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Abstract 

Objectives 

The aim of this study was to test the feasibility of estimating preference weights for all health states 

defined by the Child Health Utility 9D (CHU9D), a new generic measure of health related quality of life 

for children. This will allow the calculation of quality adjusted life years (QALYs) for use in paediatric 

economic evaluation.  

Methods 

Valuation interviews were undertaken with 300 members of the UK adult general population using 

standard gamble and ranking valuation methods. Regression modelling was undertaken to estimate 

models that could predict a value for every health state defined by the CHU9D. A range of models 

were tested and evaluated based on their predictive performance.  

Results 

Models estimated on the standard gamble data performed better than the rank model. All models had 

a few inconsistencies or insignificant levels and so further modelling was done to estimate a 

parsimonious consistent regression model, by combining inconsistent levels and removing non 

significant levels. The final preferred model was an OLS model where all coefficients were significant, 

there were no inconsistencies and the model had the best predictive performance.  

Conclusion 

This research has demonstrated it is feasible to value the CHU9D descriptive system and preference 

weights for each health state can be generated to allow the calculation of QALYs. The CHU9D can 

now be used in the economic evaluation of paediatric health care interventions. Further research is 

needed to investigate the impact of children’s preferences for the health states and what methods 

could be used to obtain these preferences. 
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Introduction 

Recent research by Stevens [1,2,3] developed a descriptive system for a new generic health related 

quality of life measure, the Child Health Utility 9D (CHU9D). The descriptive system contains 9 

dimensions (worried, sad, pain, tired, annoyed, school work, sleep, daily routine and activities), each 

with 5 levels. The measure was developed with the intention of being preference based and therefore 

suitable for use in paediatric economic evaluation. To meet this demand, preference weights need to 

be developed for each health state defined by the descriptive system. The objectives of this research 

were therefore to test the feasibility of valuing this descriptive system and to generate preference 

weights for every health state defined by the CHU9D. 

 

Methods 

 Valuation technique 

Currently, the recommendation is to obtain health state preferences using either the Standard Gamble 

(SG) or Time Trade Off (TTO) elicitation methods [4][5]. In addition, current guidance from the UK 

National Institute for Health and Clinical Excellence [6] recommends for its reference case that a 

choice based method be used, such as the SG or TTO.  

 

NICE also recommends that preferences are obtained from a representative sample of the public. [6] 

In order to be consistent with NICE and due to its successful application in the valuation of other 

preference based instruments, including the SF-6D [7], the Health Utilities Index 2 [8] and the ADQoL 

[9] the SG method was chosen using a sample of the UK adult general population. In addition to SG, 

ranking was also used as an alternative method of valuation. There has been recent interest in using 

this technique for health state valuation [10] and it may have potential for use in future valuation work 

to try and obtain preferences from children as it is thought to be less cognitively demanding and so 

the feasibility of using ranking methods to value the descriptive system was also tested.  

 

The standard gamble approach asks respondents to make a choice between a certain intermediate 

outcome and the uncertainty of a gamble with two possible outcomes: 

• Choice A: 100% chance of the health state being valued 

• Choice B: A chance of perfect health with probability p and a chance of dead with probability 

1-p. 

The value of p is varied until the respondent is indifferent between the two alternatives A and B. The 

point of indifference is the utility value of the health state.  
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 Sample 

Due to resource constraints, there was a limit to the number of interviews that could be undertaken 

and a trade off had to be made between the number of interviews achieved and geographical spread. 

As previous research has demonstrated that geographical location does not make a difference to 

health state values [11], local interviews were undertaken as this meant a much larger sample size, 

which was felt to be more important than achieving geographical spread.  A spread across age, 

gender, ethnicity and social class could still be achieved however. A sample size of 300 was possible 

and compares favourably with the 200 used in the UK valuation of the HUI2 [12] and the ADQoL [9], 

although approximately half of the sample size used in the SF-6D valuation [7].  

 

An interview team of three people was contracted to undertake the interviews from the Centre for 

Research and Evaluation (CRE) at Sheffield Hallam University. The interview team were very 

experienced in this type of work, particularly in the use of SG methods. CRE also undertook the 

sampling, management of the interviews and entered the data.  

 

A random street sample was selected from addresses in Sheffield and Huddersfield using AFD 

Names and Numbers software which provides access to UK names and addresses for over 39 million 

people. The sampled households were all posted a letter, inviting them to take part in the research. 

When interviewers called at the household, participants were given an information leaflet to read with 

further information. After reading this and asking any questions, participants who agreed to take part 

were asked to sign a consent form and an interview was arranged in their own homes at their 

convenience.  

 

 Selection of health states 

As there are 1,953,125 unique health states (levels^dimensions =5^9) defined by the CHU9D descriptive 

system, it was infeasible to value them all. Instead, a sample was selected to be valued and a model 

estimated using these values, to predict a value for every health state defined by the system. This 

approach has been used successfully in a number of previous valuation surveys [13], [7], [12]. 

Previous experience has shown that respondents can manage about 9 valuation tasks in an interview, 

[7], [13] so with 300 interviews, this gave 2700 potential observations.   

 

An orthogonal array of health states was generated using the Orthoplan feature of SPSS (Version 12) 

which generates a design for an additive model using the minimum number of health states required 

to estimate a model to predict all health states in the descriptive system. This found the minimum 

number of states required for a 9 dimensional system with 5 levels per dimension was 64. The design 

generated included 2 duplicate states and also the best state in the descriptive system (level 1 on 

each dimension, termed state 111111111) twice.  As the design of the SG method assumes the best 

state to be equal to 1, it was not possible to use this as an intermediate state for valuation, therefore 
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two substitute states were created to replace these best states, with all dimension levels at the top 

apart from 1 dimension, so as to keep the replacement health states as close as possible to the top of 

the descriptive system, keeping as close to the orthoplan design as possible. It is common to get 

duplicate states in this size of descriptive system and so more observations were obtained on the 

duplicate states, rather than substituting more states. Each health state can be represented by a 9 

digit number, with each digit representing the level on each of the dimensions. The 64 states were 

divided into 8 sets of 8, trying to balance the severity of states in each set (by looking at the levels on 

each dimension) and making sure the 2 duplicate states were separated. The worst health state (Pits, 

555555555) was added to each set, giving a total of 9 health states in each set. The interviewers 

rotated round the sets so that each state got an equal number of observations and each respondent 

only had 9 SG valuation tasks to do.   

 

As adults were valuing the health states, the schoolwork/homework dimension was changed to work. 

This meant that the health states that the adults were considering for valuation made sense as adult 

health states. The descriptive system is given in Figure 3 and an example health state is shown in 

Figure 4. 

  

 Valuation interviews 

The respondent was first asked to complete the descriptive system in order to familiarise themselves 

with it and also to understand the range of the levels within each dimension. Respondents were then 

asked to rank the 9 health states from the set being used, plus the best state in the descriptive system 

(111111111) and dead. This was followed by SG valuations of all 9 health states. The version of the 

SG script used was the same as that used in the original and UK HUI2 valuations [12], [8] which is the 

ping pong version. A Chance Board prop was used, which displays the probabilities numerically and 

in a pie chart. This method uses increments of 10% except at the top and bottom ends (between 90 

and 100 and 0 and 10) where it uses increments of 5%. The perspective the respondent was asked to 

imagine was that they would be in the health state described for the rest of their life. The health state 

was valued against perfect health (as state 1,1,1,1,1,1,1,1,1 in this descriptive system is assumed to 

be equivalent to perfect health) and dead. If respondents rated a health state worse than dead in the 

ranking exercise, they did a worse than dead form of SG valuation where a certain choice of dead 

was offered as a choice against perfect health with probability p and the health state with probability 

(1-p). The utility value is –p at the point of indifference. The methodology is that undertaken in the 

valuation of the SF-6D [7]and the UK HUI2 [12] valuation and is based on the transformation by 

Patrick et al [14]. 

 

Finally, basic socio demographic information was collected and questions asking respondents how 

difficult they found the tasks. After completion of the interview, the interviewer was asked to assess 

how well they felt the respondent had concentrated and understood the tasks. The start and end 

times of the tasks were recorded. To obtain information on the socio-economic characteristics of 
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respondents, the database supplying the names and addresses (AFD) [15] also provides censation 

data on the households (based on the latest census data), including affluence, which categorizes 

people into five categories (wealthy, prosperous, comfortable, striving and struggling). The figures for 

the sample were compared to the UK population as a whole.  

 

 Exclusion criteria 

Based on the principles used in previous valuation work, for the SG modelling, respondents were 

excluded if they valued all health states the same, as this  was taken to be an indication of 

misunderstanding the task [13], [9], [12] and observations were excluded if the data was unusable. 

Whilst imposing restrictions on the data, this is common practice in this type of research [7], [12]. 

 

 Modelling 

The aim was to estimate a model for predicting health state values for every health state defined by 

the descriptive system. The approach taken in previous valuation work of generic measures was 

followed [12], [7].  

The basic model structure for the model was: 

 

Uij = g(βxij) + εij 

Where: 

 

i = 1,2,….,n represents individual health states in the descriptive system; 

 

j= 1,2,…..,m represents individual respondents; 

 

Uij = the standard gamble value for health state i valued by respondent j; 

 

g = appropriate functional form; 

 

x = a vector of dummy variables for each level of each dimension in the descriptive system. 

 

εij = the error term. 

 

Personal characteristics were not included in the model as the model is intended to be used as a 

societal model of preferences and not adjusted for individual characteristics. Whilst there may be 

personal characteristics that prove important and can be estimated as respondent level covariates, 

these will not be used when applying the algorithm in practice as the aim was to estimate a utility 

function for the UK population as a whole.  
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To estimate the model, dummy variables were created for each level on each dimension with level 1 

acting as the baseline for each dimension. The dummy variables take a value of 1 if the health state 

has the dimension at the level the dummy is representing and 0 otherwise. In a simple linear model, 

the intercept represents the estimated value of the best state (1,1,1,1,1,1,1,1,1) and the value for all 

other health states are derived by summing the coefficients of the appropriate dummies.  Models 

estimated in this way have utility as the dependent variable.  An alternative is to assume that because 

this is a generic measure, the best state can be assumed to be perfect health and so takes a value of 

1. To achieve this, the constant can be forced to unity by estimating the model with no intercept and 

the dependent variable becomes disutility (Uij -1). The value of a health state then becomes 1 plus the 

sum of the coefficients on the relevant dummy variables. Both the utility and disutility forms of model 

were estimated.  

 

There are numerous possible interaction terms in the descriptive system and modelling them all would 

require a much larger dataset to prevent the risk of finding statistical significance due to chance [12]. 

In addition, previous valuation work has found that interactions do not improve the models and often 

increase the number of inconsistencies [11], [5], [8].  As the orthogonal design of the survey was for 

main effects only, only very basic interactions were estimated. Therefore two interaction terms were 

added, following the previous methods of the UKHUI2 and SF-6D valuations.  A dummy variable 

(MOST) taking the value of 1 if a health state had any level at level 1 otherwise 0 and a dummy 

variable (LEAST) taking the value of 1 if a health state had any level at level 5, otherwise 0 were 

added.  

 

Other specifications and transformations such as Tobit models could be considered, however 

previous valuation work has shown that these do not improve the modelling at all [12], [7]. Another 

recent approach that has been applied is that of Bayesian non-parametric modelling [16], [17]. This is 

a complex approach and requires a balanced design approach to the sampling of the health states 

which is different from the orthogonal array used here and so was not considered.  

  

Specification of the models 

The choice of model specification depends upon the type of data used. Standard OLS regression 

assumes a zero mean, constant variance error structure, with independent error terms, i.e. 

cov(εij,εi’j)=0, i≠i` [18]. This assumption means that the 2700 observations from 300 respondents are 

treated as though 2700 respondents provided them.  

 

An alternative specification is the Random Effects (RE) model, which allows for the fact that the error 

term may not be independent of the respondent, and separates out within and between respondent 

error terms. 
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The RE model also assumes that the allocation of health states to respondents is random i.e. cov(uj, 

eij)=0 [12].  

 

A different specification is the fixed effects model, which also allows for the importance of individual 

effects but does not assume these are random, instead the respondent specific variation is estimated 

along with the coefficients on the explanatory variables. 

 

To test whether individual effects were important the Breusch-Pagan test was used and if they were, 

the Hausman test was used to determine whether fixed or random effects were appropriate [7]. 

  

In addition to the individual level models described above, mean and median aggregate level models 

were estimated using the mean and median values for each health state.  

 

One further type of modelling was undertaken, which made use of the ordinal preference data 

obtained from the ranking exercise. This type of rank modelling is a more recent development in 

health state valuation modelling and has been successfully applied in the major generic PBMs [10]. 

The basic foundation for this type of modelling (estimating cardinal values from ordinal data) is based 

on Thurstone’s law of comparative judgement [10]. The modelling process followed that undertaken 

by McCabe in estimating a rank model for the HUI2 [19]. The ranking task was designed to include 

the state ‘dead’ so that the modelling could be normalised to produce a utility of 0 for dead. By 

including dead in the regression model, the estimated coefficient can be used to rescale the results 

onto a scale with dead as 0 [10].  

 

The model is a rank-ordered logit model with a vector of dummy explanatory variables for each level 

of each dimension. A dummy variable for dead was included which took the value of 1 for this state 

and 0 otherwise. Perfect health is constrained to equal 1 and the value of a health state is calculated 

by subtracting the sum of the coefficients for each of the dummy variables from 1. As the model is not 

directly estimating utility on the 0-1 (dead- perfect health) scale required for health state valuation, the 

coefficients have to be rescaled using the formula βrij=βij/θ; where βrij is the rescaled coefficient and θ 

is the coefficient for dead. By rescaling, the model produces values on the dead (=0) - perfect health 

(=1) scale.   

 

Assessment of models 

Several measures were used to assess model performance. Firstly, coefficients of the models were 

examined to see if they were significant and had the expected negative (for utility) or positive (for 

disutility) sign. As the dummies represent progressively worse problems on each dimension starting 

from a baseline of no problems, the coefficients were expected to be increasing in absolute size. 



9 
 

Logical inconsistencies in the coefficient values were looked for and the adjusted R2 for each model 

was also reported (where appropriate).  

 

Models were also assessed on the basis of their predictive performance, i.e. how well they predicted 

observed mean values. To do this, a number of measures were used. The mean absolute error (MAE) 

and root mean square error (RMSE) were calculated, which are both summary measures giving an 

indication of the prediction errors of a model, with the RMSE giving more weight to larger errors. In 

addition, the percentage of health states predicted to within 0.1 and 0.05 (absolute value) of the 

observed mean value are reported. The value of 0.1 was chosen as it is the value used in previous 

valuation studies [12] and the value of 0.05 was chosen as it has been considered an important 

difference in many contexts [20].  

 

Finally, the predicted health state values were plotted against the observed health state values to look 

for any patterns in the errors. Both the SG and the rank models were tested against the observed 

mean SG values after the exclusion criteria were applied. A test of the null hypothesis that the mean 

prediction error was 0 was undertaken for each of the models in order to determine whether there was 

any bias in the predictions. A Ljung box test was also carried out to test whether there was any non 

randomness in the prediction errors, i.e. if the error was systematically related to the severity of the 

health state [21]. Errors were ordered by actual mean health state valuation.  

 

The rank model was tested for a key assumption of this type of modelling which is the independence 

from irrelevant alternatives. All modelling and analysis was carried out using STATA version 10.  

 

 Results 

1245 addresses were mailed to and of these, 1195 were approached in person at the door. Out of 

those approached, 534 (45%) were not in/no contact was made, 320 (27%) refused and 300 (25%) 

agreed to be interviewed. Therefore the response rate was 25%. In total 300 interviews were carried 

out. For the SG modelling, 52 observations were excluded as unusable and 17 respondents were 

excluded as they valued all health states the same. In addition, 1 respondent was excluded as they 

valued the Pits state as 1 and all other health states at 0.95. This led to a dataset with 2478 

observations from 282 respondents (6% of respondents were excluded). For the rank modelling, no 

exclusions were made. 

 

The characteristics of the included and excluded populations are shown in Table 2. Compared to the 

included population, the excluded population had a higher percentage of men, more left school at 16, 

more found the SG exercise very difficult and the interviewer rated the understanding and 

concentration in the ranking and SG tasks lower.  
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The socio economic characteristics of the whole sample were as follows (data was missing for 1 

person) and the UK figures are also given.  

Category Sample  % UK% 

A, Wealthy 32.8 23.4 

B, Prosperous 7.7 20.9 

C, Comfortable 19.1 19.7 

D, Striving 33.8 21.3 

E, Struggling 6.7 13.6 

 

Descriptive statistics for the health states from the included respondents are shown in Table 3. Each 

state was valued 35 times on average (minimum 32, maximum 39), apart from the 2 duplicate states 

(222222212 and 333333313) which were valued 68 and 72 times respectively. In addition, the Pits 

state (555555555) was valued 235 times.  

 

The mean health state values range from 0.387857 to 0.931579. The median mostly exceeds the 

mean (66.7% of cases). There were 23 negative valuations (0.93%).  

 

The interaction terms made things worse and did not improve the modelling as they increased the 

number of inconsistencies and decreased the number of significant coefficients and are not reported 

here. Overall, the disutility models were much better than the utility models in terms of the number of 

significant coefficients (higher) and the number of inconsistencies (lower), therefore only the disutility 

models are reported. The Breusch Pagan test suggested that individual effects were present in the 

data (chi2= 2388.23, p=0.00). The Hausman test did not work as the model fitted failed to meet the 

asymptotic assumptions of the Hausman test, probably due to a misspecification problem, in that the 

random effects model was not efficient for the data. A more general test was tried but this also failed. 

Therefore both random and fixed effects models were estimated and judged on the basis of their 

predictive performance.  

 

Going on the number of significant coefficients and the number of inconsistencies, the best three 

models from all the disutility models were the OLS, RE and mean disutility models with the constant 

restricted to 1. They are summarized in Table 4.  

 

All coefficients are significant in the rank model, have the expected sign and there are 8 

inconsistencies. It is shown alongside the three best restricted disutility models in Table 4. The results 

of the Hausman test for the independence from irrelevant alternatives are shown in Table 1. 

Significant results are shown in bold. It was not possible to test the models estimated without health 

states ranked second and tenth as the model violated the assumptions. A more general test did not 
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work either. The models are sensitive to excluding those health states at the top and towards the 

bottom of the rankings as those ranked first, eight and ninth and significant, hence we reject the 

equality and there is some evidence that the assumption does not hold.  

 

For the OLS model, all the coefficients have the expected positive sign and there are 30 out of 36 

coefficients significant at the 0.1 level. There are 14 inconsistencies which reduces to 10 if you 

remove those that are not significant at the 0.1 level. The RE model also has all coefficients with the 

expected positive sign and there are 33 out of 36 significant at the 0.1 level. There are 11 

inconsistencies which reduces to 10 if you remove the one not significant at the 0.1 level (tired 5). The 

mean model has all coefficients with the expected positive sign and 28 out of 36 are significant. There 

are 14 inconsistencies which reduces to 8 removing those that are not significant at the 0.1 level. 

Finally, the rank model has all 36 coefficients significant at the 0.1 level and they are all the expected 

positive sign. There are 8 inconsistencies.  

 

In terms of predictive performance, the OLS and mean models perform best with 100% of errors 

within +/-0.1, whilst the RE model is still high at 98.4 and the rank model is the worst, at 90.5. When 

the accuracy is increased to within 0.05, the mean model performs best, at 98.4% with the OLS next 

at 90.5%. The RE model is much lower at 77.8% and the rank model is the worst at 65.1%.  

 

The MAE is lowest for the OLS model at 0.0261, closely followed by the mean model at 0.0263. The 

MAE of the RE model is higher at 0.0313 and the rank model has the highest at 0.0461. The RMSE is 

lowest for the mean model, then the OLS, then the RE and finally is highest for the rank model at 

0.0573.  

 

There did not appear to be any systematic pattern in the errors apart from the rank model which under 

predicted at the higher end (i.e. the health states with a higher observed mean value). The results of 

the Ljung box tests for each of the models (1 to 4) are shown below. 

 OLS(1) RE(2) Mean(3) Rank(4) 

Test statistic 4.9116 8.9025 5.3772 7.9305 

Prob>Chi2(8*) 0.7670 0.3506 0.7166 0.4403 

* The number of lags is the square root of n which is conventional for this type of test. 

None of the test statistics are significant, therefore none of the models show evidence of 

autocorrelation in the prediction errors.  
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The RE model appears to be the only model  that gives biased predictions, as indicated by the t test 

of the null hypothesis that the mean prediction error is 0.  

 

 Further modelling 

Despite the very good predictive performance, the models still have inconsistencies in them and some 

coefficients are not significant. Therefore further modelling was undertaken to estimate a 

parsimonious consistent regression model using the general to specific approach. This approach was 

used in the valuation of the SF12 and later SF-36 models [22].  These models were constructed by 

combining levels where inconsistencies were present and removing levels not significant at p<0.1. 

This was done on the two best performing models (the mean and OLS restricted). These two models 

are shown in Table 5 and graphs of their predictive performance are shown in Figures 1 and 2. All 

coefficients are significant at p<0.1 and all but 1 coefficient in both models are significant at p<0.05. 

There are no inconsistencies in these models. The models are also consistent in that the same levels 

had to be combined, apart from the OLS model which still has sleep4, whereas the mean model has 

sleep234 combined. The dimensions worry, annoyed and tired all had all levels (except level 1) 

combined. Levels 4 and 5 were combined for sad, levels 2 and 3 for pain, levels 2 and 3 for work and 

4 and 5 for work and levels 2, 3 and 4 for activities. The predictive performance is not as good as the 

full models where levels were not combined. The MAE for the OLS model is 0.0343 and similar at 

0.0349 for the mean model. These are higher than the full models. The RMSE are also similar, at 

0.0426 for the OLS model and 0.0431 for the mean model. Both models predict well at 98.41% of 

predicted values within 0.1 of the observed mean, and the mean model is slightly better at 76.19% of 

predicted values within 0.05 of the observed mean compared to the OLS model, which predicts 

73.02%. Neither model had biases in the prediction errors as indicated by the t test of the null 

hypothesis that the mean prediction error is 0. There do not appear to be any patterns in the 

prediction errors either from looking at the graphs in Figures 1 and 2. The results of the Ljung box test 

are shown below for both models. Neither model shows evidence of autocorrelation in the prediction 

errors.  

 OLS reduced (5) Mean reduced (6) 

Test statistic 6.5165 6.7737 

Prob>Chi2(8*) 0.5896 0.5612 

* The number of lags is the square root of n which is conventional for this type of test. 

 

 Discussion 

Health state values were successfully generated for the health states in the survey and a reasonable 

range of values was produced, although the mean value for the Pits state (0.337) was perhaps higher 

than what was expected. This compares with other generic descriptive systems with mean health 

state values which ranged from -0.543 to 0.878 (EQ-5D [13]), 0.10 to 0.99 (SF-6D [7]) and -0.07 to 
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0.79 (UKHUI2) [12]. The Pits state could be low due to the language used due to the nature of it being 

a paediatric descriptive system. Adults did not have any knowledge that the states being valued were 

child health states when undertaking the valuation tasks. Hence, when reading the descriptions, they 

may have placed less weight on the severity of the levels. For example, the level “I feel very worried 

today” may be seen by a child as really severe, however for an adult, who is perhaps thinking in terms 

of stronger language such as anxiety, this might not seem so severe, as they can imagine much 

worse levels, for example” I feel really anxious”. Changing schoolwork/homework to work for adults 

also changes one of the dimensions of the descriptive system. Whilst this is perhaps the closest in 

meaning that this can be for an adult, there are differences in how health may affect work and so the 

implications of this mean that the health state being valued is not quite what is intended. This is 

something that can be tested in future valuation work, for example valuation work with adults that 

considers the actual child state from the perspective of the child, instead of a non child state from their 

own perspective. 

 

Generally, the modelling was successful and overall the disutility models performed much better than 

the utility models and the best performing of these were the models where the constant was restricted 

to equal 1. This fits in well with the practical application that is required of these models in calculating 

QALYs, in that a scale with perfect health =1 and dead =0 is required and there are strong theoretical 

arguments for restricting the intercept to unity [7]. This model assumes that the best health state in 

the descriptive system (111111111) has a value of 1 and dead has a value of 0.  

  

Overall, the mean model was the best in terms of predictive performance as it is the most accurate at 

predicting observed mean values, with the highest percentage predicted within +/-0.05 for all models, 

the lowest RMSE and a low MAE (nearly equivalent to OLS MAE which is the lowest). The mean 

model also has one of the lowest number of inconsistencies (8), the same as the rank model. The 

rank model was the worst in terms of predictive performance, being the worst on each measure of 

performance, however it is the only model with all coefficients significant at the 0.1 level and has the 

same number of inconsistencies as the mean model. None of the models had any problems with 

autocorrelation in the prediction errors.  

 

It should be noted that the SG models are being tested against the data they were estimated on, 

whereas the rank models are not, although the data comes from the same respondents. Therefore it 

is perhaps not surprising that the rank model is outperformed by all the SG models. However, the 

rank model is still a reasonably good model and there are similarities with the inconsistencies in the 

SG models, for example, sad5, tired4, tired5, pain3 and activities4. It is notable that the rank model 

performs well and is similar to the SG models in terms of what levels are inconsistent and this gives 

encouraging results for using this type of valuation technique in the future to access children’s 

valuations.  
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Other studies that have used rank models have found that the results are not dissimilar to the SG 

models. The UK valuation of the HUI2 found the rank model increased the inconsistencies by one [19] 

and found the best SG model performed better on all tests, but was remarkably similar. The SF-6D 

found the rank model quite different to the best performing SG model, as the number of 

inconsistencies decreased however the predictive performance of the rank model was only slightly 

worse [19].  

 

The inconsistencies were similar across the different model specifications, the most common were 

sad5, annoyed3, annoyed4, pain3, sleep3, work3, work5 and activities4. The exception was the rank 

model which was the only model to be consistent for the work dimension.  

 

Estimating parsimonious consistent models from the two best performing full models worked, 

although several levels had to be collapsed. The results of this were similar across the two models 

which is reassuring. Part of the collapsing may be due to the fact that adults were valuing these health 

states and not children. For example the dimension worry is perhaps not seen as very strong by an 

adult in contrast to the similar concept usually used in adult measures, anxiety. Similarly, it may be 

that adults see being annoyed as nothing particularly bad and so this dimension also had collapsed 

levels. Perhaps the most surprising dimension that had to combine levels was tired, however it may 

be that because there is also a sleep dimension, the adults valuing these health state focused in on 

that. Alternatively, it may be that the descriptive system is too big with 9 dimensions or perhaps there 

are too many levels and adults are employing simplifying heuristics when valuing the health states. 

Larger descriptive systems are more likely to result in doing this, such as just focusing in on key 

dimensions [23]. Undertaking a large valuation survey with children valuing the health states would 

provide more information on this issue and also using ‘think aloud’ techniques when people are 

valuing health states to gain a better understanding of what they are focusing on and whether they 

use any heuristics.  

 

The preferred overall model is model 5, the OLS parsimonious consistent model. This model has all 

coefficients significant and has no inconsistencies. It is slightly better on predictive performance that 

the mean model.  

 

The mean absolute error of the best model (model 5) is 0.0343 and this amount is unlikely to be 

considered meaningful in many contexts [8]. As the aim of the model is to predict mean health values 

across patients in many different states and the error is random, this is an acceptable error when 

using the model in practice. Research by Walters and Brazier [24] also found that the minimally 

important difference in utility score for the SF-6D was 0.041 (mean) and 0.074 (mean) for the EQ-5D.  
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The proportion of health states valued out of the entire descriptive system was very small at 0.003% 

(63/1,953,125). This compares with 1.4% for the SF-6D valuation and 0.64% for the UK HUI2 

valuation [12]. It may be that with a larger dataset and a larger number of health states being valued, 

some of these problems may be overcome.  

 

One of the most important factors in this valuation study is that the population valuing the health 

states is adults, in contrast to the descriptive system which is for children. In addition, when valuing 

the health states, adults were not aware that these states were child health states and were asked to 

imagine themselves as they are now (as an adult) in this health state for the rest of their lives. Adults 

were chosen for the valuation survey as using children to undertake valuations is something that has 

not been done before. This does not mean it is not possible, rather that further research is needed to 

investigate whether it is feasible to obtain valuations from children. The SG and TTO methods are 

cognitively demanding and it is uncertain whether children would be able to manage these tasks. 

There are also ethical issues that would be raised by asking to children to think about scenarios that 

involved a risk of death. In recent years, the use of ranking/ordinal methods to value health states has 

increased and this is perhaps a method that would be more appropriate and feasible to undertake 

with children. Perhaps the simplest way would be to present health states in pair wise comparisons as 

ranking many health states at once can be just as cognitively demanding. Work has been done to 

value descriptive systems in this way using ordinal techniques, including the use of discrete choice 

experiment (DCE) techniques for estimating preference weights for a sexual quality of life 

questionnaire [25] and for an asthma quality of life questionnaire [26]. It would also be interesting to 

undertake preference elicitation work where the adult valuing the health state knew this was a child 

health state and see if this makes any difference to the values. This was the approach taken in the 

valuation of the HUI2 and the ADQoL [8], [9] . Whether children’s valuations should be used is a 

normative issue and there are arguments either way. It can be argued that children are not rational, 

informed and autonomous individuals (an ideal for health state valuation) and therefore should not 

undertake valuation tasks. However, it may be that some adults also do not fulfil this criteria and 

previous valuation work has demonstrated some evidence of this as respondents have been excluded 

on the grounds of irrational or inconsistent responses [7], [12]. Perhaps more importantly, some 

people may argue that society does not see children as legal agents, in that before the age of 18 they 

are not allowed to vote and hence not viewed as decision makers in society.  

 

What is unknown is how children’s valuations may differ (if at all) from adult valuations. If there is very 

little difference in values, then it perhaps becomes irrelevant whose values are used. However, if 

there are differences, then a decision would have to be made over which values are more 

appropriate. This is something that can only be determined empirically and what would be most 

interesting is perhaps the potential differences in strength of preference for the different dimensions of 

health. These important questions should be the subject of future research.  
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 Conclusions 

This research has demonstrated that it is feasible to value the CHU9D descriptive system and 

preference weights have been generated for all health states defined by the system. A number of 

models have been estimated using both the SG and ordinal (rank) data. The best performing models 

were restricted disutility models, which restrict the constant term to 1 and have stronger theoretical 

arguments. The model recommended for use in assigning preference weights for the health states 

defined by the CHU9D is the OLS parsimonious model (model 5). The CHU9D is now able to be used 

to generate quality adjusted life years (QALYS) by using the system and combining it with length of 

life. The CHU9D offers an alternative to the HUI2 and can be used in the economic evaluation of 

paediatric health care interventions. Further research is needed to investigate whether it is feasible to 

obtain children’s preferences for the health states and whether this is desirable.  
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Table 1: Hausman test for the independence from irrelevant alternatives 

Alternative dropped Hausman  Prob>chi2 

1 211.04 0.0000 

2 - - 

3 38.60 0.3970 

4 20.80 0.9854 

5 15.56 0.9992 

6 22.20 0.9741 

7 25.65 0.9201 

8 87.82 0.000 

9 196.00 0.000 

10 - - 

11 4.40 1.000 
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Table 2: Characteristics of the population (full sample n=300) 

 Total 

(n=300) 

Included 

(n=282) 

Excluded 

(n=18) 

Age in years (mean) 49.01 48.98 50.72 

% Male 40.8 40.21 50 

Employment 

(%) 
employment or self-

employment 
51.33 52.48 33.33 

retired 29 28.37 38.89 

housework 7.33 6.74 16.67 

student 4 3.55 11.11 

seeking work 1.67 1.77 - 

unemployed 1.67 1.77 - 

long-term sick 3.67 3.9 - 

other 1.33 1.42 - 

Highest level of 

education (%) 
secondary school (left school at 

16 or before) 
51.01 50.36 61.11 

further education (left school at 

18) 
16.11 16.79 5.56 

higher education (university or 

college) 
28.19 27.86 33.33 

post-graduate education 4.7 5 - 

Ethnicity (%) White 97.99 98.22 94.4 

Mixed/dual heritage 1.34 1.42 - 

Asian or Asian British 0.67 0.36 5.6 

Difficulty with 

ranking 
exercise (%) 

very difficult 14.48 14.7 11.11 

quite difficult 31.31 31.18 33.33 

neither difficult or easy 21.21 21.15 22.22 

fairly easy 26.94 26.88 27.78 

very easy 6.06 6.09 5.56 

Difficulty with 

standard 

gamble 

exercise (%) 

very difficult 6.35 6.05 11.11 

quite difficult 21.07 22.06 5.56 

neither difficult or easy 19.73 20.28 11.11 

fairly easy 43.48 43.42 44.44 

very easy 9.36 8.19 27.78 

Understanding 

on ranking 
exercise (%) 

fully understood the task 80.94 80.07 94.44 

partially understood the task 18.06 18.86 5.56 

did not really understand the 

task 
1 1.07 - 

Understanding fully understood the task 82.61 82.21 88.89 
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on SG task (%) partially understood the task 16.39 17.08 5.56 

did not really understand the 

task 
1 0.71 5.56 

Interviewer 
rating of 

respondents 

understanding 

of ranking task 
(%) 

understood and performed 

tasks easily 
65.65 66.67 50 

some problems but seemed to 

understand 
28.91 28.99 27.78 

doubtful whether the 

respondent understood 
5.44 4.35 22.22 

Interviewer 
rating of 

respondents 

understanding 

of standard 
gamble task 

(%) 

understood and performed 

tasks easily 
71.43 72.46 55.56 

some problems but seemed to 

understand 
22.79 22.46 27.78 

doubtful whether the 

respondent understood 5.78 5.07 16.67 

Effort and 

concentration 
of respondent 

on ranking 

(interviewer 

assessed %) 

Concentrated very hard and put 

a great deal of effort into it 
40.82 42.39 16.67 

Concentrated fairly hard and 

put some effort into it 
50 50.72 38.89 

Didn’t concentrate very hard 

and put little effort into it 
8.5 6.52 38.89 

Concentrated at the beginning 

but lost interest/concentration   

before reaching the end      

0.68 0.36 5.56 

Effort and 

concentration 

of respondent 
on standard 

gamble 

(interviewer 

assessed %) 

Concentrated very hard and put 

a great deal of effort into it 
41.5 43.12 16.67 

Concentrated fairly hard and 

put some effort into it 
52.04 52.17 50 

Didn’t concentrate very hard 

and put little effort into it 6.46 4.71 33.33 
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Table 3: Descriptive statistics for health states  

State Observations Mean Median Std. Dev. Min Max 

111111112 38 0.9316 0.975 0.1039 0.55 1 

111121111 34 0.9206 0.95 0.1027 0.55 1 

112254323 38 0.4888 0.45 0.2669 0.05 0.975 

115422323 37 0.7426 0.75 0.2378 0.1 0.975 

122531334 32 0.7195 0.75 0.2130 0.1 0.975 

123342125 34 0.5757 0.65 0.2422 0.05 0.975 

123523451 34 0.6838 0.75 0.2198 0.1 0.975 

124315213 39 0.6654 0.65 0.2585 0.05 1 

131232435 34 0.6103 0.65 0.2417 0.05 0.975 

131435232 33 0.6538 0.65 0.2391 0.1 1 

132143542 36 0.6028 0.65 0.2547 0.05 0.975 

135123244 34 0.7331 0.8 0.2431 0.1 1 

142312513 34 0.5904 0.55 0.2946 0 0.975 

143253251 33 0.6061 0.65 0.2373 0 0.95 

153324122 34 0.7404 0.8 0.2318 0.1 1 

154231332 34 0.7441 0.75 0.1868 0.35 0.975 

211543312 37 0.6946 0.75 0.2359 0.25 0.975 

212335154 37 0.7291 0.75 0.2200 0.1 0.975 

213125433 34 0.6191 0.55 0.2224 0.05 0.975 

214233521 37 0.7264 0.85 0.2498 0.1 0.975 

222222212 68 0.7699 0.85 0.1873 0.15 1 

224153133 37 0.6649 0.75 0.2726 0.1 0.975 

225341331 34 0.6846 0.675 0.1818 0.15 0.975 

231324531 34 0.6993 0.75 0.2234 0.15 0.975 

232114355 34 0.6125 0.65 0.2372 0.05 0.975 

233451112 37 0.7264 0.75 0.2516 0.05 0.975 

235211423 33 0.6568 0.75 0.2946 0.1 1 

241532143 34 0.7051 0.65 0.2099 0.1 0.975 

243131225 37 0.6764 0.75 0.2552 0.05 0.975 

251313224 34 0.7551 0.75 0.2196 0.1 1 

253412341 34 0.6221 0.775 0.2309 0.15 0.975 

312351442 32 0.6047 0.65 0.1981 0.25 0.95 

313212534 36 0.6535 0.55 0.2794 0.05 0.975 

313514232 33 0.7811 0.675 0.1918 0.15 1 

314321245 33 0.5879 0.8 0.2509 0.05 0.95 

321152324 34 0.5537 0.65 0.2481 0.05 0.975 
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321421553 37 0.6811 0.55 0.2539 0.1 0.975 

322413135 34 0.6787 0.7 0.2497 0.05 0.975 

325134211 34 0.7625 0.7 0.1933 0.15 0.975 

332245121 34 0.5559 0.75 0.2327 0.05 0.975 

333333313 72 0.7236 0.575 0.2315 0.05 0.975 

334522121 38 0.7105 0.75 0.2378 0.05 1 

341125322 37 0.6608 0.75 0.2605 0.1 1 

345213132 35 0.7021 0.75 0.2372 0.1 1 

351241253 38 0.5105 0.75 0.2615 -0.1 0.975 

352132411 37 0.7338 0.55 0.2491 0.05 0.975 

411223315 34 0.6890 0.85 0.2479 0.05 1 

415332152 37 0.7561 0.725 0.2310 0.1 0.975 

423131522 34 0.6662 0.85 0.2309 0.05 0.975 

423215341 34 0.6221 0.65 0.2639 0.05 0.975 

431352231 33 0.6280 0.65 0.2728 0.05 1 

432511223 34 0.7419 0.65 0.2279 0.05 1 

444444414 37 0.5824 0.75 0.2629 0.05 0.975 

452123133 37 0.7081 0.65 0.2374 0.1 1 

512433221 34 0.7640 34 0.1652 0.35 0.975 

513142233 34 0.6699 34 0.2334 0.05 0.975 

521234143 34 0.6316 0.75 0.2416 0 0.975 

521313422 34 0.7750 0.65 0.1526 0.35 0.975 

533221114 34 0.6985 0.75 0.2409 0.05 0.975 

534112352 37 0.7716 0.75 0.2419 0.1 0.975 

542321331 38 0.6283 0.85 0.2818 0 0.975 

555555515 35 0.3879 0.65 0.3070 -0.1 1 

555555555 235 0.3368 0.45 0.3154 -0.75 1 
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Table 4: Models 

 Model 

Coefficient OLS (1) Random Effects (2) Mean (3) Rank (4)+ 

Constant 1 1 1 1 

worry2 0.0058 0.0117 0.0082 0.0206** 

worry3 0.0363** 0.0292** 0.0380** 0.0342** 

worry4 0.0261 0.0313** 0.0250 0.0417** 

worry5 0.0312* 0.0344** 0.0324 0.0964** 

sad2 0.0405** 0.0335** 0.0430** 0.0457** 

sad3 0.0435** 0.0377** 0.0458** 0.0386** 

sad4 0.0780** 0.0677** 0.0772** 0.0717** 

sad5 0.0688** 0.0677** 0.0699** 0.0613** 

annoy2 0.0380** 0.0271** 0.0398** 0.0377** 

annoy3 0.0316** 0.0265** 0.0334* 0.0382** 

annoy4 0.0248 0.0217* 0.0233 0.0372** 

annoy5 0.0243 0.0335** 0.0257 0.0572** 

tired2 0.0668** 0.0390** 0.0679** 0.0377** 

tired3 0.0397** 0.0276** 0.0402** 0.0380** 

tired4 0.0355** 0.0271** 0.0353* 0.0304** 

tired5 0.0380** 0.0199 0.0376* 0.0287** 

pain2 0.0394** 0.0434** 0.0418** 0.0637** 

pain3 0.0241* 0.0285** 0.0259 0.0409** 

pain4 0.1236** 0.1301** 0.1216** 0.1035** 

pain5 0.1471** 0.1504** 0.1475** 0.1135** 

sleep2 0.0319** 0.0248** 0.0344** 0.0315** 

sleep3 0.0091 0.0176* 0.0107 0.0330** 

sleep4 0.0489** 0.0543** 0.0476** 0.0678** 

sleep5 0.0955** 0.0910** 0.0971** 0.0699** 

daily2 0.03525** 0.0411** 0.0372** 0.0382** 

daily3 0.0595** 0.0592** 0.0610** 0.0358** 

daily4 0.0685** 0.0803** 0.0677** 0.0620** 

daily5 0.0969** 0.1022** 0.0990** 0.0963** 

work2 0.0485** 0.0519** 0.0413** 0.0443** 

work3 0.0454** 0.0457** 0.0379** 0.0523** 

work4 0.0842** 0.0801** 0.0770** 0.0756** 

work5 0.0507** 0.0578** 0.0458** 0.1039** 

activ2 0.0115 0.0122 0.0128 0.0314** 

activ3 0.0634** 0.0535** 0.0646** 0.0484** 
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activ4 0.0422** 0.0336** 0.0415** 0.0396** 

activ5 0.1148** 0.1018** 0.1163** 0.0766** 

Dead - - - 1** 

N 2478 2478 63 3000 

Inconsistencies (after 

removing insignificant 

ones) 

14 (10) 11 (10) 14(8) 8(8) 

% within +/-0.1  100 98.4 100 90.5 

% within +/-0.05 90.5 77.8 98.4 65.1 

MAE 0.0261 0.0313 0.0263 0.0461 

RMSE 0.0312 0.0397 0.0309 0.0573 

T test -0.944 -4.522** -0.505 1.660 

+ rescaled coefficients 

**significant at p<0.05 

*significant at p<0.1 

Inconsistencies are shown in bold type
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Table 5: Parsimonious consistent models 

 Model 

Coefficient OLS (5) P>t Coefficient Mean (6) P>t 

Constant 1  Constant 1  

worry2345 0.0227 0.047 worry2345 0.0251 0.082 

sad2 0.0420 0.003 sad2 0.0438 0.018 

sad3 0.0445 0.002 sad3 0.0460 0.013 

sad45 0.0722 0 sad45 0.0728 0 

annoy2345 0.0313 0.006 annoy2345 0.0326 0.025 

tired2345 0.0479 0 tired2345 0.0482 0.001 

pain23 0.0332 0.004 pain23 0.0349 0.02 

Pain4 0.1245 0 Pain4 0.1225 0 

Pain5 0.1426 0 Pain5 0.1461 0 

sleep23 0.0212 0.08 
sleep234 0.0280 0.059 

sleep4 0.0506 0.004 

sleep5 0.0907 0 sleep5 0.0952 0 

daily2 0.0371 0.009 daily2 0.0379 0.039 

daily3 0.0612 0 daily3 0.0612 0.001 

daily4 0.0699 0 daily4 0.0682 0.003 

daily5 0.0930 0 daily5 0.0971 0 

work23 0.0487 0 work23 0.0403 0.016 

work45 0.0656 0 work45 0.0609 0.002 

activ234 0.0368 0.001 activ234 0.0376 0.01 

activ5 0.1079 0 activ5 0.1129 0 

N 2478   63  

Inconsistencies  0   0  

% within +/-0.1  98.41   98.41  

% within +/-0.05 73.02   76.19  

MAE 0.0343   0.0349  

RMSE 0.0426   0.0431  

T test -0.770   -0.336  
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 Figure 1: Observed and predicted values (OLS parsimonious model) 
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Figure 2: Observed and predicted values (Mean parsimonious model) 
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Figure 3 Descriptive system 
Dimension Level Description 

Worried 1 I don’t feel worried today 

2 I feel a little bit worried today 

3 I feel a bit worried today 

4 I feel quite worried today 

5 I feel very worried today 

Sad 1 I don’t feel sad today 

2 I feel a little bit sad today 

3 I feel a bit sad today 

4 I feel quite sad today 

5 I feel very sad today 

Annoyed 1 I don’t feel annoyed today 

2 I feel a little bit annoyed today 

3 I feel a bit annoyed today 

4 I feel quite annoyed today 

5 I feel very annoyed today 

Tired 1 I don’t feel tired today 

2 I feel a little bit tired today 

3 I feel a bit tired today 

4 I feel quite tired today 

5 I feel very tired today 

Pain 1 I don’t have any pain today 

2 I have a little bit of pain today 

3 I have a bit of pain today 

4 I have quite a lot of pain today 

5 I have a lot of pain today 

Sleep 1 Last night I had no problems sleeping 

2 Last night I had a few problems sleeping 

3 Last night I had some problems sleeping 

4 Last night I had many problems sleeping 

5 Last night I couldn’t sleep at all 

Daily routine  1 I have no problems with my daily routine today 

2 I have a few problems with my daily routine today 

3 I have some problems with my daily routine today 

4 I have many problems with my daily routine today 

5 I can’t do my daily routine today 

Work 1 I have no problems with my work today 

2 I have a few problems with my work today 

3 I have some problems with my work today 

4 I have many problems with my work today 

5 I can’t do my work today 

Able to join in activities  1 I can join in with any activities today 

2 I can join in with most activities today 

3 I can join in with some activities today 

4 I can join in with a few activities today 

5 I can join in with no activities today 
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Figure 4: Example Health State 

 

Health State 153324122 

 

I don’t feel worried  

I feel very sad  

I feel a bit annoyed  

I feel a bit tired  

I have a little bit of pain  

I have many problems sleeping 

I have no problems with my daily routine  

I have a few problems with my work 

I can join in with most activities 
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