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Abstract

Business cycle indexes are used to get a timely and frequent description of the state of the

economy and its likely development in the near future. This paper discusses two methods

for constructing business cycle indexes, the traditional NBER method and a recently de-

veloped dynamic factor model, and compares these methods for the euro area. The results

suggest that a reliable indicator can be constructed from a limited number of series that

are selected using economic logic.
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1 Introduction

Business cycle indexes (BCIs) convert complex economic dynamics into one-dimensional fig-

ures that are easily tractable and are used to get a timely and frequent description of the

state of the economy and to forecast economic activity in the near future. The methodology

for constructing BCIs was originally developed at the National Bureau of Economic Research

(NBER) in the U.S. in the 1930s and described in the seminal book of Burns and Mitchell

(1946). It has since then been widely used (see e.g. Zarnowitz, 1992). In recent years these

indexes are maintained and regularly published by The Conference Board (TCB) who have

also developed similar indexes for other countries.

A more recent development in the construction of BCIs is the use of dynamic factor models.

Earlier applications of dynamic factor models are Sargent and Sims (1977) and Geweke (1977).

Recent examples are Stock and Watson (1989, 2002), Camba-Mendez, Kapetanios, Smith and

Weale (2001), and the Generalized Dynamic Factor Model of Forni, Halli, Lippi and Reichlin

(2000) and Forni and Lippi (2001).

This paper compares business cycle indexes constructed using the traditional NBER

method and the Generalized Dynamic Factor Model (GDFM). Our main goal is to try and

determine how selecting a number of variables from a larger data universe affects the ability

of the resulting BCI to capture relevant business cycle information. In a recent paper Boivin

and Ng (2003) also address this issue and, using simulations, they come to the conclusion

that it is possible to select a relatively moderate number of indicators without losing much

relevant information.1 Our paper is largely complementary as we analyze this question in an

applied setting and adopt economic logic rather than statistical algorithms to reduce the data

set.

After a general introduction to business cycle measurement, we describe the methods

under consideration in Section 2. Section 3 presents three BCIs for the euro area. The

first index is EuroTCB, an index in the NBER tradition based on coincident indexes of The

Conference Board for three euro area countries. The second is EuroCOIN of Altissimo et al.

(2001), an index constructed using the GDFM and the third is our own index EuroIJR in

which the GDFM is applied to the (limited) set of components of the TCB coincident and

the leading indexes for the three euro area countries. Section 4 compares the three business

cycle indexes in terms of correlations and chronologies of cyclical peaks and troughs. We find

that the three business cycle indexes are very similar in terms of correlations and the dates
1Bai and Ng (2002) also find that the number of series need not be very large to get precise factor estimates.
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of peaks and troughs are also comparable. The leads and lags around the turning points of

euro area GDP are generally modest and none of the three indexes clearly outperforms the

other two. Section 5 concludes.

2 Methodology

Business cycles are more or less regular patterns in fluctuations in economic activity, or in

the well-known definition of Burns and Mitchel (1946, p3):

A cycle consists of expansions occurring at about the same time in many economic

activities, followed by similarly general recessions, contractions, and revivals which

merge into the expansion phase of the next cycle; this sequence of changes is

recurrent but not periodic; in duration business cycles vary from more than one

year to ten or twelve years; they are not divisible into shorter cycles of similar

character with amplitudes approximating their own.

In other words, expansions and contractions in economic activity are observed in time

series of many variables across different sectors of most (market) economies at roughly the

same time. This suggests that it is possible to select a limited number of business cycle

indicators to capture relevant facts about the business cycle. This is the NBER approach as

originally proposed by Burns and Mitchell (1946). Alternatively, a formal statistical model

can be formulated to try to directly identify possible underlying ‘shocks’ that might drive the

business cycle.2 Factor models like the GDFM are part of this latter group.

Burns and Mitchel (1946) define the business cycle in terms of fluctuations in economic

activity. However, the choice of a measure of ‘economic activity’ is not entirely straightfor-

ward. The usual choice is GDP, but since GDP is only available at a quarterly frequency

extra variables are necessary to establish a monthly chronology. Therefore, the NBER Busi-

ness Cycle Dating Committee adopts a more general approach in the U.S. by also looking at

other (monthly) economic variables.

According to the definition, contractions of economic activity are an essential ingredient

of business cycles. However, some economic theories predict movements around a permanent

component or a ‘trend’ and many statistical methods require stationary variables. This has
2The term ‘shock’ should not be taken to mean that business cycles are set in motion through economic

events such as for example stock market crashes or technology shocks. The shocks in the statistical model are

simply the observation that for whatever reason a variable diverges from its long term mean.
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given rise to the analysis of fluctuations around a trend, a class of cycles usually referred to

as deviation cycles or growth cycles to distinguish them from the classical cycle, which looks

at absolute contractions in economic activity. While policy makers are primarily interested

in classical cycles, academics tend to focus on deviation cycles (Harding and Pagan, 2000).

In this paper we will apply both cycle concepts, as will become clear below.

Given a reference series of economic activity, turning points of business cycles can be

determined in levels or deviations from trend. The standard method is to use the algorithm

of Bry and Boschan (1971). This algorithm calculates moving averages of different lengths to

narrow down the region where the turning points are likely to be located and then pinpoints

the exact month where the peak or trough occurred using the original series. The only

restrictions are that a full business cycle (peak to peak or trough to trough) should last at

least fifteen months, each business cycle phase (peak to trough, trough to peak) should last

at least five months and peaks and troughs should alternate.

The NBER method

As mentioned above, the NBER defines U.S. economic activity explicitly in terms of monthly

variables, namely employment, personal income, industrial production and manufacturing

and trade sales, together making up the composite coincident index. The choice of these

variables (in some form) can be traced back to the work of Burns and Mitchel (1946) who

studied the cyclical behaviour of a large number of economic variables. Since then, the four

components of the coincident index have stood up as a good representation of the reference

business cycle. In the selection and evaluation of these variables, the classical cycle concept

is used.

Potentially relevant economic variables are evaluated based on how closely they track the

cyclical behaviour of the reference series. This can be done by looking at the correlations

with the reference series at various leads and lags and to what extent these variables exhibit

peaks and troughs at around the same time as the reference series. Consistently leading and

lagging variables are then combined into leading and lagging composite indexes. The change

in a composite index is calculated as the unweighted average of changes in the components,

after normalisation; the level of the index is computed by cumulating the changes from a

specified base year.

The indexes depends for a large part on the judgment of the researcher. One has to

construct a ‘good’ reference series based on a measure of ‘economic activity’, find a way to
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determine its peaks and troughs and then evaluate whether other variables have a ‘close’

relationship to the reference series. The degree of subjectiveness of the NBER method has

been a motivation to develop more statistically oriented methods. Such statistical methods

of course also involve quite a number of (subjective) choices, but generally speaking they do

impose more theoretical structure on the problem of measuring business cycles (for better or

worse).

The Generalized Dynamic Factor Model

The basic idea of factor models is that a dataset consisting of a large number of stationary

time series can be decomposed into a common component and an idiosyncratic component,

where the common component is driven by only a few (q) common shocks. The Generalized

Dynamic Factor Model can be written as

xit = bi1(L)u1t + bi2(L)u2t + . . . + biq(L)uqt + ξit ≡ χit + ξit, (1)

where xit is the t-th observation on the i-th time series and L is the lag operator. The dynamic

factor loading bij(L) describes the impact of the j-th common shock uj on the i-th series.

The common shocks and the factor loadings together make up the common component χ.

After the influence of common shocks has been removed, only the idiosyncratic component ξ

remains. Equation (1) makes clear that the model is explicitly dynamic since a common shock

can affect a variable with leads or lags. The model is ‘generalized’ in the sense that contrary

to the earlier dynamic factor models such as those of Sargent and Sims (1977) or Geweke

(1977), the idiosyncratic components need not be uncorrelated. The factor model is basically

a method of rank-reduction, where the information in the large matrix of observations is

summarised in the matrix of common components of smaller rank.3

As Forni et al. (2000) show, the common component in this model is only uniquely iden-

tified in a dataset with an infinite number of observations and time series, but they present

an estimator that is reasonably precise for datasets of more modest dimensions. The main

identifying assumption is that there is a limited number of common shocks that explain an

increasing percentage of the variance of the dataset as the number of time series in the dataset

grows, while the importance of the idiosyncratic shocks remains bounded. The common com-

ponents of Equation (1) can then be estimated by employing principal component analysis in
3A full discussion of this method is beyond the scope of this paper. For more details, see e.g. Inklaar and

Romp (2003)
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the frequency domain. The common component of a series is then the part that is driven by

shocks that are common to all series while the remainder is idiosyncratic noise. Abstracting

from mathematical complications, the common component of a series will be a sum of linear

combinations of all the variables, where the weights on each of the variables is chosen so as

to maximize the variance explained by the common component. The common component of

GDP is then a logical candidate for a business cycle index. Since GDP (in logs) is rendered

stationary by first differencing, the resulting index matches a deviation cycle. However, a

trend can be restored by cumulating the differences into an index. One problem in applying

this method is that the selection of the number of common shocks is not straightforward.4 In

this paper we will use one of the criteria suggested by Forni et al. (2000), namely that each

common shock should explain at least a pre-specified percentage of total variance.

3 Euro area business cycle indexes

In this paper we compare three business cycle indexes for the euro area: EuroTCB, a co-

incident index constructed along the lines of the NBER methodology, EuroCOIN, in which

the Generalized Dynamic Factor Model is applied to a large set of data, and the hybrid

EuroIJR, in which the GDFM is used on the limited set of variables used in the construction

of coincident and leading indexes for European countries by TCB.

EuroTCB

The Conference Board (TCB) publishes business cycle indexes for a number of euro area

countries on a monthly basis. At present coincident and leading indexes are constructed for

France, Germany and Spain. The components of the coincident indexes have been selected

based on the components of the U.S. coincident index as well as their ability to match the

business cycle turning points of GDP. The leading indexes have been constructed so that they

lead the coincident index at business cycle turning points. Appendix A lists the components

of the leading and the composite indexes for the three countries. The components of the

leading and coincident indexes differ across countries, but they generally contain the same

type of time series. The coincident indexes include measures of sales, income, production

and employment. The leading indexes usually contain financial variables such as bond yields

and share prices, natural leading series like orders for new goods and building permits, and
4See also Bai (2003).
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Figure 1: The Conference Board indexes for France, Germany and Spain and the

euro area index (EuroTCB), 1988-2002 (January 1988=100)
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finally surveys of consumer or business confidence. All these series have been selected to

match classical cycle turning points in each of the individual countries. It is therefore not

clear whether they will provide a good representation of the euro area cycle, but given that

these three countries account for about 60 percent of euro area GDP the representativity

is probably reasonably good. Besides, these variables have not been selected to match the

deviation cycle so good performance in that respect is also not guaranteed.

We construct the EuroTCB index as a weighted average of the coincident indexes of the

three euro area countries. As weights we use the share of each country’s GDP in 2001 from

the GGDC Total Economy Database (2002), which is denominated in U.S. dollars converted

at Purchasing Power Parity. Figure 1 shows the coincident indexes for France, Germany and

Spain as well as the EuroTCB index for the period 1988-2002.5 As the figure suggests, the

indexes for France and Germany have the largest weight, namely 34 percent and 47 percent

respectively.
5These indexes are available for a longer period of time, but due to the data availability of EuroCOIN, we

focus on this period for comparability.
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EuroCOIN

The EuroCOIN index is published monthly by the Centre for Economic Policy Research

(CEPR) (www.cepr.org). Altissimo et al. (2001) describe the index in detail; we will cover the

highlights here. The authors construct an index from a database with monthly observations

for 951 series for France, Germany, Spain, and Italy, the Netherlands, Belgium and a number

of euro area wide variables. From these 951 they select 246 series to obtain a feasible, real-time

index. The series cover a wide range of subjects such as industrial production, prices, interest

spreads and surveys. The generalized dynamic factor model is applied to this database,

after any necessary first differencing to render the series stationary. The authors include

all common shocks that capture 10 percent or more or total variance, which leads to the

choice of four factors. The first four dynamic principal components together explain 55

percent of all variance in the data. Altissimo et al. (2001) then use the cyclical part of the

common component of euro area GDP as their business cycle index. Due to the stationarity

requirement of factor models, GDP is included in growth rates. EuroCOIN is the common

component of GDP growth and hence models the deviation cycle of the euro area.

EuroIJR

Our third euro area business cycle index applies the generalized dynamic factor model to the

components of the coincident and leading indexes for France, Germany and Spain of TCB. In

the construction of this index, which we will refer to as EuroIJR, we combine features from

both approaches. On the one hand, we use data that analysts consider to be informative of

the cyclical development in euro area countries. The turning points of these series generally

lead or coincide with GDP of the country in question. The fact that only a limited number

of series enters into the index makes it easier to relate changes in the index to changes in

the components and therefore to interpret changes in the index. On the other hand, we use

the GDFM to combine these series into an index. This will allow us to conclude whether it

is possible to select only a relatively small number of series to analyze classical or deviation

cycles without loss of crucial information.

In total 37 variables enter into the coincident and leading indexes of France, Germany

and Spain (see the overview in Appendix A). For each country, there are four coincident

series. For France, the leading index contains ten indicators, while the corresponding indexes

of Germany and Spain have eight and seven respectively. In addition to these variables,

we include quarterly GDP growth for the euro area as a whole from the OECD Quarterly
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National Accounts. Since we are constructing a monthly index, we apply the quarter-on-

quarter growth rate of GDP to each month in the quarter.6 As a result, when we date the

business cycle (classical or deviation), the peak or trough will always be the final month of

the relevant quarter. All series are analyzed as normalized exponential growth rates (first

differences in logs), since stationarity is a prerequisite to the GDFM. Our data cover the

period from February 1987 to October 2002.

As mentioned in the discussion of the GDFM, we apply one of the criteria of Forni et al.

(2000) and include common shocks as long as they explain at least five percent of total

variance. This leads us to select six common factors that together capture fifty percent of

total variance in our dataset.7 We then use the cyclical frequencies of the common component

of euro area GDP as our business cycle index.8 The EuroIJR index as well as the GDP

growth rate is shown in Figure 2. The index is calculated as a two-sided weighted average of

all 38 variables (including euro area GDP), where the weights are determined in the GDFM.

Although the largest weight is put on developments in euro area GDP itself, all series make

a non-negligible contribution to the resulting index. As is the case with EuroCOIN, the

common component of GDP growth corresponds to the deviation cycle of the euro area.

4 Comparison

In this section we evaluate our three BCIs for the euro area in terms of the correlation with

GDP growth and in terms of cyclical peaks and troughs. In this analysis we look at both peaks

and troughs in the classical cycle and the deviation cycle. We define the euro area deviation

cycle by the growth rate of euro area GDP and consequently all three BCIs are taken as growth

rates, see Figure 3. We define the euro area classical cycle by the level of euro area GDP.

Figure 4 shows euro area GDP and the three BCIs as indices with January 1995=100. In both

figures the short term fluctuations show differences but overall the similarities between the

indexes are striking. Especially the recession of 1993 clearly stands out in all three indexes.
6This procedure corresponds to linearly interpolating the level of GDP for each month. An alternative would

be to interpolate the growth rates instead of the level. There is no strong case for either of these options,

but at least for the procedure we choose, it is immediately clear that we do not know the month-to-month

developments in GDP, since we assume the same growth rate for each month.
7The ten percent norm of Altissimo et al. (2001) leads them to select four factors. However, our index is

qualitatively similar whether we select four or six common factors.
8We take the cyclical frequencies to be all fluctuations with a period of at least 15 months. The turning

points for an index that includes fluctuations at all frequencies are very similar, though.
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Figure 2: Growth rates of euro area GDP and EuroIJR(1988-2002)
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Table 1 shows the correlations between the three indexes in growth rates as well as the

change in euro area GDP. These correlations confirm the conclusions from visual inspection

by showing large and positive coefficients (all significant at the 1 percent level). In other

words, the three indexes all capture a large amount of the variation in euro area GDP.

The notion that the three indexes capture largely the same phenomena receives further

confirmation when looking at the turning points of the three indexes and comparing them to

the turning points in GDP. To determine the turning points we use the algorithm of Bry and

Boschan (1971).9

Table 2 shows the turning points of the indexes in levels (cf. Figure 4). These turning

points correspond to the turning points of the classical cycle and signal absolute expansions

and contractions in economic activity. Table 3 shows the turning points for the growth rates of

the indexes (Figure 3). These turning points signal slowdowns and accelerations in economic

growth and correspond to the deviation cycle. A turning point of the deviation cycle will

generally lead a turning point of the classical cycle since a slowdown in growth usually occurs

before growth turns negative. Furthermore, a series generally has more deviation cycle turning
9We use the Bry-Boschan algorithm of Mark Watson, converted from Gauss to Matlab.
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Figure 3: Euro area business cycle indexes and euro area GDP: growth rates

(1988-2002)
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Table 1: Correlation coefficients between euro area GDP growth and Euro area

business cycle indexes (growth rates)

Euro GDP EuroCOIN EuroTCB EuroIJR

Euro GDP

EuroCOIN 0.80

EuroTCB 0.68 0.72

EuroIJR 0.80 0.90 0.78
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Figure 4: Euro area business cycle indexes and euro area GDP: levels, January

1995=100 (1988-2002)
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Table 2: Business cycle turning points of euro area GDP and business cycle

indexes (levels) and leads/lags relative to euro area GDP
Peaks and troughs Leads/Lags with respect to GDP

EuroGDP EuroCOIN EuroTCB EuroIJR EuroCOIN EuroTCB EuroIJR

Peaks 1992-3 1992-4 1992-3 1992-5 1 0 2

1995-6 E

2001-2 E

Troughs 1993-4 1993-10 1993-8 1993-5 6 4 1

1996-2 E

2001-12 E

Notes: ‘-’: lead of x months; ‘+’: lag of x months; ‘E’: extra peak/trough

points than classical cycle turning points as absolute declines in economic activity are rarer

than slowdowns in growth. This is confirmed by comparing the turning points of GDP in

Table 2 and Table 3. In the period 1988-2002, GDP showed only one classical cycle, but four

deviation cycles.

Tables 2 and 3 show that none of the three indexes perfectly matches the peaks and troughs

of the cycles of GDP. However, the similarity between the turning points of the indexes and

of GDP is large. Table 2 indicates that the euro area had one classical cycle between March

1992 and April 1994. Our EuroIJR index had its peak two months later and its trough one

month later than GDP. The EuroCOIN index lagged one month at the peak and lagged half

a year at the trough. The EuroTCB lagged at the trough in 1993 and the index also signaled

two additional cycles, in 1995 and 2001. This is also clear from Figure 4 where the EuroTCB

index showed negative growth during these months. The other indexes as well as GDP also

showed negative growth in 2001, but for a much shorter period. The Bry-Boschan algorithm

smoothed these dips and thus did not produce recession signals. So, the EuroTCB index

overestimates the number of downturns over this period. This was most serious in 1995-1996

where it is the only index with negative growth.

Table 3 shows the turning points of the euro area deviation cycle and the turning points

for (the growth rates) of each of the BCIs. The main problem in correctly identifying the

turning points of the deviation cycle of euro area GDP is that the BCIs miss cycles. This

problem is most noticeable with the EuroCOIN index which shows a peak at the start of

1989 and a trough only at the end of 1992. EuroTCB and EuroIJR show another trough

13



Table 3: Business cycle turning points of euro area GDP and business cycle

indexes (growth rates) and leads/lags relative to euro area GDP growth
Peaks and troughs Leads/Lags with respect to GDP

EuroGDP EuroCOIN EuroTCB EuroIJR EuroCOIN EuroTCB EuroIJR

Peaks 1990-3 1989-2 1988-10 1988-12 -13 -17 -15

1992-3 1991-3 M -12 M

1994-12 1994-10 1994-10 1994-8 -2 -2 -4

1997-12 1997-11 1998-6 1997-11 -1 6 -1

1999-9 1999-11 2000-3 1999-10 2 6 1

Troughs 1989-9 1990-2 1988-3 M 5 -18

1991-9 M M M

1993-3 1992-11 1993-1 1992-12 -4 -2 -3

1995-12 1995-11 1995-10 1995-11 -1 -2 -1

1998-12 1998-10 1999-4 1998-9 -2 4 -3

2001-12 2001-11 2001-11 2001-10 -1 -1 -2

Average lead/lag -2.8 -1.0 -5.1

Standard deviation 4.5 7.4 6.7

Notes: ‘-’: lead of x months; ‘+’: lag of x months; ‘M’: missing peak/trough
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and peak in 1990 and 1991. Another problem is that the Bry-Boschan algorithm identifies

March 1990 as a peak for euro area GDP at the beginning of the sample instead of at the

start of 1989 when all three indexes have their peak. The identification problems become

noticeably smaller from 1993 onwards, although there are still some considerable leads and

lags around peaks and troughs. Although the average lead for EuroIJR is higher than for

the other two indexes, all three indexes have an average lead that is smaller than one quarter

when the misidentified peak in the early 1990s is excluded. Given that GDP is only available

at the quarterly frequency, that is the best possible achievement. In other words, none of the

indexes clearly outperforms the other two in terms of leads and lags and the three BCIs are

able to track both the classical and the deviation cycle of the euro area.

5 Conclusion

A timely and up-to-date picture of economic circumstances is invaluable for decision makers

in both government and business. Since GDP is only released once a quarter and with

a considerable lag, earlier and more frequent indexes of the state of economic activity are

useful, especially in turbulent economic times.

In this paper we discuss two different methods for constructing business cycle indexes.

One the one hand we consider the NBER method in which variables are selected based on

a researcher’s judgment of how closely the cyclical behaviour of a variable matches that of

an index of economic activity such as GDP. On the other hand we look at the generalized

dynamic factor model of Forni et al. (2000) that uses statistical criteria to give a variable a

larger or smaller weight.

An advantage of the generalized dynamic factor model is that business cycle indexes can be

constructed with a relatively smaller number of (judgmental) choices about the components

and their weight in the index, since many of those choices are part of the statistical model.

One advantage of the NBER method is that the business cycle index is generally constructed

from only a limited number of variables. As a result, changes in the index can easily be

traced back to the component or components that drive this change. This allows analysts

and users to evaluate which part of the economy has caused a recession, say a slowdown in

the manufacturing sector or a drop in employment, and which part was less of a factor, such

as a drop in sales or income. If the number of components of the index grows too large, this

insight is lost.
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Using both the NBER method and the generalized dynamic factor model, we construct

three business cycle indexes. Our first index is a GDP-weighted average of the business cycle

coincident indexes for France, Germany and Spain from The Conference Board constructed

according to the NBER method. The second is the euro area index of Altissimo et al. (2001)

constructed by applying the generalized dynamic factor model to a dataset with nearly 1000

economic variables. The third index is a hybrid one that uses the 37 components of the

Conference Board’s coincident and leading indexes for France, Germany and Spain plus euro

area GDP and applies the generalized dynamic factor model to weigh and combine these into

a business cycle index.

One of the most important uses of a business cycle index is to signal peaks and troughs

of classical and deviation cycles. We compare our indexes using that criterion. Although

none of the three indexes perfectly matches the turning points of euro area GDP, all three

are reasonably close. The correlations between the indexes and GDP are also quite high.

These results suggest that it is quite feasible to construct a business cycle index using only a

limited number of economic variables as long as these variables are selected using economic

logic. In other words, after a careful selection of the variables a heap of data is not necessary

to construct an insightful business cycle index.
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A Components of The Conference Board’s Coincident and

Leading Indexes for France, Germany and Spain

France LEAD Bond Yield 10 year
France LEAD Yield Spread - 10 year minus Day-Day Loan
France LEAD Stock Price SBF 250 Index
France LEAD Personal Consumption of Manufactured Goods
France LEAD Building Permits - Residential
France LEAD New Unemployment Claims
France LEAD Industrial New Orders
France LEAD Consumer Confidence Index
France LEAD Change in Stocks
France LEAD Ratio Deflator of Manufacturing Value Added to Unit Labor Cost
France COIN Retail sales
France COIN Industrial Production
France COIN Real Imports
France COIN Paid Employment
Germany LEAD New Orders - Investment Goods
Germany LEAD Yield Spread - 10 year minus 3 month
Germany LEAD New Orders - Consumer Confidence Index
Germany LEAD Change in Inventories
Germany LEAD New Orders - Residential Construction
Germany LEAD Stock Prices
Germany LEAD Gross Enterprise and Property Income
Germany LEAD Growth Rate for Consumer Price Index for Services
Germany COIN Industrial Production
Germany COIN Employment - Number of People Employed
Germany COIN Manufacturing Sales
Germany COIN Retail sales
Spain LEAD Construction Component of Industrial Production (3 month moving average)
Spain LEAD Capital Equipment Component of Industrial Production(3 month m.a. s.a.)
Spain LEAD Spanish Contribution to euro M2(s.a.)
Spain LEAD Spanish Equity Price Index
Spain LEAD Long-term Government Bond Yield (Inverted)
Spain LEAD Order Books Survey (3 month moving average s.a.)
Spain LEAD Job Placings (3 month moving average s.a.)
Spain COIN Final Household Consumption (Q)
Spain COIN Industrial Production Excluding Construction (3 month moving average)
Spain COIN Real Imports (3 month moving average)
Spain COIN Retail Sales Survey (s.a.)
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