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1. Introduction

[n this paper we derive moment conditions for estimating and testing continuous-time
Markov models using discrete-time data. An extensive literature exists on estimating
continuous time linear models from discrete-time data emanating from the work of A.
W. Phillips (1959). This literature includes treatments of identification (e.g., see P.C.B.
Phillips 1973; Hansen and Sargent 1983) as well as estimation (e.g., see P.C.B. Phillips
1973; Robinson 1976; Harvey and Stock 1985). Our aim is to develop new methods
{or estimation and inference that can be applied to continuous time nonlinear Markov
models, again from the vantage point of discrete-time sampling. Recently there has
been a considerable interest among economists in understanding the role nonlinearities
in dynamic models (see Scheinkman 1990 for a survey of this literature). Furthermore,
several particular nonlinear continuous-time models have been proposed for the term
structure of interest rates (e.g., see Cox, Ingersoll and Ross 1985; Heath, Jarrow and
Morton 1990) and for exchange rates (e.g., see Froot and Obstfeld 1991; and Krugman
1991). Among other things, we develop tools for assessing the empirical plausibility of

these models.

Likelihood-based methods of estimation and inference for nonlinear continuous time
models can be very difficult to implement due to the computational costs associated
with evaluating the likelihood function (e.g., see Lo 1988). This is true even when
the Markov state vector is completely observable at any point in time, as we assume
here. The reason for this difficulty is that a continuous-time Markov process is typically
specified in terms of its local evolution. Evaluating the discrete-time transition density
can be quite costly because it may require solving numerically a partial differential
equation as in the case of a diffusion. The computational costs can become excessive
because these calculations must be repeated for each hypothetical parameter value and

each observed state, !

1 Exceptions to this is the nonlinear Markov process assumed by Cox, Ingersoll and Ross (1985)
in their analysis of the term structure of interest rates and the reflecting barrier model of exchange



In this paper we adopt a more pragmatic approach. We begin by considering a Markov
process specified in terms of its infinitesimal generator. Formally, this generator is de-
fined as an operator on a function space, and, in effect, this operator stipulates the local
evolution of the process. For instance, for a diffusion model specified as a solution to a
stochastic differential equation, the generator can be constructed from the coefficients

of the differential equation and the associated boundary conditions.

Given the infinitesimal generator, we show how to construct two sets of moment con-
ditions that are often easy to compute in practice. As a consequence, both sets of
moment conditions can be used to construct generalized-method-of-moments estima-
tors of an unknown parameter vector and diagnostic tests, One set involves only the
contemporaneous Markov state vector and hence uses only the marginal distribution of
that vector. The second set includes functions of the state vector in two adjacent time
periods, and hence, like the score vector from a likelihood function, exploits properties

of the conditional distribution of the current state vector given the past.

Moment conditions in the second set are most conveniently represented in terms of the
original generator as well as the reverse-time generator for a process running backwards
in time. Although there exist general characterizations of reverse-time generators, the
second set of moment conditions may be easiest to apply when the underlying Markov
processes under consideration are (time) reversible. As a consequence, we use results in
the probability theory literature to show that a potentially rich collection of models are
reversible, including many multi-factor models of the term structure of interest rates

that have been suggested in the literature.

Another strategy that has been proposed for estimating continuous time Markov pro-
cesses is to use numerical methods to approximate moments. Duffie and Singleton

(1993) suggested the use of simulation while He (1990) proposed the use of binomial ap-

rates assumed by Krugman (1991). The transition densities for these process have been fully charac-
terized (e.g., see Felletr 1951, Wong 1964, and Levy 1993) However, small departures in the form of the
nonlinearities make likelihood-based methods much more numerically intensive to implement.



proximations. An attractive feature of the Duffie-Singleton approach is that the Markov
state vector does not have to be fully observed. However, for both of these approaches
it may be difficult to account for the magnritude of the approximation error, and it may

be numerically costly to ensure that the approximation error is small.

While an aim of our analysis is to reduce substantially the computational costs vis-
a-vis the method of maximum likelihood for models indexed by a finite-dimensional
parameter vector, we also study nonparametric identification via these moment con-
ditions. It is well known that identifying continuous-time models from discrete-time
data can be problematic because of what is known as the aliasing phenomenon: distinct
continuous-time processes may look identical when sampled at regular time intervals.
Using spectral represeptation theory for self-adjoint operators, we show that there is no
aliasing problem when it is known that the continuous-time process is reversible. Al-
though the generalized-method-of-moments approach described in our paper is designed
to be computationally tractable, complete (nonparametric) identification of reversible
processes is not possible using the moment conditions we derive. However, we do show
that in the context of scalar diffusion models, the local mean (drift) and local variance

(diffusion coefficient) can be identified up to a common scale factor using our approach.

The focus of this paper is on deriving moment conditions implied by infinitesimal genera-
tors and on characterizing the extent to which these moment conditions can discriminate
among the members of a class of infinitesimal generators. In addition, we provide re-
strictions on infinitesimal generators that ensure that the Law of Large Numbers and
Central Limit Theorem apply to a discrete-sampled process. Armed with these approx-
imation results, we can apply the results in Hansen (1982) to justify formally estimation
and inference using generalized method of moments. On the other hand, we do not ad-
dress formally issues of statistical efficiency and nonparametric estimation and inference

using the moment conditions we derive. Such issues are deferred to future work.

This paper is organized as follows. In Section 2 we review the mathematical construc-



tion of an infinitesimal generator for a continuous time Markov process and describe
properties of the generator that are important for our analysis. In Section 3 we show
how to use the infinitesimal generator to construct two families of moment conditions
expressed in terms of the Markov state vector. Familiar examples of Markov processes
together with their infinitesimal generators are presented in Section 4. We study the
observable implications of each family of moment conditions in Section 5. For instance,
we show that our first family of moment conditions. can be used to distinguish alter-
native candidate generators that imply distinct marginal distribution for the Markov
state vector. We also provide a characterization of the additional informational content
provided by the second family of moment conditions obtained by reversing calendar
time. Since the domains of the generators are sometimes difficult to characterize fully,
in Section 6 we show how to reduce the family of test functions used in the moment
conditions to include only ones for which the generator can be represented in a conve-
pient manner. For the moment conditions to be of use in practice, we must be able to
approximate expectations of functions of the state vector using a discrete-time moment
analog. In Section 7 we present sufficient conditions for these approximations to be
valid. To facilitate verification, these conditions are expressed as restrictions on the
infinitesimal generator. These large-sample approximations can also be used to justify

other estimation methods than the one described in this paper.

2. Infinitesimal Generators

In this section we give the mathematical basis for our analysis. The focal point is on
the construction of the infinitesimal generator of a strictly stationary, continuous-time,

n-dimensional, vector Markov process {z,} defined on a probability space (92, F,Pr).

Let Q be the probability measure induced on R™ by z, (for any t), £2(Q) be the space
of all Borel measurable functions ¢ : R® — R such that



J. #42< o,

and < - | - > and || - || be the usual inner product and norm on £3(Q). Associated
with the Markov process is a family of operators {T; : t > 0} where for each t > 0,7} is
defined by:?

Ted(y) = E[¢(z0) | 0 = . (2.1)

This family is known to satisfy several properties. For instance, it follows from Nelson
(1958, Theorem 3.1) that for each ¢ > 0,

Property PI: T, : £}(Q) — L2(Q) is well defined, i.e. if ¢ = ¢ with Q probability one,
then T;é = T;¥ with Q probability one and for each ¢ € £2(Q), T¢ € L?(Q).

Property P2: || Ted || < {l ¢ || for all ¢ € L2(Q), f.e. Ty is a (weak) contraction.
Furthermore,

Property P3: For any s,t > 0, Ty, = T7,, ie. {Ty:10 2 0} is a {one-parameter)

semigroup .

Property P2 is the familiar result that the conditional expectation operator can only
reduce the second moment of a random variable. Property PJ is implied by the Law
of Tterated Expectations since the expectation of ¢(z.4,) given zg can be computed by

first conditioning on information available at time s.

Our approach to exploring the implications of continuous-time Markov models for dis-
crete time data is to study limits of expectations over small increments of time. In order
for this approach to work, we impose a mild restriction on the smoothness properties of

{T}.

2Throughout this paper we follow the usual convention of not distinguishing between an equivalence
class and the functions in the equivalence class. Moreover, in ( 2.1} we are abusing notation in a familiar
way, e.9. see Chung (1974, pages 299 and 230).




Assumption Al: For each ¢ € £3(Q), {T:¢ : t > 0} converges [in L£3(Q)] to ¢ for all
$peL?(Q)ast ] 0.

Assumption Al is weak in the sense that it is implied by measurability properties of the
underlying stochastic process {z;}. Recall that {z,} can always be viewed as a mapping
from R x 0 into R". Form the product sigma algebra using the Borelians of R and the
events of f. A sufficient condition for Assumption A! is that the mapping defined by

the stochastic process be Borel measurable with respect to the product sigma algebra.
3

For some choices of ¢ € L£3(Q), the family of operators is differentiable at zero, i.e.
{[Te¢ — ¢}/t : t > 0} has an £3(Q) limit as t goes to 0. Whenever this limit exists, we
denote the limit point A$. We refer to A as the infinitesimal generator. The domain
D of this generator is the family of functions ¢ in £2(Q) for which A¢ is well defined.
Typically, D is a proper subset of £3(Q). Since A is the derivative of {7, : ¢t > 0} at
t =0, and {T; : t > 0} is a semigroup, A and 7; commute on D . Moreover the following

properties are satisfied (e.g. see Pazy 1983, Theorem 2.4, page 4):
Property P§: For any ¢ € £LX(Q), fd T,¢ds € D and A [ To¢ds = Tp - ¢.
Property P5: For any ¢ € D, Ti¢ — ¢ = [§ A|T,¢)ds = J; T.[A¢]ds.

Property P{ gives the operator counterpart to the familiar relation between derivatives
and integrals. Property P5extends the formula by interchanging the order of integration

and applications of the operators 7, and A.

There are three additional well known properties of infinitesimal generators of continuous-

time Markov operators that we will use in our analysis:

Property P6: D is dense in £3(Q).

*1t follows from Halmos (1974, page 148) that Ti¢ : 1 > 0 is weakly measurable for any ¢ € Q)
and hence from Theorem 1.5 of Dynkin (1965, page 35) that A1 is satisfied.



Property PT- A is a closed linear operator, i.e. if {¢o} in D converges to ¢, and {Ad,}
converges to ¥,, then ¢, is in D and A¢, = ¥,.

Property P8: For every A >0, Al — A is onto.

(A reference for P6and P7and P8is Pazy 1983, Chapter 1, Corollary 2.5 and Theorem
4.3).

A final property of A that will be of value to us is:
Property P9: < ¢| A¢ > < 0 for all ¢ € D, i.e. Ais quasi negative semidefinite.*

This property foilows from the (weak) contraction property of {7:} and the Cauchy-
Schwarz Inequality since for any t > 0,

<¢ITo-¢><NelU TSl -N¢l) < O (2.2)

In modeling Markov processes one may start with a candidate infinitesimal generator
satisfying a particular set of properties, and then show that there exists an associated
Markov process (e.g., see Corollary 2.8 of Ethier and Kurtz, 1986, page 170). Further-
more, combinations of the above properties are sufficient for A to be the infinitesimal
generator of a semi-group of contractions satisfying AI. For instance, it suffices that P6
and P9 holds as well as P8 for some A > 0. This is part of the Lumer-Phillips Theorem
( e.g., see Pazy 1983, Chapter 1, Theorem 4.3).

3. Moment Conditions

In this section we characterize two sets of moment conditions that will be of central

interest for our analysis. These moment conditions are derived from two important

‘When a generator of a semigroup defined on an arbitrary Banach space satisfies the appropriate
generalization of P9, it is referred to as being dissipative (e.g., see Pazy 1983, page 13).



(and well known) relations. The first relation links the stationary distribution Q and
the infinitesimal generator A , and the second one exploits the fact that A and T;
commute. Much of our analysis will focus on a fixed sampling interval which we take

to be one. From now on we write T instead of 7;.

Since the process {z,} is stationary, E[¢(z.)] is independent of calendar time ¢ implying
that its derivative respect to t is zero. To see how this logic can be translated into a set
of moment conditions, note that by the Law of Iterated Expectations, the expectation

of ¢(z,) can either be computed directly or by first conditioning on zg:

jm $dQ = /R” T,6dQ for allg € L3(Q). (3.1)

Hence for any ¢ € D, we have that
J. A =limaiye) [ [T~ #ldQ =0 (32)

since (3.1) holds for all positive t and {(1/t)[Ti¢~ ¢] : t > 0} converges in L£3(Q) to Ap.
Relation {3.2) shows the well known link between the generator A and the stationary
distribution Q (e.g., see Ethier and Kurtz 1986, Propaosition 9.2, page 239). Hence our

first set of moment conditions is
Cl: E[A¢(z()] =0forall ¢ € D.

The stationarity of {z,} also implies that E[¢(z:4+1)¥(z)] does not depend on calen-
dar time. Rather than exploiting this invariance directly and differentiating, a more

convenient derivation is to start by using the fact that A and 7 commute, that is:
E[A¢(ze41) | 20 = y] = A{E[$(ze1) | 7. = 3]} for all § € D. (3.3)

It may be difficult to evaluate the right side of (3.3) in practice because it entails
computing the conditional expectation of $(z41) prior to the application of A. For this
reason, we also derive an equivalent set of unconditional moment restrictions which are
often easier to use. These moment restrictions are representable using the semigroup

and generator associated with the reverse-time Markov process.



The semigroup {7,"} associated with the reverse-time process is defined via:
T'¢"(y) = E[¢(z0) | ¢ = y]. (34)

The family {7;" : ¢ > 0} is also a contraction semigroup of operators satisfying continuity
restriction Al. Let A® denote the infinitesimal generator for this semigroup with domain
D*. The operator 7, is the adjoint of 7; and A"® is the operator adjoint of A. To verify
these results, note that it follows from (2.1), (3.4) and the Law of Iterated Expectations
that

<o | Tip> = E{¢°(z0)E[d(20) | 2ol}
= E[¢*(zo)¥(z:)]
= E{#(z)E[¢"(z0) | z]}
= <¢|T ¢ >. (3.5)

We can now use Corollary 10.6 of Pazy (1983, page 41) to show that A" is the operator

adjoint of A and vice versa.

For any ¢ in the domain D of A and ¢ in £3(Q), the fact that A and 7 commute
implies that
<TA|¢" > -< AT 9" >=0. (3.6)

When ¢" is restricted to be in the domain D" of A®,

<AT¢|¢*>=<¢|T A" >. (3.7)
Substituting (3.6) into (3.7) and applying the Law of Iterated Expectations we find that
C2: E[Ad(z441)9"(2¢) = d(ze41) A (z)} =0 for all $ € D and ¢° € D-.

Since A* enters C2, these moment conditions exploit both the forward- and reverse-time

characterization of the Markov process. As we hinted above, these moment conditions



can be interpreted as resulting from equating the time derivative of E[¢(ze41)¢(z¢)] to

zero.

It turns out that C2 implies C1. To see this let ¥ be a constant function and note that
A"y is identically zero. However, the set of moment conditions C'1 is sometimes easier
to exploit in practice because it does not require computation of the adjoint A". As
we will see in the next section, calculating the adjoint A* may require computing the
stationary distribution Q implied by .A. For this reason, portions of our analysis focus
on the role of C1 in identifying and estimating the infinitesimal generator A . The more
extensive set of moment conditions C2 are still of interest for two reasons. First, for
many scalar diffusion processes scalar processes, A and A® are the same (see Section 4),
and thus empirical implementation of C2 is no more difficult than implementation of
C1. Second, given the generator A, it is typically easier to compute the adjoint A* than
the distribution of z4, conditioned on z; as is required for evaluating the likelihood

function.

One strategy for using these moment conditions for estimation and inference is as fol-
lows. Suppose the problem confronting an econometrician is to determine which, il any,
among a parameterized set of infinitesimal generators is compatible with a discrete-time
sample of the process {z,} . For instance, imagine that the aim is to estimate the “true
parameter value”, say fJ,, associated with a parameterized family of generators Ay for
B in some admissible parameter space, Vehicles for accomplishing this task are the
sample counterparts to moment conditions C1 and C2. By selecting a finite number of
test functions ¢, the unknown parameter vector 3, can be estimated using generalized
method of moments (e.g., see Hansen 1982) and the remaining over-identifying moment
conditions can be tested. In Section 5 of this paper we characterize the information
content of each of these two sets of moment conditions for discriminating among al-
ternative sets of infinitesimal generators; and in Section 7 we supply some supporting
analysis for generalized method of moments estimation and inference by deriving some

sufficient conditions on the infinitesimal generators for the Law of Large Numbers and

10



Central Limit Theorem to apply.
4. Examples

In this section we give several illustrations of infinitesimal generators for continuous-time

Markov processes.

Ezample {.1 (Markov Jump Process): Let n be a nonnegative bounded function mapping
R" into R and »(y,T) denote a transition function in the Cartesian product of R" and
the Borelians of R". Imagine the following stochastic process {z:}. Dates at which
changes in states occur are determined by a Poisson process with parameter n(y) if the

current state is y. Given that a change occurs, the transition probabilities are given by
W(ys )

Additional restrictions must be imposed for this process to be stationary. First, suppose

there exists a nonzero Borel measure Q satisfying the equation:

o(r) = /r(y, I')d9(y) for any Borelian I'.

Next suppose that
Junwladw) < oo,

and construct the probability measure Q to be

Qe
n f(1/n)dQ

Under these restrictions on 7 and 7, the Markov jump process {z;} will be stationary

dQ = (4.1)

so long as it is initialized at Q.

Define the conditional expectation operator F associated with the underlying Markov

chain:

o= [#0)n(v.dv).

11



Analogous to the operator T, 7 maps £2(Q) into itself. Using the fact that
Ted— ¢ = tqT — tno+o(t)

one can show that the generator for the continuous time jump process can be represented

as
Ap =1[T¢ - ¢] (4.2)
(e.g., see Ethier and Kurtz 1986, pages 162-163). It is easy to verify that the generator

A is a bounded operator on all of £3(Q). Since 7 is bounded, any function ¢ in £3(Q)
must also be in £3(Q).

It is also of interest to characterize the adjoint A* of A. To do this we study the
transition probabilities for the reverse-time process. Our candidate for A® uses the
adjoint 7* in place of T

Ag® =T ¢ - ¢°).

To verify that .4 is the adjoint of A, first note that
<As|# > = [nlTo-dlerde= [Tosnda- [noede

By construction 7 is the £2(Q) adjoint of 7. It follows from (4.1) that ndQ is propor-
tional to dQ. Consequently,

[ Toenag - [rosraa = [eF-ornae- J R

<¢|AY)>.

To use moment conditions C1 and C2 for this Markov jump process requires that we
compute T¢ and T°¢ for test functions ¢. Suppose that the Markov chain is a discrete
time Gaussian process. [tis then straightforward to evaluate T ¢ and T+ ¢ for polynomial
test functions. Nonlinearities in the continuous-time process could still be captured by
nonlinear specification of the function 5. On the other hand, when nonlinearities are

introduced into the specification of the Markov chain, it may be difficult to conipute

12



T¢ and T-¢. In these cases our approach may not be any more tractable than, say, the

method of maximum likelihood.

Recall that the moment conditions C1 and C2 can be used in situations in which
the sampling interval is fixed and hence where the econometrician does not know the
number of jumps that occurred between observations. This should be contrasted with

econometric methods designed to exploit the duration time in each state.

Ezample {.2 (Scalar Diffusion Process): Instead of specifying the infinitesimal generator
directly, it is more common to start with a stochastic differential equation. As we will
discuss below, there are well known connections between the coefficients of the stochastic

differential equation and the infinitesimal generator.
Suppose that {z,} satisfies the stochastic differential equation:
dIg = p(::,)dt + o(z()dW. . (43)

where {W; : t > 0} is a scalar Brownian motion. There are many results in the literature
that establish the existence and uniqueness of a Markov process {z,} satisfying (4.3).
One set of sufficient conditions requires that the diffusion coefficient 0? be strictly
positive with a bounded and continuous second derivative and that the local mean u
has a bounded and continuous first derivative. These conditions also imply that {z} is

a Feller process, that is, for any continuous function ¢, T¢ is continuous.®

We follow Karlin and Taylor (1981) and others by introducing a scale function § and

its derivative:

s(v) = exp{~ [ 2u()/o*(2)ldz};

*For altetnative Lipschitz and growth conditions see the hypotheses in Theorem 3.2, page 79 or the
weaker local hypotheses of Theorem 4.1, page 84 of Has’minskii (1980). Alternatively, the Yamada-
Watanabe Theorem in Karatzas and Shreve (1988, page 291) can be applied.

13



and a speed density 1/sa?, which we assume to be integrable.® If we use the measure Q

with density:

_ . 1
1) = ) T)e () a2 (4.4)

to initialize the process, then the Markov process {z:} generated via the stochastic
differential eéquation (4.3) will be stationary. In fact, under these hypothesis Q is the

unique stationary distribution that can be associated with a solution of (4.3).

The infinitesimal generator is defined on a subspace‘of L£2(Q) that contains at least the
subset of functions ¢ for which ¢’ and ¢” are continuous, o¢’ € L£L}(Q), and such that

the second-order differential operator:

Lo(y) = u(v)¢'(v) + (1/2)0*(v)¢"(v) (4.3)

yields an £2(Q) function. Ito’s Lemma implies that {¢(z;) - $(z0) — fo Lo(zs)ds) is a

continuous martingale. Take expectations conditional on zg, to obtain:

El@(z0) | 7] - 9(z0) = E[ | Lé(z.)ds | 20 (4.6)

Or by Fubini's Theorem,

(Tibtzo) - #lzoll/t = (111) [ TLolza)ds.

Using the continuity property of 7, and applying the Triangle Inequality we conclude
that A¢ = L.

Under the conditions just given, stationary diffusions on the line are reversible. Follow-

ing the usual approach of introducing the integrating factor 1/gq, we write:

Ab = (1/q)(o%e#'[2). (4.7)

.°lt suffices for integrability that for some strictly positive C and K and | y |2 K, u(y)y+a?/2 < -C.
This can be verified by usiag this inequality to construct an integrable upper bound for the speed density
or by appealing to more general results in Has’minsky {(1980).

14



Let C}-, denote the space of functions that are twice continuously differentiable with a

compact support. Integration by parts implies that for functions ¥ and ¢ in C?,
<Aple>=<¢|AY>. (4.8)

As we will discuss in Section 6, it is sufficient to verify ( 4.8) for ¥ and ¢ in Ci.
Consequently, A is symmetric; and since it is the generator of a contraction semigroup
in a Hilbert space, it is sel{ adjoint and {z.} is reversible (see Proposition VIL.6 on page
113 of Brezis 1983).

Many economic examples deal with processes that are restricted to a finite interval or
to the nonnegative reals. The reasoning above extends immediately to processes defined
on an interval when both end points are entrance boundaries. Moreover, our analysis
can be extended to processes with reflecting boundaries as the ones assumed in the
literature on exchange rate bands. Typically, a process with reflecting boundaries in an
interval (¢, u) is constructed by changing equation (4.3) to include an additional term

that is “activated” at the boundary points:
dz, = p(z)dt + o(z)dW, + 8(z)dKy

where {x,} is a nondecreasing process that increases only when z, is at the boundary,

and
8(¢) = 1 and O(u) = -1.

In addition the original 4 and 02 must define a regular diffusion, that is the functions s
and 1/0?s are integrable. We will also assume that s is bounded away from zero.” [to's
Lemma applies to such processes with an additional term ¢'(z¢)8(z()dk,. This term
vanishes if ¢'(¢) = ¢'(u) = 0, and A is again given as (4.5) or (4.7) for ¢'s that satisfy
these additional restrictions. To check that A is self adjoint, it is now sufficient to verify

(4.8) for ¥ and ¢ that are twice continuously differentiable with first derivatives that

TIf o? is bounded away from zero, all these assumptions hold but they also hold for some processes
where o? vanishes at the boundary.

15



vanish at the boundaries. When the drift coefficient has continuous first derivatives and
diffusion coefficient continuous second derivatives, the right-hand side of { 4.4) again
defines the unique stationary distribution associated with the reflexive barrier process.
The case with one reflecting barrier and the other one nonattracting can be handled in

an analogous fashion.

For particular families of scalar diffusions and test functions, moment conditions in the
class C1 have been used previously, albeit in other guises. For instance Wong (1964)
has shown that first-order polynomial specifications of u, and second-order polynomial
specifications of o? are sufficient to generate processes with stationary densities in the
Pearson class. Pearson’s method of moment estimation of these densities can be in-
terpreted, except for its assumption that the data generation is i.i.d., as appropriately
parameterizing the polynomials defining the drift and diffusion coefficients and using
polynomial test functions in C1. This approach has been extended to a broader class
of densities by Cobb, Koopstein and Chen (1983). These authors suggested estimating
higher-order polynomial specifications of p for a pre-specified (second-order) polyno-
mial specification of 2. Their estimation can again be interpreted as using moment
conditions C1 with polynomial test functions. Of course moment conditions C1 and C2
are easy to apply for other test {unctions ¢ and ¢° whose first and second derivatives
can be computed explicitly. Although Cobb, Koopst‘ein and Chen (1983) prespecify the
local variance to facilitate identification, this assumption is not convenient for many
applications in economics and finance. As we will see in Section 5, moment conditions
in the class C2 can be used to help identify and estimate unknown parameters of the

local variance.®

Ezample {.3: (Multivariate Factor Models) We have just seen that many scalar diffusions

are reversible. Reversibility carries over to multivariate diffusions built up as time

sc: . L .. -
Since Cobb, Koopstein and Chen assume that the data generation is 1.1.d. , moment conditions C2
are not informative in their framework. Recall, bowever, that we are interested in the case where the
data originates (rom a single realization of {z}.

16



invariant functions of a vector of independent scalar diffusions. More precisely, let {f;}
be a vector diffusion with component processes that are independent, stationary and
reversible. Think of the components of {fi} as independent unobservable “factors.”

Suppose that the observed process is a time invariant function of the factors:

Ty = F(ft)

for some function F. Factor models of bond prices like those proposed Cox, Ingersoll
and Ross (1985), Longstafl and Schwartz (1992), Frachot, Janci and Lacoste (1992)
arnd Duffie and Kan (1993} all have this representation. The resulting {z.} process
will clearly be stationary as long as the factors are stationary. Moreover, since {fi} is
reversible, sois {z¢}. To ensure that {z,} is a Markov process, we require that the factors
can be recovered from the observed process. That is, F must be one-to-one. Finally,
to guarantee that {z} satisfies a stochastic differential equation, we restrict F to have
continuous second derivatives. For a more general characterization of multivariable

reversible diffusions, see Kent (1978).

Ezample {.{: (Multivariate Diffusion Models) More generally, suppose that {z.} satisfies

the stochastic differential equation:
dz, = p(z)dt + £(z,)'/dW,

where {W; : t > 0} is an n-dimensional Brownian mation. Entry i of the local mean g,
denoted ;, and entry (i, j) of the diffusion matriz E, denoted a;, are functions from R"
into R. The functions y; and the entries of ¥(2)!/? are assumed to satisfy Lipschitz
conditions. (See Theorem 3.2, page 79; the weaker local hypothesis of Theorem 4.1,
page 84 of Has'minsky, 1980; or Theorem 3.7, page 297, Theorem 3.11, page 300 and
Remark 2.7 on page 374 of Ethier and Kurz, 1986.) The existence of a unique stationary
distribution is assured if there exists a K such that I(y) is positive definite for|y|< K

and for |y |2 K,
p(y) - Vy + (1/2)trace(Z(y)V] < -1
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for some positive definite matrix V. Moreover this guarantees that the process is mean
recurrent. (See Corollary 1, page 99; Example 1, page 103; and Corollary 2, page 123
of Has’minsky, 1980). If £(y) is positive definite for all y € R", then the density ¢ is

given by the unique nonnegative bounded solution g to the partial differential equation:
n n n
= 3 8/8y;lsi(mel+ (1/2) 3 3 (82 /0wdy;)lei,(v)a(y)} = 0
1=l i=1l)=1t
that integrates to one. (See Has'minsky 1980, Lemma 9.4, page 138). Again by initial-

izing the process using the measure Q with density ¢, we construct a stationary Markov

process {:}.

The infinitesimal generator is defined on a subspace of £3(Q) that contains at least
the space of functions ¢ for which d¢/dy and 3%¢/dydy’ are continuous, the entries of
£Y29¢/0y € L*(Q) via:

Ad(y) = p(y) - 8(y)/dy + (1/2)trace[£(y)0¢(y)/0y0y '], (4.9)

if the right-hand side of (4.9) is in £2(Q) . Under suitable regularity conditions, a

time-reversed diffusion is still a diffusion and the adjoint A® can be represented as

A¢7(y) = p™(y) - 09" (v)/0y + (1/2tracelZ7(y) 074" (y)/ Dy y'] {4.10)
on a subset of its domain.?

In (4.10) the diffusion matrix £° turns out to be equal to E; however, the local mean
u° may be distinct from u. Let L; denote column j of L. It follows from Nelson (1958},

Anderson (1982), Haussmann and Pardoux (1986) or Millet, Nualart and Sanz {1989)
that

#*(y) = —u(y) + [1/a(¥)] 38/ 9y;[e(¥)E, ()]
)

- 'Fgr example, Millet, Nualart and Sanz (1989) showed that it suffices for coefficients p and ¥ of the
dnill'uston 10 be !.wice continuously differentiable, to satisfy Lipschitz conditions, and [or the matrix £ to
uniformly nonsingular (see Theorem 2.3 and Proposition 4.2).
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Therefore, on a dense subset of its domain the adjoint A* can be constructed from

knowledge of g, ¥ and the stationary density g.

Moment conditions in the class C1 remain easy to apply to test functions whose two
derivatives can be readily computed. For multivariate diffusions that are not time re-
versible, it is, in general, much more difficult to calculate the reverse-time generator
used in C2. An alternative approach is to approximate the reverse-time generator
using a nonparametric estimator of the logarithmic derivative of the density. With
this approach, nonparametric estimators of the density and its derivative appear in
the constructed moment conditions even though the underlying estimation problem is
fully parametric. The nonparametric estimator is used only as a device for simplifying
calculations. Rosenblatt (1969) and Roussas (1969) described and justified nonpara-
metric estimators of densities for stationary Markov processes. Moreover, estimation
using moment conditions constructed with nonparametric estimates of functions such
as d[logq(¥)]/dy has been studied in the econometrics literature (e.g., see Gallant and
Nychka 1987; Powell, Stock and Stoker 1989; Robinson 1989; Chamberlain 1992; Newey
1993; Lewbel 1991). Presumably results from these literatures could be extended to

apply to our estimation problem.
5. Observable Implications

Recall that in Section 3 we derived two sets of moment conditions to be used in dis-
criminating among a family of candidate generators. In this section we study the in-
formational content of these two sets of moment conditions. Formally, there is a true
generator A underlying the discrete-time observations. We then characterize the class of
observationally equivalent generators from the vantage point of each of the sets of mo-
ment conditions. In the subsequent discussion, when we refer to a candidale generator

we will presume that it is a generator for a Markov process.
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We will establish the following identification results. First we will show that if a can-
didate generator A satisfies the moment conditions in the set C1, it has a stationary
distribution in common with the true process. Second we will show that if A also sat-
isfies the moment conditions in the set C2, it must commute with the true conditional
expectation operator 7. If in addition A is self adjoint, and the true process is reversible
(i.e. A is self adjoint), then A and A commute. One implication of this last result is
that the drift and diffusion coefficients of stationary scalar diffusions can be identified
up to a common scale factor using C1 and C2. A byproduct of our analysis is that
using the conditional expectation operator allows one to identify fully the generator of

reversible processes.

Consider first moment conditions C1. Since one of the goals of the econometric analysis
is to ascertain whether a candidate generator A has Q as a stationary distribution, it
is preferable to begin with a specification of A without reference to £2(Q). Instead let
B denote the space of bounded functions on R" endowed with the sup norm. Suppose
that A is the infinitesimal generator for a strongly continuous contraction semigroup
{T: : t > 0} defined on a closed subspace L of B containing at least all of the continuous
functions with compact support. In this setting, strong continuity is the sup-norm
counterpart to Assumption A1, i.e. {Ti¢ : t > 0} converges uniformly to ¢ as ¢ declines
to zero for all ¢ in £. Let D denote the domain of A. We say that a candidate A
has Q as its stationary distribution if Q is the stationary distribution for a Markov
process associated with this candidate. The following result is very similar to part of

Proposition 9.2 of Ethjer and Kurtz (1986, page 239).

Proposition 5.1. Let A be a candidate generator defined on D C L. Then A satisfies
C1 for all ¢ € D if and only if Q is a stationary distribution of A.

Proof. Since convergence in the sup norm implies £?(Q) convergence, our original deriva-

tion of C1 still applies. Conversely, note that the analog of Property P{ implies that
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forany ¢ € L : [, T,(¢)ds € D and
- ‘ - -
A [ T9ds = Ti(e) - 0. (5.1)
0

Hence integrating both sides of (5.1) with respect to Q and using the fact that A satisfies
C1, we have that for all ¢ € L:

[ (Tio- e =0. (5.2)

Relation (5.2) can be shown to hold for all indicator functions of Borelians of R" because

£ contains all continuous functions with a compact support. Q.E.D.

In light of Proposition 5.1, any infinitesimal generator A satisfying C1 has Q as a
stationary distribution. In other words, moment conditions in the family C1 cannot be
used to discriminate among models with stationary distribution Q. On the other hand,
if A does not have Q as its stationary distribution, then there exists a test function ¢

in D such that EA¢ is different from zero.

Eramj;le 5.1: Asin Example 4.2 suppose {z.} is a scalar diffusion that satisfies equation

(4.3). If the stationary density g is given by the right hand side of (4.4) then

p= (/D% +0% /g (5.3)

For a fixed ¢, this equation relates the diffusion coefficient o2 with the local drift p.
This equation gives us sets of observationally equivalent pairs (u,0%) from the vantage
point of C1. In fact Banon (1978) and Cobb, Koopstein and Chen (1983) used equation
(5.3) as a basis to construct flexible (non-parametric) estimators of y for prespecified o?.
As is evident from (5.3) parameterizing (u,0?} is equivalent, modulo some invertibility
and regularity conditions, to parameterizing (¢’ /q,¢?). For many purposes the latter
parameterization is simpler and more natural. If we start by describing our candidate
models using this parameterization, moment conditions C1 yield no information about
the diffusion coefficient. On the other hand, as we will see later in this section, mo-
ment conditions C2 provide a considerable amount of information about the diffusion

coefficient.
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To illustrate these points, as in Cobb, Koopstein and Chen (1983), consider a family
of diffusions defined on the nonnegative reals parameterized by a “truncated” Laurent

series: |

(d/)wa)= Y a;y.

j=—k
where a = (a_i,...,a) is a vector of unknown parameters that must satisfy certain
restrictions for ¢ to be nonnegative and integrable. We also assume that o2 = py” where
p > 0 and 7 > 0. This parameterization is sufficiently rich to encompass the familiar
“square-root” process used in the bond pricing literature as well as other processes that
exhibit other volatility elasticities. The implicit parameterization of x4 can be deduced
from ( 5.3).!® Moment conditions C1 will suffice for the identification of a. Since
for fixed a, variations in 7 leave invariant the stationary distribution ¢, 7y cannot be
inferred from moment conditions C'1. However, as we will see in our subsequent analysis,

moment conditions C2 will allow us to ideatify 7, but not p.

To assess the incremental informational content of the set of moment condition C2,
we focus only on generators that satisfy C1. In liéht of Proposition 5.1, all of these
candidates have Q as a stationary distribution. Strong continuity of the semigroup
{7:: t > 0} in £ implies Assumption AJ. Thus we are now free to use £2(Q) (instead of
the more restrictive domain £) as the common domain of the semigroups associated with
the candidate generators. To avoid introducing new notation, for a candidate generator
A satisfying C1, we will still denote by A the generator of the semigroup defined on
£2(Q) and by P its domain.

Recall that C2 was derived using the fact that A and 7 commute. In fact, if a candidate
A satisfies C2, then A must commute with T,ie forany ¢ in D, T¢ is in D and
AT¢ = T Agp.

19 Additional restrictions must be imposed on the parameters to guarantee that the there is a solution
to the associated stochastic differential equation. As mentioned in footnote 5, there are a variely of
alternative sufficient conditions that can be employed to ensure that a solution exists. Aiternatively,
we can work directly with the implied infinitesimal generators and verify that there exist associated
Markov processes for the admissible parameter values.
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Proposition 5.2. Suppose A satisfies C1. Then A satisfies C2 for ¢ € D and ¢* € D*
if, and only if AT = TA.

Proof: By mimicking the reasoning in Section 3 one shows that AT = T A is sufficient
for C2. To prove necessity, note that for any ¢ in D and any ¢° in D, it follows {from

C2 and the Law of [terated Expectations that

<TAP|¢">=<o¢|TA¢ >. (5.4)
Since 7T is the adjoint of T,

<P|T A¢ >=<To|A¢" >. (5.5)
It follows that AT@ = TAé for all ¢ in D, because the adjoint of A" is A,. Q.E.D.

Since it is typically hard to compute T¢ for an arbitrary function ¢ in L£YQ), it may
be difficult to establish directly that A commutes with 7. As an alternative, it is often
informative to check whether A commutes with A. To motivate this exercise, we inves-
tigate moment conditions C2 for arbitrarily small sampling intervals. By Proposition

5.2, this is equivalent to studying whether T, and A commute for arbitrarily small t.

Proposition 5.3. Supposej( commutes with T; for all sufficiently smallt. Then AAS =
AA¢ for all ¢ in D with A¢ in D.
Proof. Note that

AA$ = lim((T; - T)/t)A¢ = lim A((Te - T)/1]¢- (5-6)
Since A has a closed graph, the right side of (5.6) must converge to AA¢. Q.E.D.

In light of this result, we know that any A satisfying the small interval counterpart to
C2 must commute with A. Thus from Propositions 5.2- 5.3, if there exists an admissible
test function ¢ such that

AAd £ AA¢,
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then there is a sampling interval for which A fails to satisfy some of the moment con-
ditions in the collection C2. While we know there exists such a sampling interval, the
conclusion is not necessarily applicable to all sampling intervals and hence may not be
applicable to one corresponding to the observéd data. As we will now see, this limita-
tion can be overcome when additional restrictions are placed on the candidate and true
generators. Conversely, suppose that A commutes with A in a subspace of £2(Q). Be-
quillard (1989) gave sufficient conditions on that subspace to ensure that 4 commutes
with {7; : t > 0}. Hence such a candidate generator can never be distinguished from A

using moment conditions C2.

When both the candidate and true processes are reversible, we can show that requiring
A to commute with 7 is equivalent to requiring A to commute with A. Recall that
reversible Markov processes have infinitesimal generators that are self adjoint. Such

operators have unique spectral representations of the following form:

Ap = /( s )\dE(,‘\)qb (5.7)

where £ is a “resolution of the identity”, i.e.

Definition 5.1: £ is a resolution of the identity if

(i) £(A) is a self-adjoint projection operator on £3(Q) for any Borelian A C R;
(i) £(®)=0,E{R} =1T;

(iii) for any two Borelians A, and Az, £(A)y N Ag) = E(A1)E(A2);

(iv) for any two disjoint Borelians A; and A, E(A;l U Az) = E(A) + E(A2);

(v) for ¢ € D and 9 € L£3(Q), < £¢ | ¥ > defines a measure on the Borelians.

Spectral representation (5.7) is the operator counterpart to the spectral representation
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of symmetric matrices. It gives an orthogonal decomposition of the operator A in the
sense that if A; and A, are disjoint, £(A;) and £(A2) project onto orthogonal subspaces
(see condition (iv) characterizing the resolution of the identity.) When the spectral
measure of £ has a mass point at a particular point A, then X is an eigenvalue of the
operator and £{)) projects onto the linear space of eigenfunctions associated with that
eigenvalue. In light of condition (v), the integration in (5.7) can be defined formally in
terms of inner products. The integration can be confined to the to the interval (—00,0]
instead of all of R because A is negative semidefinite (e.g., see Theorems 13.30 and
13.31 on page 349 of Rudin 1973). Finally, spectral decomposition (5.7) of A permits

us to represent the semigroup {7; : t > 0} via the exponential formula:
Tib = / exp(A)dE(A )¢ (5.8)
{~00.0]
(e.g., see Theorem 13.37 of Rudin 1973, page 360).
Consider now a candidate generator A that is reversible and satisfies C1. Then

Ad = /( g (5.9)

where £ is also resolution of the identity. Suppose that A commutes with 7. Then
T must commute with £(A) for every Borelian A (see Theorem 13.33 of Rudin 1973,
page 351). Let {7;} be the semigroup generated by A. Since 7, is a bounded operator
and can be constructed from A via the exponential formula analogous to (5.8), 7, must
commute with 7 for every nonnegative r. Moreover, 7, must commute with £(A} for

any Borelian A and hence with T; for any nonnegative t. We have thus established:

Proposition 5.4. Suppose A satisfies C1 and A and A are self-adjoint. IfTAT = TA,
then AT, = T.A for all t > 0.

Propositions 5.1-5.4 support the following approach to identification. Suppose one be-

gins with a parameterization of a family of candidate generators. First partition this
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family into collections of generators with the same stationary distributions. Then par-
tition further the family into groups of generators that commute (on a sufficiently rich
collection of test functions). Two elements in the same subset of the original partition
cannot be distinguished on the basis of moment condition in the set C'1, and two ele-
ments in the same subset of the finest partition cannot be distinguished on the basis of

C2.

Moment conditions C1 and C2 do not capture all of the information from discrete-time
data pertinent to discriminating among generators. To see this, we consider identifi-
cation results based instead on knowledge of the discrete-time conditional expectation
operator T. In the case of reversible Markov processes, any candidate A that implies

T as a conditional expectation operator, must satisfy the exponential formula:
0 .
To= j exp(A)dE(N)o. (5.10)
-0 .

Moreover, the spectral decomp'osition for self-adjoint operators is unique (see Theorem
13.30, Rudin 1973, page 348). Since the exponential function is one-to-one, it follows

that & and £ and hence A and A must coincide. Thus we have shown:

Proposition 5.5. Suppose that the generators A and A are self-adjoint and imply the

same conditional expectation operator T. Then A = A.

Proposition 5.5 implies that there is no aliasing problem when the Markov processes
is known to be reversible. Aliasing problems in Markov processes arise because of
the presence of complex eigenvalues of the generators. For reversible processes all of
the eigenvalues are real and negative (the corresponding resolutions of the identity are
concentrated on the nonpositive real numbers). Similarly, the eigenvalues of 7 must be
in the interval (0,1]. As we will see in our examples, moment conditions C'1 and C2 fail

to achieve complete identification of A for reversible processes.

More generally, even if we do not impose reversibility, A and 7 are connected through
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the following alternative exponential formula:
dim (1 - A/n) "¢ = Té for all ¢ € LHQ) (5.11)

(e.g., see Pazy 1983, page 33). This exponential formula is the generalization of a
formula used to study eliasing and embeddability for finite state Markov chains (e.g, see
Johansen 1973; Singer and Spillerman 1976). Since A is a continuous operator in this
case, the exponential formulas simplify to T = exp(.A). Relation (5.11) also encompasses
the exponential formulas derived by Phillips (1973) and Hansen and Sargent {1983) in

their analysis of aliasing in the class of multivariate Gaussian diffusion models.
We now apply and illustrate our results in the context of three examples.

Ezample 5.1 (continued): As we saw earlier, using moment conditions in the set C'1 may
still leave a large class of observationally equivalent Markov processes. We now show
that using moment conditions C2 we may narrow this class to an easily interpretable

one-dimensional family.

Suppose that both the true and the candidate processes are reversible scalar diffusions,
that share a stationary distribution Q. Let g and o2 denote the local mean and diffusion
coefficients associated with the true process, and let i and 62 denote their counterparts
for the candidate process. We maintain the assumptions made in Example 4.2 of Section
4. Write L for the second-order differential operator associated with the pair (g,9?%)

and L for the corresponding operator associated with (j,4?).

We start by examining the case of diffusions on a compact interval [¢, u] with two reflec-
tive barriers and a strictly positive diffusion coefficient, to which the standard Sturm-
Liouville theory of second-order differential equations applies. Consider the following

eigenvalue problem associated with i
Lo =3¢, ¢'(f)=¢'(u)=0. (5.12)
In light of the boundary conditions imposed in (5.12), we know that a twice continuously

27



differentiable (C?) solution to this eigenvalue problem will result in an eigenvector for
A. From Sturm-Liouville theory there exists an infinite sequence of negative numbers
do > A > A > ... with limpoco A, = —oo and corresponding unique, up to constant
factors, C? functions ¢, such that the pair (;\,., ®n) solves the eigenvalue problem (5.12).
Choose a negative An. Suppose that all of the moment conditions in the class C2
are satisfied by A. By Proposition 5.4, T; and A commute, and hence 79, is also
an eigenvector of A associated with 5«,.. Consequently, 7 and A must have ¢, as an
eigenvector associated with a perhaps different eigenvalue A,. Since ¢, is C? and satisfies
the appropriate boundary conditions, A¢, coincides with L¢, and hence ¢, satisfies
the counterpart to (5.12 ):

L¢n = AnQ&’n- (5-13)
Muitiply this equation by ¢ and substitute (1/2)(o?q)’ for ugq, to obtain:
(1/2)(e%q) ¢, + (1/2)(a’a)¢s = Anbna,

or,
(1/2)(0%q¢l,) = Adng.

Therefore the eigenvector ¢, satisfies:

X (9)6L(v)a(y) = 2An /¢ ¥ gn(z)a(z)dz + C. (5.14)

The boundary conditions on ¢, and condition C1 assure us that the constant C in

(5-14) is in fact zero. Similarly, we conclude that

S (y)¢h(v)e(y) = 24 ]‘ ! a(2)e(z)du. (5.15)

It follows from (5.14) and (5.15) that o2 and &2 are proportional and hence from formula
(5.3) the u and j are also proportional with the same proportionality factor given by
the ratio of the eigenvalues. In other words, moment condition C'2 permits us to identify

the infinitesimal generator A up to scale.
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We now show how this identification result can be extended to processes defined on the
whole real line, even though in this case the generator may fail to have any non-zero
eigenvalue. We will proceed by considering reflexive barrier processes that approximate
the original process. We assume that both g and o? are €2 functions and with 2 > 0.
When A satisfies moment conditions C1, by Proposition 5.1 the candidate Markov
process shares a stationary density g with the true process. Suppose A also satisfies
moment conditions C2. For a given k > 0 consider the processes created by adding to
the original candidate and actual processes reflexive barriers at —k and k. The reflexive
barrier processes will share a common stationary distribution Q) with a density g; that,
in the interval [—k, k], is proportional to ¢. We write A; and A; for the infinitesimal
generators associated with the reflexive barrier processes in £2(Qx). As before we can
use Sturm-Liouville theory to establish the existence of a negative X and a C? function
¢ such that .

Lé =3¢, #(-k)=¢'(k)=0. (5.16)

Since 4 and o2 are C? functions, and o? > 0, the eigenvector ¢ € C* on (-k, k) and
all derivatives up to fourth order have well define limits as y — +k . We write f(»)
for the n-th derivative of f. Construct ¥4 to be a C* function defined on (k,00) with
¥+(y) = O when y > k+1 and limy— ${"(y) = limy—i $")(y) for 0 < n < 4. Similarly
construct ¥_ to be a C* function defined on (—o00, —k) with ¥_(y) = 0 when y < —k -1
and limy—_; $1"N(y) = limy—_, $")(y) for 0 < n < 4. Finally let ¥(y) = (y) if
~k Sy <k, and ¥(y) = ¥4 (¥-) if y > k (resp. y < —k).

Notice ¥ is a C* function with support in [~k —= 1,k + 1] and that Ly is C? and has a
compact support. Hence Ay = Ly and, AAy = LLy. Alsa, L is a C? function with
compact support and hence AAY = LLy. Since by Propositions 5.3 and 5.4 A and A
must commute, LLy = LLy, and hence A A = A Aid. The result for the compact
support case with reflexive barriers implies that the drift and diffusion coefficient are

identified up to scale in an interval (—k, k) for arbitrary k.
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Finally, we observe that if an eigenvector ¢ of A can be explicitly calculated, then the
corresponding (real) eigenvalue and hence scale constant can also be identified by using

the fact that T¢ = e*¢.

Ezample 5.2: In Section 4 we introduced a class of factor models in which the process
{x¢} is a time invariant function of a vector independent scalar diffusions. Suppose that
both the candidate process and the true process satisfy these factor restrictions. Then
it follows from Propositions 5.1-5.4 that A and A can be distinguished on the basis of
our moment conditions if they imply different stationary distributions or il they fail to
commute. By extending the discussion in Example 5.1 we can construct A’s that are not
distinguishable from A as follows. Use the same function F mapping the factors into the
observable processes as is used for .A. Then form an A by multiplying the coefficients of
each scalar factor diffusions by a possibly distinct scale factor. While such an A can not
be distinguished using moment conditions C1 and C2 they can be distinguished based

on knowledge of the conditional expectation operator T ( see Proposition 3.5).

Ezample 5.3 For our last example, we start from an arbitrary infinitesimal generator
A and construct a two-parameter family of candidate generators that always satisfy C'1
and C2. Let {z,} be a continuous time stationary Markov process with infinitesimal
generator A on a domain D. For any ¢ € D, construct Ad = mAS + na|f ¢dQ - ¢
where 7; and 77 are two positive real numbers. Notice that we formed our candidate
A by changing the speed of the original process by multiplying A by m and adding to
that the generator for a particular Markov jump process [see (4.2)]. It is easy to check
that 4 has Q as its stationary distribution and commutes with A. Therefore A cannot

be distinguished from A using C1 and C2.

When A is self adjoint so is A. Consequently it follows from Proposition 5.5 that in
this case the generators can be distinguished based on knowledge of the conditional

expectations operator.
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6. Cores

So far, we have analyzed observable implications by assuming all of the moment con-
ditions in C1 or C2 could be checked. To perform such a check would require both
knowledge of the domain D and the ability to compute A. It is often difficult to char-
acterize the domain D and to evaluate a candidate generator applied to an arbitrary
element of that domain. For instance, in the scalar diffusion example (Example 4.2) we
only characterized the infinitesimal generator on a subset of the domain. Furthermore,
it is desirable to have a common set of test functions to use for a parametetized family

of generators.

Since the operator A is not necessarily continuous, a dense subset of D does not need
to have a dense image under A. Consequently, in examining moment conditions C'1
and C2, if we replace D and D* by arbitrary dense subsets, we may weaken their
implications. In addition, recall that the moment conditions in C'2 require looking at
means of random variables of the form A¢(zy41)8"(2e) — ¢(Ze41)AP"(x¢), which are
differences of products of random variables with finite second moments. To ensure that
standard central limit approximations work, it is convenient to restrict ¢ and ¢* so that
Ad(2i41)9°(20) - ¢(T(41)A"9°(2() has a finite second moment. For instance, this will

be true when both ¢ and ¢* are bounded.

To deal with these matters, we now describe a strategy for reducing the sets D and
D* that avoids loosing information and results in random variables with finite second
moments. The approach is based on the concept of a core for a generator A. Recall
that the graph of A restricted to a set N is {(¢, A¢) : ¢ € N}.

Definition 5.1: A subspace A of D is a core for A if the graph of A restricted to N is
dense in the graph of A.

Clearly, if V is a core for A, A(V) is dense in A(D). As we will argue below, in checking
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moment conditions C1 and C2 it suffices to look at sets whose linear spans are cores

for A and A"

For a Markov jump model (Example 4.1), a candidate generator A is a bounded opera-
tor. In this case, it suffices to look at a countable collection of bounded functions whose

linear span is dense in £%(Q) for all probability measures Q.

For a Markov diffusion model (Examples 4.2 to 4.4), A is no longer a bounded oper-
ator. In order to apply Proposition 5.1, it is important to characterize a core for the
candidate generator defined on L. Recall that we assumed that L contained all the
continuous functions with a compact support. For concreteness we now assume that
L ={¢:R* = R s.t. ¢is continuous, and limjzj_.co #(z) = 0} with the sup norm. No-
tice that since convergence in the sup norm implies convergence of the mean, it suffices
to verify moment conditions C1 on a core. Ethier and Kurtz (1986) (Theorem 2.1 page
371) showed that under the conditions stated in Example 4.2, the space of all infinitely
differentiable functions with a compact support (C2) forms a core for the infinitesimal
generator associated with the scalar stochastic differential equation. In this case since
C} C D. it is also a core for A. Since, in analogy to the result we presented in Ex-
ample 4.2, for these functions the infinitesimal generator is given by the second-order
differential operator L, we can easily perform the calculations needed to apply moment
condition C1. The Ethier and Kurtz result also covers certain cases with finite support
and inaccessible or reflexive boundary conditions. Extensions to the multi-dimensional
case, that typically require stronger smoothness conditions, are given in Theorem 2.6
and Remark 2.7, page 374 of Ethier and Kurtz (1986).

To apply Propositions 5.2-5.4 we need to consider candidate generators defined on
£*(Q). If N is a core for both A and A" and our second moment condition holds
for any ¢ € A and ¢* € A then it must hold for any pair (¢, $*) € D x D*. This follows
since if ¢, — @, Apn — Ad, @5 — ¢* and, A‘qb,“ — A"¢* then, since T is continuous,

<TAp | 8L > - <A | Toa> = <TAB|$"> -~ <A |To>.
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Hence it suffices to characterize cores for A and A". We can readily extend the results
available in the literature on cores of infinitesimal generators for semigroups defined on
subspaces of the space of continuous bounded functions with the sup norm. For instance
consider an extension of Ethier and Kurtz’s Theorem 2.] cited above. We use the fact
that A is a core for A if and only if both & and the image of A under Al — A for
some A > 0 are dense on the domain of the contraction semigroup.!! For diffusions with
continuous coefficients the infinitesimal generator coincides on C} with the second-order
differential operator. This is true whether the semigroup is defined on £ or on £3(Q).
Since Cg forms a core for the candidate infinitesimal generator A¢ of the semigroup
defined on £, there must exist a A > 0 such that the image of C§ under Al — L is dense
in £. It follows that the image of C under Al — L is dense in £?(Q), because C§? is
dense in £2(Q) and sup-norm convergence implies £2(Q) convergence. llence C}? is a
core for A, the infinitesimal generator for the semigroup defined in £3(Q). Notice that,
since sup-norm convergence implies £%(Q) convergence, we may apply exactly the same

reasoning whenever we have a core A for A¢ and we know that Ay = (A1

Even when reduced to a core the observable implications of conditions C1 and C2
pressupose the use of large set of test functions. Of course, for a finite data set, only a
small (relative to the sample size) number of test functions will be used. We now obtain
a reduction that can be used to support theoretical investigations in which the number
of test functions can increase with the sample size such as Bierens (1990), who suggested
a way of testing an infinite number of moment conditions using penalty functions, and
Newey (1990) who derived results for efficient estimation by expanding the number of
moment conditions as an explicit function of the sample size. Their analyses could
be potentially adapted to the framework of this paper once we construct a countable

collection of test functions whose span is a core. For the Markov jump process this

'1See Proposition 3.1, page 17 of Ethier and Kurtz (1986).

12[f the assumptions concerning the bounds on the derivatives of the coeflicients made in Example
4.2 are replaced by weaker polynomial growth coaditions, it is still possible 1o show directly that €3; is
a cote for A if the stationary distribution possesses moments of sufficiently high order.
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reduction is easy since it suffices to choose any collection of functions with a dense span
in £2(Q). For Markov diffusions that have C% as a core we may proceed as follows.
Fix a positivc integer N and consider the subspace of C} of functions with support on
{y:]y|< N} This subspace is separable if we use the norm given by the maximum
of the sup norm of a function and of its first two derivatives. Choose a countable dense
collection for each NV and take the union over positive integers N. Since C}. is a core, it

is straightforward to show that the linear span of this union is also a core for A.

7. Ergodicity and Martingale Approximation

To use the moment conditions derived in Section I in econometric analyses, we must
have some way of approximating expectations of functions of the Markov state vector
z, in the case of C1 and of functions of both z¢4) and z, in the case of C2. As usual, we
approximate these expectations by calculating the corresponding time-series averages
from a discrete-time sample of finite length. To justify these approximations via a Law
of Large Numbers, we need some form of ergodicity of the discrete-sampled process.
In the first subsection, we investigate properties of the infinitesimal generator that are

sufficient for ergodicity of both the continuous time and the discrete-time processes.

It is also of interest to assess the magnitude of the sampling error induced by mak-
ing such approximations. This assessment is important for determining the statistical
efficiency of the resulting econometric estimators and in making statistical inferences
about the plausibility of candidate inﬁniiesimal generators. The vehicle for making this
assessment is a Central Limit Theorem. In the second subsection we derive central
limit approximations via the usual martingale approach. Again we study this problem
from the vantage point of both continuous and discrete records, and we derive suffi-
cient conditions for these martingale approximations to apply that are based directly

on properties of infinitesimal generators.
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7.1. Law of Large Numbers

Stationary processes in either discrete time or continuous time obey a Law of Large
Numbers. However, the limit points of time series averages may not equal the corre-
sponding expectations under the measure Q. Instead these limit points are expectations
conditioned on an appropriately constructed set of invariant events for the Markov pro-
cess. Furthermore, the conditioning set for the continuous-time process may be a proper
subset of the conditioning set for a fixed interval discrete-sampled process. Therefore,
the limit points for the discrete record Law of Large Numbers may be different than the

limit points for the continuous record Law of Large Numbers.

Invariant events for Markov processes (in continuous or discrete time) turn out to have
a very simple structure. They are measurable functions of the initial state vector zg.
Hence, associated with the invariant events for the continuous-time process {2}, there
is a sigma algebra G, contained in the Borelians of R™, such that any invariant event is
of the form A = {zo € B} for some B € . We can construct a conditional probability
distribution @, indexed by the initial state g = y such that expectations conditioned
on G (as a function of y) can be evaluated by integrating with respect to Q,. Imagine
initializing the Markov process using Q, in place of Q in our analysis where y is selected
1o be the observed value of zg. Then under this new initial distribution the process {z:}
remains stationary, but it is now ergodic for (Q) almost all y. Therefore, by an appro-
priate initialization we can convert any stationary process into one that is also ergodic.
Alternatively, it can be verified that the moment conditions C'1 and C2 hold conditioned
on the invariant events for the continuous-time process {z;}. Consequently, imposition

of ergodicity for the continuous time process is made as matter of convenience.

Since ergodicity of {z,} is connected directly to the initial distribution imposed on zg, it
is of interest to have a criterion for checking whether an appropriate initial distribution
has been selected. As we will see, such a criterion can be obtained by examining the

zeros of the operator .A. Note that constant functions are always zeros of the operator A.
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We omit all such functions from consideration except for the zero function by focusing

attention on the following closed linear subspace:
2(Q) = (€ LYQ): /R $dQ = 0}.

For any t,7; maps Z(Q) into itsell. Hence we may consider {7 : t > 0} as having the
domain Z(Q). Furthermore, since D is a linear subspace of £2(Q), it follows {from Pé

that D n Z(Q) is a linear subspace and is dense in Z(Q).

Our first result relates the ergodicity of the continuous-time process {z:} to the unique-
ness of the zeros of A on Z(Q). In the proof of this proposition and in what follows,
L2(Pr) denotes the space of all random variables on (£, F, Pr) that have finite second
moments with the usual norm. Note that if ¢ € £3(Q), then the £2(Q) norm of ¢

coincides with the £2(Pr) norm of the random variable &{z¢).

Proposition 7.1. The process {z} is ergodic if, and only if Ap =0 for¢ € DN Z(Q)
implies that ¢ = 0.

Proof First suppose that {z} is ergodic. Let ¢ € DN Z(Q) be a zero of A. By
the Mean Ergodic Theorem (see Dunford and Schwartz 1988, Corollary 3, page 689)
{(1/T) fT #(z.)dt : T > 0} converges in L?(Pr). This limit random variable is invariant
to a shift in the starting time and thus it is measurable with respect to the sigma algebra
of invariant events. By assumption, {z,} is ergodic implying that the limit random

variable must be constant and hence equal to zero. Since

T T
EQQ/T) [ #(adt ) 2 Bl EQ/T) [ #le)de ) 0}

it follows that {(1/T) j'OT Ti¢dt : T > 0} converges in L2(Q) to zero. Recall that the
semigroup {7; : t > 1} satisfies P5. Consequently,

{
'I;¢=¢+/0 T.Adds = ¢.
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Therefore, (1/T) fg' T,¢dt = ¢ implying that ¢ = 0 with probability one. Next suppose
the only zero of A on DN Z(Q) is the zero function. Let ¢ € Z(Q) be G measurable.
Then ¢(z.) = ¢(z0) almost surely (Pr ), and hence Ty = ¢ almost surely (Q). Con-
sequently, ¢ € D and A¢ = 0. Hence ¢ must be the zero function and § must contain
only sets with Q measure zero and one. Similarly, invariant events of {z;} must have

Pr measure zero or one. Q.E.D.

Next we consider ergodicity of the discrete-sampled process. For notational simplicity,
we set the sampling interval to one. The discrete time counterpart to Proposition 7.1

is:

Proposition 7.2. The sampled process {2 : t = 0,1,...} is ergodic if and only if
T¢o=¢ and ¢ € Z(Q) imply ¢ =0.

The proof of this result is very similar to the proof of Proposition 7.1 and will be omitted.

Ergodicity of the continuous-time process {z;} does not necessarily imply ergodicity of
this process sampled at integer points in time. From equation (5.11) T; can be inter-
preted as the operator exponential of tA even though, strictly speaking, the exponential
of tA may not be well defined. The Spectral Mapping Theorem for infinitesimal gen-
erators (e.g., see Pazy 1983, Theorem 2.4, page 46) states that the nonzero eigenvalues
of T; are exponentials of the eigenvalues of tA. Therefore, the only way in which T
can have a unit eigenvalue on Z(Q) is for A to have 2rki as an eigenvalue on Z(Q).
In other words, there must exist a-pair of functions ¢, and ¢; in Z(Q), at least one of

which is different from zero, such that

A(¢r + ig;) = 2nki(dy + idi).

When A has a purely imaginary eigenvalue there will always be a nondegenerate function

¢ in Z(Q) such that ¢(z,) is perfectly predictable given zg. In other words, there exists
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a nondegenerate function ¢ such that ¢(z;) = Ti¢(zo) almost surely (Pr) for all ¢ 2> 0.13
To ensure ergodicity for all sampling intervals, we must rule out all purely imaginary

eigenvalues,

Generators of stationary, ergodic (in continuous time) Markov jump processes {Example
4.1) do not have purely iniagina.ry eigenvalues. Suppose to the contrary that the pair

(¢,, ¢;) solves the eigenvector problem for eigenvalue if different from zero. Then
T(@r + idi) = [(i8/X) + 1)( &, + id).
This leads to a contradiction because | (i#/A) + 1|> 1 and T is a weak contraction.

Recall that generators of reversible process, including those discussed in Examples 4.2
and 4.3, have only real eigenvalues. Many other multivariate stationary, ergodic (in
continuous time) Markov diffusion processes (Example 4.4) do not have purely imaginary
eigenvalues. For instance, under the conditions given in Section 4 for the existence of
a unique stationary distribution, for sufficiently large t,#(z,) = Tyd(zo) almost surely
(Pr) implies ¢(z¢) = 0 almost surely (Pr ) (see Has'minskii 1980, Lemma 6.5, pages

128 and 129). Hence A cannot have a purely imaginary eigenvalue in this case.

We now reconsider the moment conditions derived in Section 3. Recall that moment
conditions C1 imply that A(D) € Z(Q). Consequently, the appi'oximation results we
obtained for functions in Z(Q) can be applied directly to justify forming finite sample

approximations to the moment condition C1.

Consider next moment conditions in the set C2. Recall from Section 3 that these con-

ditions are of the form:

Elv(zesr,2e)] =0 (7.1)

for functions v : R¥* — R. The function v was not necessarily restricted so that the

Let the pair of functions (¢, ) in DN Z(Q) satisly the eigenvalue problem for purely imaginary
eigenvalue i6. Thus (¢., 4:) solves the analogous eigenvalue problem with eigenvalue ezp(i8t) for 7; and
consequently, || Zié. || + || 7edi |[P=|l - || + || #: || Since § ¢ 1?= E[) ¢-(x:) — Tidr(z0) I’}+
I Tedr II*=0, by the contraction property || ¢, ||*=|| Teér }|*= 0, and similarly for 4.
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random variable ¥(z41,2.) has a finite second moment, although this random variable
will always have finite first moment. Ergodicity of the sampled process is sufficient
for the sample averages to converge to zero almost surely (Pr). Under the additional
restriction that the random variable v(z4,,2,) has a finite second moment, it follows
from the Mean Ergodic Theorem that the sample averages will also converge to zero in
L3(Pr).

7.2. Central Limit Theorem

To obtain central limit approximations for discrete time Markov processes, Rosenblatt
(1971) suggested restricting the operator 7 to be a strong contraction on Z2(Q). Among
other things, this limits the temporal dependence sufficiently for discrete-sampled pro-
cess to be strongly mixing (see Rosenblatt 1971, Lemma 3, page 200). The way in which
the central limit approximations are typically obtained is through martingale approxi-
mations. Explicit characterization of these martingale approximations is of independent
value for investigating the statistical efficiency of classes of generalized method of mo-
ments estimators constructed from infinite-dimensional families of moment conditions

{e.g., see Hansen 1985) such as those derived in Section 3.

Since our goal in this subsection is to deduce restrictions on A that are sufficient for
martingale approximations to apply, we begin by investigating martingale approxima-
tions for the original continuous time process. This will help to motivate restrictions
on A that are sufficient for 7 to be a st.rong contraction. In studying moment condi-
tions C1 using a continuous record, we use the standard argument of approximating the

integral fOT Ag(z,)dt by a martingale m7, and applying a Central Limit Theorem for
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martingales.'* For each T > 0, define:
T
mr = ~d(er) + d(z0) + [ AdzdL (7.2)

Then {my : T > 0} is a martingale, relative to the filtration generated by the continuous-
time process {z:}, (e.g. , see Ethier and Kurtz 1986, Proposition 1.7, page 162). The
error in approximating for Ad(z,)dt by mr is just —¢(zT)+ $(2o) which is bounded by
2 || ¢ |l. When scaled by (1//T), this error clearly convergesin L}(Pr ) to zero. Conse-
quently, a Central Limit Theorem for {(1/VT) fg' A¢(z,)dt} can be deduced from the
Central Limit Theorem for scaled sequence of martingales {(1/VT)mr} (see Billingsley
1961).

The random variable mt has mean zero and variance:

J
3" E[(mry_jsys - mr-id )l
)=1

= JE[(m1/s)%]
T/
TE[(J/T)(-#(z115) + H(20) + ]o Ad(zdt)]  (7.3)

E((m1)?]

for any positive integer J since the increments of the martingale are stationary and

orthogonal. Thus we are led to investigate the limit

lim E[(1/)(~$(z) + 6(z0) + [ * Ad(z)dt)?]. (7.4)
= [}

By the Triangle Inequality
(El(1/072 [ Ad(ad} 72
0

FAN

f; E[(1/€) Ad(z()*] /2t
Y . (7.5)

Thus the limit in (7.4) can be written as

lim(1/e)E{{¢(z.) - $(zo)l"} = lim(1/e)2(<l¢> - <Té|6>]
-2< ¢|Ad>. (7.6)

14The Central Limit Theorem for diffusions on the line appears in Mandl (1968). Our argument
generalizes in a straightforward way the reasoning in Florens-Zmirou (1984), who gave an alternative
proof 10 Mand!'s and derived a counterpart for the discretized version of some diffusions on the line.
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Taking limits on right side of (7.3} as J gets large and substituting {rom (7.6), we see
find that
E[(m7)’]=-2T < ¢| Ad>. (7.7)

Therefore, the asymptotic variance for the central limit -approximation is given by
-2 < ¢ | A > which is always nonnegative due to the fact that A is quasi nega-
tive semidefinite (Property P9).

The fact that the right side of (7.2) is a martingale guarantees that the continuous-time
Central Limit Theorem can always be applied to functions ¢ = A¢. Note, however,
that the limiting distribution is nondegenerate only when < ¢ | A¢ > < 0.

We now investigate the discrete-time counterpart to this martingale approximation un-
der the restriction that 7 is a strong contraction on Z(Q), i.e. there exists constant
C < 1such that || T¢ |< C || ¢ || for each ¢ € Z2(Q). More precisely, we will show that
a martingale My approximates }:f\f_._l ¥(z,) for ¢ in Z(Q). Of course, the Y's we are

interested in are the ones constructed by applying A to an element of its domain D.

The strong contraction property of 7 guarantees that (Z — 7) has a bounded inverse

on Z(Q). Note that since
EfY(zi41) = T¥(z) | ] =0,

the discrete-time process {My : N = 1,2,...}, defined by:

N
My =Y (T - T (=) - T(T - T) (i)l (7.8)

t=1
is a martingale adapted to the filtration generated by the discrete-sampled Markov

process. Equivalently, we may write

N
My = T(T ~ T) M (an) — v(2a)} + ) ¥(z0)-
t=1

which is the discrete time counterpart to (7.2) and agrees with martingale approximation

suggested by Gordin (1969). Note that the L£2(Pr) norm of the the error in approxi-
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mating the partial sum TN L ¥(z¢) by the martingale My has a bound independent of
N. This bound is uniform for ¥ in the unit ball of Z2(Q) since

(E{| T(Z - T)"'[¥(zn) - $(zo)] PN <21 T(T - T ' ()

and T and (I — 7)~" are bounded operators on Z(Q). Scaling by (1/v/N) makes the
approximation errot arbitrarily small as N goes to infinity implying that central limit
approximations for {(1/\/ﬁ) TN ¥(z4)} can be deduced from central limit approxama-
tions for scaled sequence of martingales {(l/\/IV)MN} (see Billingsley 1961). Finally,
it follows from (7.8) that

(1/N)E(MR)
<(T-TYy"Wl@EZ-T)'v> - <TEZ-T)YW|TE-T)'¥>
= '<¢|¢>+2<¢|T(I-T)“w>. (7.9)

which gives the asymptotic variance for the discrete-time Central Limit Theorem. It
can be shown that for ¥ = Ad, the expression on the right side of (7.9) is greater
than or equa! to the corresponding expression —2 < ¢ | A¢ > for the continuous-time
martingale approximation. This reflects the loss of information due to sampling in

discrete time.

The discrete-time martingale approximation given by equation (7.8) can also be applied
to moment conditions in the class C2. As we argued previously, these moment conditions
can be represented as in {7.1). Suppose that the random variable v(z¢4+1,z¢) has a finite

second moment. Then there exists a ¥ in Z(Q) such that

El(ze41,20) | e} = ¥(z4)-

Then a martingale approximator for sz__, v{Z¢41,7e) is given by the sum of the mar-

tingale TN, [W(z¢41, 2¢) — ¥(z1)] and the martingale approximator for TN w(zy).

We now consider restrictions on A that are sufficient for 7 to be a strong contraction.

We write var(¢) for the variance of the random variable ¢(z¢).
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Condition G: There exists a subspace N, a core for A, and a é > 0 such that
~< Ap| ¢ >> bvar(¢) forall g€ N.

Notice that since A is a core, Condition G can be extended to any ¢ € D. Also, since

¢ - [odQ € Z2(Q), Condition G is equivalent to requiring

- <Ap|¢>26< ¢|¢> forall ¢ with mean zero.

Proposition 7.3. The operator T is a strong contraction if and only if the generator
A satisfies Condition G.

Proof: As shown by Banon (1977, Lemma 3.11, page 79), if 7; is a strong contraction
for any fixed t > 0, then the semigroup {7;} must satisfy the erponential inequality for

some strictly positive §:

| Te(#) 1< exp(~60) || ¢ || for all ¢ € Z(Q).

Hence S; = €*7T; defines a contraction semigroup in Z2(@Q) with a generator A+ 81
By P9, Condition G holds. Conversely if Condition G holds, A +é[isa quasi negative
semidefinite operator with domain PNZ(@Q), and such that forany A > 0, AI—(A+8[)
is onto. Hence, by the Lumer- Phillips Theorem, A + 47 is the generator of a contraction
semigroup, {S¢}, in Z(Q) and since Ty = e~58,, it satisfies the exponential inequality.
Q.E.D.

For reversible generators, Condition G is equivalent to zero being au isolated point
in the support of £, the resolution of the identity used in Section 5. In particular
for diffusions with reflecting boundaries on a compact interval with strictly positive
diffusion coefficient, condition G holds. Condition G requires that the variances of the
contlinuous-time martingale approximators (and hence the discrete-time approximators})
be bounded away from zero for test functions ¢ with unit variances. In particular, when

Condition G is satisfied, the central limit approximation will be nondegenerate whenever
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é in D is not constant. Also, Condition G ensures that || A(#) || is bounded away from

zero on the unit sphere and hence A~! is a bounded operator on A(D).

We now study restrictions on 4 that imply Condition G for the examples given in
Section 4. For the Markov jump process (Example 4.1) sufficient condition is that A is
bounded away from zero and the conditional expectation operator 7 on the associated
chain is a strong contraction on Z(Q) To see this, first note that for &'} = f¢dQ and
K, = f(l/,\)dQ,

<olAp> = [oT(9)-¢lrd0
(1/Ks) [ HT(8) - 942
(1/K2) (8~ KT8~ K1) - (6 - K)ldQ

< (K- 1) [(6- KiYdd

(7.10)

for some 0 < v < 1 since 7 is a strong contraction on Z(Q). Next observe that for
Mz=infA>0

(I/Kz)(‘r—l)_[(qb—ﬁ'l)’dg' < (7—1)A/[(¢—K1)2d9
(Y=-Dre<dlo>, . (7.11)

IA

as long as ¢ € Z(Q). The operator A in conjunction with any positive é less than
(1 — 7)A¢ will satisfy Condition G.

We now turn to Markov diffusion processes {(Examples 4.2-4.4). Bouc and Pardoux
(1984) provided sufficient conditions for G that include uniformly bounding above and
below the diffusion matrix L as well as a pointing inward condition for the drift x. To
accommodate certain examples in finance where the diffusion coefficient may vanish at
the boundary, it is necessary to relax the assumptions on the diffusion coefficient. For

this reason we derive here an alternative set of sufficient conditions on the line.
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Consider a scalar diffusion on an interval [¢, u], allowing for £ = —o0 and u = +oo0. We
restrict o? to be positive in the open interval (¢, u) and require the speed density to be
integrable. If a finite boundary is attainable, we assume that it is reflexive. We start
by presenting an alternative characterization of Condition G for diffusions. Let M be
the space of twice continuously differentiable functions ¢ € £?(Q) such that o¢' and
L¢ are also in £2(Q). In the case of a reflexive boundary we also add the restriction

that ¢’ vanishes at the boundary.

For ¢ € M it follows from the characterization of the infinitesimal generator established

in Example 4.2 and equation ( 7.2), that the martingale approximator {m]} satisfies:
T
mr = - /0 #(z0)o(z,)dW,
Since {z,} is stationary, (7.7) implies that
-2<¢- j $dQ | A(¢) > = / (¢')2a%dQ.
Therefore, Condition G requires for some n > 0:

] (¢')%0%dQ 2 7 var(¢) for all ¢ € M. (7.12)

When M is a core condition (7.12) is equivalent to Condition G. Recall that in Section

6 we discussed sufficient conditions for C} and hence M to be a core.!’

We now derive sufficient conditions for inequality (7.12). Let z € (£, u) and, notice that,
for any ¢ in M,

Ji8- #2174 > vas(#).

It follows from an inequality in Muckenhoupt (1972, Theorem 2) or Talenti (1969, page
174) that there is a finite A such that

j "6 - H2)PdQ < K, / ‘1 020

1 [nequality (7.12) has the obvious multivariate extension.
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if, and only if

2ug Q{[r,uv)} '(azq)'l dy < co. (7.13)

Hence (7.12) will hold provided (7.13) and the analogous condition
sup Q{(¢,r)} [ (e%q)7! dy < co. (7.14)
t<r<s r

are satisfied.
Applying L'Hospital’s Rule, if:
lim Q{[r,u)}/o(r)q(r) < oo, (7.15)

then (7.13) holds. In particular inequality (7.15) holds if liminf,_, o(r)g(r) > 0. If
lim,—y o(r)g(r) = 0, we may apply L’Hospital’s Rule again to obtain as a sufficient

condition:

lim ! exists and is finite. (7.16)

r—u o'(r) + o(r)g'(r)/q(r)
Using equation (5.3) that relates the logarithmic derivative of the stationary density to

the drift and diffusion coefficients we may rewrite (7.16) as:

. o(r)
" () = e (D)

The conditions at the lower boundary are exactly analogous. We summarize this dis-

exists and is finite. (7.17)

cussion in a proposition:

Proposition 7.4. Suppose {z,} solves dz; = p(z,)dt + a(z¢)dW, in an interval (£, u)
with possibly ¢ = —oo and/or u = +0o; the diffusion coefficient is C! and positive on
(¢,u); and the speed density 1/so? is integrable. Then the following conditions are
sufficient for (7.12) to hold.

(a) The right boundary satisfies either liminf, .y o(r)q(r) > 0; or liminf, ., o(r)q(r) =
0 and lim, _.,, o(r)/[2u(r) — o(r)o’(r)] exists and is finite.
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(b) The left boundary satisfies either liminf, ¢ o(r)q(r) > 0; or liminf,_,o(r)q(r) = 0

and lim, ¢ o(r)/[2u(r) — a(r)a’(r)] exists and is finite.

Notice that for models that are parameterized in terms ¢ and o?, condition (7.16) is
easier to verify than the equivalent condition ( 7.17) mentioned in the proposition. Also

one may, in some cases, verify directly (7.15).

The square root process dz; = x(z; — )+ /TdW,, with k < 0 and £ > 0, is an example
of a process that satisfies the sufficient conditions of Proposition 7.4 even though o2
is not bounded away from zero. A process {z,} that solves a stochastic differential
equation in Ry with o(y) = 1 and, p(y) = —=(,/y)~! for large y, is an example where
the sufficient conditions of Proposition 7.4 do not hold. However in this case every
nonnegative real number is in the spectrum of A and hence, Condition G fails, even

though {z,} is mean recurrent ( Bouc.and Pardoux, 1984, page 378.)

The conclusion of Proposition 7.4 also holds for the multivariate factor models described

in Example 4.3 when the individual factor processes satisfly the specified conditions.
8. Conclusion

The analysis in this paper is intended as support of empirical work aimed at assessing
the empirical plausibility of particular continuous-time Markov models that arise in a
variety of areas of economics. In many instances, such models are attractive because
of conceptual and computational simplifications obtained by taking continuous time
limits. The approach advanced in this paper can, by design, be used to study these
models empirically even when it is not possible for an econometrician to approximate a
continuous data record. For this reason, we focused our analysis on fixed interval sam-
pling although our moment conditions are also applicable more generally. For instance,
we could accommodate systematic patterns to the sampling, or the sampling procedure

itsell could be modeled as an exogenous stationary process. Both moment conditions
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are still satisfied, with moment condition C2 applied to adjacent observations. The
observable implications we obtained extend in the obvious way. This means that our
moment conditions can easily handle missing observations that occur in financial data
sets due to weekends and holidays. On the other hand, such sampling schemes may

alter the central limit approximations reported in Section VII.

One of the many questions left unanswered here is that of the selection of test functions
in practice. For finite-dimensional parameter models one could compare the asymptotic
efficiency of estimators constructed with alternative configurations of test functions
along the lines of Hansen (1985). Finite sample comparisons are likely to require Monte

Carlo investigations.
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