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Abstract

The fortune and the risk of a business venture depends on the future course of
the economy. There is a strong demand for economic forecasts and scenarios that can
be applied to planning and modeling. While there is an ongoing debate on modeling
economic scenarios, the bootstrapping (or resampling) approach presented here has
several advantages. As a non-parametric method, it directly relies on past market be-
haviors rather than debatable assumptions on models and parameters. Simultaneous
dependencies between economic variables are automatically captured. Some aspects
of the bootstrapping method require additional modeling: choice and transformation
of the economic variables, arbitrage-free consistency, heavy tails of distributions, se-
rial dependence, trends and mean reversion. Results of a complete economic scenario
generator are presented, tested and discussed.
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1 Introduction and motivation

In this paper, a concept to model and simulate major parts of the world economy is
presented. The economy is represented by a few key variables such as interest rates
(yield curves, risk-free and with credit risk), inflation, Gross Domestic Product (GDP)
and indices for equity, hedge funds and real estate investments, all of these for several
currency zones, plus the foreign exchange (FX) rates between these zones. The goal is to
generate scenarios that, in their entirety, represent the space of likely future developments.
These scenarios can be used for simulating anything that depends on the economy.

Our main application is asset-liability management (ALM). ALM (see e.g. [Ziemba and Mulvey, 1998])
and Dynamic Financial Analysis (DFA, see [Casualty Actuarial Society, 1998] or [Blum and Dacorogna, 2003])
require models for all the assets and liabilities of a firm and thus a comprehensive, dynamic
model for all economic variables that determine asset and liability values. Our Economic
Scenario Generator (ESG) has been developed to fulfill this requirement. Partial models
for a restricted set of economic variables cannot do this, no matter how sophisticated they
are, because of the complex dependencies between the variables.

The goal is ambitious. Our method is bootstrapping, also called resampling. Initially,
bootstrapping was a non-parametric method for limited tasks such as assessing confi-
dence limits of models estimated on finite data samples [Efron and Tibshirani, 1993].
[Barone-Adesi et al., 1999] then applied bootstrapping to portfolio risk assessment, fol-
lowed by [Zenti and Pallotta, 2000], [Barone-Adesi et al., 2002] and [Marsala et al., 2004].
The historical returns of certain assets became objects of resampling in simulations.

In this paper, bootstrapping constitutes the core of the model rather than being an ad-
ditional tool. Our basis is a set of historical time series of economic key variables. The
returns or innovations of all economic variables as observed in a randomly selected his-
torical time interval are taken and used for the simulation of future time intervals. While
there is an ongoing debate on modeling economic scenarios, the bootstrapping approach
has several advantages. It can be implemented in a straightforward way and relies on past
behaviors of real markets rather than debatable assumptions on models and parameters.
Empirical distribution functions and simultaneous dependencies between economic vari-
ables are automatically captured. Bootstrapping belongs to the family of non-parametric
methods. Like other “non-parametric” models, our method still needs some parameters
in order to define the method in a useful way, which ultimately makes the model semi-
parametric. Another advantage of bootstrapping is flexibility. We can easily add more
economic variables, which typically leads to large, comprehensive models.

Bootstrapping also has some disadvantages. Random trends may be continued to the
future with no limitation, serial correlations are disrupted by the random selection of
past intervals, and the statistical variety of behaviors may be too small in the historical
time series, which implies that the probability of extreme events may be underestimated.
These problems are solved by adding some preprocessing algorithms to the bootstrapping
method. The following aspects have to be considered: choice and transformation of vari-
ables, data frequency, dependence (serial and between variables), fat tails of distributions,
the treatment of trends and mean reversion, and an arbitrage-free consistency of the result-
ing scenarios. Some of these refinements are not new. [Barone-Adesi et al., 1999] already
found that some variables should preferably be resampled in a mapped rather than raw
form, so they developed the method of filtered bootstrapping [Zenti and Pallotta, 2000,
Barone-Adesi et al., 2002, Marsala et al., 2004]. This paper offers a wide set of bootstrap-
ping refinements, based on economic principles and facts. These refinements eliminate the
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major pitfalls of bootstrapping and turn this technique into a reliable generator of realistic
scenarios.

A major difficulty for any parametric or non-parametric simulation model is to determine
reasonable expectations for economic variables such as inflation or the growth of GDP or
equity indices. Empirical means based on available samples of, say, 10 years have stochastic
errors or are biased by long-term economic “cycles”. Long samples are not available in
some cases (e.g. for the Euro, where synthetic data are needed). If they are available,
they may be useless, such as foreign exchange data from before 1973, when currencies
were under a different regime. Our ESG is based on historical data and naturally takes
empirical means as expectations, but these can be modified on the basis of expert opinion
or special long-term studies such as [Dimson et al., 2003].

The quality of economic scenarios and forecasts based on bootstrapping has to be mea-
sured. Typical time horizons of economic scenarios are measured in years and quarters, so
we have a limited number of historical observations that can be used for backtesting. An
out-of-sample backtesting study based on a Probability Integral Transform (PIT) confirms
the validity of our approach.

The document is organized as follows. After a general introduction of the bootstrapping
method, some generic steps of the method are presented in Section 2. The implementation
of these general bootstrapping steps demands a lot of specific treatment of individual
economic variables in Section 3, where the subsections 3.2 - 3.6 deal with the particularly
complex case of interest rates. Some resulting scenarios and out-of-sample backtesting
results are shown and discussed in Section 4. Section 5 concludes.

2 Bootstrapping - the method and its refinements

2.1 The idea of bootstrapping

Our concept of bootstrapping is presented in Figure 1 in a schematic, simplified form. Be-
fore introducing methodological details or economic variables, we discuss the bootstrapping
method by means of a simple example.

We start from a sample of historical data, that is a set of time series with historical
observations over a certain time period. There is a regular4 time sequence ti with time
steps of size ∆t:

ti = i ∆t (2.1)

The corresponding time series values are Xi = X(ti) (e.g. an equity index) and Yi =
Y (ti) (e.g. the GDP figures of the same country). The observations of all the series are
synchronous and cover the same historical period (e.g. the last 10 years).

The last available values (”the values now”) are Xn and Yn. Our task is to simulate future
values at times t > tn: the vectors (Xn+1, Yn+1), (Xn+2, Yn+2), . . . , where the future values
are in the same regular sequence, i.e. tn+k = (n + k)∆t. The basic idea of resampling is
randomly picking an old time ti of the sample and assuming the same set of observations
for a future time of a scenario, e.g. for tn+1.

4While the method relies on regular historical input data for bootstrapping, an algorithmic enhancement
allows for starting a simulation from an irregular time point. We do not have to wait for the end of a
quarter to produce up-to-date scenarios based on quarterly data.
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This simplified diagram shows the bootstrapping method. We start with a historical series
of data vectors containing different economic variables. Then we compute the innovations
(≈ returns) of the (mapped) economic variables and store them in a series of historical
innovation vectors. The simulated scenarios start from the last available data vector and
continue by adding innovations, which are are taken from randomly resampled innovation
vectors.

Figure 1: The bootstrapping method

This is bootstrapping in its raw form, which will be modified in several respects. If we
applied direct bootstrapping to the observations Xi and Yi, the simulated values would
never leave the range given by historical values. A GDP figure could never grow to a yet
unobserved value. Therefore, our main concept is to bootstrap innovations in economic
variables rather than the variables themselves. These innovations will be resampled and
added to old variable values at each simulation step in a cumulative way.

A simple definition of innovations might be first differences of variables. When cumulating
randomly resampled first differences, the simulated variable may become negative, which
is not appropriate for positive definite economic variables. Returns are usually better than
first differences. Logarithmic returns are an obvious choice. We can first transform the
economic variable by taking the logarithm and then take first differences. In the general
case, we first introduce a variable transformation,

x(ti) = xi = F (Xi, Ii) = F [X(ti), I(ti)] (2.2)

where F can be a logarithm or a more complex function, which may depend not only on
Xi but also some simultaneous values of other economic variables such as Yi or, in general,
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the information set Ii available at time ti, which includes earlier values of the considered
variables. The function F should be invertible to determine X from x; its choice will be
discussed for different variables. The innovation is defined in terms of xi rather than Xi,
for example as the first difference xi − xi−1. Most suitably, the innovation is defined as
the deviation of xi from its expectation5 Ei−1[xi] that the market had at the previous time
point ti−1:

Ii = xi −Ei−1[xi] (2.3)

The innovation Ii can be negative as well as positive. It constitutes the unanticipated
element of surprise in a new value xi and is thus unrelated to the market conditions at
ti−1. In case of the martingale hypothesis, if the expectation of xi made at ti−1 was xi−1, Ii

would indeed be the first difference of xi. In reality, the market often has a slightly different
expectation Ei−1[xi] at ti−1, so the innovation somewhat differs from the first difference.
The market expectation Ei−1[xi] depends on the economic variable. For FX and interest
rates, it is a forward rate. We agree with [James and Webber, 2000], Section 1.4.1, that
forward rates are not particularly good predictors of spot rates, because the innovations
Ii are large and unanticipated. Yet, an appropriate definition of Ei−1[xi] matters for long-
term simulations, where seemingly weak modifications sum up to substantial effects. In
Section 3, there are formulas for different economic variables, sometimes including some
weak mean-reversion effects in Ei−1[xi].

The bootstrapping method will produce realistic results only if the Ii values are indepen-
dent over time and identically distributed (i.i.d.) with zero mean. It should be impossible
to reject the i.i.d. hypothesis, given the empirical sample of historical innovations. Then
the expectation of I2

i is independent of current market conditions, in sufficient approxi-
mation. The mapping function F of Equation 2.2 has to be chosen accordingly. There
is however the empirical phenomenon of volatility clustering which violates the indepen-
dence of I2

i : a large I2
i−1 tends to be followed by a large I2

i with increased probability. In
Section 2.9 this problem is solved.

In the course of simulation, the resampled innovations are used to modify the simulated,
future x values. For a future time tj , we randomly pick a historical index i and the
innovation Ii of ti to obtain the new simulated value6:

xj = Ej−1[xj ] + Ii (2.4)

This is an iteration. The next simulation time tj+1 will be treated the same way, picking
a new historical index i′ and re-using Equation 2.4 to obtain xj+1. After a few iterative
simulation steps, the resulting x value will contain an accumulation of many resampled
innovations Ii. The variable x can drift to any value and will not observe any range con-
straints. Most original economic variables Xi, on the other hand, are positive definite. The
logarithmic function transforms a positive definite variable to an unlimited real variable
and is thus a standard choice for the mapping function F of Equation 2.2.

A main strength of the bootstrapping method is preservation of dependencies and correla-
tions between variables. If the innovations Ii[x] and Ii[y] (the corresponding innovation of
the variable Yi) exhibit some dependence in the historical sample, the simulated variables
xj and yj will be characterized by the same dependence structure. This is due to the fact

5Ei−1[xi] is used as a shortcut for the correct notation E[x(ti) | Ii−1].
6The first simulation step starts at the last regular time tj−1 = tn and leads to xj at time tj . Sometimes,

there is information available at an irregular time tirreg after the last regular historical time tn. In order
to include this information in the first simulation step, the resampled innovation Ii can be modified to
Imodified = Iirreg + [(tj − tirreg)/∆t]1/2Ii, where Iirreg is the historical innovation from tj−1 to tirreg.
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that the resampled innovations Ii[x] and Ii[y] are always taken from the same historical
time ti within a simulation step.

The simulated mapped values xj can be transformed back to standard values Xj by ap-
plying the function F−1(., Ij) inverse to F (., Ij), see Equation 2.2.

2.2 General overview of the bootstrapping method

An economically meaningful bootstrapping procedure requires a set of well-thought steps
in addition to the simple bootstrapping principle as outlined in the previous section. The
general sequence of analysis steps is as follows:

• Start from a complete and representative sample of historical economic time series
for several economic variables, regularly updated to the newest values.

• Transform the economic variables (see Equation 2.2, sometimes with deseasonaliza-
tion, see Section 2.5), in order to attain unlimited additivity of innovations.

• Compute the market’s expectations of variables at each time ti−1 for time ti (e.g. a
forward rate as market predictor for a foreign exchange spot rate), including some
weak, long-term mean-reversion effects.

• Compute the innovations of variables as the differences between the current variable
values and their previous market expectations, see Equation 2.3.

• Remove stochastic trends by forcing a zero mean of innovations, to avoid arbitrary
trends in later simulations, see Section 2.6.

• Treat autoregressive conditional heteroskedasticity (clusters of volatility) of innova-
tions by fitting a GARCH process, leading to GARCH-corrected innovations, see
Section 2.9.

After this preparation, we are able to simulate future scenarios. We start by initializing all
the variables (including auxiliary ones) to the latest historical values (the “values now”).
The following sequence of steps describes one time step into the simulated future, which
can be iteratively repeated.

• Do the central bootstrapping step, taking a vector of past GARCH-corrected inno-
vations, all from the same randomly picked historical time interval.

• Multiply all these innovations by a random tail correction factor, thus injecting some
rare shocks or stress scenarios that are not present in the initial data sample.

• Re-transform the GARCH-corrected innovations to the actual innovations to be used,
and update the GARCH volatility equation.

• Compute the simulated variable values as sums of previous market expectations and
innovations, see Equation 2.4.

• Compute the market expectations of variables for the next simulation step.

• Compute the simulated values of economic variables in their original definitions by
doing transformations inverse to Equation 2.2 (reestablishing seasonality, if needed).
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Notice that this sequence of steps mirrors the initially taken analysis steps in reverse order.

This elaborated methodology applies to all economic variables, but the details of each
step may look different for them. More details and problems of the method are described
below. The special treatment of different economic variables follows in Section 3.

2.3 Time steps: Using high-frequency observations?

The size of the bootstrapping time steps depends on the application. Commercial simula-
tion and planning tools may have yearly time steps, but the generation of the underlying
economic scenarios should be done in shorter steps. We can take quarterly steps and only
use every fourth set of variable values, resulting in a yearly simulation.

When using a past of 10 years, we have a basis of only 40 quarterly time intervals. This is
better than 10 (the number for using yearly steps), but still rather low. A resampled year
will consist of four quarters, each having the randomly selected innovations of a historical
quarter. Thus there will be a wide variety in the behavior of simulated years: 404 (more
than 2 million) possible sequences of quarterly innovations.

Of course, we can further increase the number of historical intervals by taking monthly,
weekly or daily time steps. For some variables such as GDP, high-frequency observations
are not available. The clustering of volatility has been found to be stronger for high-
frequency data in the literature, so the GARCH analysis (see Section 2.9) becomes more
important. In our actually implemented economic scenario generator, we are always using
quarterly time steps.

2.4 Noise

For some economic variables, the available data exhibit some noise. Here we mean mean-
reverting short-term noise rather than the natural volatility of economic variables. Noise
affects the innovation values computed by Equation 2.3 and leads to an increased variance
of innovations. This increase is spurious because it reflects mean-reverting movements
rather than true drifts, so it may lead to a too high volatility of results simulated over
several time steps.

When using reliable data sources, this phenomenon is restricted to those variables whose
definition is sensitive to such noise. In practice, this means the innovations of inflation
and quarterly forward interest rates. The noise in consumer price index (CPI) figures
is reinforced when computing inflation (a kind of first difference of the logarithmic CPI)
and a second time when computing inflation innovations (which are similar to second
differences of the logarithmic CPI). Quarterly forward interest rates have some almost
inevitable noise due to small interpolation errors in the rather coarse grid of maturities
supported by the yield curve data.

In these cases of noise, some smoothing techniques such as averaging are recommended in
order to avoid spurious volatility in simulation results.

2.5 Seasonality

A variable recorded in a time series is called seasonal if its values or its first differences (or
returns) have a seasonal pattern. This means that averages sampled at certain regular time
intervals (e.g. second quarters of each year) significantly deviate from averages sampled at
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shifted intervals (e.g. third quarters).

Prices in liquid markets such as FX, fixed income or equity hardly exhibit any significant
seasonality, as empirical studies have shown. (Otherwise, these could be exploited in a
systematic way.) Other financial variables such as inflation and GDP may be seasonal
as there is no investment strategy to exploit seasonality. Quarterly inflation rates (first
differences of logarithms of the CPI) indeed exhibit some seasonality aside from the noise
discussed in Section 2.4.

In order to use a seasonal variable for bootstrapping, we have to deseasonalize its historical
observations before computing the innovations. The simulation results will be reseasonal-
ized at the end. This is further discussed in Section 3.7.

2.6 Detrending

In our simulations, we use innovations according to Equation 2.4 in an iterative way,
thereby cumulating the innovations. Innovations are defined as deviations from prior
market forecasts. If the market forecasts are reasonable7, we expect a mixture of positive
and negative innovations in the long run, but the empirical mean of innovations within
a historical sample may slightly (stochastically) deviate from zero. In that case, we risk
introducing a trend into the simulated future.

Generating such a trend is not justified even if it existed as a random phenomenon in the
historical data. Therefore we force the innovations to have a zero mean:

Ii =
√

n

n− 1


Iraw,i − 1

n

n∑

j=1

Iraw,j


 (2.5)

Each raw innovation Iraw,i is corrected by subtracting the sample mean. When doing
so, we implicitly minimize the variance of Ii about zero by using one degree of freedom.
Therefore we need the correction factor

√
n/(n− 1) to restore the expected variance of

innovations. Equation 2.5 is used for the correction of all innovations of the algorithm.

2.7 Mean reversion effects

When cumulating our detrended innovations, we obtain a stochastic random walk of the
resulting variable, similar to a Brownian motion. Such motions do not exhibit any mean
reversion. For most variables such as equity indices, this behavior conforms to theory and
empirical findings. For other variables such as interest rates, however, there is a weak
mean-reverting force which makes sure that interest rate levels do not drift to arbitrarily
high (or low) values, even after decades and centuries. Another law with mean-reverting
character is purchasing-power parity (PPP). FX and inflation rates observe this law only
hesitantly, with time lags of several years (see the article by Cheung in [Chan et al., 2000]).

In our bootstrapping algorithm, a natural place to implement the small mean-reverting
correction is the market forecast Ei−1[xi] of Equation 2.3. Mean reversion is a known
phenomenon rather than an innovative surprise, so it belongs to the market forecast in
the form of a small correction of the purely technical market forecast. Although such
corrections are small, they may persist over years and exert a decisive force in real markets
as well as in our simulations.

7This does not mean free of trends. Some economic variables such as equity indices or some FX rates
(“Peso effect”) have a natural trend that we have to model in the market forecast.
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The mathematical nature of the small correction differs between economic variables and
will be discussed in Section 3. In many cases of mean reversion, we use varying target
values rather than constant means. Some of these are moving averages. This can be
implemented in the form of an exponentially weighted moving average (EMA), which has
the advantage of a very simple iteration formula for updating:

EMAi[x;∆trange] = µ EMAi−1[x;∆trange] + (1− µ) xi (2.6)

with
µ = e−∆t/T (2.7)

where xi stands for any variable to be averaged over time, and the time constant ∆trange is
the range (= center of gravity of the weighting kernel) of the EMA. There are more complex
moving averages and iterations, see [Dacorogna et al., 2001], but the simple mechanism of
Equations 2.6 and 2.7 is certainly good enough to describe the behavior of means that are
only used to make weak corrections. At the beginning, each EMA has to be initialized,
using a sufficiently large sample of xi . We use the best estimate for the EMA at the
very beginning of the historical sample and iteratively use Equation 2.6 through the whole
historical sample.

Mean-reversion effects often involve several variables with different volatility levels. In
this case, we often prefer applying the mean-reversion correction to the high-volatility
variable, where the low-volatility variable acts as a sort of dragging anchor. In the example
of purchasing power parity (PPP), the high-volatility FX rate is weakly anchored by the
low-volatility consumer price indices (CPI) of the two currency zones.

2.8 Dependence

Simultaneous innovations in different time series often depend on each other. Equity
indices in different countries, for example, rarely move in different directions. The boot-
strapping method captures these dependencies very well, as all innovations of a simulation
step are resampled from the same historical time interval. Contemporaneous dependencies
found in historical data are thus preserved.

Other forms of economic dependency pose some problems. Dependencies do not only
exist for innovations, but also for the original and simulated variables. This can often
be described as a mean-reversion effect such as purchasing-power parity (PPP) and has
already been discussed in Section 2.7.

Serial dependence of innovations would mean that new innovations are partially antici-
pated by older ones. This is not the case here, since we define innovations as unpredictable
in Equation 2.3.

If the serial dependence is in the volatility of an economic variable rather than the vari-
able itself, we talk about autoregressive conditional heteroskedasticity. This is treated in
Section 2.9.

2.9 Heteroskedasticity modeled by GARCH

Heteroskedasticity means a variation in the volatility of a variable over time. This is only
a useful concept if a model for this volatility can be formulated. One way to model future
volatility would be using implied volatility from option markets. For market variables such
as FX, IR and equity indices, this is feasible as long as such volatility data are available
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(which is not the case for the long time horizons of certain ALM studies). We do not
pursue this idea here.

Autoregressive conditional heteroskedasticity (clustering of volatility) is a well-known phe-
nomenon [Engle, 1982, Bollerslev, 1986, Baillie et al., 1996, Dacorogna et al., 2001] in fi-
nance. For economic high-frequency data such as daily market prices, this is very signif-
icant. However, the effect is weaker for the data frequency of economic scenarios (such
as quarterly or yearly). We model the effect by approximately assuming a GARCH(1,1)
process [Bollerslev, 1986]. We fit a GARCH(1,1) process to the innovations as computed
from the raw data.

The GARCH(1,1) process for the observed innovations Ii is

Ii = σi εi , (2.8)

σ2
i = α0 + α1 I2

i−1 + β1 σ2
i−1

with three positive parameters α0, α1 and β1. The variable εi is identically and indepen-
dently distributed (i.i.d.), with mean 0 and variance 1. The GARCH process is stationary
with finite variance if α1 + β1 < 1.

Calibrating the parameters of a GARCH process to the innovations Ii is not a routine
task, although its feasibility with the help of commercial software may lead a user to that
assumption. The usual quasi-maximum-likelihood method poses some problems in prac-
tice, such as convergence to non-stationary solutions (especially if the GARCH process is
misspecified), local maximums of the likelihood function and other convergence problems.
In some cases, [Zumbach, 2000] finds a maximum of the likelihood function for a GARCH
process whose unconditional variance is about ten times the empirical variance of the data
sample. The reasons are misspecification and limited sample size. [Zumbach, 2000] even
finds such effects for data generated by a GARCH(1,1) process. Finite sample sizes pose
problems for GARCH fitting that tend to be underestimated in the literature.

Our historical innovations based on low-frequency data definitely constitute small sam-
ples. Yet we need a reliable, robust GARCH calibration algorithm for the repeated anal-
ysis of dozens of economic variables without any human intervention. Standard GARCH
fitting methods or software packages requiring human review and intervention are not suf-
ficient. Our robust, automated GARCH calibration is described in Appendix 6 and follows
[Zumbach, 2000] with additional emphasis on avoiding local optima and a careful build-
up procedure. ARCH(1) and white noise are embedded as special cases of GARCH(1,1).
The “white noise” solution means that there is no GARCH correction and the original
innovations Ii are kept.

We apply GARCH corrections to all innovations, with one exception. The forward interest
rate innovations of all maturities have a common GARCH model which we calibrate for
a weighted sum of these innovations. This sum has positive weights and approximately
stands for a first principal component. [Ballocchi et al., 1999] have shown that the first
principal component of the term structure of forward interest rates is the only component
with significant autoregressive conditional heteroskedasticity. This finding supports our
GARCH modeling approach for interest rates.

After calibrating the GARCH process, we assume all the innovations Ii to be products of
the volatility σi as resulting from the GARCH process and “normalized” innovations Ji

which can be seen as the historically determined GARCH residuals, that is the εi values of
Equation 2.8. We obtain Ji by dividing the original innovations Ii by σi. The normalized
innovations Ji are the final results of our preprocessing of economic variables. We can also
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call them “GARCH-filtered” innovations, using an analogy to the “filtered bootstrap” by
[Barone-Adesi et al., 1999].

In the simulation of the future time tj , we resample a Ji and compute the volatility σj

by using Equation 2.8, initially starting at the last computed historical GARCH variance
σ2

n. The newly constructed innovations Ij = σjJi will be used. The sequence of these Ij

will have the desired property of volatility clustering, unlike the randomly resampled Ji

values.

2.10 Fat tails of distribution functions

All the economic variables and their innovations have their empirical distributions as
determined by the historical data. When using quarterly observations over ten years, we
have 40 innovations. This is a small sample size for detailed statistics.

From the literature [Dacorogna et al., 2001, Embrechts et al., 1997], we know that many
financial variables exhibit fat tails in their distribution functions, if studied with enough
data, using high frequency or very long samples. Typical tail indices of high-frequency
foreign-exchange data are around α = 3.5.

Our economic scenarios are made for studying risk as well as average behaviors. We use
tail-based risk measures such as value at risk (VaR) and, more importantly, the expected
shortfall, see [Artzner et al., 1997]. The simulation of extreme events (such as the “1 in
100” event) should be realistic. How is this possible based on only 40 quarterly innovations
for bootstrapping? Pure bootstrapping will underestimate risks, except for the unlikely
case that the most extreme historical observation substantially exceeds the quantile that
can reasonably be expected for the maximum in a small sample.

Some risk and ALM specialists rely on a few arbitrary ”stress scenarios”, that is some
stylized extreme events. Here we propose a more consequent way to include a rich variety
of many possible stress scenarios. When doing the simulations, we add some stochastic
variation to the resampled innovations to attain a more elaborated tail behavior. We
do not really change the tail behavior, we just add some small stochastic variability on
both sides, increasing or decreasing an original innovation. Technically, this can be done
without increasing the overall variance. The stochastic variation of historically observed
innovations is small and harmless, except for very rare, extreme tail events. We explain
the method for an economic innovation Ii. If the GARCH analysis of Section 2.9 is made,
we apply the tail correction to the GARCH-corrected innovations, so Ii actually stands
for the normalized innovation Ji.

Ii has an unknown distribution function with mean 0. We assume a tail index α >
2 in both tails. A suitable value for many economic variables might be α = 4. Now we
define an auxiliary, Pareto-distributed random variable η to modify the original, resampled
innovations Ii in a multiplicative way:

I ′i = η Ii (2.9)

The new variable η is defined to have the same tail index α:

η = A + B (1− u)−1/α (2.10)

where u is a uniformly distributed random variable in the range between 0 and 1. Thus η
is confined:

η ≥ ηmin = A + B (2.11)
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This minimum corresponds to u = 0. We always choose A+B > 0, so η is positive definite.
The inverse form is

u = 1−
(

η −A

B

)−α

(2.12)

This is the cumulative probability distribution of η, where u is the probability of η being
below the specific η value inserted in Equation 2.12. This is indeed a Pareto distribution
with tail index α.

We choose the parameters A and B in a way that η is normally close to 1, so the modified
variable I ′i = ηIi is similar to the original, resampled value Ii, and the overall character of
the bootstrapping method is maintained. However, the modified innovation I ′i based on
the random variable η and the independently chosen resampling index i will exhibit a fat
tail in simulations. The larger the number of simulations, the denser the coverage of this
fat tail will be. Tail observations of I ′i will occur if two unlikely events coincide: very large
values of both |Ii| and η.

The resulting tail index8 of I ′ is α, as assumed for I. Thus we do not make the tail fatter
than it should be, we just introduce enough variation in the tail for realistic simulations.

The parameters A and B must be defined in a suitable way. We have to keep the original
variance of innovations unchanged. This is important when using the GARCH correction
of Section 2.9. GARCH is a variance model, so we should not modify the unconditional
variance in our simulations here. The condition is

E[I ′2i ] = E[I2
i ] (2.13)

Considering Equation 2.9 and the independence of η, this implies the condition

E[η2] = A2 +
2 α

α− 1
A B +

α

α− 2
B2 = 1 (2.14)

which is the result of an integration over the distribution of η, using Equation 2.10. In
order to keep the variance E[η2] finite, we need α > 2, which turns out to be well satisfied
by empirical economic data. The second equation to determine A and B is given by
Equation 2.11: A + B = ηmin. Solving this equation together with Equation 2.14, we
obtain

B =
1
2

[√
η2
min (α− 2)2 + 2 (α− 1) (α− 2) (1− η2

min)− ηmin (α− 2)
]

(2.15)

and
A = ηmin −B (2.16)

We still need to choose the minimum ηmin of the correction factor η. We argue that the
tail correction should neither be too timid nor too strong (which would mean to destroy
the character of the bootstrapping method). We allow it to be just strong enough to fill
the gap between the largest and the second largest historical innovation. In reality, the
empirical values of these innovations are subject to wide stochastic variations. Just for
the sake of a reasonable definition of ηmin, we assume them to be regular quantiles here.
We locate the largest observation of Ii, called Imax, at a cumulative probability between

8A closer tail analysis shows that η should be based on a tail index infinitesimally larger than α,
otherwise the resulting tail index of x′ is infinitesimally less than α. This theoretical consideration does
not matter in practice.
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1 − 1/n and 1, in fact in the middle of this range, at 1 − 1/(2n). Assuming a Pareto
behavior at the tail around Imax with tail index α, we obtain the heuristic approximation

Imax ≈ (2 c n)
1
α (2.17)

where the constant c stays undetermined. Following the same logic, the second largest
value of Ii can be associated to the cumulative probability range between 1 − 2/n and
1 − 1/n. The probability value 1 − 1/n separates the expected domain of Imax from the
domain of the second largest value. The I value corresponding to this separating limit is

Ilimit ≈ (c n)
1
α (2.18)

By applying the tail correction of Equation 2.9, the largest observation can be reduced to
ηminImax, but not more. We identify this reduced value with the limit Ilimit:

ηmin Imax ≈ (c n)
1
α (2.19)

Equations 2.17 and 2.19 can be solved for ηmin. The unknown constant c cancels out. We
obtain the following recommended choice:

ηmin = 2−
1
α (2.20)

This result is independent of n and always < 1. For an α of 4, we obtain ηmin ≈ 0.841,
which is rather close to 1. Our definition of η is complete now and consists of Equa-
tions 2.10, 2.15, 2.16 and 2.20.

Eventually, the tail correction will be made for all resampled innovations, not only for one
variable Ii. When doing it for all innovations in a multi-dimensional setting, two issues
have to be addressed:

• Do we use the same tail index α for all economic variables? This is not necessary.
Detailed statistical studies of all variables may lead to specific α values. In a simpler
approach, we can use a general assumption such as taking α = 4 for all economic
variables.

• Do we use the same random variable u for all economic variables? In the case that we
also take the same α (which is not necessary, see above), this implies using the same
η for all variables. Using different u values for different variables adds some noise
and blurs the dependence in the tails. Using the same u or η leads to an emphasis
on the dependence in the extreme tails of all those variables that simultaneously
have extreme observations. Some findings [Dacorogna et al., 2001] indeed indicate
that dependencies between variables are larger in the tails than under less extreme
circumstances. In a parametric model, this effect could be modeled through copulas.
In our bootstrapping approach, we obtain a conservative, risk-conscious effect by
assuming the same u for all variables. At the same time, this reduces the number of
computations per simulation step.

Using the proposed method, we can successfully reconcile the bootstrapping method with
the requirement of realistic tail simulations. There is some room for human judgement.
If conservative users have reasons to believe that future behaviors will be more extreme
than historical behaviors, they can decrease the assumed tail index α.
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3 Bootstrapping of different economic variables

3.1 Choice of economic variables

The set of economic variables to be modeled depends on the availability of raw data and
the needs of the model user. There are interactions between economic variables (e.g. weak
mean reversion effects) that can only be modeled if a sufficiently large set of variables is
chosen.

The following economic variables are included in a reasonable implementation of an eco-
nomic scenario generator based on bootstrapping:

• Interest rates (IRs). These have different maturities. We have to deal with whole
yield curves. The interest rate model is the heart of any comprehensive economic
model.

• Foreign Exchange (FX) rates between the supported currencies of the generator.

• Equity indices. It is possible to include several indices per currency zone, e.g. dif-
ferent sector indices, real-estate fund indices or hedge fund indices. We prefer total-
return indices which include reinvested dividends, because these indices are directly
related to investment performance. However, the bootstrapping technique also works
for price indices.

• Inflation, in the form of a Consumer Price Index (CPI). It is possible to add other
indices, e.g. wage inflation or medical inflation.

• Gross Domestic Product (GDP).

The variables have different levels of volatility. We can roughly sort them, from low to
high volatility: real gross domestic product (GDP), consumer price index (CPI), interest
rates, inflation (which is a temporal derivative of the CPI), FX rates, equity indices.

All the variables are modeled for several major currency zones. Major currencies should
be included as well as those minor currencies that are relevant for an application. We are
using the currencies USD, EUR, JPY, GBP, CHF and AUD.

The lists of variables and currencies can be varied. One of the advantages of the boot-
strapping method is that adding or removing an economic variable from the model is
technically easy. As an example, we may include rating-dependent credit spreads as a new
variable to simulate the behavior of corporate bonds.

Other economic variables such as the values of certain bonds, including mortgage-backed
securities with their special behavior, can be derived from the simulated values of primary
variables such as interest rates in sufficiently good approximation.

In the following sections, the treatment of different variables is discussed in detail. For
each of them, the steps of the bootstrapping method as outlined in Sections 2.1 and 2.2
take different forms.

3.2 Interest rate forwards and futures

When modeling interest rates, we refer to “risk-free” market interest rates as extracted
from different, liquid financial instruments, which are issued by governments or institutions
of the highest ratings. Such interest rates, for different maturities, can be summarized in
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the form of a zero-coupon yield curve, or just yield curve, such as the “fair market” yield
curves composed by Bloomberg.

An interest rate (IR) as quoted in a yield curve has a complex dynamic behavior. Interest
rates for different maturities are available at the same time, with a complicated dependence
structure. Long-term interest rates have maturity periods of many years, over which the
economic conditions can be expected to change. The dynamic behavior of an IR with
constant maturity period is characterized by the fact that this period is continuously
moving over time. The IR thus refers to a moving target.

A way to disentangle the complex dynamics and dependencies of interest rates – both in
market practice and in modeling – is using forward interest rate or IR futures. Using IR
futures is the most consequent solution, as these future contracts always focus on the same
future time interval, for example from 15 March 2007 to 15 June 2007. For such a fixed,
well-defined period, the price-finding process in the market is more efficient than for large,
heterogeneous, moving time intervals. This fact helped to make IR futures the most liquid
financial instrument in the IR market for maturities from 3 months to about 2 years. We
shall see that IR futures have similar advantages9 in modeling, too. A major advantage
is arbitrage-free consistency. If all IR-based financial instruments are constructed from
the same forward IRs and thus the same market prices of IR futures, there is no way to
generate riskless profits, no matter how sophisticated the IR portfolio composition.

There is a rich literature on interest rate modeling; we use [James and Webber, 2000] as
a main reference. The basics of yield curve mathematics can be found in Section 3.1 of
that book. We transform the information contained in a yield curve and package it as
an equivalent set of forward interest rates. The yield curve consists of annualized interest
rates r(T ) as a function of the time interval to maturity, T . We use interest rates R in
logarithmic form,

R(T ) = log
(

1 +
r(T )
100%

)
(3.1)

This has the advantage of transforming the multiplicative compounding of interest rates
to simple additive compounding. Now we regard the forward interest rate %(T1, T2) for the
interval between the future time points T2 > T1. From elementary interest compounding
rules, we derive

T2 R(T2) = T1 R(T1) + (T2 − T1) %(T1, T2) (3.2)

which is additive due to the logarithmic transformation of Equation 3.1. We solve for
%(T1, T2):

%(T1, T2) =
T2 R(T2)− T1 R(T1)

T2 − T1
(3.3)

When starting from a yield curve, this equation serves as a definition and computation
formula for the empirical forward rates %(T1, T2), where T1 and T2 are neighboring matu-
rities of the yield curve. In practice, R(T1) and R(T2) are often interpolated values from a
more coarsely defined yield curve. We need a good yield curve interpolation formula, but
even an excellent formula may lead to small interpolation errors which are reinforced by
building the difference of Equation 3.3. This problem requires an additional smoothing
procedure later in the bootstrapping algorithm.

9There is also a disadvantage when using futures. IR futures markets require a collateral margin account
which leads to a small deviation between the values of forward rate agreements and futures, called the
convexity adjustment (see Section 5.5 of [James and Webber, 2000]). We assume that our basic curves
are “fair market” yield curves where the convexity adjustment is accounted for when they are constructed
from futures prices.
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The forward rate of an infinitesimally small maturity interval, from T to T +dT , is denoted
by %(T ). The logarithmic interest rate R(T ) can be written as

R(T ) =
1
T

∫ T

0
%(T ′) dT ′ (3.4)

In fact, R(T ) is the average forward IR as measured over the whole maturity axis from 0
to T .

At the end of a simulation step, the resulting set of forward interest rates can be re-
transformed to a yield curve, following the notion of Equation 3.4.

3.3 The innovations of forward interest rates

Setting up a satisfactory bootstrapping algorithm for forward interest rates is a complex
task. For the sake of completeness, we formulate in this section an intuitive direct approach
to resampling forward rates. However, this approach leads to problems, so we shall need
a more sophisticated method as described in Sections 3.4 and 3.5. At the end of Section
3.5, the steps for bootstrapping interest rates are summarized.

First we add the dimension of time t, using the regular time points of Equation 2.1.
We write %i(T ) for the forward rate at time ti, named %(T, T + ∆t) in Section 3.2. For
bootstrapping, we are only interested in rates with a forward period of the size of the
basic time step ∆t (= 3 months for quarterly steps) and a time to maturity T that is an
integer multiple of ∆t. For the corresponding spot rate with maturity ∆t, we write Ri

(= %i(0)). How do forward rates %i(T ) evolve over time? At first glance, we might consider
the behavior of the forward rate %i(T ) for a fixed maturity period T . However, the time
ti + T of the maturity would move in parallel with time ti. The value of %i(T ) would
therefore refer to changing time points with changing market conditions, which makes the
assessment difficult.

Instead, we focus on the forward IR for a fixed time interval in the future. This is exactly
the point of view of IR futures markets. The price of an IR future reflects the current
market consensus forecast %i(T ) of the underlying interest rate. When the futures contract
reaches maturity, at time ti + T , we can directly read the value Ri+T/∆t of this interest
rate from the yield curve. In other words, %i(T ) is the market’s forecast10 of Ri+T/∆t.
There is a stream of unanticipated news that leads to innovations in this forecast. At the
earlier time ti−1, the market forecast for Ri+T/∆t was %i−1(T + ∆t); at ti it is %i(T ). We
observe the following innovation from ti−1 to ti:

Ii[%(T )] = %i(T )− %i−1(T + ∆t) (3.5)

This is Equation 2.3 applied to forward interest rates. The innovation Ii[%(T )] can be
resampled and cumulated in our bootstrapping method. However, such a direct procedure
may lead to negative interest rates in the simulation and some other shortcomings as
shown below. We need a deeper analysis of %i(T ) and a more sophisticated method.

3.4 Mapping and the asymmetry of interest rates

Three problems arise when directly using Ii[%(T )] from Equation 3.5 for resampling:
10This statement will be qualified twice: first in Section 3.6, due to the asymmetry in interest rates,

then in Section 3.6, where a small mean-reverting correction term is added.
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1. Innovations can be negative as well as positive. When cumulating Ii[%(T )] values
from randomly resampled historical time points t, the resulting % values in some
scenarios may drift to a value less than zero after some simulation steps. Such a
behavior cannot be accepted as it violates an economic principle which states that
no increase of profit can be reached at zero risk. As soon as an IR (or forward IR)
is negative, a risk-free profit can be made by storing money physically instead of
investing it in a deposit. In historical data, we hardly find any negative interest
rates.

2. Interest rates are more volatile on a high level than on a low level close to zero.
The same innovation value Ii[%(T )] may produce high volatility in the context of
low % values and low volatility when resampled in a high-interest regime. This is
against the bootstrapping principle. A resampled innovation should always model
approximately the same force on the market, regardless of the current economic
condition.

3. The empirical forward rate %i(T ) as determined by the market is a forecast with
uncertainty rather than a simple quantity. Market participants know that the dis-
tribution is skewed: negative values of Ri+T/∆t are unlikely while the positive part
of the distribution is unlimited. Under normal conditions, they will thus agree on a
forward rate %i(T ) exceeding the expected median of Ri+T/∆t by an amount that is
related to the “term premium”.

All these problems are related to the asymmetry or skewness of interest rate distributions.
There is a mathematical method that solves all of them at the same time: non-linear
mapping of short-term interest rates Ri, for which we simply write R here. We define a
mapped variable z:

z = z(R) =
{ √

R + ε−√ε for R ≥ 0
A R for R < 0

(3.6)

with a small offset ε ≈ 0.01 and a large factor A ≈ 1000. The idea behind the mapping of
Equation 3.6 is to eliminate the asymmetry of interest rates. At time ti, the distribution
expected for the rate Ri+T/∆t at maturity time ti + T is asymmetric with a variance
depending on the value of %i(T ). In contrast, we define z in a way to fulfill two working
hypotheses: (1) the distribution of the z value expected for time ti + T is symmetric
around a mean z̄; (2) the variance σ2

z of z is independent of the z̄ level. If the parameters
of Equation 3.6 are chosen appropriately, both hypotheses should hold in sufficiently good
approximation. The working hypotheses are no firm claims, they are just used to motivate
and introduce our method of bootstrapping interest rates.

Historical interest rates are rarely negative. In simulations, the large parameter A will
cause a sort of soft boundary for interest rates below zero. This boundary is not as absolute
as in Section 6.4.3 of [James and Webber, 2000]. The function z(R) is continuous and has
a pronounced kink at R = z = 0, which is natural for a quantity for which the limit R =
0 plays an important role.

In the upper part (R ≥ 0), z approximately grows with the square root of R. This
is in agreement with the Cox-Ingersoll-Ross (CIR) model of interest rates (which is very
different in other aspects, see Section 3.3.2 of [James and Webber, 2000]). The CIR model
assumes the volatility of interest rates to be proportional to the square root of the current
IR value. Our mapping implies a similar behavior by assuming a fixed distribution of z
and translating the behavior of z back to the behavior of interest rates R. The square-root
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The solid curve shows the mapping of interest rates in the inverse form of Equation 3.7,
R = R(z). In the region of z̄ < 0, the curve is not horizontal, but has a tiny positive
slope of size 1/A. The dotted curves show forward interest rates % as functions of the
bootstrapping variable z̄, following Equation 3.10 and assuming different variances σ2

z of
z about z̄. The values σz = 0.05, 0.1 and 0.15 approximately represent three maturity
periods: 1/2 year, 2 years and the long-term limit. In the case of the solid line, the maturity
and the variance σ2

z are zero, z = z̄, and % stands for the spot interest rate R.

Figure 2: Interest rate mapping

law is modified by adding a constant ε to R in Equation 3.6. This makes the volatility
at very low interest rates less aberrant and more similar to that of higher IR levels, a
behavior we have observed for Japanese interest rates. The very low Japanese rates since
the late 1990s have given us some useful hints on how to model low levels realistically.
Our model based on Equation 3.6 is robust for a wide range of different IR levels, using
the term “robustness” as in Section 1.5.2 of [James and Webber, 2000] and relating to the
discussion of Section 6.4 of the same book.

The function z(R) is strictly monotonic and can thus be inverted:

R = R(z) =
{

(z +
√

ε)2 − ε for z ≥ 0
z
A for z < 0

(3.7)

A is a very large parameter, so R will be very close to zero even if z is distinctly negative,
as shown in Figure 2. This is a first reason why the simulation will never produce strongly
negative interest rates. If it ever produces negative IRs, these are so close to zero that
they can be rounded to zero in most practical applications.

Equation 3.6 relates the new variable z to the short-term interest rate R. In order to use
z in practice, we need to define its relation to observable forward rates %. This follows
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from the distribution function of z which we approximately assume to be normal11 with
mean z̄ and variance σ2

z :
zi+T/∆t ∼ N [z̄i(T ), σ2

z(T )] (3.8)

This ensures mathematical tractability. Now we express %i(T ) as the expectation value of
Ri+T/∆t. Taking the expectation value is justified if the values of simple IR-based portfolios
at time ti + T are linear functions of Ri+T/∆t and risk aversion effects are negligible. In
good approximation, this is the case for efficient markets with low to moderate rate levels,
where risk aversions of large lenders and borrowers are low, act in opposite directions and
approximately cancel out. Using Equation 3.8, the expectation value of Ri+T/∆t is

%i(T ) =
1√

2 π σz

∫ ∞

−∞
R(z) e

− (z−z̄i)
2

2 σ2
z dz (3.9)

where R(z) is defined by Equation 3.7. This means averaging R with a Gaussian weighting
kernel. The integral can be solved:

%i(T ) = %̄(z̄i, σ
2
z) = P

(
− z̄i

σz

) [ z̄i

A
− (z̄ +

√
ε)2 + ε− σ2

z

]
+ (3.10)

σz√
2 π

e
− z̄2

i
2 σ2

z

(
z̄i + 2

√
ε− 1

A

)
+ (z +

√
ε)2 − ε + σ2

z

where P (.) is the cumulative standard normal distribution function. Whenever a simu-
lation produces a value of z̄i(T ), Equation 3.10 is used to transform it to a forward rate
%i(T ) which then can be used to construct a simulated yield curve. Figure 2 shows for-
ward rates % as functions of z̄ for several values of σ2

z according to Equation 3.10. What
happens if z̄ is drifting in the negative region in a simulation? The corresponding % values
will stay close to zero for quite some time. This can be a real behavior, as we have seen
for Japanese rates over the last few years.

The variance σ2
z has to be known in order to fully establish the link between % and z̄. In

our model12, Our σ2
z only depends on T and is independent of the current z̄ level; this

was one of the goals when we introduced the variable z. When z is normally distributed
and innovations in z̄ are assumed to be unexpected (caused by news) and independent,
we can describe its dynamics in terms of a Brownian motion of z̄. At maturity (T =
0), σ2

z = 0, as no uncertainty on the outcome remains. The longer the maturity period,
the more unexpected news may increase the uncertainty. For a Brownian motion, we
obtain σ2

z ∝ T . However, σ does not grow to infinity with increasing T . Historical
interest rate plots over several decades or even centuries (e.g. Figures 1.1, 1.2 and 17.2
of [James and Webber, 2000]) show that interest rate levels hardly drift to very extreme
values (such as -0.5% or 40%) and never stay extreme for a long time. We rather observe
a weak mean reversion13 of IR levels that brings these levels back to a certain range in

11We cannot investigate z empirically here, because z̄ is not yet defined as a function of observable
forward rates.

12Again, we cannot use an empirical variance of z here, because we are still in the process of defining
z̄ as a function of observable variables. As soon as the model is complete, we can verify and calibrate it.
In the further course of the algorithm, we are using a GARCH model for the variance of innovations of
z̄, see Section 2.9. That sophisticated volatility model should not be confused with the simple σ2

z model
introduced here for the sole purpose of defining a suitable variable z̄.

13Mean reversion effects in the long run are explicitly discussed in Section 3.8. At the moment, we are
only interested in the behavior of σ2

z .
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the long run. Thus our σ2
z will not infinitely grow but rather converge to a finite value at

very long maturities T . The variance behaves as follows, approximately:

σ2
z = σ2

z(T ) = b
T

Trev + T
(3.11)

This is just one possible function to model σ2
z . The proposed function has two interesting

properties. First, we look at short maturities and obtain

σ2
z ≈ b

T

Trev
for T ¿ Trev (3.12)

This is indeed proportional to T . A reasonable choice of the constant Trev is around
3 years. Now we also look at very long maturities:

σ2
z ≈ b for T À Trev (3.13)

The constant b is the asymptotic value which defines the maximum volatility. Values
roughly around b ≈ 0.02 lead to realistic models.

3.5 The innovation of mapped forward interest rates

Now we are finally able to define z̄ as a function of the observed forward interest rate %.
The variable z̄ is the variable that satisfies Equation 3.10. This is the definition:

z̄i(T ) = Z[%i(T ), σ2
z(T )] (3.14)

where Z(., .) is the inverse function of %̄(., .), with

Z[%̄(z̄, σ2
z), σ

2
z ] = z̄ (3.15)

and σ2
z(T ) is the result of Equation 3.11. There is no analytical formula for the function

Z(., .), so we have to invert Equation 3.10 numerically. This is not a large problem as
%̄(z̄, .) and Z(%, .) are monotonic functions for a constant σ2

z . There is always exactly one
finite solution of each function, given a finite argument.

For our bootstrapping algorithm, we shall use z̄i(T ) from Equation 3.14 instead of the
unsuitable variable %i(T ). Now we can define the innovations in the sense of Equation 2.3:

Ii[z̄(T )] = z̄i(T )− z̄i−1(T + ∆t) (3.16)

where both z̄i(T ) and z̄i−1(T +∆t) result from Equation 3.14. This replaces the insufficient
definition of Equation 3.5. In Section 3.8, this definition of innovations will be slightly
modified as we correct the expectation z̄i−1(T + ∆t) of z̄i(T ) by a small mean-reversion
term. The historically determined innovations Ii[z̄(T )] will not necessarily be normally
distributed. We include the fat-tail correction of Section 2.10 and the GARCH correction of
Section 2.9 in simulations, which implies a further deviation from the normal distribution.
The empirical distribution of zi+T/∆t − z̄i(T ) may also deviate from a theoretical normal
distribution as assumed by Equation 3.8. The deviations should however be limited, in
general and also under specific market conditions. This is a guideline when calibrating the
four parameters of the z̄ definition: ε, A, Trev and b. Another useful study is to test if the
historical innovations Ii[z̄(T )] are serially independent, as they should be for resampling.

The bootstrapping of interest rates is rather complex. This is why we summarize the
steps in the following list, which is just a specific implementation of the general list of
Section 2.2:
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These stylized yield curves are based on fixed, constant values of the mapped interest rate
z̄ and represent standard forms. Simulated yield curves resulting from the bootstrapping
method fluctuate around these standard forms and exhibit a wider variety of different forms.

Figure 3: Drift-free yield curves based on constant z̄

• Compute all historical forward rates %i(T ) for a wide range of maturities T from 0 to
30 years (or more) as integer multiples of the basic time step ∆t, using Equation 3.3
with an interpolation formula for interest rates R on the yield curve.

• Map all forward rates %i(T ) to z̄i(T ) by using Equations 3.14 and 3.11.

• Compute all innovations Ii[z̄(T )] through Equation 3.16, including the small mean-
reverting correction of Section 2.7.

• Apply detrending and a GARCH analysis of innovations as specified in Sections 2.6
and 2.9.

A simulation step, which can be repeated arbitrarily often, is done as follows:

• Resample the innovations of a randomly selected historical index i, apply standard
tail and GARCH corrections.

• Add the resampled innovations Ii[z̄(T )] to z̄j−1(T +∆t) (or a more complex expecta-
tion of z̄j(T ), including the small mean-reverting correction of Section 3.8) to obtain
z̄j(T ).

• Convert all z̄j(T ) to the simulated forward rates %j(T ), using Equation 3.10.

• Construct the simulated yield curve by averaging the obtained forward rates %j(T )
in the sense of Equation 3.4.
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3.6 Interest rate mapping and the form of the yield curve

In this small section, we demonstrate that our asymmetric mapping of forward interest
rates is closely related with the typical form of yield curves.

Let us imagine a static yield curve, free of drift and surprise, with constant values of z =
z̄ over the whole maturity axis, unchanged over time. The corresponding yield curve is
not flat, in spite of the constant value of z̄. This is due to the variance σ2

z which grows
with increasing maturity T , following Equation 3.11. We can compute the forward rates
as functions of T by inserting that equation in Equation 3.10 and average them to build
the conventional yield curve of interest rates r (= [exp(R)− 1] · 100%) as functions of T .
This has been made in Figure 3.

The yield curves of Figure 3 indeed look familiar, they have a “standard” or “classical”
form, see e.g. [James and Webber, 2000], Section 1.3.1. A curve starts at a low value for
very short maturities, has a positive slope, becomes flatter with increasing maturity and
reaches an asymptotic value at long maturities T À Trev. Values at longer maturities
exceed the short rates by a positive amount which can be called the “term premium”.
The curves with z̄ < 0 look slightly different with an almost horizontal tangent at T = 0.
This is similar to the current form of the Japanese yield curve.

The fact that the drift-free yield curves have familiar forms confirms the suitability of
our interest mapping. In reality and in our simulations, z̄ is not constant across the
maturity axis, and its values are affected by varying innovations, so the resulting yield
curves will not be drift-free. Real yield curves make complex movements centered around
the normal forms of Figure 3 and exhibit many different forms, as in Figures 1.3 and 1.4 of
[James and Webber, 2000]: sometimes with steeper slopes, sometimes flatter, sometimes
with inverted (negative) slopes, sometimes with humped forms. The variety of simulated
yield curve forms will be shown in Section 4.2, Figure 4.

3.7 Processing inflation

Historical values of the Consumer Price Index (CPI) are the basis of our inflation pro-
cessing. The CPI is the nominal value of a representative basket of consumer goods and
results from rather sophisticated statistical methods. There is a debate on these methods,
and there are alternative price indices that might be used instead of or in addition to the
CPI.

We take logarithms of the CPI and define inflation as a first difference:

x′′i [Infl ] = log CPI i − log CPI i−1 (3.17)

For quarterly data, we obtain quarterly inflation figures that are not annualized. Annual-
ized inflation in the usual sense can be computed as [exp(4x′′i [Infl ])− 1] · 100%.

Inflation exhibits serial correlation and behaves more like Brownian motion than like
white noise. It is highly correlated with the IR level. Therefore, we resample innovations
of inflation, which are correlated with IR innovations, rather than innovations of the CPI.

Inflation figures x′′i [Infl ] as computed by Equation 3.17 are not yet suitable for bootstrap-
ping. Inflation exhibits seasonality: values in winter are typically higher than in summer.
We should not resample winter innovations to simulate summers directly. Our solution
is to deseasonalize inflation values. A simple way of deseasonalizing quarterly inflation
figures is to subtract the mean of all historical inflation figures that occurred in the same
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quarter, for example the second quarter of a year. Let us denote the deseasonalized infla-
tion by x′i[Infl ].

Inflation is a difference in Equation 3.17 and is highly sensitive against small changes in the
underlying CPI data14. Inflation innovations are like second differences of log(CPI) and
are thus more affected by small changes than inflation itself. In order to prevent spurious
volatility of these innovations due to noise, we need some smoothing of the deseasonalized
x′i[Infl ] values. An obvious way of doing this is to take a short-term moving average of
x′i[Infl ] in the sense of Equation 2.6:

xi[Infl ] = EMA[x′i[Infl ]; ∆tsmooth] (3.18)

We choose a moderately short smoothing time constant ∆tsmooth. There is a trade-off: a
large ∆tsmooth will cause better smoothing, but then xi[Infl ] will no longer be up to date.

The innovations of the deseasonalized and smoothed inflation are computed by Equa-
tion 2.3. This requires a formula for the expectation of inflation. The formula is given in
Section 3.8, where the interaction of inflation and interest rates is described.

The bootstrapping algorithm leads to simulated values of the deseasonalized and smoothed
inflation x[Infl ]. We have to reseasonalize x[Infl ] to obtain simulated inflation values
x′′[Infl ] and cumulate these results to obtain simulated values of log(CPI). Undoing the
smoothing of Equation 3.18 is also possible by adding some artificial noise, but this is
probably useless in practice.

3.8 Interaction and expectation of interest rates and inflation

In the long run, neither interest rates nor inflation are freely drifting out of their usual
range. This fact is implemented in the form of weak mean-reverting forces. We use
constant target values, where high precision is not required, as the mean reversion is a
very weak force. For inflation, we choose a target xtarget[Infl ], for mapped forward interest
rates z̄ a target z̄target, both based on long-term historical experience.

Empirical research shows that a slightly stronger force holds IR levels and inflation to-
gether. In other words, real interest rates (≈ IR minus inflation) have a lower volatility
and a stronger mean reversion than IRs or inflation alone. This effect affects IRs of all
maturities, but we choose a a rather short-term reference maturity T = m∆t with a low
integer number m to model it. We define an adjusted forward IR,

%adj,i = %i(m∆t)− xi[Infl ] (3.19)

where xi[Infl ] results from Equation 3.18. This adjusted rate is similar to a real interest
rate, except for the timing: %i(m∆t) refers to a time interval after ti whereas xi[Infl ] is
the inflation of the interval before ti. It has a sample mean %̄adj which we estimate from
historical data and possibly modify on the basis of expert opinion or a specialized study.
At time ti−i, the adjusted rate %adj,i−1 probably deviates from the mean %̄adj, so we model
a force reverting to that mean. We obtain a corresponding target for inflation:

x′i[Infl ] = xi[Infl ]− µ [%̄adj − %adj,i] (3.20)

with a positive constant µ ≈ 0.4 which is discussed below. The target for %i(m∆t) is

%′i(m∆t) = %i(m∆t) + (1− µ) [%̄adj − %adj,i] (3.21)
14Due to the complex computation procedure with debatable assumptions, CPI figures have natural

uncertainties, are computed with a delay and may be modified by posterior corrections. Sometimes, we
are forced to extrapolate the most recent CPI value in order to have a complete set of historical data.
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where 1 − µ ≈ 0.6 is also positive. The mean-reverting force due to the interaction of
interest rates and inflation acts on both variables, but there are empirical indications for
a slight lead-lag effect. Inflation affects IR levels slightly more than the other way around.
This can be modeled by choosing µ < 1 − µ. The difference of the two target values of
Equations 3.21 and 3.20 is the mean adjusted rate %̄adj, as it should be.

For inflation, we arrive at the following formula for the expectation of xi[Infl ]:

Ei−1[Infl i] = xi−1[Infl ] + εinfl {xtarget[Infl ]− xi−1[Infl ]}+ εadj {x′i−1[Infl ]− xi−1[Infl ]}
(3.22)

For mapped forward interest rates, we obtain the following modified version of the expec-
tation of z̄i(T ):

Ei−1[z̄i(T )] = z̄i−1(T + ∆t) + εIR {z̄target − z̄i−1(T + ∆t)} (3.23)

+εadj

√
m∆t

T
{Z(%′i−1(m∆t), σ2

z(m∆t))− z̄i−1(T + ∆t)}

where the function Z(., .) of Equation 3.15 is used to convert a mean-reversion target from
an unmapped rate to mapped one. The small factor εadj determines the mean-reversion
effect due to the adjusted IR and is slightly larger than the tiny constants εinfl and εIR.
The factor

√
m∆t/T is used to modify the corrections for maturities T other than m∆t.

The choice of this function as well as the diverse ε parameters and µ should be made
on the basis of a study of the behavior of IRs and inflation. The resulting expectation
Ei−1[z̄i(T )] is used to compute the innovations of mapped forward interest rates:

Ii[z̄(T )] = z̄i(T )−Ei−1[z̄i(T )] (3.24)

This is the corrected version of Equation 3.16 to be used in the bootstrapping algorithm.

3.9 Foreign exchange rates

Foreign exchange (FX) rates can be treated in a simpler way than interest rates. We take
the logarithm as our mapping function in the sense of Equation 2.2. An FX rate such
as EUR/USD is defined as the value of a unit of an exchanged currency (“exch”, here
EUR) expressed in another currency (“expr”, here USD). We take the logarithm as our
mapping function in the sense of Equation 2.2, which is the only function that leads to an
equivalent treatment of inverted FX rates (USD/EUR in our example):

xi[FX ] = log FX i (3.25)

The market forecast of a spot FX rate xi[FX] at time ti is the forward FX rate at time
ti−1. A forward FX rate depends on the difference of interest rates of the two involved
currency zones, see Equation 2.2 of [Dacorogna et al., 2001]:

E′
i−1[FX i] = xi−1[FX ] + (Rexpr,i−1 −Rexch,i−1)

∆t

1 year
(3.26)

where Ri−1 is a logarithmic interest rate at time ti−i for the maturity period ∆t as defined
by Equation 3.1, for the exchanged currency (”exch”) and the currency in which the FX
rate is expressed (”expr”). Here we express all FX rates in USD, so the index ”expr”
always refers to the US market. Equation 3.26 is also known as covered interest parity.

There is no static mean reversion for FX rates, but there is purchasing-power parity (PPP).
If the values of consumer good baskets (see section 3.7) in two different currency zones
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strongly deviate, there is a reverting market force which should be added to the forecast
E′

i−1[FX i]. This force is weak (see the article by Cheung in [Chan et al., 2000]) and only
matters for long-term simulations. PPP can be modeled as a force towards a target level
of the FX rate:

xppp,i = EMAi[x[FX ]− log CPI expr + log CPI exch;∆tppp] + log CPI expr,i − log CPI exch,i

(3.27)
where the exponential moving average of Equation 2.6 is used. PPP is a slow effect, and
the time constant ∆tppp should be long enough to cover more than one PPP cycle (many
years). An extremely large ∆tppp would not be appropriate, because the consumer price
indices (CPI), as values of baskets of varying composition, may not be entirely consistent
in two countries over many decades.

The technical forward rate E′
i−1[FX i] is now modified by a weak force towards xppp,i−1

which is proportional to the distance between the two values:

Ei−1[FX i] = E′
i−1[FX i] + εppp [xppp,i−1 −E′

i−1[FX i]] (3.28)

The force is weak, so εppp is a small constant. The innovations of FX rates can now be
computed by Equation 2.3, using the expectation Ei−1[FX i].

3.10 GDP

The modeling of the Gross Domestic Product (GDP) is rather simple. We use real (=
deflated or inflation-corrected) GDP figures15 rather than the nominal GDP, as this is less
volatile. There are reliable, yearly OECD data that can be used to verify the quarterly
data. The mapped real GDP is logarithmic:

xi[GDP ] = log GDP i (3.29)

The volatility of the real GDP is modest as compared to the fluctuations of other variables
such as equity indices or FX rates. Thus, normal applications (with no particular emphasis
on GDP) do not need a sophisticated model for the market expectation of GDP growth.
We simply take the sample mean of historical growth:

Ei−1[GDP i] = xi−1 +
1
n

n∑

j=1

xj [GDP ] (3.30)

This is our expectation of xi made at time ti−1 for any i, in all historical and simulated
cases, independent of the market situation. This may be improved if an elaborated GDP
model is available. Following Equation 2.3, the GDP innovation is

Ii[GDP ] = xi[GDP ]−Ei−1[GDP i] (3.31)

The further steps of the algorithm follow the standard procedure as described in Sec-
tions 2.1 and 2.2. If we need a nominal GDP figure historically or in a simulation, we can
always compute it as

NominalGDP = c GDP · CPI = c ex[GDP ]+x[CPI ] (3.32)

where a constant c determines the basis of the nominal GDP.
15Due to the complex computation procedure, GDP figures are computed with a delay and may be

modified by posterior corrections. Sometimes, we are forced to extrapolate the most recent GDP value in
order to have a complete set of historical data.
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3.11 Equity indices

Many applications focus on the performance of equity investments. Thus we prefer mod-
eling total-return (or “gross”) indices that are based on the assumption that dividends
are immediately and fully reinvested. An obvious choice is to take standard indices such
as the MSCI gross indices which are available for all major currency zones. It is possible
to have several equity indices per currency zone in the same scenario generator. We can
technically treat price indices (excluding dividends), sector indices, hedge-fund indices or
real-estate indices like the main total-return index.

Equity indices have a high volatility which may lead to extreme drifts in long-term sim-
ulations based on pure resampling. Is there a mean-reverting force to prevent this? In
the long run, the “stock exchange economy” cannot arbitrarily drift away from the “real
economy” as expressed by the GDP. Indeed, the “equity-to-GDP ratio” does not show a
large trend over time. In the 1920s, before the “Black Friday”, the ratio of the Standard
& Poors 500 index to the US GDP reached similar levels as in the late 1990s. This notion
leads us to choosing the equity-GDP ratio for resampling. The mapping is

xi[Equity ] = log EquityIndex i − (log GDP i + log CPI i) (3.33)

The equity index has no inflation correction. Therefore we need the nominal GDP for our
equity-GDP ratio, using the CPI as in Equation 3.32.

Now we compute the market expectation16 of xi[Equity ]. The simplest model is tak-
ing the mean growth within the historical sample as a constant expectation, similar to
Equation 3.34:

Ei−1[Equity i] = xi−1[Equity ] +
1
n

n∑

j=1

xj [Equity ] (3.34)

A first refinement is to add a bias to this market expectation of growth. If an external
model gives rise to a certain assumption on future growth, this can be incorporated in the
formulation of the market expectation. We are doing this in our scenario generator. For
long-term simulations, we need a mean reversion of our equity-GDP ratio. The value of
xi[Equity ] slowly reverts to a static long-term mean (a good assumption for price indices) or
to a slow growth path (for total-return indices). This mean reversion can be implemented
as in the case of FX rates, similar to Equation 3.28.

Equity returns have been found to have a negatively skewed distribution. Rare crashes
imply few strongly negative returns, whereas long boom phases generate many moderately
positive returns. This skewness of historical stock returns will be reflected by the resampled
innovations and thus maintained by the bootstrapping method, at least when looking at
one-step returns, i.e. quarterly returns in our implementation. The historical correlation
between stock and bond returns is also respected. Returns of long-term bond portfolios
are mainly driven by changes in IR levels (rather than the IR levels themselves). Since IR
innovations values are resampled along with equity index innovations, a realistic correlation
between bond and equity returns will be reproduced by the simulation. This is important
for the application to asset allocation, where most portfolios contain bonds as well as
equity.

16We do not use market-implied forecasts extracted from market prices of derivatives because these
are generally not available for the time horizons we are interested in (especially in the case of long-term
simulations).
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As an example for simulation results of the Economic Scenario Generator (ESG), US yield
curves are shown. The bold, solid US yield curve of the end of 2002 marks the starting
point of the simulation. The thin yield curves are simulated for the end of 2003, based
on the information set available at the end of 2002, representing 9 different simulation
scenarios. The bold, dotted curve is the yield curve actually observed at the end of 2003.
We can compare this curve to the set of simulated curves. Such comparisons are a basis
for backtesting. In usual simulation studies and in backtests, we use thousands of scenarios
rather than just 9 of them.

Figure 4: Simulation of US yield curves

4 Results and testing

4.1 Calibration

As a non-parametric method, the pure bootstrapping algorithm has a natural advantage
over parametric models: there is no need for any calibration. Historical behaviors are
reproduced in the simulated future. If past behaviors provide a reliable guidance for
future behaviors (which is not always an accurate assumption), the simulated results will
automatically be in line.

On a subordinated level, our refined bootstrapping method has some parametric elements
such as some mapping formulas, GARCH and small corrections of market expectations,
mainly the weak mean-reversion effects of some variables. The models of these refine-
ments rely on a few parameters that were calibrated by some special studies during the
development phase. Some calibrations are done as a preparatory step at the beginning of
each new scenario generation, based on the same historical data that are also used by the
bootstrapping method. This is the case for the GARCH calibrations as presented in the
Appendix 6.

At the end of our development process, some experienced finance specialists looked at
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many graphs with simulation results. Given the complexity of setting up a comprehensive
set of calibration and testing procedures, the value of judgments by human experts should
not be underestimated.

Although a calibration procedure may lead to an in-sample quality measure of a model, it
does not provide an independent, reliable quality test. At the end, an out-of-sample test
is necessary to finally assess a scenario generator and its results.

4.2 Example of results: yield curve simulation

An economic scenario generator produces a wealth of results: many complete scenarios for
many economic variables, simulated over many time steps. In Figure 4, we show a tiny
part of these results for the example of simulated US yield curves. The historical curve
for the end of 2002 marks the starting point of the simulations. The 9 simulated curves
are for the end of 2003, based on four quarterly simulation steps. Each curve belongs
to a complete, consistent scenario for all economic variables, including interest rates with
times to maturity up to 30 years, yield curves for all currencies and many other variables.
Although the simulation period is just one year, we see a variety of yield curve forms on
different levels. Simulation 3 has an inversion for maturities up to 2 years, simulation 6
has a more humped form.

The true US yield curve at the end of 2003 is also plotted in Figure 4 as a bold, dotted
curve. It lies slightly above the curve of 2002. The simulated curves show a wider range of
deviations. This indicates a considerable IR risk at start of 2003; the actual move in 2003
was rather small in comparison. The overall IR level increased, which is in line with the
majority of simulated curves. The very low short rate at the end of 2003 is below most of
the simulated values, indicating a particular low-rate policy of the US Federal Reserve.

4.3 Out-of-sample backtesting

Our quality testing method is backtesting, see e.g. [Christoffersen, 2003]. Comparisons
between historical variable values and their prior scenario forecasts, as in Figure 4, are
a basis for backtesting. In Chapter 8 of [Christoffersen, 2003], backtests are proposed
for three different types of forecasts: (1) point forecasts for the value of a variable, (2)
probability range forecasts (e.g. the value at risk (VaR) which is the projected quantile at
a certain probability, often 1%) and (3) forecasts of the complete probability distribution.
Such distribution forecasts are the most comprehensive type as they imply range forecasts
and point forecasts (using the mean or median of the distribution, for example).

Scenarios produced by a scenario generator are no forecasts in the usual sense. In typical
studies, we produce many thousands of scenarios. Each of these scenarios has its own
forecast value for a certain variable at a certain future time. All the scenario values
together define an empirical distribution for the variable. Hence we have distribution
forecasts rather than just point or range forecasts.

Our task is comprehensive out-of-sample backtesting of distribution forecasts. Even
the limited task of testing specialized models such as an interest rate model is diffi-
cult, as discussed in Section 1.5.2 of [James and Webber, 2000]. Here we propose a
methodology based on the Probability Integral Transform (PIT). [Diebold et al., 1998,
Diebold et al., 1999] have introduced the PIT (also known as Lévy or Rosenblatt Trans-
form) as a method for testing distribution forecasts in finance. The whole test is described
in detail in [Blum, 2004]. This is a summary of the steps:
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1. We define an in-sample period for building the bootstrapping method with its in-
novation vectors and parameter calibrations (e.g. for the GARCH model). The
out-of-sample period starts at the end of the in-sample period. Starting at each
regular time point out-of-sample, we run a large number of simulation scenarios and
observe the scenario forecasts17 for each of the many variables of the model.

2. The scenario forecasts of a variable x at time ti, sorted in ascending order, con-
stitute an empirical distribution forecast. In the asymptotic limit of very many
scenarios, this distribution converges to the marginal cumulative probability distri-
bution Φi(x) = P (xi < x|Ii−m) that we want to test, conditional to the information
Ii−m available up to the time ti−m of the simulation start. In the case of a one-step
forecast, m = 1. The empirical distribution Φ̂i(x) slightly deviates from this. The
discrepancy Φi(x)−Φ̂i(x) can be quantified by using a formula given by [Blum, 2004].
Its absolute value is less than 0.019 with a confidence of 95% when choosing 5000
scenarios, for any value of x and any tested variable. This is accurate enough, given
the limitations due to the rather low number of historical observations.

3. For a set of out-of-sample time points ti, we now have a distribution forecast Φ̂i(x) as
well as a historically observed value xi. The cumulative distribution Φ̂i(x) is used for
the following Probability Integral Transform (PIT): Zi = Φ̂i(xi). The probabilities
Zi, which are confined between 0 and 1 by definition, are used in the further course of
the test. A proposition proved by [Diebold et al., 1998] states that the Zi are i.i.d.
with a uniform distribution U(0, 1) if the conditional distribution forecast Φi(x)
coincides with the true process by which the historical data have been generated.
The proof is extended to the multivariate case in [Diebold et al., 1999]. If the series
of Zi significantly deviates from either the U(0, 1) distribution or the i.i.d. property,
the model does not pass the out-of-sample test.

Testing the hypotheses of U(0, 1) and i.i.d. can now be done by using any suitable method
from statistics. We pursue two approaches here:

1. An approach which we call non-parametric is suggested by [Diebold et al., 1998,
Diebold et al., 1999]. It consists of considering histograms in order to detect devia-
tions from the U(0, 1) property, and correlograms of the Zi’s and their low integer
powers to detect deviations from the independence property. We complement these
graphical evaluations by the usual χ2 test for uniformity, and by Kendall-Stuart
bounds for the significance of the autocorrelations.

2. [Chen and Fan, 2004] suggest another approach, which we call parametric. It relies
on the assumption that the Zi’s form a Markov chain with stationary distribution
G∗(.) and copula C∗(., .) for the dependence structure of (Zi, Zi−1). One can then
select some model for G∗(.) which contains U(0, 1) as a special case, and some model
for C∗(., .) which contains the independence copula as a special case. The joint null
hypothesis of independence and uniformity can then be tested by standard likelihood
ratio or Wald procedures. In this study, we specifically use the Farlie-Gumbel-
Morgenstern copula as a model for dependence structure and the β-distribution as a
model for the marginal distribution. In a semi-parametric variant of this procedure,

17Our main test is for one-step forecasts where the simulation is for one time step (a quarter in our case).
Multi-step forecasts can be tested using the same methodology, but the number of available independent
observations with non-overlapping forecast intervals will be distinctly smaller, given the same out-of-sample
period.
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The frequency of empirically found probabilities Zi (results of the Probability Integral
Transform, PIT) is plotted. A model is rejected if such a histogram significantly deviates
from a uniform distribution, corresponding to a low p-value of the χ2 test (p < 0.05). The
left histogram is based on all economic variables, whereas some short and medium term
interest rates are excluded from the computation of the other histograms. The dashed
lines indicate a 95% confidence range for the individual frequencies.

Figure 5: Out-of-sample backtesting: uniform distribution of PIT-transformed variables

no model for G∗(.) is chosen, but the empirical distribution of the Zi’s is plugged in
instead. This allows to test for the isolated hypothesis of independence, irrespective
of the marginal distribution.

A rejection by one of these tests does not necessarily mean that a model is valueless. It
means that the model does not live up to the full predictive potential indicated by the data
or that there is a structural difference between the in-sample and out-of-sample periods.

When applying the tests to our ESG results, the limited number of historical observations
poses a problem. For a few economic variables, we have decades of historical data, but we
are restricted to the period after September 1993 when constructing our comprehensive
ESG with many variables and many currencies. This leaves very little space for defining a
reasonable out-of-sample period. In order to increase this space, we cut the in-sample pe-
riod (which normally covers 10 years) to 8 years, from end of September 1993 to September
2001. We obtain an ESG with only 32 quarterly innovations, which implies a less stable
behavior than the production version with 40 innovations. This reduced ESG is tested
out of sample.

The out-of-sample period starts at the end of September 2001 and ends in June 2004, which
allows for testing 11 one-step forecasts, i.e. 11 observations of PIT-transformed values Zi

per economic variable. This is a low number for any statistical test. However, we obtain
an sizable total number of Zi observation if we consider all the economic variables for
all the currencies. Our tested variables are equity index (MSCI gross), FX rate18against
the USD, CPI and GDP. We add four interest rates to this set of variables, namely the
extremes on our maturity scale, the 3-month and the 30-year rates, and two intermediate
rates with times to maturity of 2 years and 10 years. Thus we obtain 8 variables for each
of the 6 currency zones (USD, EUR, JPY, GBP, CHF, AUD). We link the small Zi series
of all variables together to obtain a set of 528 (= 11 · 8 · 6) observations of Zi.

18For the currency USD, choosing the FX rate against itself makes no sense. Instead, we add a US
hedge-fund index to the US-based variables to be tested.
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The χ2 test of the 528 Zi observations and the underlying histogram is shown on the left-
hand side of Figure 5. The p-value of 0.0607 exceeds the confidence limit of 0.05. The ESG
forecasts are not rejected, but the low p-value does not instill wholehearted confidence. An
autocorrelation analysis reveals a marginally significant first-lag autocorrelation between
the Zi. The semi-parametric evaluation has a high p-value and does not reject the ESG
forecasts. The likelihood ratio test of the parametric evaluation, which is the most powerful
test, significantly rejects the null hypothesis of i.i.d. U(0, 1) with a p-value of only 0.00021,
which is far below a confidence limit of 0.05.

We have to accept the fact that the ESG forecasting method is rejected by our most
powerful test. Fortunately, the testing methods also inform us on what exactly is rejected,
and why. We need a closer look at the investigated out-of-sample period. In some respects,
our out-of-sample period is characterized by a fundamental difference from the in-sample
period. It covers an economic situation after a marked decline of equity markets. The
worsening economic situation caused low demand, low inflation and low interest rates.
Most importantly, the US Federal Reserve chose a distinct policy which kept short-term
interest rates low and the US yield curve artificially steep. This policy is specific to the
years 2001 -2004 and distinctly different from the policies of the in-sample period and the
1980s. It led to low values of low and medium term interest rates, much lower than the
market forecasts based on forward interest rates indicated19. The example of Figure 4 can
be seen as an illustration of the unexpectedly low short-term interest rates caused by this
policy. In the first histogram of Figure 5, the low rates materialize in the significantly high
frequency of Zi values in the leftmost bar.

Our hypothesis is that the unusual low-interest policy is the reason for the rejection of
the forecasts. We test this hypothesis by excluding the 3-month, 2-year and 10-year
interest rates, so the 30-year rate is the only interest rate in the test. In an analysis called
study B, we do this only for the currencies USD (directly affected by the US Feral Reserve
policy) and EUR and CHF, where the central banks followed similar, if less pronounced
policies. Thus the currencies JPY, GBP and AUD still have a full coverage of interest
rates. Study B has a sample of 429 Zi observations. In study C, we exclude short and
medium term interest rates for all currencies and arrive at a sample of 330 observations. In
both studies, B and C, the ESG forecasts are no longer rejected by any test. The χ2 tests
have p-values of 0.1235 (B) and 0.2875 (C), both on the good side of the confidence limit of
0.05, see the middle and right histograms of Figure 5. The strongest test, the parametric
evaluation, confirms this with p-values of 0.2313 (B) and 0.6017 (C). We conclude that
the ESG forecasts are rejected only in the case of low and medium term interest rates of
USD, EUR and CHF. Thus we report a qualified success of our ESG forecasts.

Is there a way to improve the method in order to give optimal forecasts for all variables?
This is only possible if factors such as the policy of the US Federal Reserve or, more gen-
erally, economic cycles can be predicted. Neither the bootstrapping method nor any of its
algorithmic modifications are able to do this, to our knowledge. Long data samples cover-
ing many decades and many economic cycles would help, but we are restricted to shorter
samples for most of the modeled economic variables. Shifts in policies, economic cycles
and market structures make future developments less predictable. In our bootstrapping
method, a way to accommodate this would be to augment the resampled innovations by
a factor. Technically, this can be done the same way as the tail correction of Section 2.10,
using Equation 2.9 with an increased “cycle uncertainty multiplier”.

19Some traders made a bet on the persistence of this anomaly and made profitable “carry trades”. They
financed long-term deposits by rolling short-term debts forward.
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Although the tests based on PIT are powerful, they cannot test all possible aspects of
model quality. Several competing models or simulation methods might pass a PIT-based
test at the same time, but one model might still be better than another20. Some properties
stay untested in our PIT-based method, most notably the dependence between returns of
different variables in the simulated scenarios. We have added a study comparing correla-
tions of simulated returns to those of actual returns, with good results. This is expected
for a bootstrapping method which preserves dependencies in the innovations by design.

5 Conclusion

Refined bootstrapping is our method to generate realistic scenarios of the future behav-
ior of the global economy as represented by a set of key variables. We have presented
many details that need to be observed in order to arrive at a realistic behavior of many
different economic variables such as interest rates, foreign exchange rates, equity indices,
inflation and GDP for several currency zones. A careful treatment of these modeling de-
tails, which include some subordinated parametric elements, is vital for the success of the
bootstrapping method.

The following advantages of the bootstrapping method have been found:

• wide coverage of economic variables, modularity and flexibility when extending the
set of covered economic variables;

• automatic preservation of distributions and simultaneous dependencies between the
innovations of different economic variables;

• exact reproduction of initial conditions at simulation start (no fitting of a model
needed for that);

• feasibility of long-term simulations (over decades), due to mean-reversion elements
in expectations of variables;

• natural transition from the short-term behavior at start to the long-term behavior;

• easy ways to introduce modifications based on special studies or expert opinion (e.g.
assuming expected equity returns lower than the mean of the historical sample);

• good coverage of extreme risks, relying on the tail correction of Section 2.10 and
large numbers of simulations;

• no large calibration problems because the method is essentially non-parametric.

Out-of-sample tests have confirmed the validity of the approach. A certain problem arises
from the behavior of short and medium term interest rates of some currencies, reflecting
an unusual low-interest policy of central banks during the out-of-sample period. We have
discussed this behavior and possible solutions.

The final goal of our project has always been the application of the method in practice.
We have implemented the refined bootstrapping method in our Economic Scenario Gen-
erator (ESG). The results are regularly applied to Asset-Liability Management (ALM)

20Example: Some variables might follow a complex nonlinear process that is captured by model A,
whereas model B sees the same behavior as random noise. While none of the models is rejected in a
PIT-based test, the nonlinear model A is “better” as it predicts narrower distributions.
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studies that are part of the strategic decision making of the analyzed companies. We
plan to include corporate yield spreads and possibly other economic quantities to the set
of bootstrapped variables in order to add new asset classes such as corporate bonds to
ESG-based asset allocation studies.

6 Appendix: Robust calibration of a GARCH process

In Equation 2.8, a GARCH(1,1) process is defined. In our application, we need an espe-
cially robust calibration procedure. Following [Zumbach, 2000], we do not directly cali-
brate the three parameters α0, α1 and β1. We rather reformulate the equation for the
conditional variance as follows:

σ2
1 = σ2 + µcorr [µema σ2

i−1 + (1− µema r2
i−1)− σ2] , (6.1)

µcorr = α1 + β1 , µema =
β1

µcorr
, σ2 =

α0

1− µcorr

The parameters µcorr and µema have values between 0 and (less than) 1. While µcorr

describes the decay of the memory in conditional volatility, µema determines the depth of
averaging in the formation of the volatility memory.

The unconditional variance σ2 is no longer regarded as a model parameter to be optimized
through maximum likelihood. Instead, we directly take the empirical variance of the raw
innovations as the “moment estimator” for σ2. Thus we make sure that the uncondi-
tional variance of the process equals the empirical variance even if the GARCH process is
misspecified or finite-sample problems lead to difficult behavior.

The two parameters µcorr and µema remain to be calibrated. The resulting GARCH(1,1)
embeds two other processes21: ARCH(1) if µema = 0 and a Gaussian random walk (Brow-
nian motion, white noise) if µcorr = 0. In the latter case, the value of µema becomes
irrelevant.

The GARCH equation is evaluated iteratively at each time series point with index i.
Therefore all µ parameters correspond to an exponential decay with time constant τ :

µcorr = e−1/τcorr , µema = e−1/τema , τcorr = − 1
log µcorr

, τema = − 1
log µema

(6.2)

where the τ values are in units of the time step of the time series.

If the maximum-likelihood procedure leads to a µ very close to 1, the time constants τ
may reach extremely high values. Reason demands that we do not choose a time constant
exceeding the sample size. This is why our robust method sets an upper limit for τ :

τmax = f n (6.3)

where n is size of the sample used for fitting and f a constant factor; we usually take f =
0.5. If we use a 10-year sample, for example, we do not accept decay models with time
constants longer than 5 years. At the limit, there are only two 5-year volatility clusters
within the 10-year sample, at maximum. Two observations are not a large amount in
statistics. This fact may lead to an intuitive understanding of why we are not willing

21[Zumbach, 2000] transforms µcorr and µema to other fitting variables by further mapping. We do not
follow that approach as it pushes ARCH(1) and white noise (which are perfectly acceptable solutions) far
away to the asymptotic limits of the parameter space.
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to accept even longer clusters with even lower significance in our robust GARCH fitting
procedure. Our condition is

0 ≤ τcorr ≤ τmax , 0 ≤ τema ≤ τmax , µcorr ≤ e−1/τmax , µema ≤ e−1/τmax (6.4)

where the conditions for µ are derived from Equation 6.2. The unconstrained solution of
most practical fitting cases anyway obeys Equation 6.4. However, in some misspecified
or small-sample cases, the maximum likelihood may lie outside those conditions, and we
prefer the robust solutions ensured by Equation 6.4. The stationarity condition, µcorr =
α1 +β1 < 1, is always fulfilled by the slightly stronger µcorr condition of Equation 6.4. Our
solutions not only observe the stationarity limit condition but also keep a safe distance
from that limit.

The logarithm of the likelihood function22 is

l(µcorr, µema) = − 1
2 n

n+m∑

i=m+1

[
ln 2π + lnσ2

i +
r2
i

σ2
i

]
(6.5)

with a total number of n + m observations in the sample. We reserve a considerable
number m of initial observations for the build-up of σ2

i . At start (i = 1), we use the initial
value

σ2
0 = σ2 (6.6)

which has an initial error that exponentially declines over the GARCH iterations, Equa-
tion 6.1, from i = 1 to m. The larger m, the smaller is the remaining error of σ2

i . However,
the remaining sample of size n also becomes smaller, given a limited total size n+m. This
is a trade-off. In our low-frequency case with quarterly data, this trade-off is almost des-
perate. A 10-year sample has 40 quarterly observations – a modest number. We need
these 40 observations for the likelihood function in order to produce meaningful results.
Reserving 20 observations for build-up and using the remaining, meager 20 observations
for GARCH fitting does not seem to be a reasonable approach. For some economic vari-
ables, we have past data older than 10 years that we can use for the build-up. For some
other time series, this is not available. As a numerical trick, we can recycle the scarce
available data to build up an initial σ2

i through a ”zig-zag” method. We create a synthetic
past. The real data are r2n+1 . . . r3n, so m = 2n; the synthetic past consists of r1 . . . rn

with ri = r2n+i and rn+1 . . . r2n with ri = r4n+1−i. This is justified as the innovations ri

are already detrended and their temporal coherence, which is important for GARCH, is
respected, though partially in reverse order. We claim that the thus obtained σ2

2n value is
a better approximation of the true value than a simple initialization σ2

2n = σ2. Of course,
this claim should be substantiated through a theoretical or statistical study.

Now we have to determine the maximum of the log-likelihood of Equation 6.5 by varying
the parameters µcorr and µema under the constraints of Equation 6.4. This cannot be
done analytically. The solution of this non-linear optimization problem can be done with
the help of any appropriate method23. All numerical methods lead to a local optimum
depending on the initial guess of parameter values. In order to obtain the global optimum,
it is important to run the optimization from different initial parameters and to take the
best among the obtained solutions. For some GARCH(1,1) processes with large values of

22This formulation assumes that εi is generated by a Gaussian random process, which is an acceptable
assumption for our low-frequency data and the limited role of GARCH within the whole bootstrapping
algorithm. Assuming another distribution of εi leads to a different log-likelihood function.

23Contact the first author to learn about the set of methods actually used in the implemented scenario
generator.
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both µcorr and µema, the white noise solution (µcorr = 0) appears as a local optimum that is
dominated by the true, global optimum. Therefore one should always start optimizations
from at least two initial points: (1) white noise and (2) close-to-maximum values of µcorr

and µema.
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and Pictet O. V., 2001, An Introduction to High Frequency Finance, Academic Press,
San Diego,CA.

[Diebold et al., 1998] Diebold F., Gunther T., and Tay A., 1998, Evaluating den-
sity forecasts with applications to financial risk management, International Economic
Review, 39(4), 863–883.

[Diebold et al., 1999] Diebold F., Hahn J., and Tay A., 1999, Multivariate density
forecasts and calibration in financial risk management: High-frequency returns on for-
eign exchange, The Review of Economics and Statistics, 39(4), 863–883.

36



[Dimson et al., 2003] Dimson E., March P., and Staunton M., 2003, Global evidence
on the equity risk premium, Journal of Applied Corporate Finance, 15(4).

[Efron and Tibshirani, 1993] Efron B. and Tibshirani R., 1993, An introduction to
the bootstrap, Chapman & Hall.

[Embrechts et al., 1997] Embrechts P., Klüppelberg C., and Mikosch T., 1997,
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