characteristic roots, i.e., the parameters φ and ϕ∗ are

not necessarily unique, but any real characteristic roots may be paired to solve for
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γf and γb in (6). In this case, identification may for practical purposes be attained

by restrictions arising from economic theory. For instance, negative values of γf and

γb as well as values exceeding unity are precluded. The admissible combinations of

these parameters are thus found in the shaded region of Figure 1.

Also the estimation of the purely forward-looking NKPC (3), can be based on a

univariate noncausal AR model for inflation. In this case where γb = 0, equation (5)

simplifies to (
1− γ−1f B

)
πt = −γ−1f ηt (9)

and the polynomial a (z) = 1− γ−1f z = 1− ϕ∗z = −ϕ∗z (1− ϕz−1), where ϕ∗ = γ−1f .

Substituting this into (9) yields

(
1− ϕB−1) πt = εt, (10)

where εt =
(
ϕ∗γf

)−1
ηt+1 = ηt+1 and γf = ϕ. Assuming, as above, that ηt follows

a (potentially noncausal) AR process, equation (10) becomes the AR(r, s) model of

Lanne and Saikkonen (2011a),

φ (B)ϕ
(
B−1) πt = εt,

where εt is an i.i.d. error term, φ (B) = 1 − φ1B − · · · − φrB
r and ϕ (B−1) =

1 − ϕ1B
−1 − · · · − ϕsB

−s. A consistent estimate of γf is obtained as one of the

estimated real roots of the polynomial ϕ (z−1). Like in the case of the hybrid NKPC,

γf is not, in general, uniquely identified without further restrictions, and restrictions

from economic theory may help eliminate some candidate values.

Notice that the orders of the selected AR(r, s) model for inflation may, as such,

preclude the forward-looking or hybrid NKPC. If r turns out to be zero, the hybrid

NKPC is not a possibility, and inflation is purely forward-looking. Conversely, if

the best-fitting model is an AR(r, 0) model, inflation necessarily only depends on
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the past. Hence, successful model selection is of crucial importance for conclusions

concerning the nature of inflation dynamics.

4 Empirical Results

We provide estimates of the U.S. NKPC based on the GMM and the methods in-

troduced in Section 3. Our quarterly data set covers the period from 1955:1 to

2010:3. Inflation is computed as πt = 400 ln (Pt/Pt−1), where Pt is either the im-

plicit price deflator of the GDP or the consumer price index for all consumers. The

resulting inflation series are denoted by πGDPt and πCPIt , respectively. Following the

previous literature, as proxies for the marginal cost we use the real unit labor cost

and linearly detrened logarithmic real GDP per capita. The former is computed as

100 (1 + q) ln (COMPFNFBt/OPHNFBt)−100 lnPt, where COMPFNFBt is the

index of hourly compensation in the non-farm business sector, OPHNFBt is the out-

put per hour of all persons in the non-farm business sector, and q is a function of the

steady-state markup and labor’s share parameter in the firm’s production function.

Following Nason and Smith (2008a), we set 1+q = 1.08. Despite the fact that both of

these variables have been criticized as drivers of inflation (see, e.g., Galí and Gertler

(1999) and Rudd and Whelan (2005b)), they are still commonly used in the empir-

ical literature. As additional instruments in GMM estimation, we use lags of wage

inflation (wit), commodity price inflation computed from the producer price index

(cpt) and the spread between the five-year Treasury constant-maturity interest rate

and the 90-day Treasury bill rate (tst). The source of all data is the Federal Reserve

Bank of St. Louis FRED databank.
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4.1 GMM Estimation

To illustrate the pontential problems with GMM estimation of the NKPC alluded

to in the Introduction, we first consider GMM estimates for the different inflation

and marginal cost series based on alternative sets of instruments. The results are

shown in Table 1, and they reconfirm a number of conclusions already drawn in the

previous literature (cf., e.g., Nason and Smith (2008b) who present similar results for

πGDPt using a larger collection of instrument sets). First, the estimated coeffi cients,

their statistical significance and even their signs vary from one instrument set to an-

other. Second, the results vary depending on the marginal cost proxy being used.

With the unit labor cost, γf is always significant at conventional significance levels,

but with the detrended output only for some instrument sets. Third, different infla-

tion measures seem to produce somewhat different results. In conclusion, it appears

to be diffi cult to obtain general results concerning the issue of forward-looking vs.

backward-looking inflation dynamics using the GMM. The J test of overidentifying

restrictions (not reported) does not reject at conventional significance levels in any of

the cases, but noncausality and, thus, endogeneity of the instruments cannot be pre-

cluded. Therefore, we next turn to the estimates of the NKPC based on potentially

noncausal inflation dynamics.

4.2 Estimates Based on Noncausal Autoregressions

The starting point of our procedure of estimating the NKPC is an adequate, po-

tentially noncausal AR model for demeaned inflation. Following the model selection

procedure outlined in Section 2.2, we first specify a Gaussian autoregression with

serially uncorrelated errors and check whether the residuals are normally distributed.

As discussed above, it is the deviations from normality that facilitate identification

of the parameters of interest. To that end we use the Ljung-Box autocorrelation and
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Jarque-Bera normality tests. For πGDPt , five lags are required , while for πCPIt , a

fourth-order AR model is deemed suffi cient. For all residual series, the Jarque-Bera

test clearly rejects the null hypothesis of normally distributed errors, with p-values

close to zero. Observed excess kurtosis suggests that a fat-tailed error distribution,

such as Student’s t distribution with ν degrees of freedom might be suitable. This

reconfirms the previous findings of Lanne and Saikkonen (2011a) and Lanne et al.

(2011).

After specifying the adequate autoregressive orders, the next step is finding the

correct orders of causal and noncausal lag polynomials, r and s, respectively. To

that end, we estimate all AR(r, s) models with t-distributed errors where the sum

of r and s equals five for πGDPt and four for πCPIt . The values of the maximized log-

likelihood functions are presented in Table 2. For both series, a mixed model involving

both leads and lags is selected. Hence, the purely forward-looking NKPC (3) gets

little support, as lagged inflation always seems to carry at least some significance.

The selected models are AR(2,3) and AR(3,1) for πGDPt and πCPIt , respectively. The

insignificance of additional leads and lags reported in Table 2 attests to the adequacy

of the selected noncausal AR models. The quantile-quantile plots of the residuals

depicted in Figure 2 indicate the good fit of Student’s t distribution; especially for

inflation based on the GDP deflator the fit is excellent also at the tails. The estimated

small values of the degree-of-freedom parameter ν in Table 3 also lend support to a

leptokurtic error distribution.

Because a mixed noncausal model is selected for each inflation series, we proceed

with the estimation of the hybrid NKPC (4). The estimation results are presented in

Table 3. The estimates of γb and γf are significant at conventional significance levels

in both cases. Furthermore, for both inflation series, the estimates clearly indicate

dominance of forward-looking behavior: the estimates of γf substantially exceed those

of γb. All estimates also fall in the shaded area of Figure 1. The AR(2,3) process
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selected for the GDP deflator inflation has one unstable and two stable characteristic

roots. Of the stable roots, one is negative and one is positive. The estimates in Table 3

correspond to the positive stable root. The estimates of γf and γb corresponding to the

negative stable root equal 3.465 and —2.829, respectively. Because the former exceeds

unity and the latter is negative, they can be precluded on theoretical grounds, and

we have, in practice, unique identification. As far as the CPI inflation is concerned,

there is only one stable and one unstable real characteristic root, which quarantees

identification.

The influence of lagged inflation is indeed minor despite the fact that γb is statis-

tically significant. This can be seen by computing the roots of the AR(r, s) process

of inflation from equation (6) underlying the NKPC. For the GDP deflator inflation,

the stable root equals 0.421 implying a “half-life”of a percentage rise in inflation of

less than a quarter. For the CPI inflation, the stable root equals only 0.229 with an

even shorter half-life. This is in line with the findings of Galí et al. (2005).

To gain futher insight, it is useful to relate the results to a structural model un-

delying the hybrid NKPC. Galí and Gertler (1999) assume that each firm is able to

adjust ist price with a fixed probability 1−δ, and a fraction 1−χ of the firms set their

prices optimally, while the rest use a simple rule of thumb based on the recent history

of aggregate price behavior. Galí and Gertler (1999) derive the mapping from the

reduced-form parameters γf , γb and λ to the above-mentioned ‘deep’parameters δ,

χ and the discount factor β. Because we have no estimate of λ, the deep parameters

cannot be uniquely solved, but instead we consider the range of their values given

plausible values of λ. According to the survey of Schorfheide (2008), estimates of λ

obtained in the previous literature are typically rather small, with the vast majority

of them below 0.05. Therefore, we compute the ranges of the deep parameters cor-

responding to the values between 0.001 and 0.05 of λ. Here we discuss the estimates

for the GDP deflator inflation; the corresponding results for the CPI inflation are
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similar. Irrespective of λ, the implied value of β hovers around 0.95, whereas both

δ and χ decline monotonically as λ increases. The probability of not being able to

adjust prices, δ, declines at a faster rate with a range from 0.890 to 0.728. The es-

timated fraction of backward-looking firms, χ, correspondingly, ranges from 0.367 to

0.314. Thus, the results seem to be quite robust with respect to λ and well in line

with the findings in the previous literature also in terms of the main structural theory

underlying the hybrid NKPC.

All in all, our results thus lend strong support to the importance of forward-

looking behavior in determining inflation, in line with Galí et al. (2005). At the same

time they suggest that lagged inflation also has a role to play. Compared to previous

research, though, our approach is more general in that no driver of inflation needs to be

prespecified. When identification is purely statistical, making use of deviations from

normality of the error term, the results are not influenced by an arbitrarily measured

marginal cost variable. We also completely avoid the problems caused by weak and

noncausal instruments in GMM estimation. However, our results deviate from those

obtained by methods robust to weak instruments; as mentioned in the Introduction,

Nason and Smith (2008a), inter alia, have found little evidence of forward-looking

behavior with these methods. A potential explanation of the differences is that some

of the instruments used in the previous literature are not only weak but also noncausal,

which is not remedied by the robust methods.

4.3 What Drives Inflation?

As discussed in the Introduction, finding the correct variable driving the process

of inflation is crucial for identification in conventional GMM and ML estimation

approaches put forth in the previous literature. As our approach only makes use of

the inflation series, it facilitates independently extracting the most plausible driver
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of inflation assuming the validity of the best-fitting NKPC. In other words, once the

NKPC has been estimated, λxt can be solved as

λxt = πt − γ̂fEtπt+1 − γ̂bπt−1,

where γ̂f and γ̂b are the ML estimates, and Etπt+1 can be computed as a forecast

from the estimated AR(r, s) as shown by Lanne et al. (2010). Neither the marginal

cost variable xt nor the coeffi cient λ as such are not, of course, identifiable, but the

time series of λxt are informative about the properties of the implied drivers of the

inflation series.

The driving processes of the two inflation series (scaled by their respective λs)

implied by our estimates are depicted in Figure 3. They exhibit relatively low per-

sistence, and hence, clearly deviate from the labor’s share and output gap series, the

principal candidate x-series considered in the previous literature. This finding is con-

sistent with our results as well as those of Lanne and Saikkonen (2011a) and Lanne

et al. (2011) that inflation persistence mostly results from agents’ forward-looking

behavior. Persistence is thus mostly intrinsic instead of being inherited from a per-

sistent driving process. Also the recent results of Fuhrer (2006) and Sbordone (2007)

suggest a minor role for the driving process as a source of inflation persistence albeit

they use very diferent methods.

5 Conclusion

We have proposed a new estimation method of the NKPC that avoids a number of

problems of the GMM commonly employed in the single-equation framework. In par-

ticular, no marginal cost proxy is required, and the detrimental effects of potentially

weak or noncausal instruments are eliminated. Our estimator is based on specifying

a potentially noncausal univariate autoregressive model for inflation whose identifica-

tion relies on non-Gaussian errors. If no noncausality is detected, inflation dynamics
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are necessarily backward-looking, and the NKPC is refuted. On the other hand,

finding noncausality, facilitates estimation of the NKPC and assessment of the rel-

ative importance of backward-looking and forward-looking behavior in determining

inflation.

We applied the proposed procedure to two quarterly U.S. inflation series. In

each case, the results lend support to both forward-looking and backward-looking dy-

namics, with the former clearly dominating. As we have prespecified no marginal cost

proxy driving the inflation, the model facilitates computing the most plausible driving

process given the estimated parameter values. The properties of these processes in-

dicate that inflation persistence is likely to be intrinsic as opposed to being inherited

from a persistent driving process.
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Figure 1: The values of γf (x-axis) and γb (y-axis) that produce real roots φ and ϕ
∗

in (6).
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Figure 2: Quantile-quantile plots of the residuals of the noncausal AR models for the

U.S. inflation series.
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Figure 3: The drivers of the inflation series implied by the estimated new Keynesian

Phillips curves (scaled by λ).
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Table 1: GMM estimates of the U.S. NKPC (4).

xt

Real unit labor cost Detrended output

Instruments γb γf λ γb γf λ

πGDPt z1t —0.070 1.088 3.679 —2.055 3.590 —26.602

(0.365) (0.410) (1.883) (6.554) (8.166) (70.291)

z2t 0.259 0.729 4.027 0.031 0.989 —3.744

(0.095) (0.098) (1.261) (0.228) (0.259) (2.247)

z3t —0.092 1.114 3.576 —0.005 1.026 —3.986

(0.273) (0.302) (1.549) (0.336) (0.409) (4.151)

z4t —0.151 1.174 3.779 —1.224 2.549 —17.615

(0.272) (0.303) (1.779) (2.485) (3.094) (26.117)

πCPIt z1t —0.015 1.106 5.089 —0.141 1.356 —8.059

(0.241) (0.346) (3.480) (0.626) (0.923) (11.167)

z2t 0.146 0.903 2.922 0.254 0.775 —1.333

(0.087) (0.123) (2.567) (0.105) (0.148) (3.014)

z3t —0.018 1.093 5.386 0.725 0.056 7.617

(0.239) (0.343) (2.765) (0.189) (0.245) (3.728)

z4t —0.020 1.109 5.396 0.075 1.020 —4.299

(0.167) (0.225) (3.449) (0.248) (0.364) (0.481)

Sample period: 1955:1—2010:3. The figures in parentheses are Newey-West

standard errors with automatic lag selection (Newey and West (1994)). Instrument

set z1t consists of πt−1, xt−1, xt−2 and xt−3. Sets z2t, z3t, and z4t contain, in addition,

wit−1 and wit−2, cpt−1 and cpt−2, and tst−1 and tst−2, respectively. A constant is

included in all models.
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Table 2: Estimation results of the AR(r, s) models for the inflation series.

.

πGDPt πCPIt

r s Log likelihood r s Log likelihood

0 5 —325.171 0 4 —409.262

1 4 —320.588 1 3 —404.941

2 3 —319.922 2 2 —404.199

3 2 —324.744 3 1 —403.611

4 1 —322.727 4 0 —405.976

5 0 —326.809

AR(r∗ + 1, s) 0.209 0.725

AR(r, s∗ + 1) 0.942 0.118

The values of the maximized log-likelihood function of AR(r,

s) models for the different inflation series. The rows labeled

AR(r∗ + 1, s) and AR(r, s∗ + 1) report the p-values of the Wald

significance test of the coeffi cient of an additional lag and lead in

the selected model, respectively.
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Table 3: Estimation results of the new Keynesian Phillips curves based on the U.S.

inflation series.

.

πGDPt πCPIt

AR Model AR(2, 3) AR(3, 1)

γb 0.302 0.189

(0.099) (0.060)

γf 0.675 0.768

(0.086) (0.057)

σ 1.154 1.917

(0.108) (0.356)

ν 4.527 3.010

(1.490) (0.706)

The row labeled AR Model gives the best-

fitting AR(r, s) model that the estimation of

the NKPC is based on. σ and ν are the scale

and degree-of-freedom parameters of the error

distribution, respectively. The figures in paren-

theses are ML standard errors based on the

Hessian matrix.
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